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Presented in this paper is a technique that we propose for extracting the physical parameters of a

rotating stellar core collapse from the observation of the associated gravitational wave signal from the

collapse and core bounce. Data from interferometric gravitational wave detectors can be used to provide

information on the mass of the progenitor model, precollapse rotation, and the nuclear equation of state.

We use waveform libraries provided by the latest numerical simulations of rotating stellar core collapse

models in general relativity, and from them create an orthogonal set of eigenvectors using principal

component analysis. Bayesian inference techniques are then used to reconstruct the associated gravita-

tional wave signal that is assumed to be detected by an interferometric detector. Posterior probability

distribution functions are derived for the amplitudes of the principal component analysis eigenvectors, and

the pulse arrival time. We show how the reconstructed signal and the principal component analysis

eigenvector amplitude estimates may provide information on the physical parameters associated with the

core collapse event.
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I. INTRODUCTION

The detection of gravitational radiation will likely come
in the near future. LIGO [1–3] is at its initial target sensi-
tivity, and the detection of an event from an astrophysical
source could come at any time. Around the globe a world-
wide network of detectors is emerging; VIRGO in Italy
[4,5], GEO in Germany [6], and TAMA in Japan [7] are
operating alongside the LIGO detectors in the U.S. in the
quest for gravitational wave detection. In a few years
advanced LIGO and advanced VIRGO will come online,
with a sensitivity increase of 10 over initial LIGO [8–11],
increasing the prospective detection rate significantly. It
will be a great day for physics when gravitational waves
are finally directly detected, but it will also be the birth of a
new way of observing the Universe and conducting astron-
omy and astrophysics.

The observations of expected sources should be dra-
matic: stellar collapse, pulsars, the inspiral of binary neu-
tron stars followed by black hole formation, or even the
stochastic background from the big bang. Gravitational
wave astronomy will soon enter a regime where parameter
estimation work will provide the means to make important
astrophysical statements. Gravitational wave burst signals
from rotating stellar core collapse and bounce, resulting in
the formation of a protoneutron star, are one of the more
promising and potentially extremely valuable sources for
ground based interferometric detectors. Gravitational wave
burst events are typically characterized by their short du-

ration (from a few milliseconds to about one second) and
the absence of accurate theoretical predictions for their
waveforms (as opposed to e.g. waveform templates for
binary inspiral). If these events happen sufficiently close
by, the ground based gravitational wave detectors will be
able to observe them. Detection searches for gravitational
wave bursts typically use methods that can identify un-
modeled but short duration events [12]. LIGO [13–15],
VIRGO [16], GEO [14], and TAMA [15,17] have all
recently conducted searches for gravitational wave bursts.
The prediction of the exact burst signal to be expected

from a rotating stellar core collapse event depends on the
complex interplay of general relativity, nuclear, and parti-
cle physics. Furthermore, it is anticipated that the signal is
produced by various emission mechanisms, first from the
coherent motion of the collapsing and rebounding core
during the protoneutron star formation and then the ringing
down of the nascent hot protoneutron star (all in cases
when the core rotates). This is then possibly followed by
emission due to prompt convective motion behind the
hydrodynamic shock in the central part of the star due to
nonaxisymmetric rotational instabilities for rapid rotation,
as well as due to pulsations of the protoneutron star, for
instance, triggered by fallback of matter onto it (see e.g.
[18] for a comprehensive review). Only recently, the full
complexity of the prospective emission mechanisms for
gravitational waves in a stellar core collapse has become
appreciated. Previously, research mainly concentrated on
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the signal contribution from the collapse, core bounce, and
ring-down phase, and therefore this is the gravitational
wave signal that is now by far most comprehensively and
accurately investigated using numerical studies. Recently,
a series of calculations of core collapse models with un-
precedented physical realism has been performed [19–21].
These studies provide strong evidence that the predictions
of gravitational wave signals from the collapse and bounce
phase are now robust. The gravitational wave results from
these investigations have been made publicly available in
the form of electronic waveform catalogs. If detected, such
a gravitational wave signal can then ideally provide infor-
mation on the mass of the progenitor model, the precol-
lapse rotation, the density of the collapsed core, and the
nuclear equation of state.

However, even for the collapse and core-bounce signal
(not to mention the possible signal contributions from other
emission mechanisms in a stellar core collapse event), one
cannot conduct a template based search as is done when
looking for coalescing compact binary signals, since it
would be computationally impossible to completely cover
the signal parameter space, and therefore various other
methods have been developed to efficiently perform the
search for gravitational wave burst signals in the detectors.
Bayesian inferential methods provide a means to use data
from interferometric gravitational wave detectors in order
to extract information on the physical parameters associ-
ated with an event [22]. Markov chain Monte Carlo
(MCMC) methods are a powerful computation technique
for parameter estimation within this framework; they are
especially useful in applications where the number of
parameters is large [23]. Good descriptions of the positive
aspects of a Bayesian analysis of scientific and astrophys-
ical data are provided in [22,24,25]. MCMC routines have
been developed that will produce parameter estimates for
gravitational wave signals from binary inspiral [26–31] and
pulsars [32–34]. Accurate parameter estimation of ob-
served gravitational radiation events is the necessary path-
way to understanding important problems in astrophysics
and cosmology. In this paper we present methods which are
the starting point in the process of using MCMC methods
to extract and estimate parameters associated with rotating
stellar core collapse events from their gravitational wave
signals emitted during the collapse, core bounce, and ring-
down phase.

Unfortunately, due to the complexity of the event (in
particular, its intrinsic multidimensional nature), the com-
putational time required to derive these signals in numeri-
cal simulations of rotating stellar core collapse is
significant, and thus the waveform generation cannot be
performed instantly while fitting a signal template to the
data, and additional techniques to simplify the analysis are
required. Instead of using waveforms corresponding to
arbitrarily picked locations within parameter space, we
reduce the complexity of the problem by simplifying the

waveform space to the span of a small number of basis
vectors. The basis vectors are derived from a representative
catalog of numerically computed signal waveforms
through the use of principal component analysis (PCA)
[35]. The waveforms used in our present analysis are from
the most recent, advanced, and comprehensive general
relativistic study of rotating stellar core collapse by
Dimmelmeier et al. [21] and depend on the mass of the
progenitor model, the precollapse rotation, and the nuclear
equation of state.
In this study we make use of a catalog that is smaller

than eventually required in an extensive and accurate
analysis of signals in real data, but with its nontrivial
number of elements spanning a large portion of the inter-
esting parameter space we expect it nevertheless to be
sufficiently complex to probe and to demonstrate the
method qualitatively. The MCMC algorithm essentially
fits a superposition of derived basis vectors to the data,
providing parameter estimates as well as associated un-
certainties. We also demonstrate how PCA and MCMC
then allow the reconstruction of the time series of a gravi-
tational wave burst signal, including confidence bands. We
present initial results showing that these PCA basis vectors
are actually physically meaningful, and that we can extract
astrophysical parameters from the measured core collapse
burst signal. The ultimate goal is to be able to extract
information on the nuclear equation of state from the
gravitational wave signal as it is observed by a network
of interferometers, as well as other relevant physical pa-
rameters associated with the event, as far as this is possible
from the collapse, bounce, and ringdown signal alone.
There have been other approaches to signal reconstruc-

tion and parameter estimation with burst signals from
stellar core collapse. The discipline essentially starts with
the work of Gürsel and Tinto [36], who presented a method
for reconstructing the time series for gravitational wave
bursts. Rakhmanov [37] developed a general scheme of
Tikhonov regularization to be applied on a network of
detectors in order to extract the signal. MCMC methods
have also been applied to parameter estimation for burst
events from cosmic string cusps [38]. Searle et al. [39]
have recently worked out the Bayesian framework to the
coherent detection and analysis of burst signals, including
a wide range of special cases like white noise burst signals,
but also signals constituting linear combinations of some
set of basis vectors, like the ones used in this present study.
Summerscales et al. [40] proposed a maximum entropy
technique in order to infer the time-dependent gravitational
wave burst signals detected by a network of interferometric
detectors; they then calculated the correlation between
their reconstructed waveform and the entries in a catalog
of rotating core collapse waveforms [41] in order to infer
the physical parameters from the event. Our work is differ-
ent in that we use waveforms from physical models (the
table of rotating core collapse signals) as our means of
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reconstructing the signal. PCA basis vectors are initially
created from the table of waveforms, and the MCMC
estimate of the amplitudes for the PCA basis vectors
provides the reconstructed waveform. A linearly polarized
gravitational wave signal can be reconstructed from the
data of a single interferometer. The estimate of the physical
parameters comes from an association of the reconstructed
waveform with the elements of the catalog. The results in
this paper are derived only using data from a single detec-
tor (signals embedded in simulated noise matching that of
LIGO at its target sensitivity).

The organization of the paper is as follows. In Sec. II we
describe the methods by which LIGO, VIRGO, GEO, and
TAMA are searching for burst events; the parameter esti-
mation technique we describe in this paper would be
applied to event candidates from such a burst search. The
method by which the catalog of stellar core collapse burst
signals is established is described in Sec. III. A summary of
the PCA method used in our study is presented in Sec. IV,
while our analysis strategy is described in Sec. V. We
illustrate how the analysis method works when applied to
simulated example data in Sec. VI, and in Sec. VII we
demonstrate that the PC basis vectors and the inferred
corresponding coefficients actually carry physically mean-
ingful information. In Sec. VIII we provide a summary, and
discuss the direction of future work.

II. BURST SEARCH PIPELINES

All collaborations associated with ground based inter-
ferometric gravitational wave detectors have developed
burst search pipelines in order to look for events [13–17].
Although some gravitational wave burst sources are well
modeled, the burst pipelines search for very general types
of waveforms. The only assumption which is usually made
concerns the duration of the signal (less than a few hundred
of ms) and the frequency bandwidth of the search, which
can be as large as the detector bandwidth (from a few
dozen of Hz up to the Nyquist frequency). Burst pipelines
typically reduce the frequency bandwidth to a few kHz to
focus on specific types of sources.

Most of the gravitational wave burst pipelines look for
an excess of energy in a time-frequency map using differ-
ent multiresolution time-frequency transforms. Anderson
et al. [42] initially considered the energy given by the
Fourier transform in a frequency band. More recent meth-
ods [43] make use of a wavelet decomposition of the data
stream. In contrast, in [44–46] a gravitational wave burst
signal represented as a sine Gaussian is implemeted.

Usually the gravitational wave burst searches are per-
formed using data from a network of detectors. Demanding
that a gravitational wave burst event is seen simultaneously
in several detectors allows one to reduce the false alarm
rate, which is rather high in a burst search due to the short
duration of the signal. This is also the only way to disen-
tangle a real gravitational wave signal from transient noise

events. There exist two kinds of network analysis: coinci-
dent or coherent filtering. In a coincidence analysis
[44,46], each interferometer output is analyzed, providing
a list of triggers. A coincidence in time and frequency is
then required. A coherent analysis [36,47–52] uses all
interferometers’ information by combining the input data
streams or the filtered data streams into one single output
which takes into account the detectors’ antenna response
function assuming the source is at a given position in the
sky. A coherent analysis more efficienctly suppresses non-
stationarities that are expected to be incoherent in the
different detectors.
When using data from a network of detectors, burst

pipelines can reconstruct the position in the sky of the
source [36,53–55]. The accuracy of the source sky position
depends on the time resolution of the pipeline. It is usually
estimated for a set of different waveforms. Depending on
the complexity of the signal waveform the time resolution
can vary from a fraction of ms up to several ms [12]. The
frequency content (central frequency and bandwidth) of
the event is also estimated by the burst pipelines. The
frequency information can give some hints concerning
the possible astrophysical source. For instance, a central
frequency of a few hundred Hz would point toward the
event of a core collapse in a massive star resulting in the
formation of a protoneutron star [21] (in particular, if the
detection is accompanied by a neutrino trigger following
shortly after) while a higher frequency content at about
10 kHz could suggest that the event could be due to a
neutron star collapsing to a black hole [56]. Besides,
coherent pipelines can also extract from the data an esti-
mation of the waveform without assuming any model for
the triggers with sufficient amplitude [36,57].
The work presented in this paper intends to extract even

more information from the most significant events found
by a gravitational wave burst pipeline assuming an astro-
physical source model. The estimation of the parameters
could also be used to reject a possible gravitational wave
event candidate; the idea of distinguishing a real stellar
core collapse signal from an instrumental glitch is briefly
discussed in Secs. VII and VIII. The starting point for our
technique would be the list of candidate triggers produced
by a burst all-sky search pipeline, or times provided by
electromagnetic and/or neutrino observations (external
triggers). In both cases, the MCMC will search for the
event over some relatively small time span. The trigger
times provide a relatively small number of data periods to
be examined by our method. The MCMC would attempt to
produce a reconstruction of the signal based on a waveform
catalog for stellar core collapse models.

III. GRAVITATIONALWAVE SIGNALS FROM
ROTATING CORE COLLAPSE AND BOUNCE

In stellar core collapse, the (possibly rotating) unstable
iron core of a massive star at the end of its life contracts to
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supernuclear density on a dynamical time scale of the order
of 100 ms. As the core material stiffens due to repulsive
nuclear forces, the collapse is halted abruptly, and the inner
part of the core undergoes a rebound (the core bounce).
After a period of ring-down oscillations, the hot protoneu-
tron star settles down, while the remainder of the star is
possibly (mainly depending on the mass of the progenitor)
blown off in a supernova explosion.

If the precollapse stellar core is rotating, the dynamics of
the evolution are reflected in the gravitational wave signal
waveform with a slow rise during the core collapse, a large
negative peak around bounce, and damped oscillations in
the ring-down phase. If rotational effects become impor-
tant for rapidly rotating models, the core collapse can even
be stopped by centrifugal forces alone at subnuclear den-
sity. However, in contrast to previous, less sophisticated
studies of the stellar core collapse scenario (see e.g. [58]
and references therein), Dimmelmeier et al. [20] have
shown that the signal waveform remains qualitatively un-
altered and is thus generic for a wide range of initial
rotation strength.

The gravitational radiation waveforms analyzed in this
article are the burst signals from the most recent, advanced,
and comprehensive general relativistic study of rotating
stellar core collapse models [21]. These simulations were
performed with a computational code that utilizes accurate
Riemann solvers to evolve the general relativistic hydro-
dynamic equations and a nonlinear elliptic solver based on
spectral methods [59] for the fully coupled metric equa-
tions in the conformal flatness approximation of general
relativity [60]. The precollapse iron core models were
taken from recent stellar evolutionary calculations by
Heger et al. [61,62], either with an intrinsic or an artifi-
cially added rotation profile. These initial models were
then evolved with a nonzero-temperature nuclear equation
of state (EoS), either the one by Shen et al. [63,64] (Shen
EoS) or the one by Lattimer and Swesty [65,66] (LS EoS,
with a bulk incompressibility K ¼ 180 MeV), both in the
implementation of Marek et al. [67], including contribu-
tions from baryons, electrons, positrons, and photons.
Deleptonization by electron capture on nuclei and free
protons during the collapse phase is realized as proposed
and tested by Liebendörfer [68].

Of the 136 models investigated in the study by
Dimmelmeier et al. [21], 128 models have an analytic
initial rotation profile. Their collapse behavior is deter-
mined by the following parameters:

(i) The strength of rotation is specified by the precol-
lapse central angular velocity, which varies from
�c;i ¼ 0:45 to 13:31 rad s�1 (with the individual

range depending on the differentiality of rotation).
The influence of rotation strength on the collapse
dynamics and on the burst signal via rotational flat-
tening is very pronounced.
For a wide range of slow to intermediate initial

rotation strengths, the peak jhjmax of the gravitational
wave amplitude is almost proportional to the ratio
Tb=jWjb of rotational energy to gravitational energy
at bounce (which in turn increases approximately
linear with �c;i in this regime if all other model

parameters are kept constant).
For very rapid rotation, however, jhjmax reaches a
maximum and declines again, when the centrifugal
barrier slows down the contraction considerably,
preventing the core from collapsing to high super-
nuclear density. In such a case the frequency of the
burst signal, which is practically constant for slow or
moderate rotation, decreases significantly. Note that
the trend to lower frequencies for very slowly rotat-
ing models shown in [20,21], which spoils the con-
stancy of the signal frequency for such models, is
due to a (possibly artificial) low-frequency contribu-
tion originating from postbounce convection in the
protoneutron star, which superimposes the signal
from the core bounce and protoneutron star ring-
down.

(ii) The differentiality of the precollapse rotation profile
is set by a length scale with values A ¼ 50 000, 1000,
or 500 km, ranging from almost uniform to strongly
differential rotation. For a fixed initial strength of
rotation (as set by �c;i), a change in A alone has no

strong effect on the gravitational wave signal, neither
on the amplitude nor on the frequency. However,
rapid rotation can only be achieved for comparably
small values of A.

(iii) The set of precollapse cores encompasses models
with a progenitor mass of Mprog ¼ 11:2, 15.0, 20.0,

or 40:0M� (masses at zero-age main sequence). The
choice of the progenitor mass has a direct impact on
the mass of the inner core during the collapse and at
bounce (and thus on the mass of the protoneutron
star). Already without rotation, the different progen-
itors produce an inner core at bounce with a mass
that depends nonmonotonously on the mass of the
progenitor (with the inner core mass increasing on
the order of Mprog ¼ 11:2, 20.0, 15.0, and 40:0M�).
This variation is considerably amplified by rotation,
which itself increases the mass on the inner core at
bounce (approximately linear with �c;i at slow rota-

tion and roughly quadratically at rapid rotation; see
[21]). Nevertheless, the reflection of that effect on
the peak signal amplitude jhjmax is practically neg-
ligible, as the effect of a high inner core mass (which
causes a large quadrupole moment and thus a strong
resulting gravitational wave signal) is canceled by
strong centrifugal support, resulting in slower col-
lapse dynamics and, consequently, a weaker gravita-
tional wave signal.
The main frequency of the gravitational wave burst
signal is also not influenced significantly by the mass
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of the progenitor model, except that in models with
the least massive progenitor (Mprog ¼ 11:2M�) even
strong initial rotation does not decelerate the rela-
tively small collapsing inner core enough to make it
bounce at subnuclear densities. Hence the signal
frequencies of such models remain comparably
high. We also point out that the approximate nature
of the deleptonization scheme during the collapse
phase up to core bounce employed in these models
could actually be responsible for overemphasizing
the variation in the mass of the inner core at bounce
with respect to the mass of the progenitor.

(iv) The microphysical equation of state during the evo-
lution is chosen to be either the Shen EoS or the LS
EoS. In the subnuclear density regime, the two EoSs
are rather similar, with the LS EoS being a bit softer
on average. However, at supernuclear density, the
differences are more pronounced. Here the adiabatic
index � of the LS EoS jumps to �2:5, while in the
Shen EoS � reaches values of �3:0, making the
nuclear material described by that EoS significantly
stiffer. Consequently, the models with the Shen EoS
consistently exhibit lower central densities at bounce
and after ring-down.
Still, with respect to the peak waveform amplitude
jhjmax of the burst signal, this does not translate into
an unequivocal trend due to a complicated interplay
in the protoneutron star between central compact-
ness and density structure at intermediate radii. The
peak frequency of the waveform spectrum, on the
other hand, is almost always lower if the Shen EoS is
used, which is a direct consequence of the lower
central densities in the bounce and postbounce pe-
riod due to the nuclear material stiffness from that
EoS if all other parameters are identical and only the
EoS is varied.

In Fig. 1 we present a representative sample of wave-
forms which illustrate the impact of a model’s initial
rotation state on the gravitational wave signal from core
bounce, from slow and almost uniform initial rotation
(model s20a1o05_shen), moderately fast and modestly
differential initial rotation (model s20a2o09_shen), to
rapid and very differential initial rotation (model
s20a3o15_shen). While the effect of varying the initial
rotation state is clearly reflected in the waveform for the
models shown here, the influence of the progenitor model’s
mass and also the EoS for a fixed initial rotation state is
much less apparent, and thus analogous pictorial waveform
comparisons are not presented.

We note that 8 progenitor models of [21] are from a
stellar evolutionary calculation that includes rotation in an
approximate way. Hence, these models already have an
initial angular velocity profile; no artificial rotation accord-
ing to the simple analytic relation, like in the other models,
is added prior to evolution. Consequently, as initial rotation

is not parametrized, these models are not of use for this
study. However, the collapse dynamics and associated
signal waveforms of these models are well represented
by models with artificially added precollapse rotation in
terms of both signal amplitude and frequency, and there-
fore it is justified to not separately consider their behavior
here. The different influences of the various model parame-
ters, which are summarized here only briefly, are discussed
in detail in [21]. The respective signal data can be down-
loaded freely from an online waveform template catalog
[69].
We emphasize that the parameter selection for the mod-

els in [21] is fairly complete in that it accounts for all
known relevant parameters which could have an impact on
the burst signal from a core bounce (although, for instance
in the case of neutrino effect, in an approximate way).
Furthermore, the astrophysically meaningful range of the
parameters has been reasonably exhausted (in the case of
rotation, the expected strength of rotation for the bulk of
stellar core collapse events is even at the lower end of the
investigated range; see [70]). Only the selection of EoS is
limited to two due to a lack of access to alternative
nonzero-temperature nuclear equations of state for stellar
core collapse at the time when the study by Dimmelmeier
et al. [21] was performed. However, with the Shen EoS and

time (sec)

−0.02 0.00 0.02 0.04

− 1 × 10−21
0 × 10+00
1 × 10−21

− 1 × 10−21
0 × 10+00
1 × 10−21

− 1 × 10−21
0 × 10+00
1 × 10−21

s20a1o05_shen

s20a2o09_shen

s20a3o15_shen

FIG. 1. Sample waveforms of the core-bounce signal for three
models with varying initial rotation states while the mass of the
progenitor model and EoS are fixed. Note the relatively small
signal peak at the time of core bounce and the significant late-
time contribution from postbounce convection for the slowly
rotating model s20a1o05_shen, and the overall lower signal
frequency for the rotation-dominated and centrifugally bouncing
model s20a3o15_shen. The three signals presented here ade-
quately cover the waveform morphology of our signal catalog.
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the LS EoS the two extremes of a rather stiff nuclear
material and a somewhat soft one are probably well
covered.

The range of frequencies and amplitudes of the signals is
quite broad for the model sample of [21], with the inte-
grated characteristic frequency fc spanning from about 100
to 700 Hz (as opposed to the peak frequency fmax of the
spectrum which lies in a narrow interval around 700 Hz;
see Fig. 16 in [21]) and the integrated dimensionless
characteristic amplitude hc ranging from 6� 10�22 to 7�
10�21 for e.g. initial LIGO and a distance to the source of
10 kpc (for the definition of these quantities, see the
references in e.g. [21]).

Still, the main factor of influence causing this variation
is the rotation of the core (as measured by �c;i and A, and
rather well resolved in the models of [21]), while the mass
of the progenitor, precollapse differentiality of rotation,
and microphysical EoS hardly affect both fc and hc (see
Fig. 17 in [21]). This partial degeneracy regarding the
model parameters makes it very difficult to infer the un-
known parameters from a detection of the gravitational
wave burst signal emitted by a rotating stellar core col-
lapse. In reverse, this means that parameters of little impact
on the gravitational wave signal may be resolved only
coarsely in a parameter study aiming at providing signal
templates.

For an event with at most moderate rotation, in practice
only the strength of rotation can be extracted from the
waveform with confidence, provided the distance to the
source and the orientation with respect to the rotation axis
can also be determined. Only if a multitude of core col-
lapse events can be detected via gravitational waves can
systematic effects of e.g. the nuclear material stiffness (as
described by the EoS) on the frequency also be analyzed
with more certainty.

While the independent parameters �c;i, A, Mprog, and

EoS uniquely specify each collapse model, from the actual
numerical simulation of the collapse a number of important
quantities can be obtained which characterize the evolution
of each individual model; these are typically presented as
results for rotating stellar core collapse calculations.
Among these are the maximum density �max;b at the time

of core bounce, the ratio Tb=jWjb of rotational energy to
gravitational energy at bounce, and the corresponding
value Tpb=jWjpb late after bounce.

These quantities provide information about the collapse
dynamics and, for instance, permit one to distinguish be-
tween a core bounce that is mostly caused by the nuclear
material stiffening at supernuclear densities to one that is
dominated by centrifugal forces, which is again reflected
by the waveform. Thus, in reverse the waveform encodes
not only information about the independent model parame-
ters, but also about these evolution quantities.
Consequently, in the analysis on the correspondence be-
tween PCs and physical parameters presented in Sec. VII,

we not only consider the parameters for the model setup
but also the evolution of the quantities �max;b, Tb=jWjb, and
Tpb=jWjpb. However, in contrast to these ‘‘robust’’ parame-

ters reflecting the global collapse dynamics we refrain
from analyzing other quantities (like e.g. entropy at a
specific off-center location or the time span of contraction)
which are prone to depend more sensitively on the numeri-
cal evolution scheme or grid setup used for the model
simulation.

IV. SINGULAR VALUE DECOMPOSITION

The signal waveforms used in the analysis reported here
are originally generated at a higher sampling rate. Each
waveform is subsequently resampled at a rate of 16 384 Hz
(the LIGO and GEO data sampling rate). The waveforms
are then buffered with zeros so that they are of the same
length. Finally, the waveforms are time shifted so that the
first (negative) peak in each waveform (which occurs
shortly after the time of core bounce) is aligned.
For modeling purposes, the set of signal waveforms will

be decomposed into an orthonormal basis. Following the
method prescribed by [35], we create a matrix H so that
each column corresponds to a signal waveform from the
catalog after subtracting the overall mean of the wave-
forms. For m waveforms, each n samples long, H is a
matrix with dimensions n�m. Using singular value de-
composition [71], H is factorized such that

H ¼ USV0; (1)

where U and V are orthonormal n� r andm� rmatrices,
respectively, and S is a diagonal r� r matrix containing
the singular values of H in decreasing order, i.e. S ¼
diagðs1; . . . ; srÞ with s1 � � � � � sr > 0, r ¼ rankðHÞ �
minðm; nÞ. The columns of U are the eigenvectors of the
empirical covariance matrix HH0, and similarly, the col-
umns of V are the eigenvectors of H0H. Additionally, the
singular values in S are the square roots of the eigenvalues
�i of either HH0 or H0H, i.e. si ¼

ffiffiffiffiffi
�i

p
.

The columns of U, i.e. u1; . . . ; ur, form an orthonormal
basis of the linear space spanned by the columns of H, i.e.
the signal waveform space, and each signal waveform can
now be uniquely represented as a linear combination of
these eigenvectors. A measure of multivariate scatter about
the mean is the trace of the empirical covariance matrix,
trðHH0Þ, also called total variation, which equalsPr

i �i. So
the sum of the first k � r largest eigenvalues,

P
k
i¼1 �i,

measures how much of the total variability of the wave-
forms is explained by the first k eigenvectors. These are
referred to as the first k PCs and they achieve an optimal
dimension reduction from the r-dimensional signal wave-
form space to a k-dimensional subspace.
Note that each waveform is n samples long and U has

dimensions n� r. For the waveforms considered in this
article, n is typically 1000 to 10 000 samples long, so
computing the eigenvectors of HH0 in U can be computa-
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tionally expensive. On the other hand, the number m of
waveforms in the catalog is of the order of 100. So,
computing the eigenvectors of H0H in V is much less
demanding, and they can be used to compute the eigen-
vectors in U by first noting that

H 0Hvi ¼ �ivi; (2)

where vi is the eigenvector of H0H corresponding to the
ith largest eigenvalue �i. By premultiplying both sides
with H, we obtain

HH0Hvi ¼ �iHvi: (3)

From this, we can see that Hvi ¼ ui, i.e. Hvi is the
eigenvector corresponding to the ith largest eigenvalue of
HH0 and thus equals the ith column of U. Figure 2 illus-
trates the resulting first three PCs when applying this
procedure to an actual waveform catalog.

V. ANALYSIS STRATEGY

A. Definitions

The starting point of our analysis is a waveform catalog,
i.e. a catalog of time series (of equal lengths) describing the
gravitational wave signal of core collapse events corre-
sponding to different input parameter settings. Let n denote
the number of samples (discrete time points) in each
waveform vector and m the number of waveform vectors
in the catalog. As detailed in Sec. IV, for these m time
series we derive the first k < r eigenvectors, x1; . . . ; xk,
corresponding to the k largest eigenvalues [35]. Each of
these eigenvectors again is of length n.

The data to be analyzed (the noisy measurement) are
given in the form of a time series vector y of lengthN (N >
n). This vector consists of additive nonwhite Gaussian

noise with known (one-sided) power spectral density de-
noted by S1ðfÞ, superimposed by a core-bounce burst
signal of length n located at an unknown instant T along
the time axis.
Our aim is to model the core-bounce burst signal obser-

vation in terms of the basis of the k eigenvectors described
above. To this end, we assume that the mean of the yi’s is a
linear combination �1xi;1 þ � � � þ �kxi;k of the k eigen-

vectors, and zero before and after the burst signal. In matrix
notation, this can be expressed in terms of the expectation
value E½y� ¼ XðTÞ�, where � ¼ ð�1; . . . ; �kÞ0 denotes the
vector of regression coefficients, and theN � kmatrixXðTÞ
has column vectors formed by the zero-padded k largest
eigenvectors x1; . . . ; xk which are cyclically time shifted by
a lag T.
The signal reconstruction is eventually accomplished

based on the Fourier domain representations of data and
signal; in the following we will be referring to the con-
ventions explicated in Appendix A. Let ~y denote the
Fourier transformed data vector and ~xi, i ¼ 1; . . . ; k, de-
note the discretely Fourier transformed eigenvectors after
zero padding each to length N. The real and imaginary
parts of these form the columns of the N � k real-valued

matrix ~X (neglecting the redundant elements due to
Hermitian symmetry).
One of the unknown parameters to be estimated is the

signal’s location T along the time axis, and in order to
match data and signal, one needs to be able to shift both

against each other in time. Let ~XðTÞ be the matrix of Fourier

domain basis vectors shifted in time so that these corre-
spond to a particular signal arrival time T (with respect to

some pivotal time point). Time shifting of ~X by some lag T
can be done directly in the frequency domain by multi-
plying the original Fourier transform by a factor of
expð�2�ifTÞ.

B. Model 1: Basic linear regression model

If the data were an exact linear combination of first k
principal components plus measurement noise, then the
following standard linear model would adequately model
the situation:

y ¼ XðTÞ�þ "; (4)

where " is the (Gaussian) noise vector with given (one-
sided) spectral density S1ðfÞ. In the frequency domain this
corresponds to

~y ¼ ~XðTÞ�þ ~"; (5)

where ~" now is the Fourier transformed noise vector. In the
Fourier domain, the real and imaginary components of the
noise vector ~" then simply are independently zero-mean
Gaussian distributed with variances proportional to the
power spectral density S1ðfÞ [72,73] (see also
Appendix B).

time (sec)

−0.02 0.00 0.02 0.04

− 1 × 10−21
0 × 10+00
1 × 10−21

− 1 × 10−21
0 × 10+00
1 × 10−21

− 1 × 10−21
0 × 10+00
1 × 10−21

1st PC

2nd PC

3rd PC

FIG. 2. The top three principal components (PCs) derived from
the catalog of waveforms described in Sec. III.
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What is known here are the data (measurement) y, the
matrix X of basis vectors (derived from the waveform
catalog through PCA), and the noise’s power spectral
density. The unknowns are the coefficients � and the
time parameter T. The a priori information about these is
expressed in the prior distribution Pð�; TÞ, which is as-
sumed to be uniform, i.e. any value is assumed equally
likely.

C. Model 2: Random effects regression model

In general, the basis vectors will not allow one to com-
pletely reconstruct the original signal; there will always be
a certain mismatch left unexplained when simplifying the
problem to the reduced set of PCs as in (5). Neglecting the
mismatch term would result in overconfidence in the re-
constructed waveform and parameters. However, the sim-
plified model introduced above will still be of interest, as it
provides good approximations that are useful in the even-
tual implementation.

Adding an extra mismatch error component m to the
model, a random effect in statistical terminology, the
model is now

~y ¼ ~XðTÞ�þ ~mþ ~": (6)

In the following, we expect the original catalog to be
sufficiently densely populated, so that the mismatch is
primarily due to the effect of neglecting PCs, and not due
to the signal being much unlike the ones in the catalog. All
we assume to be known about the mismatch is that it
contributes a certain fractional amount to the signal’s
power. That amount was expressed in [35] in terms of the
match parameter �. Taking the difference between recon-
structed and actual signal to be zero on average, and then
expecting a certain (fractional) power for the mismatch, we
use a Gaussian distribution with corresponding mean and
variance for modeling the mismatch,

P ðmij�2
mÞ ¼ Nð0; �2

mÞ , Pð ~mjj�2
mÞ ¼ N

�
0;
N

2
�2

m

�
; (7)

i.e. the mismatchm enters the model as an additional white
noise component with a one-sided power spectral density
of 2�t�

2
m. The assumption of a Gaussian distribution is a

simple and convenient choice here, and according to maxi-
mum entropy theory it also constitutes the most conserva-
tive possible choice [74]. It also seems to perform well in
practice, despite the fact that the actual mismatch follows a
rather heavy-tailed distribution with many near zero and
also a substantial number of extreme values. Since the
mismatch is supposed to scale with the signal (i.e. the
‘‘relative mismatch’’ is assumed constant), the mismatch’s
variance parameter �2

m is set such that

�2
m 	 �2 1

N
kX�k2; (8)

depending on the PC coefficients � via the implied sum of

squares (or power) of the PC contribution to the signal,

1

N
kX�k2 ¼ 1

N

XN
i¼1

�XZ
j¼1

�jxi;j

�
2
; (9)

and the scaling factor �2 ¼ 1��2

�2 is set so that it corre-

sponds to a particular match � as in [35]. The above
relationship between � and �2 results from assuming the
PC and mismatch contributions to the signal s ¼ X�þm
to be (approximately) orthogonal: m ? X� (i.e. the mis-
match is defined as what is not spanned by the set of PCs).
The actual amount of mismatch is another unknown, and

the (approximate) scaling of�2
m with the signal power as in

Eq. (8) is ensured through the definition of the prior
distribution, which is set up as

P ð�; T; �2
mÞ ¼ PðTÞ � Pð�; �2

mÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼Pð�Þ�Pð�2

mj�Þ

: (10)

As in the previous Sec. VB, the priors PðTÞ and Pð�Þ are
set to be independent and uniform, but the conditional prior
distribution Pð�2

mj�Þ is taken to be a scaled inverse �2

distribution:

P 	;�2ð�2
mj�Þ ¼ Inv-�2

�
	; �2 1

N
kX�k2

�
; (11)

with degrees-of-freedom parameter 	 and scale parameter
ð�2 1

N kX�k2Þ, so that the prior certainty in the scale of

�2
mj� is defined through 	. For example, a specification of

�2 ¼ 0:1 and 	 ¼ 3 implies for the prior that Pð0:038<
�2=ð1N kX�k2Þ< 0:85Þ ¼ 90% ¼ Pð0:73<�< 0:98Þ,
and a conditional prior mean of E½�2

mj�� ¼
	

	�2�
2 1
N kX�k2. Setting 	 ¼ 0 yields the (improper)

Jeffreys prior, which does not depend on its prior scale
parameter [75]. The Inv-�2 distribution was chosen here
because it constitutes the conjugate prior distribution for
this problem [75], which makes it a ‘‘natural’’ choice and
makes the eventual implementation particularly simple, as
will be seen in Sec. VD. The parameters �2 and 	may now
be set so that the prior distribution reflects the reconstruc-
tion accuracy to be expected from the given set of k basis
vectors derived from the waveform catalog at hand.

D. Monte Carlo integration

Inference on waveforms and parameters usually requires
integrating the parameters’ posterior distribution, as one is
interested in figures like posterior expectations, quantiles,
or marginal distributions. These are here determined using
stochastic (Monte Carlo) integration, i.e. by generating
samples from the posterior probability distribution and
then approximating the desired integrals by sample statis-
tics (means by averages, etc.). The generation of samples
from the posterior distribution is done using MCMC meth-
ods, that is, by designing a Markov process whose sta-
tionary distribution is the posterior probability distribution
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of interest, and which may then be numerically simulated
step by step to produce the desired posterior samples. The
generated samples then allow one to explore marginal or
joint distributions of individual parameters, or of functions
of the parameters as in the case of signal reconstruction,

where the posterior distribution of ~XðTÞ�þ ~m is of inter-

est, and T, �, and ~m are random variables.
In the case of the basic linear model (see Sec. VB), the

set of unknown parameters consists of the vector of PC
coefficients � and the time shift parameter T. An MCMC
algorithm here may be implemented as a Gibbs sampler
[75], since the conditional posterior distribution Pð�jT; yÞ
of coefficients � for a given time T is already known and
easy to sample from [see Eq. (12)]. In a Gibbs sampler,
generating samples from the joint distribution is carried out
by alternately sampling from the two conditional distribu-
tions Pð�jT; yÞ and PðTj�; yÞ [75]. Samples from Pð�jT; yÞ
can be generated straight away, while a simple
‘‘Metropolis-within-Gibbs’’ step, i.e. a nested Metropolis
sampler implementation [75], may be utilized for sampling
from the (one-dimensional) distribution PðTj�; yÞ.

For the basic linear regression model (see Sec. VB), the
conditional posterior distribution of the PC coefficients �
for a given time shift T is a multivariate Gaussian distri-
bution:

P ð�jT; yÞ ¼ Nð�̂T; �̂TÞ; (12)

where

�̂ T ¼ ð ~X0
ðTÞD

�1 ~XðTÞÞ�1; (13)

�̂ T ¼ ð ~X0
ðTÞD

�1 ~XðTÞÞ�1 ~X0
ðTÞD

�1~y; (14)

and D ¼ diagð�2ðfjÞÞ is the noise’s covariance matrix, a

diagonal matrix of the individual variances, as given in
Eq. (B1) [75].

Sampling from the posterior distribution works similarly
for the extended model (see Sec. VC), in addition to � and
T, the mismatch ~m and mismatch variance �2

m need to be
sampled from. Note that the conditional posterior distribu-
tion Pð�jT; ~m; �2

m; yÞ is not simply multivariate Gaussian
any more, since changes in � lead to different prior density
values (via its effect on the signal’s sum-of-squares value).
The expression in Eq. (12) still is an excellent approxima-
tion and is useful for defining a proposal distribution within
the Metropolis step of the algorithm. The conditional
distribution of the mismatch vector ~m is independent
Gaussian:

P ð ~mj�; T; �2
m; yÞ ¼ Nð ��; ��Þ; (15)

where

�� j;Re ¼ Reðð~y� ~XðTÞ�ÞjÞ
N
2 �

2
m

N
2 �

2
m þ N

4�t
S1ðfjÞ

; (16)

�� 2
jj;Re ¼

N
2 �

2
m

N
4�t

S1ðfjÞ
N
2 �

2
m þ N

4�t
S1ðfjÞ

; (17)

and analogously for the imaginary parts Imð ~mjÞ. For the
mismatch variance �2

m the conditional posterior is

P ð�2
mjy;�; T; ~mÞ ¼ Inv-�2ð
; s2Þ; (18)

where the degrees of freedom 
 and scale s2 are


 ¼ 	þ N; (19)

s2 ¼ 	�2 1
N kX�k2 þ

PN
i¼0 m

2
i

	þ N
(20)

(see also Appendix C).
The MCMC sampler was eventually implemented as a

Gibbs sampler, alternately sampling from the three condi-
tional distributions of
(1) �, Tjy, ~m, �2

m,
(2) ~mjy, �, T, �2

m, and
(3) �2

mjy, �, T, ~m.
The first step is done in a Metropolis-within-Gibbs step,
using a symmetric proposal distribution for T, the approxi-
mated posterior of �jT; . . . from Eq. (12) for the corre-
sponding � proposal, and accepting/rejecting as in a usual
Metropolis-Hastings sampler based on corresponding pos-
terior and proposal probability density values. Samples for
the second and third step may be generated directly.

VI. IMPLEMENTATION AND APPLICATION

A. Setup

In the following examples we are using the waveform
catalog described in Sec. III, containing 128 gravitational
radiation waveforms from rotating core collapse and
bounce [21,69]. The basis vectors to be used for signal
reconstruction are generated through a PCA (see Sec. IV)
[35]. Utilizing the same code and general setup for calcu-
lating the models described in [21,69], we then compute
three new rotating stellar core collapse models with input
parameter values that did not appear in the original catalog
(but lie within the range of the catalog parameter space)
and their associated waveforms. The aim is then to recon-
struct these waveforms using the PCA method.
The simulated data used here are 1 s in length and

sampled at 16 384 Hz, superimposed with (simulated) non-
white Gaussian noise, and Tukey windowed. The shape of
the noise curve is here taken to correspond to LIGO at its
initial sensitivity as stated in [76]; this is the definition that
is also implemented in the LIGO scientific collaboration’s
LSC algorithm library (LAL) [77]. The noise’s spectral
density S1ðfÞ is estimated by averaging over a thousand
‘‘empirical’’ periodograms of identically generated data
(same size and resolution, same windowing applied),
more closely resembling a realistic case in which the noise
spectrum would need to be estimated as well. In addition,
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this way convolution effects on the spectrum due to the
finite data size and windowing are compensated.

The prior distribution for the mismatch parameter �2
m is

set by determining what match � would be achievable for
the given number k of PCs. This is done by projecting each
single waveform in the catalog onto the span of the PCs,
and then (for any given number k of PCs) considering the
distribution of achieved mismatch values across the cata-
log. Figure 3 illustrates the mean, median, and some more
quantiles of the mismatch distribution for increasing num-
bers of PCs (in analogy to Fig. 2 in Ref. [35]). We chose the
prior’s parameters (scale �2 and degrees of freedom 	) so

that it matched the distribution of computed matches
across the catalog. For the two example settings of k ¼
10 and k ¼ 20 considered in the following, this leads to
maximum likelihood estimates of (�2 ¼ 13:3%, 	 ¼ 2:82)
and (�2 ¼ 5:70%, 	 ¼ 2:96). The resulting prior density
for k ¼ 10 PCs is also shown in Fig. 4.

B. Examples

The first example illustrated here, labeled signal A in the
following, has a signal-to-noise ratio (SNR) of � ¼ 10,
where the SNR is defined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
X
j

�t

N j~hðfjÞj2
S1ðfjÞ

vuuut :

It was generated assuming the Shen EoS, a mass Mprog ¼
20M� for the progenitor, a precollapse central angular
velocity �c;i ¼ 5:48 rad s�1, a differentiality of the pre-

collapse rotation profile given by A ¼ 1000 km, and an
effective distance of de ¼ 5:17 kpc. The effective distance
depends on the actual distance to the source, and also
reflects the effect on the amplitude of the gravitational
wave signal from other parameters (such as the geometry
of the detector with respect to the source), and is in general
greater than the actual distance. The signal is embedded
within simulated interferometer noise, and, using the
model with k ¼ 10 basis vectors, the posterior distribu-
tions of the model parameters are derived using an MCMC
implementation as described in Sec. VD. The maximum
achievable match for this example waveform (for k ¼ 10
and varying time shift T) is � ¼ 0:97.
The marginal posterior distributions of some individual

parameters are illustrated in Fig. 4. Note the timing accu-
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FIG. 3. Achievable match � and scaling factor �2 for given
numbers k of PCs across the whole catalog used here. A
particular number k of PC basis vectors yields a certain match
� for each of the 128 waveforms in the catalog. Shown here is
the distribution of matches across the catalog for increasing
values of k, as characterized by mean, median, and some more
quantiles.
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FIG. 4. Marginal posterior probability distributions of the parameters of example signal A with SNR � ¼ 10, indicating the values
and uncertainties of the model parameters as inferred from the data. Only the first four coefficients �1 to �4 corresponding to the top
four principal components are shown here; there are k ¼ 10 coefficients in total. The dashed line in the top right plot shows the prior
probability distribution in comparison to the (very similar) posterior.
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racy, which has a standard error of 0.1 ms in this case; in
the following examples (for the same SNR), these are also
of the order of submilliseconds. The parameters’ joint
posterior distribution provides the posterior probability
distribution of the waveform at any given time ti.
Figure 5 shows the posterior mean and a 90% confidence
band in comparison with the originally injected waveform.

The example signal B illustrates how the signal recovery
changes with differing numbers of PCs included in the
model. This signal was generated assuming the LS EoS,
a mass Mprog ¼ 15:0M� for the progenitor, a precollapse

central angular velocity �c;i ¼ 2:825 rad s�1, a differen-

tiality of the precollapse rotation profile of A ¼ 1000 km,
and an effective distance of de ¼ 3:24 kpc. The signal’s
match is � ¼ 0:89 when using 10 PCs, and � ¼ 0:95 for
20 PCs. The same data are analyzed twice, once using k ¼

10 and then using k ¼ 20 PCs; the resulting recovered
waveforms are shown in Fig. 6. The enlarged model in
principle allows for a better match of the signal, but on the
other hand the larger number of parameters also decreases
the certainty in parameter estimates, so that the recovery
does not necessarily improve. In this example, the posterior
variances of the PC parameters common to both models
(�1; . . . ; �10) as well as the time parameter T increased for
the k ¼ 20 case. In the resulting signal reconstruction (see
Fig. 6) the confidence band is wider, and the discrepancy
between injected signal and posterior mean also increases.
The reconstruction of signals at different SNRs can be

seen in the following example signal C in Fig. 7; here the
same signal is injected at different overall amplitudes and
hence SNRs (� ¼ 10 and � ¼ 20). The injected signal was
generated using the LS EoS, a mass Mprog ¼ 40:0M� for

the progenitor, a precollapse central angular velocity
�c;i ¼ 9:596 rad s�1, a differentiality of the precollapse

rotation profile given by A ¼ 500 km, and effective dis-
tances of de ¼ 8:32 and 4.16 kpc, respectively. The result-
ing signal waveform’s match is � ¼ 0:97. As expected, a
higher SNR yields a more accurate recovery, and the
resulting posterior variances are correspondingly smaller.

VII. CORRESPONDENCE BETWEEN PRINCIPAL
COMPONENTS AND PHYSICAL PARAMETERS

The analysis performed above not only allows one to
reconstruct the waveform, but the posterior distribution of
the PC coefficients actually also contains information on
the signal’s physical parameters (�c;i, A, Mprog, and EoS)

as well as other evolution parameters (like �max;b, Tb=jWjb,
and Tpb=jWjpb). In the present study we are only able to

choose between two specific EoSs, but as this work pro-
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B

FIG. 6. A repeated analysis and reconstruction of the same
example signal B with SNR � ¼ 10 using different numbers of
PCs (k ¼ 10 and k ¼ 20). Note that a larger number of basis
vectors in the model does not necessarily improve signal recov-
ery.
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FIG. 5. Reconstruction of the example signal A with SNR � ¼
10 using k ¼ 10 PCs.
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FIG. 7. Reconstruction of the same example signal C at differ-
ent overall amplitudes (and, with that, SNRs � ¼ 10 and � ¼
20), both times using k ¼ 10 PCs.
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gresses the goal is to make estimates from a wider selection
of EoSs. Considering the catalog of waveforms alone, one
can project each waveform onto the span of the PCs (as was
done in the construction of Fig. 3) and inspect the resulting
fitted PC coefficients. Figure 8 illustrates the values of the
first three coefficients (�1,�2, and�3) for all the signals in
the catalog. Obviously the distribution of coefficients in
parameter space exhibits some structure. This structure can
now be exploited, the idea being that the posterior means
and variances of the coefficients �i for a measured signal
expose a pattern that is characteristic for the type of signal.
For illustration, in the following we describe a simple
approach involving the three example waveforms from
the previous section. The coefficients’ posterior distribu-
tion can be related back to the sets of coefficients for
reconstructing every signal in the original catalog, in order
to identify similarities. A simple ad hoc measure of simi-
larity is a �2 match that relates a set of best-matching

coefficients �̂i (i ¼ 1; . . . ; k) associated with each catalog
entry to the posterior distribution of the coefficients
Pð�ijyÞ of the inferred signal. Such a match may be defined
as

�2 ¼ min
c2R

Xk
i¼1

ðc�̂i � E½�ijy�Þ2
Varð�ijyÞ ; (21)

considering only posterior means and variances of individ-
ual coefficients �i, and allowing for a scaling factor c in
the overall amplitude of the matched signal. Computing the

match for each signal from the catalog allows one to rank
all signals and then determine those that fit the best. A
mapping scheme set up this way combines elements of
nearest-neighbor and naive-Bayes classification techniques
[78].
For the initial example signal A shown above (see Figs. 4

and 5), the posterior means and standard deviations (error
bars) are illustrated in a parallel coordinates plot [79] in
Fig. 9, together with the five best-matching catalog entries.
More details on the injected and the ten best-matching
signals are given in Table I. Table II lists the closest
correspondents for the other example signals (examples
B and C) in comparison with the injection values. In the
case of signal A, the best-matching waveform from the
catalog and the injected signal have very similar physical
parameters. For signals B and C this simple method still
provides a good estimation of the physical parameters,
although admittedly not as accurate as case A; note that
the reconstruction of the waveform is quite accurate for all
three signals. We think that through the use of techniques
such as Procrustes rotation [80] wewill be able to provide a
more direct link to the physical parameters. The posterior
mean values for the first three PC coefficients (�1 to �3)
for all five examples are also illustrated in Fig. 8.
Reconstruction of the measured signals through the PC
basis vectors not only allows one to capture the wave-
forms’ appearances, but also yields information on the
underlying physical parameters.
The information available from matching a signal can-

didate against a set of basis vectors may not only facilitate
a classification within a set of possible astrophysical
sources (as illustrated in Fig. 8), but may also help in
distinguishing it from signals of different origin, like in-
strumental glitches, etc. Different types of potential signals
may also be partly reconstructible in terms of a linear
combination of PCs, but a poor match, an unusual combi-
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FIG. 8. The resulting first three PC coefficients �1, �2, and �3

when matching each of the 128 waveforms in the catalog against
the set of PCs (no noise involved). The waveforms in the catalog
all correspond to a signal from a fixed distance (10 kpc). Note
that the coefficients only occupy a very restricted region in
parameter space. The diamonds show the posterior mean values
of the PC coefficients for the three examples (labeled A, B, and
C) discussed in the text. For comparison they are scaled down
(by their known distance) to the same magnitude.
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FIG. 9. Comparison of the distributions of all PC coefficients
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shown in black, the (scaled) sets of the top five best-matching
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nation of coefficients, or a better match from an alternative
set of basis vectors may then provide evidence in favor or
against certain signal origins.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have described initial work on imple-
menting a scheme by which the physical parameters asso-
ciated with a rotating collapse and bounce in a stellar core
collapse event can be estimated through the observation of
gravitational waves by detectors such as LIGO, VIRGO,
GEO, or TAMA. We have presented a technique which
allows one to reconstruct the detected signal through the
use of numerically calculated gravitational radiation wave-
forms, principal component analysis, and Markov chain
Monte Carlo methods; we have then compared the recon-
structed signals to the table of numerically calculated
waveforms and inferred the physical parameters.

The results displayed in this paper were achieved
through the application of a number of different and diffi-
cult analysis techniques. We are encouraged that in this
initial study we have displayed the fact that these methods
can be combined in a way such that physical information

about the supernova event can be extracted from the de-
tected gravitational wave data. We have found that our
method is quite successful in the reconstruction of the
detected waveform, and this is displayed in the three
examples. In the present analysis we have used the output
from a single detector, and we expect that the accuracy of
the signal reconstruction will only get better as we expand
the application of this work to the coherent analysis of
multiple interferometers. We were able to make a fairly
good association with the physical parameters; however,
we think that we will be able to greatly improve on our
ability to make parameter estimation estimates. In the
present study we worked with a relatively small signal
catalog, where each physical parameter took on only a
handful of different values; for example, there were only
two EoS to choose from. Our parameter estimation dem-
onstration was pretty good within these constraints, but we
expect the accuracy to increase with expanded signal cata-
logs. In addition, Procrustes rotation [80] is an example of
one technique that we intend to apply in order to make
better statistical estimates of the physical parameters based
on the eigenstates provided by the PCA.

TABLE I. The injected example signal A and the corresponding top 10 best-matching catalog entries. The column labeled with
‘‘Model’’ identifies the signal from the original catalog [69]. The following columns state achieved �2 match [according to Eq. (21)],
the corresponding EoS, mass of the progenitor model (Mprog), precollapse angular velocity at the center (�c;i), precollapse differential

rotation length scale (A), rotation rates initially (Ti=jWji), at the time of bounce (Tb=jWjb), and late after bounce (Tpb=jWjpb), and the

maximum density in the core at the time of bounce (�max;b) [21]. The corresponding best-matching effective distance de results from
inverting the amplitude c [see Eq. (21)] that yields the optimal match.

Rank Model �2 EoS Mprog (M�) �c;i (rad s
�1) A (km) Ti

jWji j
Tb

jWjb j
Tpb

jWjpb (%) �max;b (1014 g cm�3) de (kpc)

Example signal A (injected) Shen 20.0 5.48 1000 1:27j11:9j10:5 2.62 5.17

1 s20a2o13_shen 10.8 Shen 20.0 6.45 1000 1:80j14:8j12:8 2.42 3.50

2 s11a3o12_shen 12.8 Shen 11.2 10.65 500 1:28j14:9j12:3 2.46 3.46

3 s11a3o13_shen 13.7 Shen 11.2 11.30 500 1:44j16:1j13:2 2.36 3.37

4 s11a3o13_ls 13.8 LS 11.2 11.30 500 1:44j15:8j13:2 2.64 3.10

5 s40a2o07_shen 14.6 Shen 40.0 3.40 1000 0:72j11:8j9:9 2.58 3.75

6 s11a3o12_ls 15.4 LS 11.2 10.65 500 1:28j14:7j12:3 2.75 3.12

7 s15a2o09_shen 15.4 Shen 15.0 4.56 1000 1:09j11:8j10:3 2.58 3.42

8 s20a3o09_shen 15.7 Shen 20.0 8.99 500 0:90j15:7j12:5 2.38 3.58

9 s20a3o07_shen 17.4 Shen 20.0 5.95 500 0:50j10:1j8:0 2.70 3.24

10 s20a2o13_ls 20.6 LS 20.0 6.45 1000 1:80j14:4j12:9 2.75 2.94
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

TABLE II. The injected signal example signals B and C, and the corresponding best-matching catalog entries when varying k or �,
respectively; see also Sec. VIB and Table I.

PCs/SNR model �2 EoS Mprog (M�) �c;i (rad s
�1) A (km) Ti

jWji j
Tb

jWjb j
Tpb

jWjpb (%) �max;b (1014 g cm�3) de (kpc)

Example signal B (injected) LS 15.0 2.82 1000 0:41j5:5j5:2 3.61 3.24

k ¼ 10 s11a3o07_shen 1.9 Shen 20.0 5.95 500 0:40j5:9j5:1 2.89 3.41

k ¼ 20 s15a1o13_ls 47.4 LS 15.0 2.71 50 000 3:26j6:1j6:6 3.56 1.28

Example signal C (injected) LS 40.0 9.60 500 1:46j22:1j19:0 0.73 8:32j4:16
� ¼ 10 s40a3o13_ls 5.8 LS 40.0 11.30 500 2:07j23:4j20:7 0.28 5.38

� ¼ 20 s40a2o15_shen 19.6 Shen 40.0 7.60 1000 3:62j21:1j20:3 0.27 2.32
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Our eventual goal is to apply the method to the output
from a network of detectors, which will provide an even
better ability to discriminate signal and noise, reconstruct
the signal, plus allow us to estimate the source position on
the sky. This would necessitate the use of catalogs for
stellar core collapse waveforms which are both quantita-
tively more extensive and qualitatively improved, so that
the parameter space of likely events can be completely
covered and very finely resolved. For instance, a larger
selection of available equation of state tables will extend
the phase space in that respective direction, while a more
accurate inclusion of neutrino effects will both improve the
quality of the burst signal from core bounce and as well
yield a much more appropriate characterization of the low-
frequency signal from postbounce convective bulk motion
in the postshock region and in the protoneutron star. In
addition, other prospective emission mechanisms for gravi-
tational waves in a core collapse event, like protoneutron
star pulsations or nonaxisymmetric rotational instabilities,
could be also considered (for a comprehensive review on
various such mechanisms, see [18]).

The method presented in this paper will provide a better
way to produce statistical and probabilistic statements
about the physical parameters associated with a stellar
core collapse event, and the ability to make statements
about actual signals observed by interferometric detectors.
The data from multiple interferometers will be coherently
analyzed; this will allow the estimation of parameters
associated with the location of the source on the sky,
similar to what can be achieved with coherent MCMC
analysis of binary inspiral gravitational wave data
[29,30]. As noted previously in our examples, the timing
accuracy is better than 1 ms for a single interferometer
observation; a multiple interferometer coherent MCMC
should provide very good sky localization estimation,
and the use of principal components within the framework
of Searle et al. [39] also shows great promise. In addition, a
coherent analysis will also allow us to better distinguish
mismatch (m, common to all detectors) from noise (",
different between different detectors) and hence should
improve the waveform reconstruction. We also plan to
incorporate a flexible model for the detector noise spec-
trum, as described in [73]. A proper accounting for the
noise spectral densities of the interferometers could also be
applied in producing the PCA eigenvectors and eigenval-
ues, i.e. these would not simply be the result of a least-
squares fit, but rather a noise-weighted least-squares fit.
The resulting basis vectors should then better reflect what
is actually ‘‘visible’’ to an interferometric detector within
its limited sensitivity band.

An important part of our long-term research program
will be to ensure that the catalog of waveforms truly spans
and encompasses those from physically possible rotating
stellar core collapses; it will be critical for us to consult
closely with experts in the field [18–21] to assure that the

physical parameters for the waveforms we will use cover
the range of natural possibilities. Typically when initially
constructing the initial models one already has some idea
about how many intermediate steps per free parameters are
required. When the waveforms are generated as the output
from the calculations (along with the other output data),
then the variations of the waveforms and the other data give
some indication if the original choice of model construc-
tion and parameter division are sensible. While the signal
catalog needs to stretch over the extreme limits of the
values for the physical parameters, a strength of our
method is that the table need not be densely populated
(as is the case with the template bank for coalescing binary
signals); this is the advantage provided by the use of the
PCA. For example, when the PCA eigenvalues are derived,
their variation provides guidance about the quality of our
catalog. We can test whether the waveform table contains
enough entries by successfully reconstructing additional
(off-table) signals placed within the parameter space; this
was essentially the method used for verifying the results
presented in this article.
The technique described in this paper could prove to be

advantageous for signal reconstruction and parameter es-
timation when numerical techniques are required in order
to produce the waveforms. For example, we can imagine
our method as being useful for estimating parameters for
complicated binary inspiral signals; numerical relativity
calculations are producing a wide array of complicated
inspiral signals [81]. We have already shown in Sec. VII
that the fitted PC coefficients can be related to the original
physical parameters of the signals in the catalog. Future
research will explore how the joint posterior distribution of
the PC coefficients can be employed for statistical infer-
ence on the physical parameters by linking the different
parameter spaces via Procrustes rotation [80].
This method should also prove to be useful in distin-

guishing a real stellar core collapse event from a common
noise glitch in the data. As displayed in Fig. 8, there is a
characteristic pattern to be found with PCA values associ-
ated with a real signal. A glitch produced by noise, when
reconstructed via PCA, will likely fall outside the pattern
formed by stellar core collapse signals. Alternatively, one
could set up an alternative glitch model, which, instead of
using numerical simulations for the (PCA) basis vector
generation, is trained on sets of measured waveforms that
are known to be instrumental artifacts. We intend to test
this potential veto technique.
In this paper we have reduced the table of 128waveforms

to 10 or 20 of the most important PC eigenvectors. Instead
of arbitrarily choosing the number of eigenvectors to use,
we plan to have our MCMC optimize the signal recon-
struction through the use of a reversible jump MCMC,
similar to the method described in [82], thereby treating
the number or subset of PCs as another unknown. In this
Bayesian approach the optimal number of eigenvectors is
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determined by weighing the benefit of a good signal fit
with a large number of eigenvectors against the Ockham’s
Razor penalization when the model gets overly complex.
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APPENDIX A: DEFINITION OF DISCRETE
FOURIER TRANSFORM

The discrete Fourier transform is defined for a real-
valued function h of time t, sampled at N discrete time
points at a sampling rate of 1

�t
.

The transform maps from

fhðtÞ 2 R: t ¼ 0;�t; 2�t; . . . ; ðN � 1Þ�tg (A1)

to a function of frequency f

f~hðfÞ 2 C: f ¼ 0;�f; 2�f; . . . ; ðN � 1Þ�fg; (A2)

where �f ¼ 1
N�t

and

~hðfÞ ¼ XN�1

j¼0

hðj�tÞ expð�2�ij�tfÞ: (A3)

Since h is real valued, the elements of ~h are symmetric in

the sense that ~hði�fÞ and ~hððN � iÞ�fÞ are complex con-

jugates; this allows one to restrict attention to the non-
redundant elements indexed by i ¼ 0; . . . ; N=2.

APPENDIX B: FOURIER DOMAIN MODEL

A Gaussian distribution of a (time-domain) random
vector also implies Gaussianity for the Fourier transformed

vector. In particular, if nðtÞ is (zero mean, stationary)
Gaussian noise with one-sided power spectral density
S1ðfÞ, then in the limit of large N and small �t the real
and imaginary components of the discrete Fourier trans-
formed time series are independently zero-mean Gaussian
distributed:

P ðReð~nðfjÞÞÞ ¼ Nð0; �2
fj
Þ; PðImð~nðfjÞÞÞ ¼ Nð0; �2

fj
Þ;

(B1)

where the variance parameter is �2
fj
¼ N

4�t
S1ðfjÞ

[72,73,83].

APPENDIX C: JOINT AND CONDITIONAL
POSTERIORS

For the random effects model from Sec. VC the joint
distribution of data and parameters may be factored out
into

pðy;�; T; �2
m; ~mÞ ¼ pðyj�; T; �2

m; ~mÞ � pð ~mj�; T; �2
mÞ

� pð�2
mj�; TÞ � pð�; TÞ (C1)

/ exp

�
�2

XN=2

j¼1

�t

N j~yj � ð ~XðTÞ�Þj � ~mjj2
S1ðfjÞ

�
(C2)

� ð�2
mÞ�N=2 exp

�
�XN

i¼1

m2
i

2�2
m

�
(C3)

�
�
1

N
kX�k2

�
	=2ð�2

mÞ�1�ð	=2Þ exp
��	� 1

N kX�k2
2�2

m

�
;

(C4)

where the proportionality here refers to keeping the data
and known parameters constant. In the above equation, the
first term (C2) is the ‘‘usual’’ time-domain likelihood from
Appendix B, the term (C3) is the likelihood of the mis-
match (random effect), and the term (C4) is a conditional
prior of the mismatch variance parameter. By fixing the
values for different subsets of parameters, one can deter-
mine conditional posterior distributions that are useful for
the Gibbs sampling implementation (see Sec. VD).
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