
Markov chain Monte Carlo estimation of quantum states

James DiGuglielmo,1,* Chris Messenger,1 Jaromír Fiurášek,2 Boris Hage,1 Aiko Samblowski,1

Tabea Schmidt,1 and Roman Schnabel1
1Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institute),

Callinstrasse 38, 30167 Hannover, Germany
2Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc, Czech Republic

�Received 20 November 2008; published 31 March 2009�

We apply a Bayesian data analysis scheme known as the Markov chain Monte Carlo to the tomographic
reconstruction of quantum states. This method yields a vector, known as the Markov chain, which contains the
full statistical information concerning all reconstruction parameters including their statistical correlations with
no a priori assumptions as to the form of the distribution from which it has been obtained. From this vector we
can derive, e.g., the marginal distributions and uncertainties of all model parameters, and also of other quan-
tities such as the purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing
the Wigner function of phase-diffused squeezed states. These states possess non-Gaussian statistics and there-
fore represent a nontrivial case of tomographic reconstruction. We compare our results to those obtained
through pure maximum-likelihood and Fisher information approaches.
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I. INTRODUCTION

The tomographic reconstruction of quantum states repre-
sents an important laboratory tool in both quantum optics
and quantum information alike. It can be applied, for ex-
ample, to the reconstruction of the dynamical interaction be-
tween quantum systems in a technique known as quantum
process tomography. This latter technique is important in
quantum computing, where the characterization of quantum
gates is essential to the overall quantum circuit �1–3�. To-
mography has even been used as part of the optimization of
advanced interferometry as was done in the preparation of
frequency dependent squeezing �4�.

Since the theoretical discovery by Vogel and Risken �5�
that the Wigner function can be reconstructed from homo-
dyne detector data, a number of reconstruction schemes
have been developed ranging from direct inversion of the
tomographic data by means of the filtered-back projection
method �6� to statistical methods such as maximum-
likelihood estimation �7–12�. An important feature of
maximum-likelihood methods is the guaranteed positive
“semidefiniteness” of the reconstructed state. The result of a
maximum-likelihood reconstruction method is either a den-
sity matrix �10,11� or a set of parameters �13,14� which have
maximized the likelihood functional given a model of the
measurement apparatus and of the parametrized state. A full
analysis of the experimental data, however, should also an-
swer important questions regarding error bars on the estima-
tion of the state parameters, possible correlations among the
parameters, and error propagation when using the recon-
structed state for further calculations of quantities such as the
purity of the state or amount of entanglement.

Several methods have been proposed in the literature to
put error bars on the reconstructed quantum states. For linear
reconstruction techniques based on the averaging of sam-

pling functions over the experimental data �15�, one can cal-
culate the statistical uncertainties of the estimated quantities
by evaluating variances of the linear estimators �16�. Another
possible approach is to numerically simulate the whole mea-
surement and reconstruction process many times assuming
that the reconstructed state is the true state that is being mea-
sured upon. The error bars are then calculated from the re-
sulting ensemble of reconstructed states �17�. Finally, uncer-
tainties on estimates obtained by maximum-likelihood
method can be determined by evaluating the Fisher informa-
tion matrix �18�. This latter approach essentially relies on
approximation of the likelihood function by a Gaussian and
becomes exact only asymptotically in the limit of a very
large number of experimental data.

In the present paper we show that the uncertainties in
quantum state estimation can be consistently determined by
using a general and statistically well motivated Bayesian
analysis scheme known as the Markov chain Monte Carlo
�MCMC�. The method is based on the implementation of a
Markov chain to search the parameter space resulting in a set
of samples from the joint posterior probability density distri-
bution on the unknown parameters of the model. This tech-
nique produces several important results. First, it yields the
Markov chain containing all of the relevant statistical infor-
mation about the parameter space. Second, one can extract a
set of marginalized probability density distributions for each
parameter quantifying the degree of uncertainty on their es-
timation. Third, the resulting chain can be used in further
calculations, where one can produce probability density dis-
tributions on quantities such as of the purity or amount of
entanglement of the reconstructed state.

This paper is divided into the following sections: in Sec.
II the necessary concepts required from Bayesian data analy-
sis are introduced and applied to the case of quantum state
estimation. In Sec. III, the quantum likelihood function for
phase-diffused squeezed states is derived. In Sec. IV the
Markov chain Monte Carlo algorithm is introduced, and fi-
nally in Sec. V both the technical details of the experimental*james.diguglielmo@aei.mpg.de
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realization as well as the results of the reconstruction are
presented.

II. BAYESIAN DATA ANALYSIS

Bayes’ theorem prescribes the rule to invert the relation-
ship between the experimental data already observed and the
parametrized model which could have generated the mea-
sured data set. The theorem reads

p��� �D,I� =
p�D��� ,I�p��� �I�

p�D�I�
, �1�

where we use D to represent our data, I to represent our prior

information or model of the experiment, and �� to represent a

vector of model parameters. The quantity p��� �D , I� is known

as the posterior distribution, p�D ��� , I� is known as the like-

lihood function, p��� � I� is the prior distribution, and p�D � I�
is a normalization factor. The standard application of Baye-
sian analysis is to calculate the posterior distribution given a
parametrized model of the sought after signal, the measured
data, and prior probability distributions on the values of the
model parameters. These three elements are brought together
through Eq. �1�.

Let us now construct the likelihood function for the quan-
tum estimation problem. A general measurement on a quan-
tum system can be described by the so-called positive
operator-valued measure �POVM�. Each possible measure-
ment outcome j is associated with a POVM element � j
which is a positive semidefinite operator. The probability of

outcome j can be calculated as Pj =Tr�� j���� ��, where ���� �
denotes the density matrix of the measured quantum system

that depends on the model parameters �� . Since the total prob-
ability of some outcome is one, the POVM elements sum up
to identity the operator, � j� j =1. This generic framework in
particular encompasses a tomographic reconstruction of the

state ���� � that consists of several different measurements M
with possible outcomes indexed by lM. Then j= �M , lM� be-
comes a multi-index indicating both the measurement setting
and the measurement outcome for a given setting. Let nj
denote the observed number of measurement outcome j and
N=� jnj represents the total amount of collected data. The
likelihood function L is the probability of observation of a

particular set �nj� for a given �� . It follows that L is given by
a multinomial distribution and reads

L = N ! 	
j

N
Pj

nj

nj!
. �2�

In terms of the constituents of Bayes’ theorem, the theoreti-
cal probabilities �Pj� are functions of the parameters which
are to be determined. The measured numbers of counts �nj�
correspond to the data.

III. LIKELIHOOD FUNCTION FOR PHASE-DIFFUSED
SQUEEZED STATES

The phase-diffused squeezed states were first introduced
within the context of continuous-variable squeezing purifica-

tion by �19–21�. They arise when squeezed states are trans-
mitted over dephasing quantum channels such as optical fi-
bers affected by thermal fluctuations. These states are
characterized by non-Gaussian statistics and therefore repre-
sent a nontrivial case for quantum state tomography.

The Wigner function for phase-diffused squeezed state is
given by

W�x,p� =
1

2�
VxVp
�

−�

�

exp�− 
 x�
2

2Vx
+

p�
2

2Vp
������d� ,

�3�

where x�=x cos �+ p sin �, p�= p cos �−x sin � with x and
p as the standard position and phase quadratures, and � rep-
resent the random-phase shifts distributed according to some
probability distribution ����. We use Vx to represent the
variance of the squeezed quadrature and Vp for the variance
of the antisqueezed quadrature. We normalize the variances
such that for vacuum state we have Vx=Vp=1 and the state is
squeezed in x quadrature if Vx	1. In the experiment we
measure several different rotated quadratures x
, where 
 de-
fines a specific measurement setting. The theoretical homo-
dyne probability density distribution p�x
� can be calculated
from Wigner function as a marginal distribution. Integration
of W�x , p� over the conjugate quadrature p
 yields, after
some algebra

p�x
� =
1


2�
�

−�

� 1


Ṽ���
exp�−

x

2

2Ṽ���
���� − 
�d� ,

�4�

where Ṽ���=Vx cos2 �+Vp sin2 �.
The data from each measurement is binned into L bins

whose lower boundaries are defined by Q
,l. The outer bins
extend to infinity, and we set Q
,1=−� and Q
,L+1=�. The
corresponding theoretical probability P
,l is given by integra-
tion of probability density �4� over the bin,

P
,l��� � = �
Q
,l

Q
,l+1

p�x
�dx
. �5�

In our experiment, the results from two quadrature measure-
ments were formed into histograms each containing a total of
L=70 bins. From the perspective of direct data inversion,
this corresponds to an overdetermined system because we
need to estimate only three real parameters, cf. below.

The POVM elements describing such binned homodyne
detection can be expressed as

�
,l = �
Q
,l

Q
,l+1

�x
��x
�dx
, �6�

where �x
� is an eigenstate of quadrature operator x
. Note
that, by definition, the sum of theoretical probabilities over
all bins is equal to one,
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�
l

P
,l��� � = 1. �7�

This is a mathematical expression of the fact that the homo-
dyne detection always yields some outcome and, after each
measurement, one of n
,l is increased by one. Put in a differ-
ent way, the homodyne detection is described by a complete
POVM �6� whose elements �
,l satisfy the condition �l�
,l
=1.

Assuming the phase noise distribution, ����, is a zero
mean Gaussian, the state can be completely characterized by

just three parameters �� = �Vx ,Vp ,V�� where V� is the vari-
ance of the random-phase shifts. The quantum log-likelihood
function for the phase-diffused squeezed states is finally ob-
tained by taking the natural logarithm of Eq. �2� giving us

� = �

,l

n
,l ln�P
,l��� �� , �8�

where, for simplicity, we ignore all terms that do not depend
on the parameter values.

IV. MARKOV CHAIN MONTE CARLO ALGORITHM

The goal of our Bayesian reconstruction scheme is the
calculation of marginalized posterior distributions on our

model parameters �� = �Vx ,Vp ,V��. To this end, the MCMC
method can be used to generate samples drawn from the

posterior distribution p��� �D , I�. Since this distribution is un-
known one cannot directly sample from it and instead we
sample from the distribution that is the product of the likeli-
hood and the prior. The prior is chosen by considering the
possible values of the parameters to be determined. Since the
parameters to be determined in this case are variances, their
values must be greater than zero. In order to assume relative
ignorance in the value the parameters could take, we use a
prior which only requires the variances to be positive and
satisfy the Heisenberg uncertainty relation, VxVp�1. Since
the likelihood in this analysis is a sharply peaked function,
the choice of uniform priors has negligible effect on the nu-
merical results of the MCMC �22�. In this case Bayes’ theo-
rem, Eq. �1�, tells us that the likelihood function is propor-
tional to the posterior distribution and, since this is a function
that we can compute for a given parameter space location,
we can use a standard sampling algorithm such as the
Metropolis-Hastings sampler to draw from it. We describe
our implementation of this sampler in the Appendix.

V. EXPERIMENTAL IMPLEMENTATION

A. Description of the experiment

Figure 1 shows the experimental setup that was used to
prepare the phase-diffused squeezed states. The full details of
the setup are provided in �20� and will be summarized here.
The squeezing source was an optical parametric amplifier
�OPA� constructed from a type I noncritically phase-matched
MgO:LiNbO3 crystal inside a standing-wave resonator, simi-
lar to the design that previously has been used in �23�. The
OPA was pumped with 50 mW of green light at 532 nm

resulting in a classical gain of about 11. The length of the
OPA cavity as well as the phase of the second-harmonic
pump beam were controlled using radio-frequency
modulation/demodulation techniques. The mode cleaner was
operated in high finesse mode F=10 500 resulting in a line-
width of 55 kHz. A nonclassical noise power reduction of
slightly more than 5.0 dB was directly observed with a ho-
modyne detector in combination with a spectrum analyzer at
a Fourier sideband frequency of 6.4 MHz.

The phase noise was induced by reflecting the squeezed
field from a piezoelectric transducer �PZT� mounted high-
reflection mirror that was quasirandomly moved. The volt-
ages applied to the PZTs were produced as follows. An in-
dependent random number generator produced data strings
with a Gaussian distribution. The strings were digitally fil-
tered to limit the frequency band to 2–2.5 kHz. The output
interface was a common PC sound card with SNR of
−110 dB. The sound volume was set to meet the desired
standard deviation of channel phase noise.

Homodyne detection confirmed that the squeezing de-
graded in the same way when phase noise was increased.
The detector difference currents were electronically mixed
with a 6.4 MHz local oscillator. The demodulated signals
were then filtered with a 400 kHz bandwidth low-pass filter,
and sampled with 106 samples per second and 14 bit reso-
lution using a National Instruments analog-digital sampling
card.

B. Results of the MCMC

Figure 2 depicts the resulting chains after 40 000 itera-
tions of the MCMC algorithm. The abscissa represents the
number of iterations of the MCMC whereas the ordinate rep-
resents the parameter values. After an initial “burn-in” period
of approximately 1000 iterations, in which the chain heads

OPA

DAQ

Phase diffused squeezed beam

Mode cleaner

Noise

Local oscillator

BHD

FIG. 1. �Color online� Experimental setup: the experimental
setup consists of an OPA for the generation of the squeezed vacuum
states, a phase shifter to induce the random-phase noise, and a ho-
modyne detector to measure the prepared state. The mode cleaner
was used to increase the fringe contrast at the balanced homodyne
detector.
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toward equilibrium, the chain converges and begins to
sample from the posterior distribution �which in this Gauss-
ian case also includes the region of maximum-likelihood�.
The development of criteria for the determination of chain
convergence is a general problem which has been the subject
of much research �24,25�. The general idea is to run multiple
chains per estimation parameter, and monitor their evolution
both within each change and across each change. Conver-
gence is inferred if all chains behave consistently. With re-
spect to the case at hand, convergence of the chain can be
inferred by comparing the locations to which the marginal-
ized parameter chains have settled with the independent
measurement of the Vx and Vp parameter values performed
with a spectrum analyzer. In the absence of such an indepen-
dent measurement, the criteria in �24,25� can be used to infer
convergence.

The width of the marginalized chains, i.e., their standard
deviations, quantify the degree of uncertainty on the value of
each parameter. By forming histograms of the chain as a
function of each of the parameters, we obtain their margin-
alized posterior probability distributions as shown in Fig. 3.
From these posteriors we obtain the following uncertainties
on the model parameters: 
x=0.0056 for the squeezing pa-
rameter, 
p=0.0289 for the antisqueezing parameter, and fi-

nally 
�=0.0020 for the phase noise parameter. The proposal
distributions, from which the posterior distribution samples
have been drawn, were chosen to be Gaussians with the fol-
lowing standard deviations �x=0.0042, �p=0.022, and ��

=0.0037 corresponding to the squeezing parameter, anti-
squeezing parameter, and phase noise parameter, respec-
tively. These values were obtained through manual tuning of
the MCMC algorithm. This is done by adjusting the indi-
vidual standard deviations, i.e., �x, �p, and ��, until the
proportion of accepted jumps reaches approximately 44%
�26�.

As an independent test of the posterior standard devia-
tions, we also calculated the Fisher information matrix
�27,28� given by

Fij = � ��

��i

��

�� j� . �9�

The inverse Fisher matrix represents the covariance of the

posterior probability distribution for the true parameters �� as
inferred from a single experiment assuming Gaussian noise
and constant priors over the parameter range of interest. The
calculated standard deviations from the Fisher matrix are
presented in Fig. 3 as well as in Table I where very good
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FIG. 2. Markov chains: this figure depicts the evolution of the Markov chains where the abscissa represents the iteration number and the
ordinate represents the value of the chain. After an initial burn-in period, in which the chains head to their steady-state positions, the chains
eventually converge to a region of parameter space and begin to sample from the posterior distribution. The proposal distributions were taken
to be Gaussian with the standard deviations �x=0.0042, �p=0.022, and ��=0.0037 corresponding to the squeezing parameter, the anti-
squeezing parameter, and the phase noise parameter, respectively. The starting values were randomly chosen with the only constraint that
they be non-negative and obey VxVp�1. The chains settled to their equilibrium positions with means of �x=0.316, �p=6.888, and ��

=0.171 corresponding to the squeezing, antisqueezing and phase noise parameter, respectively.
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FIG. 3. Marginalized posterior distributions: each probability density was calculated using every tenth point from the marginalized chains
corresponding to 38 000 data points. The standard deviation of each density are 
x=0.0056, 
p=0.0289, and 
�=0.0020 corresponding to
the squeezing parameter, the antisqueezing parameter, and the phase noise parameter, respectively. The dotted line represents the result of the
Fisher analysis.
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agreement is readily seen. It should be stressed that the pos-
terior distribution standard deviations obtained from the
Fisher matrix are only valid when assuming Gaussian noise
whereas the posterior distribution standard deviations ob-
tained from the Markov chain is valid regardless of the form
of the posterior distribution. The results of the MCMC as
well as of the Fisher analysis are compared in Table I.

Figure 4 depicts the evolution of the log-likelihood func-
tion �Eq. �8�� for each iteration of the MCMC. It is seen that
as the chains evolve through the burn-in stage the log-
likelihood quickly increases. After approximately 1000 itera-
tions it has reached equilibrium whereupon parameter space
jumps to higher likelihood values are balanced by jumps to
lower likelihood values.

Figure 5 represents the spectrum of the squeezed state
before the phase diffusion. The measured state is seen to
have a squeezing strength of −4.98 dB or a variance of Vx
=0.31 and an antisqueezing strength of 8.39 dB or a variance
of Vp=6.91. These values have not been corrected for dark
noise and were measured using a video bandwidth �VBW� of
10.0 Hz, a resolution bandwidth �RBW� of 100 kHz, and a
sweep time �SWT� of 1.5 s. These values lie within the width
of the respective posterior distributions obtained from the

MCMC analysis. Furthermore, only two quadrature measure-
ments, each containing just 100 000 data samples, were re-
quired to obtain these results. This represents a significant
savings in terms of experimental effort to reconstruct a non-
Gaussian state.

We also compare our results with that of a pure
maximum-likelihood approach. This was achieved by alter-
ing step 3�d� of the Metropolis-Hastings sampler �see Appen-
dix� such that the chain remains at its current position when-
ever the likelihood ratio r is less than one. This forces the
chain to only move to regions of higher likelihood and hence
quickly converge on the true maximum-likelihood location.
The parameter values obtained at the maximum-likelihood

were: V̂x=0.317 for the squeezing parameter, V̂p=6.880 for

the antisqueezing parameter, and V̂�=0.171 for the phase
noise parameter. These are, however, the only results ob-
tained from the maximum-likelihood estimation alone. Since
the MCMC chain contains a complete statistical description
of the parameters, the statistical error on the reconstruction
of both the quantum state itself as well as derived quantities
from it, e.g., purity, can be exactly determined. This will be
illustrated in the next section.

C. Reconstruction of the quantum state

Having completely characterized the parameter space, the
final state can be reconstructed. In order to generate the
Wigner function shown in Fig. 6, the Markov chain together
with Eq. �3� were used to calculate the average Wigner func-
tion. The characteristic non-Gaussian statistics of the phase-
space Wigner distribution is clearly manifested in the recon-
structed state. It should be stressed that this averaging
already takes into account the standard deviation of each
value of the Wigner function since the parameter values are
taken from the posterior distribution.

TABLE I. Standard deviations of posterior distributions: this
table compares the standard deviations of the parameter posterior
distributions obtained from the Markov chain Monte Carlo method
and from the Fisher information matrix. The standard deviations
represent the error on the estimation of the parameter values. The
Fisher matrix returns the actual standard deviations only in the case
of Gaussian noise.

Parameter estimates Uncertainties

Parameter MCMC Maximum likelihood MCMC Fisher

Vx 0.316 0.317 0.0056 0.0055

Vp 6.889 6.880 0.0289 0.0294

V� 0.171 0.171 0.0020 0.0020
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FIG. 4. Log likelihood: evolution of the log likelihood as a
function of iteration. The abscissa represents the iteration number
and the ordinate the log-likelihood value. After approximately 1000
iterations the log-likelihood appears to have attained its maximum
value at which point the chains have reached equilibrium and are
sampling from the posterior distribution.

Time (ms)

P
ow

er
(d

B
)

anti-squeezing

squeezing

0 0.5 1 1.5

-5

0

5

10

FIG. 5. Zero span measurement of squeezing and antisqueezing:
the recorded amount of squeezing and antisqueezing as measured
by a balanced homodyne detector and spectrum analyzer at a Fou-
rier frequency of 6.5 MHz. It is seen that approximately −4.98 dB
of squeezing and 8.39 dB of antisqueezing were directly measured
without dark noise correction. These correspond to variances of
Vx=0.31 and Vp=6.91, respectively. The units of the vacuum have
been set to 1 corresponding to 0 dB.
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In addition to generating a phase-space plot of the recon-
structed quantum state, the Markov chain can be used in
further calculations of such properties as the purity of the
reconstructed state. Figure 7 depicts such a result. Using the
analytical definition of the purity

� = 4�� � W2�x,p�dxdp , �10�

and the resulting chain from the MCMC, the purity can be
calculated, automatically taking into consideration the statis-
tical error and correlation on the parameters determined by
the MCMC. The result is a probability density whose stan-
dard deviation quantifies the degree of uncertainty on the
estimation of the purity. For the state in question, we obtain
a purity of �=0.5649�0.0028. It is important to note that
this information is delivered directly from the MCMC itself;
no additional assumptions as to the distribution of the errors
and their correlation properties need to be made. Addition-
ally, any one-dimensional quantity can be calculated in this

manner. For example, if estimating the amount of entangle-
ment of a non-Gaussian state, the logarithmic negativity �29�
can be calculated over the span of the resulting chain. The
result will be a probability density quantifying the uncer-
tainty on its value.

VI. CONCLUSION

We have applied a Bayesian data analysis scheme known
as MCMC to the tomographic reconstruction of quantum
states. Taking phase-diffused squeezed states as an example,
we have provided the details as to the derivation of the like-
lihood function as well as to the numerical implementation
of the MCMC. The results include a set of probability den-
sity distributions which exactly quantify the degree of uncer-
tainty on the estimation of the parameters. These results were
compared to both a pure maximum likelihood and a Fisher
information approach. Furthermore, using the Markov chain
in the calculation of the state’s purity enabled the construc-
tion of a probability density distribution on the value of the
purity, thereby quantifying the degree of uncertainty on its
calculation.

We note that MCMC scheme is completely general and
can be applied to higher dimensional problems, such as the
reconstruction of the density matrix, and will be the topic of
future publications.
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APPENDIX: METROPOLIS-HASTINGS SAMPLER

Our implementation of the MCMC is based on the
Metropolis-Hastings sampler. It is defined by performing the
following steps �see also Fig. 8�:

�1� Generate initial values for parameters, ��o.

�2� Compute the quantity L0=L�D ���0�.
�3� Iterate the following over the index t until the chain

has converged:

�a� Generate a trial parameter vector �� according to a pro-

posal distribution q��� t−1�.
�b� Compute the quantity Lt=L�D ����. If VxVp	1 or

some Vj 	0 then set Lt=0.
�c� Compute the ratio r=Lt /Lt−1.

�d� Sample from a uniform distribution, U�0,1�.

if �r � U , set �� t = ��, Lt = L accepted.

r 	 U , set �� t = �� t−1, Lt = Lt−1 rejected.
�

The proposal distribution q��� � used in stage 3�a� is used
to select trial parameter values within the MCMC. Theoreti-
cally q can be any distribution, however in practice it is
sensible for the proposal distribution to suggest jumps that
are local to the current location but large enough to allow an
efficient exploration of the parameter space �30�. Stage 3�b�
ensures that the sampling is restricted to subspace of physi-

cally admissible values of parameters �� . The simple differ-
ence between this MCMC method compared to that of a pure
maximum-likelihood method is that for repeated stages
within the Metropolis-Hastings sampler the chain has finite
probability of jumping both to higher or lower values of
likelihood.
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