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We demonstrated the power noise reduction of a continuous-wave laser field by means of an effective
third-order Kerr nonlinear cavity. In contrast to conventional noise reduction schemes relying on linear cavi-
ties, a strong noise suppression at Fourier frequencies below the linewidth of the nonlinear cavity was possible.
The laser light was reflected off a Kerr nonlinear cavity that had a half width half maximum linewidth of 4.5
MHz. The cavity was operated slightly off-resonance at approximately half of the maximum power buildup,
close to its so-called critical state; a power noise reduction of up to 32 dB at Fourier frequencies below 1 MHz
was observed after reflection. The effective third-order nonlinearity was a so-called cascaded second-order
nonlinearity of MgO:LiNbO3. The laser had a power of 0.75 W at the wavelength of 1064 nm.
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I. INTRODUCTION

An active laser power stabilization is essential for many
high-precision optics experiments, since free-running laser
power fluctuations are often limiting the sensitivity of these
experiments. Passive noise filtering provided by the trans-
mission through optical cavities can efficiently be used in
order to reduce power fluctuations at Fourier frequencies
above the cavity linewidth. More adequate in most cases are
active feedback control circuits. Here, a certain fraction of
the laser power is detected by photodiodes in order to sense
the power fluctuations and different kinds of actuators such
as acousto-optical modulators are then used to reduce the
laser noise on the residual beam. Especially in applications
that require high power stability at low frequencies, a con-
straint arises for active stabilization schemes, which is
caused by �presumably photodiode internal� unknown noise
sources associated with the large photocurrent. At 10 Hz, this
photodiode noise already exceeds the shot noise of a 100
mW laser beam which corresponds to a relative power noise
of approximately 2�10−9 Hz−1/2 �1�. At just slightly lower
relative power noise levels �corresponding to slightly higher
powers�, an additional problem arises and the sensing sensi-
tivity would be limited by the available dynamic range of
photodiodes and their amplifiers. Hence, novel schemes are
required that reduce the required dynamic range as well as
the detected power of the sensing device �2�. But again, these
schemes are typically limited to frequencies comparable or
above the linewidth of the optical cavity involved.

Another way out, proposed quite a while ago, bases on the
optical Kerr effect. It does not require any photodetection
�3,4� and can be combined with optical cavities in order to
yield a power noise reduction by self-modulation �5�. Here,
the name optical Kerr effect refers to the intensity-dependent
phase shift during propagation through a �third-order� non-
linear medium. One problem of this approach is the typically
rather low third-order nonlinearity of high-quality optical

materials. In the pulsed laser regime, high laser intensities
can be used to compensate for this and strong noise reduc-
tions of certain field quadratures even below the shot noise,
i.e., into the nonclassical regime of squeezed states, were
demonstrated �6,7�.

In the continuous-wave laser regime, an intensity increase
through tight focusing and power buildups in optical resona-
tors are typically not sufficient and materials with higher
third-order nonlinearities are desired. A promising solution is
the use of interacting ��2� nonlinearities as proposed for the
first time already 4 decades ago �8�. However, up to now, no
strong noise suppression of continuous-wave light had been
demonstrated. In �9�, the classical noise of a cw laser beam
of less than 30 mW power was reduced by 1.5 dB. In �10�,
the more demanding regime of nonclassical states was tar-
geted and squeezed states of a 0.45 mW cw beam were ob-
served. The measured noise reduction was 30% �approxi-
mately 1.5 dB� below the vacuum noise level.

In this paper, we report on the observation of a strong
noise reduction by more than 32 dB of a commercial low-
noise, continuous-wave, solid-state Nd:yttrium aluminum
garnet �YAG� laser of 0.75 W by means of an off-resonant
�detuned� Kerr nonlinear cavity. The Kerr nonlinear cavity
was a detuned, single-ended, standing-wave cavity contain-
ing a magnesium-oxide-doped lithium-niobate
�MgO:LiNbO3� crystal. The noise reduction was observed
by photoelectric detection with a single photodiode.

II. OPTICAL KERR EFFECT AND NOISE REDUCTION

In this section, we review the optical Kerr effect induced
transformation of a single-mode optical field including �clas-
sical� noise. We consider the electrical field of a laser beam
passing a third-order nonlinear medium at some specific po-
sition. We can then write the electric field with an optical
carrier frequency �0 in terms of the complex amplitudes
A ,A�,

E�t� � A�t�e−i�0t + A��t�ei�0t. �1�

It is convenient to decompose the complex amplitudes into

their expectation value Ā and a noise term �A,*roman.schnabel@aei.mpg.de
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A�t� = Ā + �A�t� with �A�t� = 0, �2�

where ��A�t�2 corresponds to the standard deviation of A�t�.
We further decompose A�t� and �A�t� into their real and

imaginary parts

A�t� = X1�t� + iX2�t�, �A�t� = �X1�t� + i�X2�t� , �3�

where X1�t�, X2�t� and �X1�t�, �X2�t� provide a real-valued
phase-space description of the laser field and are its �noise�
amplitude and phase quadratures, respectively. In the follow-
ing, we also omit the time dependence but consider the in-
teraction time with the Kerr medium �. When the field propa-
gates through the Kerr medium, at the output the complex
amplitude reads �cf., e.g., Ref. �11��

A��� = e−i��3�A�A�A�0� , �4�

where ��3� is proportional to the third-order nonlinear suscep-
tibility. Keeping just first-order terms of �A, we obtain from
Eq. �4�

A��� = e−i��3��Ā�2����1 − i��3���Ā�2��A�0� − i��3��Ā2�A��0��

+ Ā	 . �5�

The underlying calculation is carried out in detail by
Shirasaki and Haus in Ref. �12�. When converting Eq. �5�
into an expression for the quadratures, one can readily de-
duce that the Kerr medium transforms the phase-space rep-
resentation of the light field. First of all, the Kerr effect re-
sults in a phase-space rotation of A���. Second, which is
more interesting, the noise distribution is also transformed.
Assuming a circular and Gaussian phase-space distribution
of the quadrature input noise, i.e., the input quadratures have
uncorrelated noise of the same strength, the Kerr-effect-
transformed output noise corresponds to an ellipse �see Fig.
1�. Roughly speaking, the top of the initial noise circle cor-
responds to a higher intensity and therefore is further phase
shifted by the Kerr effect than the bottom. As the interesting
consequence, the ellipse’s semiminor axis is smaller than the
circle’s diameter. For small rotations, the noise distribution
remains Gaussian and it turns out that the noise projection on

the axis in direction of A��� always remains unchanged.
However, the noise projection on a certain linear combina-
tion of the quadratures X1�t� and X2�t� is smaller than any
projection of the input noise. We emphasize that in this work
we are interested in the Kerr noise reduction of precisely the
length of A���. Such a noise reduction is indeed possible by
an additional differential phase-space rotation by other
means �see Sec. IV�.

Note that the considerations made here can be readily
converted into a quantum-mechanical description of the Kerr
effect. In quantum theory, the complex amplitudes are asso-
ciated with mutually adjoint operators. These operators cor-
respond to the annihilation and creation Heisenberg opera-
tors and obey the well-known boson commutation relations.
Furthermore, it should be noted that we have focused on a
linearized Kerr transformation, which is valid for the experi-
mental setup investigated in this paper. The linearized for-
malism might break down for large rotations and hence a
non-Gaussian noise distribution �Wigner function� can occur
�4�.

III. CASCADED KERR NONLINEARITY

In order to exploit the optical Kerr effect for laser noise
reduction, a high-quality third-order nonlinear optical mate-
rial is required. Typical third-order nonlinearities of optical
media are, unfortunately, rather small. In the pulsed laser
regime, high laser intensities can be used to compensate for
this.

In the continuous-wave laser regime, interacting ��2� non-
linearities can be employed to obtain an effective Kerr effect.
It was indeed shown that by the means of second-harmonic
generation �SHG� and a subsequent frequency down-
conversion, an intensity dependence of the refractive index
can be realized. Such a scheme represents an effective third-
order nonlinear Kerr medium but utilizes the second-order
nonlinearity of, for example, lithium niobate or KTP �potas-
sium titanyl phosphate, KTiOPO4� �13�. The lower order of
nonlinearity results in a comparatively strong effective third-
order nonlinearity.

Interacting nonlinearities have been discussed analytically
and numerically since the first days of nonlinear optics
�8,9,14–16�. Here, we summarize the results focusing on the
physical understanding of the mechanism that leads to a cas-
caded Kerr nonlinearity and hence to a noise suppression.
For this purpose, we consider a lossless second-order nonlin-
ear material and the second-harmonic generation in such a
material of length L, driven by a field of fundamental fre-
quency �0. In case of optimum phase matching between the
fundamental and the second-harmonic mode of the EM field,
the second-harmonic light generated along the length L in-
terferes constructively only with itself over the whole inter-
action length. Now let us assume that the phase matching is
artificially worsened until the first conversion minimum is
reached. The new situation can be conceptually understood
by splitting the crystal in two parts of lengths L /2. In both
parts, when considered independently, SHG still occurs, al-
though this process is now no longer optimized anymore.
However, the contributions of both parts now exhibit a dif-

FIG. 1. �Color online� Phase space description of a light field �a�
before and �b� after the interaction with an optical Kerr medium.
X1,2 denote the amplitude and the phase quadratures. Due to the
intensity-dependent phase shift, the noise distribution is trans-
formed into an elliptic shape.
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ferential phase shift. This phase shift leads to a completely
destructive interference after the full crystal length L. Con-
sequently, no light at frequency 2�0 exits the crystal. The
fundamental field exiting the crystal can be thought of as a
composition of two parts. One part represents the field that
previously has experienced up-conversion to the second-
harmonic frequency. The second part represents the field that
never experienced up-conversion. The phases of the two
parts are different because the phase matching is not opti-
mized as said before and the refractive indices at the two
wavelengths are therefore different. Since up-conversion is a
nonlinear ���2�� process, the two parts change their weights if
the input intensity changes. Effectively, the transmitted fun-
damental light experiences an intensity-dependent phase
shift formally identical to the optical Kerr effect observed in
a ��3� medium.

A simple mathematical description is obtained by solving
the nonlinear wave equation for the involved modes of the
optical field assuming a weak conversion of the fundamental
field �fixed intensity approximation� �17�. In this case, we
obtain the expression

��z� = �prop�z� +
�kz

8 +
��k�2

��Ifund

�
1 − sinc�z���k

2

2

+ 2��Ifund�� , �6�

describing the phase dependence of the fundamental field on
the coordinate of propagation, z. Here, �k is the wave vector
mismatch between the fundamental and the second-harmonic
waves, �prop is the intensity-independent phase shift due to
propagation, while �� contains material-specific information
�as the effective nonlinearity and the propagation speed in-
side the crystal� and further depends on both frequencies
involved. In the case of minimal conversion efficiency �at the
first phase matching minimum with �k�2	 /z�, this expres-
sion simplifies to

��z� � �prop�z� 

��

2	
z2Ifund, �7�

whereas in the case �k=0, the intensity dependence van-
ishes. This fact allows us to switch between pure frequency
doubler and pure Kerr-like behavior through a simple adjust-
ment to the corresponding phase matching condition �i.e.,
using the temperature dependence of the refractive index in
birefringent crystals�.

IV. CAVITY PHASE-SPACE ROTATION

A single-mode optical field that has passed a Kerr me-
dium does not show any reduction of its power noise �Sec.
II�. In order to observe a reduction of power noise, a differ-
ential phase-space rotation between the noise and the expec-
tation value of the complex amplitude that represents the
single-mode carrier field is required. In other words, the
semiminor axis of the noise ellipse needs to be aligned in
direction of the complex phasor in Fig. 1. Such a rotation can

be provided by reflecting the beam off a detuned, but stan-
dard optical cavity �without any nonlinear medium�. This
scheme, based on the dispersion of the cavity, was proposed
in order to support quantum nondemolition measurements in
Ref. �18� and was demonstrated for squeezed states in Ref.
�19�. Since no additional field needs to be mixed with the
input beam, no optical loss occurs. However, the phase-space
rotation depends on the Fourier frequency and therefore can
be optimized only for a certain Fourier frequency component
of the quadrature phase-space spanned by X1�� ,�� , t� and
X2�� ,�� , t�, where � is the Fourier frequency and �� the
resolution bandwidth. We note that these quantities describe
amplitude and phase modulations of our laser beam, respec-
tively, and therefore pairs of upper and lower sideband fields.
However, they can also be seen as the spectrally bandpass-
filtered counterparts of X1,2�t� as defined in Eq. �3�. In the
following, we summarize the connection between phase-
space rotation in Fourier space, linewidth of the rotating cav-
ity, and cavity detuning in view of our experiment in which
we combined the Kerr noise reduction and an optimized
phase-space rotation in a single optical device, a detuned
Kerr nonlinear cavity.

To comprehend the phase-space rotation of a light field in
reflection of a detuned cavity, one has to account for its
frequency dependent phase shift ����. For simplicity, we
assume the considered light field to be just modulated in its
amplitude quadrature and a loss-free single-ended cavity �the
end mirror has a reflectivity of 
2=1� so that the reflectivity
of the cavity is unity for all frequencies. Accordingly, any
phase-space rotation can be traced back to the phase shift
given by

���� = arg� 
1 − e2i��+�L/c�

1 − 
1e2i��+�L/c�
 . �8�

Here, � denotes the detuning related to the carrier frequency
�0, c the speed of light, and L the cavity length. Notice that
�0L /c corresponds to the detuning �=0.

From Eq. �8�, we immediately see that for Fourier fre-
quencies within the half width half maximum �HWHM� cav-
ity linewidth �����, only marginal phase-space rotations
occur. For frequencies far above the cavity linewidth, the
opposite situation can occur and strong phase-space rotations
are possible. Let us assume ��� and a cavity detuning such
that solely the upper sideband resonates �−�=+�L /c�. In
this case, the phase shifts of the lower sideband and the
carrier field are negligible, whereas the upper sideband gets
phase shifted by −180°. As described in �19�, the quadrature
angle then rotates by half of this value, i.e., by −90°, and the
initial amplitude quadrature �amplitude modulation� is ro-
tated into the phase quadrature �phase modulation� and vice
versa. This rotation value holds only for a rather small band-
width and, for example, for sideband frequencies �
�, the
rotation is just �45°. It turns out that for large Fourier fre-
quencies, arbitrary phase-space rotations can be achieved,
but not for small frequencies inside the HWHM cavity line-
width. In contrast to that, it was then shown in Ref. �5� that
a detuned cavity containing a Kerr medium cannot only pro-
vide a noise reduction via the Kerr effect, but can indeed
simultaneously provide the required additional phase-space
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rotation for frequencies inside the cavity linewidth in order
to achieve a laser power noise reduction of a reflected laser
beam.

V. EXPERIMENT

In our experiment, we demonstrated the operation of a
detuned Kerr nonlinear cavity that was able to significantly
reduce the noise power of a laser beam. Such a device is
possible if the interplay between Kerr transformation �Sec.
III� and cavity detuning �Sec. IV� is optimized, as theoreti-
cally analyzed in Ref. �5�.

The simplified experimental layout is shown in Fig. 2.
The system is driven by a monolithic nonplanar Nd:YAG
ring laser �Mephisto 2000, InnoLight� with up to 2 W output
power. This source provides a low-noise continuous-wave
single-mode single-frequency laser beam at 1064 nm with a
very clean spatial beam profile with typically less than 2.5%
of the power in higher-order modes. The relative power noise
is below 1�10−6 Hz−1/2 for Fourier frequencies f =� /2	
above 30 Hz and shows a peak approximately 40 dB high at
the frequency corresponding to the laser relaxation oscilla-
tion at frequencies around 1 MHz. Above these frequencies,
the power noise falls with 1 / f2 and is less than 3 dB above
the shot noise of 100 mW for frequencies above 10 MHz. A
detailed characterization of eight similar lasers can be found
in �20�.

The laser beam was first transmitted through a Faraday
isolator and a mode cleaner ring cavity with a finesse of F
�500 and a half width half maximum linewidth of approxi-
mately 1.5 MHz. Besides working as a low-pass filter, the
cavity also acts as a spatial filter; it was held on resonance
with the 1064 nm laser beam via a Pound-Drever-Hall
�PDH� locking scheme �21�. The filtered beam had a power
of 0.75 W and was mode matched into our Kerr nonlinear
cavity with an efficiency of 99%. The beam with changed
noise performance was then retroreflected and passed the
mode cleaner a second time. The Faraday rotator sent the full

power toward a single photodiode, where the beam was de-
tected after attenuation and eventually analyzed with a spec-
trum analyzer.

The Kerr cavity had a HWHM linewidth of �
�4.5 MHz and consisted of a 1.5�2.0�6.3 mm3

7% MgO:LiNbO3 crystal placed in between two curved
mirrors of 25 mm radius of curvature. The coupling mirror
had the reflectivities RM1

�1064 nm�=0.983 at the fundamen-
tal and RM1

�532 nm�=0.01 at the generated second har-
monic, whereas the end mirror was highly reflective at 1064
nm and weakly reflective at 532 nm �RM2

�532 nm�=0.02�.
The intracavity crystal surfaces were antireflective coated
�RAR=0.001� at both 1064 and 532 nm. The crystal was
separated from the mirrors by 23.6 mm air gaps, creating a
cavity mode for the resonant fundamental light with a
27 �m waist at the center of the crystal. Together with the
round-trip loss that was estimated to 0.5%, the cavity finesse
resulted in a value of F�274. For cavity characterization
and SHG, the cavity length was held on resonance using
another PDH locking loop. To investigate the phase matching
of the Kerr cavity, the second-harmonic power was recorded
as a function of crystal temperature. Figure 3 shows the nor-
malized phase matching curve for a TEM00 input mode for
crystal temperatures between 61 and 67 °C. As expected, the
curve in Fig. 3 is well described by a sinc function. The
additional peak at a temperature of about 64.9 °C is most
likely due to the nonzero reflectivity of the cavity mirrors at
532 nm and its effect on the differential phase between the
reflected fields at 1064 and 532 nm �22�. At the SHG opera-
tion point of our nonlinear cavity, we observed maximum
conversion efficiency of �72%.

In order to achieve Kerr-effect power noise suppression,
the crystal temperature was tuned to one of the two first
conversion minima �Fig. 3�. At these crystal temperatures,
the cavity exhibited a multistable behavior as is characteris-
tic for a ��3� medium. Figure 4 shows the observed asymme-

FIG. 2. �Color online� Schematic of the experimental layout. FI:
Faraday isolator, EOM: electro-optical modulator, MC: mode
cleaner cavity, PD: photodetector, RM: mode-matched reference
mirror, DBS: dichroic beam splitter, AT: variable attenuator, and
Analyzer: spectrum analyzer. Details are described in the text.
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try of the Airy peak of our Kerr nonlinear cavity when the
cavity length was increased or decreased, respectively. Any
thermal effects were suppressed by a short scanning time
through resonance of �1 �s. We experimentally verified
that the asymmetry’s orientation depended on the sign of the
effective nonlinearity and thus on the phase matching mini-
mum chosen �Fig. 3�. The difference in the two curves
shown in Fig. 4 is due to the intensity-dependent phase shift
in our nonlinear cavity. Please note that the observation of a
Kerr effect hysteresis on a scanned cavity is not a sufficient
proof for a multistable regime because of the finite cavity
loading time. The shown measurement, together with a nu-
merical model, allows us to estimate that the multistable re-
gime is entered at an input power of approximately 800 mW.
The two curves in Fig. 4 were measured with 780 mW and
therefore represent a situation very close to the critical state
of the cavity in which the slope of the Airy peak should be
infinitely steep on one side. Such behavior can in principle
be observed, but only at very slow scanning speeds. In prac-
tice, the scanning speed must be sufficiently high so as to
minimize the impact of acoustic and thermal effects. For
higher speeds, the loading time of the cavity comes into play
and a vertical slope can practically not be observed.

Figure 5 shows the measurement results that demonstrate
the laser power noise reduction by means of our Kerr non-
linear cavity. All curves describe the noise spectrum of a 0.75
W laser beam and were detected with photodiode PDdet. The
top peaked curve shows the laser’s initial power noise after
two transmissions through the mode cleaner MC measured
using the flip mirror as shown in Fig. 3. The other curves
show the power noise spectra of the same laser when being
reflected off our detuned Kerr cavity and when the operation
point on the steep slope of the Airy peak �Fig. 4� was varied
and stabilized by an appropriate dc offset lock. The reflected
laser power was attenuated to exactly the same reference

value and was detected by the photodiode. A maximum noise
suppression of 32 dB was observed slightly below 1 MHz for
a Kerr cavity operation point at about 3/4 of the Airy peak’s
maximum. All curves in Fig. 5 were shot noise limited at
frequencies above 9 MHz. At intermediate frequencies, they
showed additional noise that increased with an increasing
Kerr effect and probably arose from internal Brillouin scat-
tering.

At Fourier frequencies below 600 kHz, our setup showed
nonstationary noise and the measurement of a family of
traces with varying Kerr-operation points was not reproduc-
ible. However, we anticipate that the observed noise reduc-
tion will also be observable down to audio-band frequencies
if acoustic vibrations, air turbulence, and dust particle flows
are sufficiently reduced.

VI. DISCUSSION

In our experiment, we investigated the power noise sup-
pression of a 0.75 W single-frequency continuous-wave laser
beam at a wavelength of 1064 nm and observed a maximum
suppression of 32 dB. We performed several experiments in
order to confirm that the observed noise suppression was due
to the optical Kerr effect. When we changed the crystal tem-
perature and thereby moved the cavity from the upper to the
lower conversion minimum, we observed the Kerr nonlinear-
ity to change its sign, as predicted from theory. In the actual
measurement, we observed that the steep slope, as in Fig. 4,
changed from right to left without changing the scanning
direction of the cavity length. When the cavity was locked to
points on the steep slope, the observed maximum noise sup-
pression was independent merely of the choice of the two
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FIG. 4. �Color online� Line shapes of the resonator mode re-
corded in transmission. The cavity was operated at the upper tem-
perature Kerr point �see Fig. 3�. The hysteresis clearly demonstrates
the presence of an intensity-dependent phase shift and hence a
strong cascaded nonlinearity. An equivalent hysteresis, but with
“flipped” asymmetry, was also observed in the other Kerr point �not
displayed�, as expected for opposite signs of the nonlinear phase
shift. The incident fundamental power was approximately 780 mW.
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FIG. 5. �Color online� Reflected fundamental power noise vs
Fourier frequency for laser beams of identical dc power. The top
peaked curve shows the laser’s initial power noise after two trans-
missions through the mode cleaner MC, measured using the mode-
matched reference mirror as shown in Fig. 3. The other curves show
the noise on the beam reflected at the Kerr nonlinear cavity locked
on several states on the steep resonance slope. The maximum am-
plitude noise reduction �at about 0.9 MHz� was achieved at a de-
tuning where the internal cavity field reaches approximately 3/4 of
the maximum buildup obtained at resonance.
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conversion minima, but always dependent on the input
power, as predicted from theory. For powers above approxi-
mately 0.8 W, the cavity was in its multistable regime; for
smaller powers, the noise suppression degraded rapidly.

The curves in Fig. 5 show the power noise spectra for
different locking points of the Kerr cavity. As we are inter-
ested only in the power noise reduction between different
experimental situations �and not in the absolute values of the
power noise�, we took the approach to simply plot the dB
value given by the spectrum analyzer. This value is propor-
tional to 20 log10��P�� ,��� / Pref� with the power fluctua-
tions �P being proportional to �Ā���X1�� ,�� , t��2, with X1
being the real part of A according to Eq. �3�. The dB value
corresponds to the noise spectral density integrated over a
fixed frequency range normalized to a fixed reference volt-
age. The knowledge neither of the frequency band nor of the
reference voltage is of any relevance for our discussion. The
same holds for the frequency-dependent response function of
the photodetector as we do not compare noise levels for dif-
ferent frequencies to each other. However, we note that the
detector’s response function had a white spectrum within the
frequency band plotted and its dark noise was well below the
noise recorded.

We finally note that, although we observed an amplitude
quadrature noise suppression of 32 dB, we were still far
above the shot noise limit. The reason was that generally
high laser powers at low frequencies �around and below the
laser relaxation oscillation� typically carry an enormous
amount of classical noise. The goal of this work was the
reduction of this classical noise, for instance, in view of an
application in gravitational-wave detectors. In order to beat
the shot noise limit for continuous-wave radiation, one has to
consider Fourier frequencies far above the laser’s relaxation
oscillation. Additionally, the input power has to be reduced
in order to get closer to the shot noise limit from the very
beginning: a reduction of input power then requires materials
with stronger nonlinearities, for example, periodically poled
second-order nonlinear crystals, and a tighter focusing.

VII. CONCLUSIONS

It was shown that a cavity containing a second-order non-
linear crystal can efficiently be used for the spectral power

noise reduction of a continuous-wave laser beam of 0.75 W
power within the bandwidth of the cavity. The cavity was
built and operated such that it could act as an effective Kerr
nonlinear device. The cavity was detuned from its resonance
and the temperature of the crystal was set to a second-
harmonic conversion minimum. We demonstrated a strong
power noise reduction of 32 dB at a frequency corresponding
to about 1/5 of the cavity bandwidth and below. To the best
of our knowledge, such a high value of noise suppression
from the Kerr effect has not been reported before for
continuous-wave laser light.

The noise reduction technique presented here can be com-
bined with standard techniques such as passive filtering
through mode cleaner cavities. But in particular for high la-
ser powers and for amplitude noise at rather low Fourier
frequencies, say the kHz regime and below, the technique
investigated here proves to be rather powerful. It allows for a
strong noise reduction at frequencies much smaller than the
cavity linewidth, without photoelectric detection of the laser
beam. In principle, the optical Kerr effect can even be used
for a noise reduction at and below the shot noise level. In
particular, for high-power continuous-wave lasers, this non-
classical regime of noise suppression remains challenging.
Our future work aims for the noise suppression of the new
generation of single-mode high-power lasers for advanced
gravitational-wave detectors. These lasers provide powers of
up to 200 W. We expect that at such high powers, the noise
reduction by means of a Kerr nonlinear cavity will prove to
be even more powerful. Since a smaller cavity power
buildup is required, the cavity finesse can be relaxed and
optical losses thus be reduced.
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