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Abstract

The precise neural mechanisms underlying speech sound representations are still a matter of debate. Proponents of ‘sparse
representations’ assume that on the level of speech sounds, only contrastive or otherwise not predictable information is
stored in long-term memory. Here, in a passive oddball paradigm, we challenge the neural foundations of such a ‘sparse’
representation; we use words that differ only in their penultimate consonant (‘‘coronal’’ [t] vs. ‘‘dorsal’’ [k] place of
articulation) and for example distinguish between the German nouns Latz ([lats]; bib) and Lachs ([laks]; salmon). Changes
from standard [t] to deviant [k] and vice versa elicited a discernible Mismatch Negativity (MMN) response. Crucially,
however, the MMN for the deviant [lats] was stronger than the MMN for the deviant [laks]. Source localization showed this
difference to be due to enhanced brain activity in right superior temporal cortex. These findings reflect a difference in
phonological ‘sparsity’: Coronal [t] segments, but not dorsal [k] segments, are based on more sparse representations and
elicit less specific neural predictions; sensory deviations from this prediction are more readily ‘tolerated’ and accordingly
trigger weaker MMNs. The results foster the neurocomputational reality of ‘representationally sparse’ models of speech
perception that are compatible with more general predictive mechanisms in auditory perception.
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Introduction

Recent decades of research in auditory neuroscience have led to

a better understanding of cortical mechanisms subserving the

perception of single speech sounds, of combinations of speech

sounds, and of whole words (e.g. [1]). However, the precise nature

of speech sound representations (pertaining to their neural code) is

still a matter of debate, although there is consensus that these

neural codes be flexible enough to guarantee successful recognition

in a variety of different, and sometimes difficult, listening situations

(e.g. [2,3,4]).

Amongst various linguistically-based approaches, some consider

cognitive speech sound representations to be entirely faithful to the

physical signal and therefore stipulate very detailed and fine-

grained units (e.g. Exemplars, [5,6,7,8,9]), sometimes linked to

episodic memory [10]. If such models held, flexibility of speech

sound representations would have to be achieved through learning

of many exemplars in many different situations. In sharp contrast,

proponents of sparse representations assume that on the level of speech

sounds, only contrastive or otherwise not predictable information

is stored in long-term memory (e.g. [11,12,13]), adhering to the

linguistic concept of ‘‘underspecification’’ (reviewed in [14]). A key

assumption is that speech sounds are built of abstract features that

they do not directly correspond to their acoustic properties.

Together with the assumption that some of these features lack a

precise neural specification, this approach is an attractive one for a

neural architecture of speech: It ensure flexibility of neural speech

codes by means of sparseness and readily accounts for so-called

assimilation asymmetries between different places of articulation.

For instance, ‘‘coronal’’ sounds such as [n] very often assimilate to

the place of articulation of their following neighbors (e.g. lean

bacon . leam bacon due to labial [b]) and are therefore assumed

to not carry any place of articulation information in their neural

code. In contrast, non-coronal sounds such as [m] hardly ever

assimilate to the place of articulation of their neighbors (e.g. rum

toffee . run toffee due to coronal [t] is hardly ever encountered).

As a result, these sounds are considered to be based on a more

precise, rigid neural code.

Here, we set out to test the assumption that due to the more

sparse representation of coronals, their predictive value in auditory

speech perception is smaller than for non-coronals (dorsals). An

example for a dorsal consonant can be found in the initial position

of ‘call’, i.e. [k], while a coronal consonant in initial position would

be [t] in ‘tall’. We consider the predictive value as the inference

that is being made on the basis of a particular speech sound

feature, such as coronality. We further assume that this

information is used for predicting upcoming speech sounds even

when these are unattended, such as in a passive oddball paradigm.

It has previously been shown that contingent feature relations

between sound sequences are rapidly extracted [15,16] in such

paradigms, and that these extracted regularities are used to predict

future sound events [17,18,19,20,21]. We expect that from a

coronal sound, the system cannot derive a precise prediction with

regard to coronality or non-coronality because of the sparse

coronal representation, while a specified dorsal sound provides a
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strong prediction for non-coronality. A viable way of measuring

the strength of a prediction is to measure the size of the prediction

error signal generated when the prediction is violated [18].

Following this logic, we would expect a deviation from a coronal

sound to elicit weaker change detection responses than a deviation

from a dorsal sound.

A neurophysiological marker that lends itself readily to the

assessment of such changes is the Mismatch Negativity (MMN), an

automatic and pre-attentive brain response to auditory regularity

violations [22,23,24]. It is elicited in passive oddball designs where

the evoked response to a rare deviant sound usually differs from

that to a frequent standard sound. MMN research on speech

sounds [25], syllables [26,27,28,29] and words [30,31,32] has

provided evidence that the magnitude of the MMN is not solely

dependent on the acoustic standard/deviant difference (for a direct

comparison, see [33,34,35]). Experiments with speech stimuli have

shown that the MMN is modulated by the familiarity of the

listener with the respective stimulus or stimulus sequence

[30,36,37,38,39,40,41], by its context [42,43], or lexicality (i.e.

whether it is a word or a pseudo-word, cf. [30,31,32,44,45]) and by

its frequency of occurrence [46].

Proponents of underspecification [47,48,49] particularly focus

on sound-specific characteristics and provided neurophysiological

evidence for sparse neural codes of vowels. For any parsimonious

explanation, however, it is important that these findings would

generalize to all speech sounds, i.e. to vowels and consonants.

Further, the particular model by [11] assumes that long-term

memory representations are independent of the sound’s position in

a word. For these reasons, we extend the existing research by

looking at word-final coronal and non-coronal (dorsal) consonants in

the German words [lats] (bib) and [laks] (salmon) with a

comparable number of semantic meanings and controlled other

linguistic characteristics (frequency and familiarity measures are

provided in Table 1).

Note that overall, frequency and familiarity measures differ only

slightly between the two nouns, [laks] and [lats]. Importantly, these

differences should be negligible in comparison to [41], which leads

us to assume – on the basis of previous evidence for the extraction

of feature-based regularities from standard sound sequences

[16,18,19,20,21,50] – that the abstract property pertaining to

place of articulation, rather than word or consonant frequency, is

used for predicting subsequent sound events in a passive oddball

paradigm. Further, we speculate that the predictive values

extracted from the coronal and dorsal standards differ, such that

the prediction violation through the respective deviants is

asymmetric. A more detailed sound (such as a dorsal) bears a

high inference value with respect to the featural dimension ‘‘place

of articulation’’. The prediction that the next sound in a standard

sequence is similarly specified should be high, and the violation of

this prediction is severe. In contrast, a more fuzzy representation

of a coronal sound has a low inference value, and the prediction

regarding a particular place of articulation in a subsequent

standard is low. Consequently, a violation of this weaker

prediction is less severe. This is illustrated in Figure 1. We thus

predict that in a passive oddball sequence of standard [laks] –

deviant [lats] (dorsal – coronal), the resulting MMN will be larger

than in the sequence of standard [lats] – deviant [laks] (coronal –

dorsal).

Materials and Methods

Participants
Twenty right-handed native speakers of German with normal

hearing (50% females, mean age 25, SD 2.6) took part in the

study. They were drawn from the subject pool of the Max Planck

Institute for Human Cognitive and Brain Sciences, Leipzig, and

received monetary compensation for their participation. All

participants gave written informed consent before they participat-

ed in this study, which was approved by the Max Planck Institute

for Human Cognitive and Brain Sciences, Leipzig. One partici-

pant had to be excluded due to a hearing ailment (tinnitus), one

participant due to technical problems (EEG data of one block were

not recorded), and one additional participant due to low signal-to-

noise ratio in the EEG (only 56% usable data). This resulted in a

total of seventeen participants (41% females, mean age 25.4, SD

2.2) whose data were used for the event-related potential (ERP)

analyses.

Stimuli
The German nouns Lachs ([laks]; salmon) and Latz ([lats]; bib)

were recorded from a professional native speaker in several

repetitions, using a Røde NT 55 microphone (amplitude resolution

16 bits, sampling rate 44.1 kHz). The speaker maintained a

consistent neutral intonation. The most consistent pronunciations

with approximately the same durations for the initial consonant-

vowel sequence [la] were selected for further processing, and cross-

spliced in the following way. The final consonant clusters [ts] and

[ks] were cut off the initial [la] sequences, using the sound

application PRAAT [51]. The two remaining [la] sequences were

trimmed to the same duration of 202 ms. Subsequently the [la]

sequences were morphed together (point-by-point averaging) in

order to avoid cues of co-articulation prior to the release of the

word-final consonant. Finally, the final clusters [ts] and [ks] were

added to the morphed and co-articulation-free [la] sequence. This

provided us with two acoustic stimuli that were identical up to the

release of the consonant [t] ([lats]) and [k] ([laks]), i.e. during the

first 202 ms. The words with a total duration of 290 ms mainly

differed in the 2nd formant of the transition from the closure into

the consonant release (see Table 2 and Figure 2, cf. [52]).

Acoustic characteristics of the stimuli were determined in more

detail by an intensity and formant analysis, carried out in the

phonetic software tool PRAAT [51]. For the formant analysis, a

fast-Fourier analysis was calculated, using a 25 ms Hanning

window that was moved along the time dimensions in 5 ms steps.

Formant values are reported for the transition between [a] and the

following consonant, i.e. [k] or [t], respectively.

After cross-splicing, stimuli were calibrated to an average level

of loudness equaling 60 dB SPL. This was done separately for [la]

and the respective endings, [ts] and [ks], in order to guarantee the

same loudness up to the point of deviation, i.e. after [la]. Onsets

and offsets (10 ms) were multiplied with raised cosine ramps in

order to eliminate acoustic artifacts.

Table 1. Phone, diphone, and word frequencies of the
stimulus set.

coronal [t] dorsal [k]

phoneme C –3.84 –3.40

diphone Cs –3.81 –3.23

diphone aC –3.37 –3.30

word –1.10 –1.10

All values are reported as log-values of occurrences in parts-per-million,
according to CELEX ([95]). For phoneme and diphone frequencies, the values
are normalized with respect to the cumulative frequency of all German lemmas
containing these sequences. The respective consonant is underlined.
doi:10.1371/journal.pone.0040953.t001
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Design
The two words [laks] and [lats] were distributed over two

conditions where they occurred either as standard (p = 0.875) or as

deviant (p = 0.125), i.e. condition I consisted of standard [laks] and

deviant [lats], whereas condition II consisted of standard [lats] and

deviant [laks]. In each condition, there were 960 stimuli, i.e. 840

standard and 120 deviant presentations. The sequence of

standards and deviants was pseudo-randomized, such that there

were at least 3 standards after each deviant. Stimuli were

presented with a stimulus onset asynchrony (SOA) of 800 ms.

This resulted in a total condition duration of 12.8 minutes.

Conditions were split up into two blocks of 6.4 minutes, with

short breaks in-between. The order of conditions was randomized,

while the four blocks reported here (two per condition) directly

followed each other. Each block started with six additional

standards that were not analyzed any further. The EEG recording

session also included separate, additional blocks that were based

on the same stimulus material, and either followed or preceded the

blocks of this experiment (counter-balanced across participants).

The additional blocks underwent an analysis with a different focus

and are reported elsewhere. As they were also recorded in a

passive setting, and included overall equal proportions of [laks] and

[lats] stimuli (excluding differential refractoriness of the two

stimuli), the additional blocks are unlikely to have influenced the

electrophysiological recordings reported here. Altogether, the

entire session (including breaks, preparation time, and a post-test

identification task) lasted for about 3 hours.

Experimental Procedure
During the EEG experiment, participants were seated in an

acoustically shielded room, approximately 60 cm in front of a

screen that was used for presenting a silent movie during the

passive listening, a strategy commonly applied during MMN

experiments [53].

Auditory stimuli were presented over Sony MDR XD100

headphones at a comfortable listening level (,60 dB SPL), using

the stimulus presentation software PRESENTATION (Neurobe-

havioral Systems Inc). Participants’ electrophysiological responses

were recorded from 64 Ag-AgCl-electrodes (58 scalp electrodes, 2

mastoids, 2 electrodes for horizontal and 2 for vertical electrooc-

ulograms) on a Brain Vision EEG system. Scalp electrodes were

arranged according to the 10% extension of the international 10–

20 system [54,55]. The nose was used as online reference. Brain

electric responses were recorded with a sampling rate of 500 Hz.

Electrode impedances were kept below 5 kV. The recording pass-

band ranged from DC to 250 Hz.

Post-EEG Identification Task
After EEG recording, participants completed a two-alternative

forced-choice (2-AFC) identification task in which they had to

identify the two stimuli [laks] and [lats]. This was done in order to

ensure that the experimental stimuli were in fact distinguishable.

In this experiment, participants listened to a random sequence of

[laks] and [lats] stimuli with an SOA of 800 ms. The experiment

finished after both [laks] and [lats] had been presented at least 50

times. Participants had to identify each word by a corresponding

Figure 1. Top: Inferences generated by the dorsal standard [laks] (salmon) and violation through the coronal deviant [lats] (bib). Due
to the high inference value of the dorsal standard, the violation is predicted to be severe. Bottom: Inferences from the coronal standard [lats] are
weak, and thus, the violation through the dorsal deviant [laks] is predicted to be less severe.
doi:10.1371/journal.pone.0040953.g001

Table 2. Acoustic properties of final consonant clusters.

Intensity C [dB] Intensity [s] [dB] F2 transition [Hz] F3 transition [Hz]

[laks] 68 72 1936 2909

[lats] 61 71 1731 2954

Intensity values are given in dB (,dB SPL); the second and third formant values stem from the transition period of the vowel [a] into the release of the respective
consonant (underlined).
doi:10.1371/journal.pone.0040953.t002
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button press. The assignment of button responses to either [laks] or

[lats] was counter-balanced across participants; half of them

pressed X for [laks] and Z for [lats], the other half pressed X for

[lats] and Z for [laks]. The experiment was again delivered using

the PRESENTATION software and lasted for about 5 minutes.

Performance was analyzed in terms of response times and

identification accuracy separately for [lats] and [laks] stimuli and

compared between the stimulus types by means of paired-sample,

two-tailed Student’s t tests.

Electroencephalographic Data Analysis
Electroencephalographic data were processed with EEGlab [56]

in a MatLab environment (MathWorks GmbH). Data were

filtered offline with a band pass filter of 0.5–30 Hz (1813 point

Kaiser windowed sine FIR filter, Kaiser beta = 5.65). Data

recorded at the eye channels were bipolarized offline to yield

vertical and horizontal electroocular activity (EOG), respectively.

For averaging, epochs of 400 ms were extracted from the

continuous EEG recording, including a 100-ms pre-deviation

baseline. Note that the deviation occurred 202 ms after stimulus

onset (i.e., at the release of the final consonant, see Figure 2), thus

the epochs lasted from 102 to 502 ms relative to stimulus onset.

Epochs with an amplitude change exceeding 100 mV on any

channel were rejected from further analysis; on average 90.2% of

the trials could be retained. In addition to the block-initial six

standards, each standard immediately following a deviant was

excluded from further analyses because such standards are known

to elicit a small mismatch response compared to the rest of the

standards [57,58].

Epochs for the four stimulus types ([lats] standard, [laks]

standard, [lats] deviant, [laks] deviant) were averaged separately

to form ERPs. ERP difference waves were derived from physically

identical stimuli ([lats] deviant minus [lats] standard, [laks] deviant

minus [laks] standard) in order to remove stimulus-specific ERP

effects [59]. The MMN component was quantified as the average

ERP amplitude from 135 to 215 ms following deviation onset.

Measurements were taken from the Fz electrode. MMN ampli-

tudes for the two conditions ([lats] difference, [laks] difference) were

separately tested against zero using one-sample, two-tailed

Student’s t tests. MMN amplitudes were then compared between

conditions using a paired-sample, two-tailed Student’s t test.

For studying the scalp topographies in the MMN latency range,

ERP voltage distributions were transformed into scalp current

density (SCD) distributions. The SCD analysis provides a

reference-independent measure of the scalp distribution that

sharpens the voltage distribution as volume-conducted signals

Figure 2. Wave forms and spectrograms with formant tracking of the two words Lachs ([laks], ‘salmon’, left panel) and Latz ([lats],
‘bib’, right panel). Note that the crucial difference between the consonants [k] and [t] is seen in the second resonance frequency (F2). Reported
formant values were averaged across durations starting from the pre-release phase (at 188 ms) and ending at the boundary to [s] (at 220 ms).
doi:10.1371/journal.pone.0040953.g002
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from distant regions of the head are attenuated [60]. Therefore,

the SCD distribution is primarily determined by electrical activity

within a short distance of each electrode (i.e., superficial cortical

tissue; [60]), allowing to assess local contributions to the observed

ERP response. The present SCD analyses followed the spherical

spline surface Laplacian algorithm of [61]. The radial current at a

given location on the surface (Laplacian) was computed as the

second spatial derivative of the interpolated voltage distribution

[61]. The maximum degree of the Legendre polynomials was

chosen to be 50, and the order of splines (m) was set to 4. A

smoothing parameter of 1025 was applied.

Aiming to reveal the cortical generators of the MMN, brain

electrical tomography analyses were applied by means of variable

resolution electromagnetic tomography (VARETA; [62,63]). With

this technique, sources are reconstructed by finding a discrete

spline-interpolated solution to the EEG inverse problem: estimat-

ing the spatially smoothest intracranial primary current density

(PCD) distribution compatible with the observed scalp voltage

distribution. This allows for point-to-point variation in the amount

of spatial smoothness and restricts the allowable solutions to the

gray matter, based on the probabilistic brain tissue maps available

from the Montreal Neurological Institute [64]. The procedure

minimizes the possibility of ’’ghost sources‘‘, which are often

present in linear inverse solutions [65]. A 3D grid of 3244 points

(voxels, 7 mm grid spacing), representing possible sources of the

scalp potential, and the recording array of 60 electrodes (excluding

the 4 eye channels) were registered with the average probabilistic

brain atlas developed at the Montreal Neurological Institute.

Subsequently, the scalp potentials in the MMN latency range were

transformed into source space (at the predefined 3D grid locations)

using VARETA. Statistical parametric maps (SPMs) of the PCD

estimates were constructed based on a voxel by voxel Hotelling T2

test against zero (group statistics; based on N = 17) in order to

localize the sources of the component separately for the two

conditions. For all SPMs, Random Field Theory [66] was used to

correct activation threshold for spatial dependencies between

voxels. Results are shown as 3D activation images constructed on

the basis of the average brain.

Behavioral Follow-up Experiment
In order to examine the behavioral relevance of the electro-

physiological differences in deviance detection obtained in the

main experiment, an additional behavioral experiment was

conducted. Participants (N = 20, 56% females, mean age 26.6,

SD 3.7) were recruited from the subject pool of the Max Planck

Institute for Human Cognitive and Brain Sciences, Leipzig. They

were paid for their participation and had not previously

participated in the EEG study.

The behavioral test used the same design as the passive-listening

paradigm of the MMN study, except that fewer trials were used

and participants had to press a button whenever they perceived a

deviant. In the first condition, participants were presented with

400 standards ([laks]) and 50 deviants ([lats]), while the second

condition consisted of the same number of [lats] standards and

[laks] deviants. Before each condition, participants completed a

practice run with 32 trials in order to familiarize with the task.

They were required to press the left mouse button as fast and

accurately as possible whenever the sequence of standards

(minimally three in a row) was interrupted by the corresponding

deviant. As before, stimuli were delivered over headphones at a

comfortable listening level (,60 dB SPL), using the stimulus

presentation software PRESENTATION (Neurobehavioral Sys-

tems Inc.). The experiment lasted for about 20 minutes.

Data of one participant had to be excluded from the analysis

because he misunderstood the instruction and thus erroneously

responded after every stimulus. Detection performance was

analyzed by means of signal detection theory [67,68]. All

responses within 100 to 1200 ms after a deviant stimulus were

considered hits. With an SOA of 800 ms, this implies that target

responses could still be made while the next stimulus had already

been presented. This requires a slightly modified version of

calculating the sensitivity index d9. We adopted the procedure

described by Bendixen and Anderson [69], evaluating false alarms

relative to the number of time intervals without targets that are

equally long as the accepted response intervals (see also [70]). Prior

to d9 calculation, hit and false alarm rates were adjusted to 1–1/

(2N) when they were actually 1 and to 1/(2N) when they were

actually 0, with N being the number of observation periods

[68,71,72]. Sensitivity indices d9 as well as mean response times

were compared between the detection tasks by means of paired,

two-tailed Student’s t-tests.

For both behavioral tests, response times were measured relative

to the onset of the consonant [k] or [t], respectively. All significant

t-test results are reported with Cohen’s d0 for dependent samples.

Results

Behavioral Performance: Identification
All participants were able to identify the [lats] and [laks] stimuli.

The percentage of identification errors did not significantly differ

between [lats] (mean 5.31%, standard error of mean [s.e.m.]

4.30%) and [laks] (mean 6.26%, s.e.m. 10.17%, t(16) = 20.387,

p = 0.704). Likewise, response times did not significantly differ

between [lats] (mean 399.72 ms, s.e.m. 71.84 ms) and [laks] (mean

388.24 ms, s.e.m. 53.59 ms), t(16) = 20.977, p = 0.343). Note that

the variance in error rates was higher for [laks] than for [lats]. This

is attributable to one participant who often misinterpreted [laks] as

[lats]. Although the explanation for this response pattern is

unclear, it is important to note that the non-significant differences

between error rates and response times for [laks] and [lats] were

replicated when excluding this participant from the analysis.

Analysis of the Mismatch Negativity (MMN)
Deviant [lats] stimuli elicited a clear MMN component (Figure 3,

right panel) whose presence was statistically confirmed at Fz

[t(16) = –3.969, p,0.01, d0 = 20.963]. The activity in the MMN

latency range at Fz was not significant for deviant [laks] stimuli

(Figure 3, left panel) [t(16) = –1.370, p = 0.190]. It was, however,

significant when re-referencing against the average of the mastoids

as recommended by [73] [t(16) = –2.390, p,0.05, d0 = 20.580].

Notably, the MMN amplitude at Fz was significantly stronger

for the [lats] than for the [laks] difference waveform [t(16) = -2.197,

p,0.05, d0 = -0.533]. The MMN voltage topography displayed in

Figure 3 shows that this amplitude difference is present at all

frontocentral channels. The SCD topography suggests that this

may be due to the enhanced activation of a right-hemispheric

generator. This assumption was verified in a next step of the

analysis by means of source localization with the VARETA

approach.

Source Localization of the Mismatch Negativity (MMN)
The statistical results of the source-space reconstruction for the

activity in the MMN latency range are displayed in Figure 4.

Source space results are consistent with those of the sensor space

(SCD) analysis in showing an enhancement in right superior

temporal cortex activity for [lats] deviants as compared to [laks]

deviants.

Sparse Neural Speech Sound Codes
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A direct statistical comparison (Figure 4 bottom) shows that the

significant activation difference between the [lats] and [laks] scalp

potentials in the MMN latency range is mainly due to this stronger

right-hemispheric contribution.

Behavioral Follow-up Results: Deviance Detection
The perceptual sensitivity to detect the deviant coronal [lats]

within a dorsal [laks] context was significantly higher (d9 = 4.5)

than vice versa (d9 = 3.2; t(18) = 5.26, p,0.001, d0 = –1.2063). This

asymmetry was also visible in the reaction times. The reaction time

of detecting the deviant [lats] was significantly shorter (371 ms)

than the reaction time of detecting the deviant [laks] (451 ms,

t(18) = –4.21, p,0.001, d0 = 0.965). Note that the relatively short

reaction times can be attributed to the speed of presentation, using

an SOA of 800 ms. Thus, the deviant [lats] was detected more

accurately and faster than the deviant [laks].

General Discussion
In this MMN study, we examined differences in the neural

signatures of the German consonants [k] and [t] to test the

neural reality of a ‘sparse’ representational code. First, we found

an asymmetry in the MMN responses to the minimal word pair

[laks] vs. [lats] that contain these consonants in a word-final

cluster. In particular, the MMN elicited by the deviant [lats]

Figure 3. Top row: Grand-average ERPs elicited by standard (black line) and deviant (blue line) [laks] (left panel) and [lats] (right
panel) stimuli. The deviant-minus-standard difference waveforms are given in red. The latency range for measuring the MMN component (135–215
ms) is marked in gray. Mean MMN amplitudes for the two contrasts are given in the top middle panel, error bars indicate standard errors of mean.
Middle row: Voltage topographies in the MMN latency range. Bottom row: SCD topographies in the MMN latency range. Smoothing parameter was
1027 for the voltage distribution and 1025 for the SCD distribution.
doi:10.1371/journal.pone.0040953.g003
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with coronal [t] was of greater magnitude than the MMN

elicited by the deviant [laks] with dorsal [k].

Second, the source localization of the MMN response between

approximately 130 and 200 ms after deviation onset showed an

enhanced right-temporal contribution for [lats] as compared to

[laks]. Third, the electrophysiological pattern was paralleled by

behavioral measures from the deviance detection experiment.

Here, the detection of the deviant [lats] was more accurate and

faster than the detection of [laks].

Figure 4. VARETA source localizations of the MMN responses to [laks] (top) and [lats] (middle), and significant activation differences
between the [laks] and [lats] solutions (bottom). Significant centers of activation are color-coded with warmer colors for higher probability
values (one-way ANOVA; thresholded to p,0.0001).
doi:10.1371/journal.pone.0040953.g004
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The MMN pattern in our experiment supports an approach

that attributes [t] and [k] in [lats] and [laks] different predictive

values arising from differences in their neural codes. The results

cannot be explained on the basis of acoustic properties or

phonotactic probabilities of the stimulus material, as will be

discussed in detail below.

Differences in Neural Codes
We interpret the asymmetric MMN pattern as evidence for

different long-term memory representations of the consonants [t]

vs. [k] that distinguish between the two nouns [lats] and [laks]. In

particular, we claim that the neural code of coronal [t] is less

specific and hence provides a less restricted perceptual prediction

based on the recurring standard [lats], with regard to subsequent

stimulus presentation in an oddball design. As a result, the sudden

occurrence of a [k] sound (in [laks]) provides a relatively weak

prediction violation. In contrast, dorsal [k] is more specific with

regard to place of articulation, which – so we argue – requires a

precise neural code that additionally involves spectrally fine-tuned

areas of the right-hemispheric auditory cortex (e.g. [74]), as

discussed in the next section in greater detail. The specificity of [k]

therefore generates a narrow and strong prediction for subsequent

stimuli, such that the violation by the deviant [lats] elicits an

enhanced MMN response.

Importantly, the prediction differences between [laks] and [lats]

were also reflected in the behavioral deviance detection task. Here,

we found that participants were faster and more accurate to detect

[lats] in the context of [laks] than vice versa. The accuracy and

reaction time advantage of [lats] depended on the expectation for

[laks] generated in that particular condition. Crucially, if [lats]

occurred with the same probability as [laks], as was true in the

identification task, no behavioral asymmetry was observed. This

supports our claim that the asymmetry depends on the difference

in prediction, being stronger for [k] in [laks] than for [t] in [lats]. It

is also possible that participants in the identification task used an

A-not-A-strategy, i.e. responded on the basis of a [t]-non-[t] or a

[k]-non-[k] contrast, and therefore showed no response time or

error rate differences between the two words. We argue that if

participants followed this response strategy, it was caused by the

lack of predictability in the identification task, where [laks] and

[lats] occurred with the same probability. In contrast, the

repetition of standards in the deviance detection task resulted in

specific predictabilities, which were not only beneficial but

indispensable for task performance.

Finally, one can observe a pattern of faster responses to [lats] in

the deviance detection than in the identification task, whereas

responses to [laks] were slower in the deviance detection than in

the identification task. We claim that this asymmetry reflects the

contribution of prediction error detection to task performance. For

a strong prediction violation (from [laks] to [lats]), prediction error

detection is so efficient as to even speed up task performance

relative to an identification task with no predictive context,

whereas for a weak prediction violation (from [lats] to [laks]),

prediction error detection is less efficient and thus prolongs task

performance.

From Representation to Prediction
Our assumption that differences in speech sound representa-

tions lead to different predictions extracted from standard

sequences and are violated by the respective deviants

[16,18,19,20,21,50] is also compatible with the predictive coding

account of MMN generation [17,24,75,76,77,78]. It embraces the

finding that human brain function is characterized by predictive

processing [76,79]. The existing context of sensory input shapes

anticipatory responses to future events. Predictive processing is

considered crucial for auditory cognition in general, and for

speech perception in particular [80].

Regarding the MMN, the predictive coding approach is based

on the model adjustment hypothesis [21,81,82] according to which

the MMN results from the need to update an acoustic model of the

environment in order to incorporate (or assimilate) the respective

deviant. The model is instantiated by a sequence of standard

sounds and generates inferences regarding future sound events,

that is, a continuation of the standard sequence. Importantly, the

model can have high or low inference values, which means that a

deviant is less readily or more readily incorporated in the model

[21]. Put differently, the model can be more or less confident in

inferring future sound events, and consequently will show larger

mismatch responses if a highly confident inference is violated.

Within the predictive coding framework, the repetition of

standards results in a continuous reduction of prediction errors,

and we suggest that predictions emerging from more specific

speech sound representations are stronger than predictions

emerging from sparsely represented speech sounds. Thus, dorsal

[k] in standard position sets up strong predictions regarding the

place of articulation feature of upcoming sounds and at the same

time, by not violating these predictions, the prediction error is

continuously reduced. Upon encountering the coronal deviant [t],

however, the model fails to suppress the prediction error, and an

MMN response is generated. This response is stronger than in the

reverse case, in which the coronal [t] sets up the predictions in

standard position. Due to its less specific representation, its

inference value regarding the place of articulation of upcoming

sounds is lower, and the prediction error reduction is less efficient.

As a result, the dorsal deviant [k] provides a weaker violation of

prediction, or, in different terms, a less severe failure to suppress

the prediction error.

Although our experiment suggests different neural codes for [t]

and [k], our data cannot provide a definite response of whether

these codes, pertaining to speech categories, exert top-down

influences on lower auditory areas, or whether there are already

categorical and abstract representations in these auditory areas.

There is recent neuroimaging work providing evidence for

perceptual and categorical representations in the vicinity of

Heschl’s gyrus and the Planum temporale (e.g. [83]). The present

MMN sources in left and particularly, right-temporal areas are

compatible with these findings. It therefore seems reasonable to

assume that the asymmetric MMN pattern in fact directly reflects

representational differences in speech sounds, i.e. differences in

their neural codes.

Hemispheric Biases in Deviant Detection
The stronger MMN response to the deviant [lats] was

accompanied by larger activity in right-temporal areas that could

be detected on the basis of a VARETA source analysis between

135 and 215 ms post deviance onset (Figure 4). With all due

caution concerning the accuracy of EEG source localization, we

consider this as enhanced activation of a right-temporal source.

We interpret this enhanced activation on the background of the

model adjustment hypothesis [21,81,82]. As discussed before, this

hypothesis takes the MMN to reflect the need of updating an

acoustic model of the environment in order to incorporate (or

assimilate) a particular deviant. The ‘effort’ for this incorporation

should depend on how strongly the respective standard predicts a

particular feature to occur. Here, dorsal [laks] sets up a strong

prediction with regard to place of articulation, mediated by

acoustic-phonetic differences in F2. In order to incorporate the

deviant [lats] with slight differences in F2 in its consonant [t], we
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hypothesize that a more detailed model update is necessary,

compared to the reverse situation where [lats] sets up a weak

prediction, and the incorporation of the dorsal deviant [laks]

necessitates a less detailed model update. Note that this hypothesis

considers the model update to reflect an acoustically mediated

place of articulation conflict resolution, that is, the underlying

symmetric acoustic contrast is modulated by inferences derived

from the specificity of place of articulation information. We further

argue that a more detailed model update benefits from additional

neural resources that are dedicated to process spectral details.

Previous neuroimaging and electrophysiological studies suggest

that right-temporal networks fulfill this task. Regions in the right

superior temporal sulcus and gyrus are particularly responsive to

spectral processing (e.g. [74,84,85,86]). Some studies even suggest

that the MMN has stronger sources in the right than in the left

hemisphere (e.g. [87,88]).

Taken together, the enhanced right-hemispheric source in our

experiment may be related to higher demands of spectral

processing in the deviant [lats] condition for the integration of

the deviant in the acoustic model of the standard [21,81].

Note that the right-hemispheric source might also reflect an

entirely non-phonological processing component. This should not

be problematic for our interpretation - as shown elsewhere, the

MMN reflects both phonological and auditory processes (e.g. [35]). An

enhancement in auditory processing however actually supports

our claim that lexical information is less informative in coronal [t].

Note also that the enhanced right-temporal source is not at odds

with the expectation that place of articulation information is

processed in the left rather than the right hemisphere. In fact, we

observed left-hemispheric sources in both deviant conditions. We

claim that the enhanced right-hemispheric source does not reflect

place of articulation processing per se (or differences thereof), but

the resolution of an acoustic-to-phonology mapping conflict. The

original model anticipates that such conflict resolution can actually

occur on an acoustic-phonetic level [11].

Alternative Explanations
While our experiments reported here provide positive evidence

for differences in specificity between coronal [t] and dorsal [k],

some researchers found MMN patterns that do not appear to

support the unspecific status of coronal speech sounds and

interpret their findings in alternative ways (e.g. [89,90,91]). The

above-mentioned studies report enhanced MMN amplitudes to

labial (i.e. non-coronal, e.g. [b]) as compared to coronal deviants

(e.g. [d]), contrary to the expectation that coronal deviants should

elicit stronger responses. It is important to note, though, that in

these cases, the stimulus material did not consistently involve

lexical material of the participants’ mother tongue. Scharinger and

colleagues [89] used vowel-consonant-vowel sequences that did

not constitute existing words, while Rivera-Gaxiola and colleagues

[90,91] presented Hindi sounds to English listeners. It seems likely

that the MMN response in these cases was more strongly affected

by the familiarity of the listeners with the respective words or

sounds than by the sound-based properties alone. Alternatively,

one could argue that the contradicting results, involving stronger

effects for labials than for coronals in both cases, has to do with a

peculiarity of labials, viz. their greater visual salience. That visual

salience may override phonetically-based asymmetries appears to

be reflected in a set of eye tracking experiments [92]. Here,

auditory instructions with target words starting with coronal [t] or

labial [p] served as triggers to click on one of four visual probes

that either did or did not have a relation to the auditory target.

The rationale was that words with labial onsets ought to activate

words with non-labial onsets, but words with coronal onsets should

not activate words with labial onsets. As a result, the amount of

looks on non-labial words should have been higher than the

amount of looks on labial words. The results – measured in

amount of looks – only showed trends in this direction. However,

this is not surprising since the visual selection always offered an

optimal candidate, sometimes even co-indexed by a visual symbol.

Thus, it is not clear to what degree this experiment showed a

modality-independent activation of speech units by auditory

inputs.

There are two important alternative explanations (one of them

acoustic, the other frequency-related) that need to be considered

for the present set of data. We do, however, argue that both of

them are implausible, as illustrated below.

Acoustic effects. On the most basic level, the MMN

asymmetry in this experiment could be solely determined by the

acoustics of the stimuli. While this alternative explanation is

unlikely since we based the calculation of the MMN on the same

acoustic tokens (identity MMN, [59]) and thereby mitigated

acoustic concerns, it might still be possible that the asymmetry

reflected an asymmetry in formant changes between standard and

deviant. On average, [k] has a higher F2 value than [t] in the

relevant time window, such that the change from [laks] to [lats] is

accompanied by a decrement of resonance frequency, while the

change from [lats] to [laks] is accompanied by an increment of

resonance frequency. Only few studies explicitly examined the

direction of changes in the frequency domain [93,94]. Crucially,

Peter and colleagues [94] found that when the deviant had a

higher frequency than the standard, the resulting MMN response

was larger than in the reverse case, i.e. when the deviant had a

lower frequency than the standard. This suggests that increments

in frequency between standards and deviants should cause

enhanced MMN responses, a finding that is opposite to what we

observed in our data. In contrast to that study, we found that an

increment in F2 frequency between standard and deviant ([lats] –

[laks]) was accompanied by an attenuated MMN. Hence, an

acoustic explanation of the asymmetry in our experiment is not

feasible.

Frequency of occurrence effects. Regarding a possible

confound of word occurrence frequency, previous cross-linguistic

research on phoneme and word representations has provided

evidence for a familiarity effect in MMN designs [36,37,38,39]. In

general, MMN responses to phonemes or words familiar to the

listener (due to learning or the occurrence in the corresponding

native language) are stronger than responses to unfamiliar speech

sounds or words. Recently, this familiarity effect has been shown to

apply within a language, in that words with a higher frequency of

occurrence elicited larger MMN effects [46]. A frequency-based

explanation does not hold for our data, though. Note that the two

stimuli, [laks] and [lats], had the same frequency of occurrence (as

determined from CELEX, [95]). Therefore, our asymmetry

cannot be explained by the frequency of occurrence of our stimuli.

Finally, Bonte and colleagues [41] showed that the MMN is

sensitive to statistical regularities in speech sound sequences. They

provided evidence that in Dutch, a consonant sequence with a

high phonotactic probability elicited a stronger MMN than a

consonant sequence with a low phonotactic probability. Phono-

tactic probability was assessed by the log-value of the number of

words containing the particular consonant sequence in relation to

their summed frequencies of occurrences. Thus, perhaps, the

asymmetry in our experiment was caused by differences in

phonotactic probability of these sequences. When applied to our

data, the sequence with the coronal consonant had in fact slightly

higher frequency values (corresponding to phonotactic probability,

see Table 1) than the sequence with the dorsal consonant.
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However, care must be taken in comparing phonotactic proba-

bility of Bonte’s study with phonotactic probability in the present

study. First, the crucial difference between [lats] and [laks] in our

experiment is the consonant following the vowel [a], such that

most informative phonotactic probability should be carried by the

sequences [at] and [ak]. These diphone frequencies hardly differed

at all. Second, the differences were much more pronounced in

Bonte’s experiment than in our experiment. Third, and most

importantly, Bonte [41] examined phoneme sequences in pseudo-

words, and across possible syllable boundaries, while we investi-

gated monosyllabic real words. It is not obvious how phonotactic

probability within real words would affect the MMN response in

passive oddball designs. This question must certainly await future

research. At the moment, however, a phonotactic probability

account of our data is not feasible.

We are further aware that it is difficult to derive generalizations

from a single contrast, involving two different words only. While

this is a technical constraint of MMN studies, necessitating a large

number of repetitions in a reasonable amount of time, our results

can be taken as converging evidence for less specific representa-

tions of coronals, if compared to behavioral and neurophysiolog-

ical studies that showed the same findings in other sounds, words,

or languages [11,12,13,47,48,49,96,97,98]. We therefore conclude

that the predictive coding approach together with the assumption

of sparse neural codes provides the best account of our data.

Conclusions
We have provided evidence for differences in specificity in the

neural codes subserving the representation of the speech sounds [t]

and [k]. We found larger MMN amplitudes and enhanced right-

hemispheric activity in response to the deviant [lats] (with [t])

preceded by the standard [laks] (with [k]) than in the reverse case.

The most parsimonious explanation for this asymmetry is a

difference in the predictive value carried by the standards, with [k]

generating a more specific and thus more concrete neural

prediction than [t] regarding the next speech sound in the oddball

sequence. The notion of differences in representational specificity

of speech sounds therefore appears as a fruitful starting point for

further investigations of how this specificity affects predictive

processing in auditory perception.
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