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We show that the electric dipole-dipole interaction between a pair of polar molecules undergoes
an all-out transformation when superimposed by a far-off resonant optical field. The combined
interaction potential becomes tunable by variation of wavelength, polarization and intensity of
the optical field and its dependence on the intermolecular separation exhibits a crossover from an
inverse-power to an oscillating behavior. The ability thereby offered to control molecular interactions
opens up avenues toward the creation and manipulation of novel phases of ultracold polar gases
among whose characteristics is a long-range entanglement of the dipoles’ mutual orientation. We
devised an accurate analytic model of such optical-field-dressed dipole-dipole interaction potentials,
which enables a straightforward access to the optical-field parameters required for the design of
intermolecular interactions in the laboratory.
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I. INTRODUCTION

Fundamental few- and many-body physics has become
a mainstay of research on ultracold gases, whose trans-
formative effects are felt perhaps the most in condensed-
matter, atomic and molecular physics [1–4]. Of partic-
ular interest are dipolar ultracold gases consisting either
of paramagnetic atoms or of polar molecules [4], as both
are amenable to manipulation by external magnetic or
electric fields. Compared with paramagnetic atoms, po-
lar molecules offer not only electric dipole moments – and
hence a dipole-dipole interaction that exceeds the mag-
netic one by several orders of magnitude [2] – but also
vibrational and rotational structure.

Examples of the widened scope of studies in few-
and many-body physics that ensued from the use of
ultracold polar molecules include: engineering new 2D
quantum phases by exploiting microwave transitions be-
tween molecular rotational states [5, 6]; construction of
Hubbard-like Hamiltonians with independently control-
lable two-body and tree-body interaction terms [7]; and
simulation of any permutation-symmetric lattice spin
models with open-shell molecules [8].

It was shown in the early 1980s that an intense far-off-
resonant laser field can induce a highly-controllable re-
tarded induced dipole-dipole interaction between atoms
or molecules, which decays as 1/r, 1/r2, or 1/r3, de-
pending on the interatomic or intermolecular separation
r and on the wavevector of the optical field [9, 10].
The retarded interaction generates peculiar effects in
atomic Bose condensates, such as “gravitational self-
binding,” rotons, as well as density modulations leading
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to a supersolid-like behavior [11–13].

Recently, we presented a promising method for manip-
ulating the interaction potentials between a pair of polar
molecules with far-off-resonant light [14]. The method is
based on the triple-combination of the electric dipole-
dipole, anisotropic polarizability, and the retarded in-
duced dipole-dipole interactions and offers a wide tune-
ability range of the intermolecular potentials that it gen-
erates. Herein, we provide a detailed account of how
the combined interaction comes about, identify its short-
and long-range behavior, and characterize the orienta-
tional entanglement of the dipole pair: although there is
no net orientation of the pair, the dipoles are instanta-
neously oriented parallel or antiparallel with respect to
one another depending on the state of the composite sys-
tem, i.e., they “up- or down-hold each other.” We aug-
mented our analysis by devising an accurate model of the
triple-combined interaction which allows to readily access
the optical-field parameters required for achieving preor-
dained intermolecular interactions in the laboratory.

In Sec. II we describe the interaction of a single po-
lar and polarizable molecule with a far-off-resonant op-
tical/laser field, and in Sec. III the interaction between
a pair of polar molecules subject to a far-off resonant
optical field. In Sec. IV we demonstrate that an opti-
cal field gives rise to new types of intermolecular poten-
tials, which exhibit a crossover from an inverse-power
decay at short intermolecular separations to an oscillat-
ing long-range behavior, and whose parameters can be
varied by tuning the intensity and frequency of the laser
field. We show that for a wide range of field intensities
and molecular parameters, the problem can be described
by an exactly solvable two-level model, which leads to
simple analytic expressions for the effective potential en-
ergy surfaces. We exemplify the treatment by evaluat-
ing optically-induced interactions between pairs of either
85Rb133Cs or 40K87Rb molecules, widely employed in ex-
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FIG. 1: Dependence of the lowest energy levels of a molecule
in a far-off-resonant laser field on the field-strength parameter
∆η, with energy expressed in units of the rotational constant
B. Different colors correspond to M = 0 (black), 1 (red), and

2 (blue). Two lowest tunneling doublets are labeled as J̃ ,M
and the dots show their energies in the strong-field approxi-
mation.

periments with ultracold polar gases [15, 16]. The main
conclusions of this work are summarized in Sec. VI.

II. A MOLECULE IN A FAR-OFF-RESONANT
LASER FIELD

We consider a diatomic molecule with a dipole moment
d and polarizability components, α‖ and α⊥, parallel and
perpendicular to the molecular axis. In a far-off-resonant
radiative field of intensity I, the molecular rotational lev-
els undergo a dynamic Stark shift, given by the Hamil-
tonian [9]

H = BJ2 − I

2cε0
eje
∗
l α

lab
jl (k), (1)

with B the rotational constant, and αlab
jl (k) the dynamic

polarizability tensor of the molecule in the laboratory
frame. The term “far-off-resonant” implies that the fre-
quency of the optical field is far removed from any molec-
ular resonance, and is much larger than the inverse of
both the rotational period and the pulse duration (if a
pulsed laser is used). We note that at the far-off-resonant
wavelengths usually employed in alignment and trap-
ping experiments (∼1000 nm), the dynamic polarizability
αij(k) approaches its static limit, αij(0), for a number of
molecules, e.g. CO, N2, and OCS. However, this is not
the case for alkali dimers, such as KRb and RbCs, which
possess low-lying excited 1Σ and 1Π states. Virtual tran-
sitions to these states contribute to the ground-state dy-
namic polarizability, rendering it a few times larger than
the static value [17, 18].

We assume a laser beam propagating along the posi-
tive Y direction with the wavevector k = kŶ, and linear

polarization, ê along the Z axis, ê = Ẑ. Given that the
only nonzero polarizability components in the molecular
frame are αzz = α‖ and αxx = αyy = α⊥, and using B
as a unit of energy, Hamiltonian (1) can be recast as:

H = J2 −∆η(k) cos2 θ − η⊥(k), (2)

where θ is the polar angle between the molecular axis and
the polarization vector of the laser field. The dimension-
less interaction parameter ∆η(k) is defined by

∆η(k) ≡ η‖(k)− η⊥(k) (3)

with

η‖,⊥(k) ≡
α‖,⊥(k)I

2ε0cB
. (4)

We note that eq. (2) was derived in Refs. [19, 20] using
the semiclassical approach and the rotating wave approx-
imation. All rotational levels exhibit a constant shift of
η⊥, given by the second term of eq. (2), which will be
omitted hereafter.

The polarization vector of an optical field defines an
axis of cylindrical symmetry, Z. The projection, M , of
the angular momentum J on Z is then a good quantum
number, while J is not. However, one can use the value
of J of the field-free rotational state, YJ,M (θ, φ), that
adiabatically correlates with the hybrid state as a label,
denoted by J̃ , so that |J̃ ,M ; ∆η〉 → YJ,M for ∆η → 0.

For emphasis, we also label the actual values of J̃ by
tilde, so that, e.g., 0̃ stands for J̃ = 0. The induced-
dipole interaction, eq. (2), preserves parity, hybridizing
states with even or odd J ’s,

|J̃ ,M ; ∆η〉 =
∑
J

cJ̃,MJM (∆η)YJM , J + J̃ even, (5)

and therefore results in aligning the molecules in the lab-
oratory frame. Aligned molecules possess no space-fixed
dipole moment, in contrast to species oriented by an elec-
trostatic field.

Figure 1 illustrates how the dynamic Stark effect af-
fects the rotational levels of a diatomic molecule and the
angular ‘shape’ of the resulting pendular states, eq. (5).
A far-off-resonant optical field of sufficiently large inten-
sity leads to formation of “tunneling doublets” – closely
lying states of opposite parity with same M and |∆J̃ | =
1 [19]. Due to their proximity, the opposite-parity dou-
blet states can be efficiently mixed by extremely weak
electrostatic fields, lending them strong but opposite ori-
entation in the laboratory frame [21–23].

In the strong-field limit, ∆η →∞, the eigenenergies of
Hamiltonian (2) are given by [20, 22, 24]:
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E = 2(∆η)
1
2 −∆η + 2J̃∆η

1
2 +

M2

2
− J̃2

2
− J̃ − 1, for J̃ − |M | even, (6)

−∆η + 2J̃∆η
1
2 +

M2

2
− J̃2

2
− 1

2
, for J̃ − |M | odd, (7)

from which it follows that the energy gap between ad-
jacent tunneling doublets increases proportionately to
2∆η1/2, while the tunneling doublet splitting decreases
as

∆E = |E| exp[a− b∆η1/2], (8)

with a = 3.6636 and b = 2 for the lowest 0̃, 0− 1̃, 0 dou-
blet [22]. The strong-field limit, also included in Fig. 1
and shown by dots, becomes a good approximation of
the eigenenergies for the lowest doublet at ∆η & 15.
As we demonstrate below, at sufficiently large ∆η, the
interaction between two ground-state molecules can be
described within the lowest tunneling doublet.

III. INTERMOLECULAR INTERACTIONS

A. Dipole-dipole interaction

In the absence of external fields, two polar molecules
1 and 2 interact via the dipole-dipole interaction,

Vdd(r) =
d̂

(1)
j d̂

(2)
l

r3
(δjl − 3r̂j r̂l), (9)

where d̂(1,2) = d(1,2)/d are unit dipole moment vectors
of the molecules, d ≡ |d(1)| = |d(2)|, r̂ is the unit vector
which defines the direction of the intermolecular axis, and

r0 =

(
d2

4πε0B

)1/3

(10)

is introduced as a unit of length. In the field-free case, the
interaction between two ground-state polar molecules has
an isotropic asymptotic behavior, Vdd(r) = −1/(6r6).

Eq. (9) can be recast in terms of spherical harmonics
as [25]:

Vdd(r) = −8π3/2

(
2

15

)1/2
1

r3

×
∑
νλ

(−1)ν+λC(1, 1, 2; ν, λ, ν + λ)

× Y1ν (θ1, φ1)Y1λ (θ2, φ2)Y2,−ν−λ (θ, φ) , (11)

with C(j1, j2, j;m1,m2,m) the Clebsch-Gordan co-
efficients [26, 27]. Here (θ1, φ1) and (θ2, φ2) are the
rotational coordinates of molecules 1 and 2, and (θ, φ)
are the polar coordinates of their relative position vector,
r̂. The dipole-dipole interaction only mixes rotational
states with J ′ = J ± 1 which have opposite parity.

B. Induced dipole-induced dipole retarded
interaction

Far-off-resonant laser light induces oscillating dipole
moments on each of the two molecules, and the retarded
interaction between these instantaneous dipoles leads to
an additional term in the intermolecular potential [9, 10,
28]:

Vαα(k, r) =
I

4πε2
0c
e∗iα

lab,1
ij (k)Vjl(k, r)αlab,2

ln (k)en cos(kr),

(12)
with Vjl the retarded induced dipole-induced dipole in-
teraction tensor,

Vjl(k, r) =
1

r3

[
(δjl − 3r̂j r̂l)(cos kr + kr sin kr)

− (δjl − r̂j r̂l)k
2r2 cos kr

]
. (13)

For the laser light linearly polarized along the Z axis,
the retarded interaction (12) can be rewritten in dimen-
sionless form,

Vαα(k, r) =
∆η(k)

ξ(k)
α̃lab,1
Zj (k)Vjl(k, r)α̃lab,2

lZ (k) cos(kr),

(14)
with the energy measured in units of B, distance in units
of r0, k in units of r−1

0 ; α̃ij = αij/∆α with ∆α = α‖−α⊥
is the reduced polarizability tensor. The dimensionless
parameter,

ξ(k) =
d2

2∆α(k)B
, (15)

characterizes the relative strength of the permanent-
dipole and induced-dipole interactions and is found to
be on the order of 102 − 103 for polar alkali dimers.

We note that in eq. (12) we neglected a “static” term
due to the coupling of the dipole moment of one molecule
with the hyperpolarizability of another via the optical
field [28, 29]. This interaction is independent of k and
only becomes comparable to the dipole-dipole potential
(9) at much larger intensities (I & 1014 W/cm2) than
considered here, at which ionization of alkali molecules is
inevitable.

Equation (14) can be written in terms of spherical har-
monics as:
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Vαα(k, r) = 4π
∆η(k)

ξ(k)

cos(kr)

r3

∑
j,k

∑
λ1,λ2

µ1,µ2

FZjλ1µ1
F kZλ2µ2

[(2λ1 + 1)(2λ2 + 1)]
−1/2

Aλ1
0 Aλ2

0 Yλ1µ1(θ1, φ1)Yλ2µ2(θ2, φ2)

×

[
−2

3
a(kr)δjkδµ2,−µ1

+ [a(kr)− 3b(kr)]

√
8π

15
F jk2,−µ1−µ2

Y2,−µ1−µ2
(θ, φ)

]
(16)

where the summation includes j, k = 1, 2, 3; λ1, λ2 = 0, 2;
and µ1, µ2 = −1, 0, 1, and the coefficients are given by:

a(kr) = k2r2 cos kr, b(kr) = (cos kr + kr sin kr) (17)

The coefficients F jkλ,µ are given in Appendix A.

The only nonzero components of Aλµ are given by:

A0
0 = −

√
3
α

∆α
, A2

0 =

√
2

3
, (18)

with α = (α‖ + 2α⊥)/3 the average molecular polariz-
ability. The optically-induced interaction (16) between
molecules 1 and 2 mixes molecular states with J ′ =
J ; J ± 2 and M ′ = M ;M ± 1 (the states of same par-
ity) for each molecule.

IV. COMBINED EFFECTIVE POTENTIAL

Within the Born-Oppenheimer approximation, the ef-
fective interaction potentials Veff(r) are obtained by di-
agonalizing the Hamiltonian for a fixed intermolecular
separation r = (r, θ, φ),

H = H1 +H2 + Vdd + Vαα, (19)

where H1 and H2 are Hamiltonians (2) for molecules 1
and 2. In dimensionless units, the dipole-dipole poten-
tial (9) is on the order of unity, while the strength of
the optically-induced interaction (14) is given by ∆η/ξ.
Therefore, for a field strength parameter ∆η satisfying
the inequality 1 � ∆η1/2 � ξ(k), both interaction
terms are much smaller than the energy gap between
neighboring tunneling doublets. Hence, in the basis of
field-dressed states, |J̃1M1, J̃2M2〉, the interaction be-
tween two ground-state molecules can be treated within
the lowest tunneling doublet, |0̃0, 0̃0〉–|1̃0, 1̃0〉, as shown
schematically in Fig. 2 (the |1̃0, 0̃0〉 and |0̃0, 1̃0〉 states do
not interact with either the |0̃0, 0̃0〉 or |1̃0, 1̃0〉 states).

Given that the optically-induced potential (14) and
the dipole-dipole interaction (9) mix only states of same
and opposite parity, respectively, the Hamiltonian matrix
takes the form:

H =

(
U 0̃
αα Udd

Udd U 1̃
αα + 2∆E

)
, (20)

where ∆E(∆η) is the splitting between the tunneling-
doublet levels |0̃, 0〉 and |1̃, 0〉, cf. Fig. 1, and the matrix
elements are given by:

Udd(r) =
1− 3 cos2 θ

r3
G(∆η), (21)

U J̃αα(k, r) =
∆η(k)

ξ(k)

cos (kr)

r3
KJ̃(∆η, α/∆α)

×

{
−
√

2

3
a(kr) + [a(kr)− 3b(kr)]

√
8π

15
Y20(θ, φ)

}
,

(22)

with α = (α‖ + 2α⊥)/3 the average molecular polariz-
ability, and a(kr) and b(kr) given by eq. (17).

The explicit expressions for G(∆η) and KJ̃(∆η, α/∆α)
are given in Appendix B. Their values are on the order
of unity and in the strong-field limit, ∆η →∞, take the
analytic form:

G(∆η) =
[
1−∆η−1/4F

(
1
2∆η−1/4

)]2
, (23)

KJ̃=0,1(∆η) =

√
2

3

[ α‖
∆α
−∆η−1/4F

(
∆η−1/4

)]2
,

(24)

0 0, 0 0>~| ΔE~

0 0, 1 0>~| ~ 1 0, 0 0>~| ~

1 0, 1 0>~| ~

FIG. 2: Schematic of the two-level configurations of interact-
ing molecules. The pendular wavefunctions of laser-dressed
molecules are shown schematically, with red and green col-
ors indicating their sign. Blue arrows show the non-vanishing
dipole-dipole interaction. See text.
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TABLE I: Parameters of the 40K87Rb and 85Rb133Cs
molecules calculated from the data of Refs. [17, 18, 31, 32].
The intensity per unit strength parameter, I/∆η, is given in
units of 107 W/cm2. See text.

KRb RbCs
1090 nm static 1090 nm static

ξ 96.5 434 572.0 3510
I/∆η 1.4 6.5 0.43 2.7
α/∆α 0.62 1.38 0.58 1.52
∆ηc 70 335 445 2812

r0 [Å] 36.1 75.4

where F (x) = exp(−x2)
∫ x

0
exp(y2)dy is Dawson’s inte-

gral [30].
Therefore, the effective potentials are given by the

eigenvalues of Hamiltonian (20):

Veff(k, r) = ∆E +
U 0̃
αα(k, r) + U 1̃

αα(k, r)

2

±

√
4U2

dd(r) +
[
U 1̃
αα(k, r)− U 0̃

αα(k, r) + 2∆E
]2

2
, (25)

with the minus sign corresponding to the ground state
|0̃0, 0̃0〉 and the plus sign to the excited state |1̃0, 1̃0〉
effective potential.

Table I lists the values of the interaction parameters
and the unit distance r0 for RbCs as well as for KRb
molecules, which are available in the laboratory, and
serve herein as prototypical examples of ultracold polar
molecules.

Figures 3 and 4 show the short-range behavior of the
effective potential of eq. (25), induced between a pair of
85Rb133Cs molecules by a laser field of wavelength λ =
1090 nm and λ = 3000 nm.

The behavior of the effective potential is dictated
by the interplay between the static dipole-dipole and
optically-induced dipole-dipole interactions, eqs. (9) and
(12). At small distances, kr � 1, the dominant contri-
bution to the effective potential, eq. (25), becomes:

Veff(kr � 1) ≈ |1− 3 cos2 θ|
r3

[√
3

2

∆η

ξ
s(θ)±G(∆η)

]
,

(26)
where s(θ) = sgn[1− 3 cos2 θ]. Eq. (26) reveals the pres-

ence of a critical value, ∆ηc = ξ
√

2/3G(∆η), which
determines the sign of the short-range potential (the
values of ∆ηc are listed in Table I). For ∆η < ∆ηc,
Veff(kr � 1) is governed by the second term in the
square brackets, and so the potential is purely attractive
in the ground state and purely repulsive in the excited
state for any angle θ, except for θ = ± arccos(±3−1/2),
where Veff(kr � 1) vanishes identically, cf. Fig 3 (a), (b)
and Fig. 4. This behavior is qualitatively different from
the dipole-dipole interaction between two polar molecules

oriented along the Z axis, V ↑↑dd = (1− 3 cos2 θ)/r3, whose

sign alternates in dependence on θ. On the other hand,
for ∆η > ∆ηc, the sign of Veff becomes angle-dependent,
due to the interplay between the terms in the square
brackets of eq. (26), resulting in a behavior similar to

that of V ↑↑dd : the potential is attractive at θ = 0, π and
repulsive at θ = π

2 , cf. Fig. 3 (c). Both below and above
∆ηc, the inverse-power decay rate of Veff can be tuned
by changing ∆η. We note that whereas for RbCs and
the non-resonant laser wavelength of 3000 nm ∆η > ∆ηc
corresponds to exceedingly high laser intensities, the req-
uisite field strengths are substantially lower for KRb.

At large intermolecular separations, kr � 1, the
optically-induced potential (22) becomes proportional to
1/r and thus dominates over the dipole-dipole interac-
tion (21); its asymptotic behavior, given by,

Veff(kr � 1) ≈ −k2 ∆η

ξ

√
3

2

cos(kr) cos(kr)

r
sin2 θ, (27)

becomes oscillatory, as shown in Fig. 5 for the case of
∆η = 100 and various laser wavelengths. The amplitude
of the oscillations tapers off with increasing r.

Although at large intermolecular separations the
optically-induced potential is on the order of 10−6B
(∼ 25 nK for RbCs), the 1/r-like interaction, eq. (27), is

of longer range than both the van der Waals and V ↑↑dd po-
tentials, which may lend such optically-dressed molecules
intriguing scattering properties.

In general, the effective potential of eq. (25) depends
on the azimuthal angle φ, as given by the cos(kr) term
of eqs. (22) and (27). While at short range the φ-
dependence is negligible, the long-range behavior of the
effective potential is strongly anisotropic in φ, cf. Fig. 5.
As implied by eq. (27), the magnitude and phase of the
long-range oscillations scale with ∆η and k respectively,
and are similar for the ground and excited states.

As displayed in Fig. 5, the optically-induced poten-
tial exhibits concentric minima which, if deep enough,
will support long-range bound states whose properties
would be determined solely by the optical field, molecular
dipole moments and polarizabilities – and independent of
the details of the intermolecular potential, in a manner
reminiscent of the electrostatically-induced bound states
predicted by Avdeenkov and Bohn [33]. Analyzing the
properties of these long-range states is a challenging the-
oretical and computational problem.

V. PAIR ORIENTATION COSINES

The dipole-dipole interaction, eq. (11), between a pair
of molecules couples their tunneling doublet levels cre-
ated by the laser field, thereby generating a parallel or
anti-parallel orientation of the molecular dipoles.

In the laboratory frame, the individual dipoles are
not oriented, as implied by the vanishing values of
their orientation cosines, 〈cos θ(1,2)〉 = 0. How-
ever, the pair orientation cosine, 〈cos θ(1) cos θ(2)〉 ≡
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FIG. 3: Short-range behavior of optically-induced RbCs–RbCs potentials in the XZ plane (θ, φ = 0), for different values of ∆η
and a wavelength of 1090 nm. Left and right panels correspond, respectively, to the ground |0̃0, 0̃0〉 state, and excited |1̃0, 1̃0〉
state potentials, as given by eq. (25). The dependence of the short-range potentials on φ is negligible. Potential energy is in

units of B, with Veff(r → ∞) chosen as zero; distances are in units of r0. The laser beam propagates along the Y axis, k ‖ Ŷ,

with a polarization ê ‖ Ẑ. See text.

〈ψg,e| cos θ(1) cos θ(2)|ψg,e〉 does not vanish in general.

Here |ψg,e〉 = ag,e|0̃0, 0̃0〉 + bg,e|1̃0, 1̃0〉 are the ground
and excited state eigenfunctions of Hamiltonian (20).

Figure 6 shows the pair orientation cosines for the
optically-dressed RbCs–RbCs pair. One can see that as
the molecules interact, they instantaneously orient each
other even at very large distances on the order of 10 µm,
due to a near-degeneracy of the tunneling doublet levels
which is independent of the pair’s separation. This corre-
sponds to a long-distance orientational entanglement of

the two polar molecules.

Another notable feature of the pair orientation dis-
played in Fig. 6 is the strong dependence of the pair orien-
tation cosines on the angle θ between the intermolecular
axis r̂ and the polarization vector ê ‖ Z. Whereas for
the intermolecular axis parallel to the laser polarization
vector (θ = 0) the dipoles tend to orient each other in
the same/opposite way for the ground/excited state, the
sense of the mutual orientation in the ground and excited
state reverses for the intermolecular axis perpendicular to
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FIG. 4: Short-range behavior of optically-induced RbCs–RbCs potentials in the XZ plane (θ, φ = 0), for different values of ∆η
and a wavelength of 3000 nm. Left and right panels correspond, respectively, to the ground |0̃0, 0̃0〉 state, and excited |1̃0, 1̃0〉
state potentials, as given by eq. (25). The dependence of the short-range potentials on φ is negligible. Potential energy is in

units of B, with Veff(r → ∞) chosen as zero; distances are in units of r0. The laser beam propagates along the Y axis, k ‖ Ŷ,

with a polarization ê ‖ Ẑ. See text.

the polarization vector (θ = π
2 ). Thus the molecules of

the pair “hold” each other “up” or “down” in either state
depending on the polarization of the optical field.

VI. CONCLUSIONS

In summary, we undertook a study of the interaction
between a pair of polar molecules in the presence of an
intense far-off-resonant optical field, and provided sim-
ple analytic expressions for the resulting potential energy
surfaces. We found that the optically-induced potential
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planes, for ∆η = 100 and wavelengths of 1090 nm (a) and 3000 nm (b). Long-range behavior of the excited |1̃0, 1̃0〉 state
is similar; the magnitude of the oscillations scales with ∆η, as given by eq. (27). Potential energy is in units of B, with
Veff(r → ∞) chosen as zero; distances are in units of r0. Note different energy scales in panels (a) and (b). The laser beam

propagates along the Y axis, k ‖ Ŷ, with a polarization ê ‖ Ẑ. See text.
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FIG. 6: Pair orientation cosines 〈cos θ(1) cos θ(2)〉 for an optically-dressed RbCs–RbCs pair in the XZ plane (θ, φ = 0), for

∆η = 300 and a wavelength of 1090 nm. Left and right panels correspond, respectively, to the ground |0̃0, 0̃0〉 state, and excited
|1̃0, 1̃0〉 state potentials, as given by eq. (25). The dependence of the short-range potentials on φ is negligible. The laser beam

propagates along the Y axis, k ‖ Ŷ, with the polarization ê ‖ Ẑ. See text.

is highly controllable and qualitatively different from the
dipole-dipole interaction taking place between oriented
polar molecules [1]. The ability to engineer such poten-
tials in the laboratory may open access to novel quantum
phases in laser-dressed ultracold polar gases and to pro-
vide new methods to control molecular collisions in the
ultracold regime. With a proper choice of tuning param-
eters, the dependence of the orientational entanglement

of the pair is found to exhibit a weak, 1/r fall off with
intermolecular distance r, lending the pair a particularly
long-range entanglement: e.g., for RbCs, the pair orien-
tation cosine vanishes only at intermolecular separations
on the order of 10 µm.
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Appendix A: Coefficients of the optically-induced potential

The F jkλ,µ coefficients are given by:

F jkλ,µ =
∑
γ,δ

C(11λ; γδµ)U∗γjU
∗
δk, (A1)

where C(j1j2j;m1m2m) are Clebsch-Gordan coefficients [26, 27], and Uγj is given by:

Uγj =

 − 1√
2
− i√

2
0

0 0 1
1√
2
− i√

2
0

 (A2)

Appendix B: Matrix elements of the dipole-dipole and optically-induced interactions

The coefficients of eqs. (21) and (22) are given by:

KJ̃ =
∑
J1J2
J′
1J

′
2

[
(2J1 + 1)(2J2 + 1)

(2J ′1 + 1)(2J ′2 + 1)

]1/2

cJ̃,0J10(∆η)cJ̃,0J20(∆η)cJ̃,0J′
10(∆η)cJ̃,0J′

20(∆η)

×
∑
λ1λ2

N(λ1, λ2)Aλ1
0 Aλ2

0 [C(J1λ1J
′
1; 000)C(J2λ2J

′
2; 000)]

2
, (B1)

with

N(λ1, λ2) = (λ2
1 + λ1 − 2)(λ2

2 + λ2 − 2)

√
2(2λ1 + 1)(2λ2 + 1)

3(2− λ1)!(3 + λ1)!(2− λ2)!(3 + λ2)!
(B2)

G(∆η) =
∑
J1J2
J′
1J

′
2

A(J1, J
′
1)A(J2, J

′
2)c0̃,0J10(∆η)c0̃,0J20(∆η)c1̃,0J′

10(∆η)c1̃,0J′
20(∆η)C(J11J ′1; 000)C(J21J ′2; 000) (B3)

and with

A(J, J ′) =
J + 1√

(J + 1)(2J + 3)
; J ′ = J + 1 (B4)

− J√
J(2J − 1)

; J ′ = J − 1 (B5)

0; otherwise (B6)
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