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Abstract

We investigate the Bayesian framework for detection of continuous
gravitational waves (GWs) in the context of targeted searches, where the phase
evolution of the GW signal is assumed to be known, while the four amplitude
parameters are unknown. We show that the orthodox maximum-likelihood
statistic (known as F-statistic) can be rediscovered as a Bayes factor with an
unphysical prior in amplitude parameter space. We introduce an alternative
detection statistic (‘B-statistic’) using the Bayes factor with a more natural
amplitude prior, namely an isotropic probability distribution for the orientation
of GW sources. Monte Carlo simulations of targeted searches show that
the resulting Bayesian B-statistic is more powerful in the Neyman–Pearson
sense (i.e., has a higher expected detection probability at equal false-alarm
probability) than the frequentist F-statistic.

PACS numbers: 02.50.Tt, 02.70.Rr, 04.30.w, 07.05.Kf, 95.85.Sz

1. Introduction

Searches for gravitational waves (GWs) often consist of testing the data for the presence of
signals from a known family of waveforms, parametrized by (generally unknown) signal
parameters. Here we consider the class of coherent GW signals of constant amplitude
and polarization, which include ‘continuous GWs’, e.g. from non-axisymmetric spinning
neutron stars (see [1] for a review), stellar-mass binary systems in the LISA frequency band
(e.g. [2, 3]), and coalescence of (non-precessing) binary systems [4].

We distinguish two classes of signal parameters: (i) four ‘amplitude parameters’, namely
the amplitudes A+ and A× of the two GW polarizations, the orientation angle ψ of the principal
polarization axis, and the initial GW phase φ0, and (ii) the set of ‘Doppler parameters’ λ, which
determine the time evolution of the GW phase φ(t; λ). We restrict our attention to targeted
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searches, in which the Doppler parameters λ are assumed to be known, resulting in a detection
problem with four unknown amplitude parameters.

The popular, yet ad hoc, orthodox approach consists of maximizing the likelihood function
of the data over these four amplitude parameters. It was first shown in [5] that this maximization
can be achieved analytically, resulting in a computationally very efficient detection statistic,
known as the F-statistic, which has been used in a number of searches for GWs (e.g.,
[6–9]).

Here we investigate an alternative Bayesian approach, which leads us to the Bayes factor as
a useful classical detection statistic (see also [10–13]). Contrary to the maximum-likelihood
approach, the Bayesian framework requires the explicit prescription of a prior probability
distribution for the unknown signal parameters. We show that a particularly simple, yet
unphysical, choice of amplitude prior results in the F-statistic as a special case of a Bayes
factor. This illustrates that frequentist ad hoc statistics often carry their own unchecked and
implicit priors, hidden from view and often unknown to the user (see also [14, 15]).

We can derive a more natural amplitude prior from our model assumption about the
emission of GWs from non-axisymmetric spinning systems: the amplitude parameters are
closely related to the orientation of the emitter with respect to the observer. In the absence of
astrophysical information, an isotropic probability distribution for the spin-axis orientation is
therefore the natural choice. We refer to the Bayes factor resulting from this amplitude prior as
the ‘B-statistic’. Isotropic spin-axis orientation priors have been used previously for Bayesian
parameter estimation [6, 16, 17], and in Monte Carlo simulations to determine frequentist
upper limits [7, 18]. A comparison of Bayesian and frequentist methods for setting upper
limits can be found in [6, 19].

The F-statistic (or matched filtering in general) has often been incorrectly referred to as
an ‘optimal statistic’ (e.g., [4–7, 9, 20] to name only a few). Using Monte Carlo simulations
we show that the Bayesian B-statistic is more powerful (i.e., has a higher expected detection
probability at equal false-alarm probability) than the F-statistic for GWs emitted by systems
with random (isotropic) spin-axis orientations. This is a direct consequence of the B-statistic
prior being consistent with the injected distribution of parameters, contrary to the (implicit)
F-statistic prior. Similar results were found previously in the case of burst detection statistics
[12, 14, 15].

2. Signal model: coherent gravitational waves of constant amplitudes

The spatial metric perturbation
↔
h (t) of a coherent GW of constant amplitudes (far from the

source) can be written as

↔
h (t) =↔

e +A+ cos[φ(t; λ) + φ0]+
↔
e ×A× sin[φ(t; λ) + φ0], (1)

where
↔
e + = û ⊗ û − v̂ ⊗ v̂ and

↔
e × = û ⊗ v̂ + v̂ ⊗ û are two polarization basis tensors,

constructed from a right-handed basis {û, v̂,−n̂}. The unit vector n̂ is pointing along the line
of sight from the detector to the source, and the wave plane basis vectors {û, v̂} are aligned
with the principal polarization axes of the GW. In general, the GW phase φ(t; λ) depends on
a set of Doppler parameters λ, which include the source sky position n̂, the GW frequency
f , and possibly higher-order time derivatives of the frequency {ḟ , f̈ , . . .}. If the source is
a neutron star in a binary system, then λ would also include the orbital parameters of the
system.
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Figure 1. Source geometry angles: ι is the inclination angle between the rotation axis �� and the
line of sight (−n̂). The polarization angle ψ measures the orientation of the projected rotation axis
��‖ in the sky plane with respect to an observer frame {ξ̂ , ζ̂ }.

We assume that the GW emitter consists of a (non-axisymmetric) rotating system with
spin �� and ellipticity ε with respect to the rotation axis. The corresponding characteristic
amplitude h0 of the GW at the detector can be expressed as

h0 = 4G

c4

Izz�
2

d
ε, (2)

where Izz is the moment of inertia with respect to the rotation axis, the rotation rate is � ≡ | ��|,
and d is the distance to the detector. The emitter geometry is fully characterized by two Euler
angles describing the orientation of the rotation axis, namely the inclination angle ι of the
rotation axis with respect to the line of sight n̂, and the polarization angle ψ describing the
orientation of the projected rotation axis in the sky plane (see figure 1). The two polarization
amplitudes A+, A× in (1) can be expressed as

A+ = 1
2h0(1 + cos2ι) and A× = h0 cos ι, (3)

in terms of the characteristic amplitude h0 and the inclination angle ι. This corresponds to a
choice of the wave-plane coordinate axis û perpendicular to the rotation axis [21] and assigns
A+ to the larger of the two principal polarization amplitudes, i.e. A+ � A×. For each sky
position n̂ we can define a source-independent (right-handed, orthonormal) basis {ξ̂ , ζ̂ ,−n̂},
e.g., where ξ̂ lies in the ecliptic plane and ζ̂ in the northern hemisphere. This allows us to
define the polarization angle ψ as the angle between the principal polarization axis û of the
GW and the basis vector ξ̂ , i.e. ψ ≡ �(û, ξ̂ ) = �(v̂, ζ̂ ), where v̂ ∝ ��‖ (see figure 1). As first
shown in [5], the strain h(t) measured in the detector due to a GW signal (1) can be expressed
as

h(t;A, λ) = Aμhμ(t; λ), (4)

where we use automatic summation
∑4

μ=1 over repeated amplitude indices μ. The explicit
form of the four ‘basis functions’ hμ(t; λ) can be found in [9], for example, but is not important
for the following discussion. The four canonical amplitudes Aμ are defined as

A1 = A+ cos 2ψ cos φ0 − A× sin 2ψ sin φ0,

A2 = A+ sin 2ψ cos φ0 + A× cos 2ψ sin φ0,

A3 = −A+ cos 2ψ sin φ0 − A× sin 2ψ cos φ0,

A4 = −A+ sin 2ψ sin φ0 + A× cos 2ψ cos φ0.

(5)
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The set of amplitude parameters A can therefore be expressed either in ‘physical coordinates’
Āi , i.e.

{A}i = Āi = {h0, cos ι, ψ, φ0}, (6)

or in ‘canonical coordinates’ Aμ given in (5).

3. Hypothesis testing for GW detection

3.1. Simple versus composite hypotheses

In the following we restrict ourselves to the case where we need to decide only between two
hypotheses, namely HN ≡ ‘the data x consist of only noise n’, and HS ≡ ‘the data contains
a signal s in addition to noise n’, where we assume a signal s = h(t;A, λ) of the form (4).
For simplicity we assume the Doppler parameters λ = λs to be known a priori, while the four
amplitude parameters A ∈ A are unknown. This corresponds to a targeted search for GWs,
for example from an isolated pulsar with known sky position and GW frequency f (t). We
can formally write the two hypotheses as

HN : x(t) = n(t),

HS : x(t) = n(t) + s(t;A, λs), for any A ∈ A.
(7)

Note that HN is a simple hypothesis, which means that all model parameters are fully specified,
namely s = 0. On the other hand, HS is a composite hypothesis, as the amplitude parameters
A ∈ A of the signal are unknown. The composite hypothesis HS can be considered as a union
of simple hypotheses, i.e. HS = ∪

A∈A

HS(A).

3.2. Scalar product and Gaussian noise

Assuming Gaussian stationary noise with known (single-sided) power spectral density Sn, the
probability density function (pdf) for a particular pure-noise time series x = n can be written
as

pdf(n|Sn) = κ e− 1
2 (n|n), (8)

where κ is a normalization constant and we defined the scalar product (x|y) between time
series x(t) and y(t) as

(x|y) ≡ 4 Re
∫ ∞

0

x̃(f )ỹ∗(f )

Sn(f )
df, (9)

where x̃(f ) denotes the Fourier transform of x(t) and ∗ denotes complex conjugation (e.g. see
[22]). The likelihood of observing data x(t) in the presence of a signal s(t) is therefore

pdf(x|sSn) = κ e− 1
2 ((x−s)|(x−s)). (10)

3.3. Neyman-Pearson optimality

A detection statistic S(x) is a real-valued function of the data x, such that the corresponding
test of threshold S∗ decides for HN if S(x) < S∗, and for HS if S(x) > S∗. Such a test is
typically subject to two types of error: a ‘false alarm’, i.e. choosing HS when HN is true, and
a ‘false dismissal’, i.e. rejecting HS when it is in fact true. We can express the probability fA

of a false alarm as

fA(S∗) = P(S > S∗|HN) =
∫ ∞

S∗
pdf(S|HN) dS. (11)
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The probability fD of a false dismissal is fD(S∗;�A) = P(S < S∗|HS�A), where we
note that the specification (7) of the signal hypothesis HS is in fact incomplete: in addition
to the condition A ∈ A, we also need to specify the probability density for A, which we
denote as �A. When measuring fD in a Monte Carlo simulation, �A would corresponds to
the assumed underlying population, from which signals are randomly drawn in each test. The
complementary detection probability η ≡ 1 − fD is

η(S∗;�A) =
∫ ∞

S∗
pdf(S|HS�A) dS. (12)

Note that this contains the usual definition of the power function η(S∗;A) as a special case,
where �A = A. The definition (12) can also be interpreted as the expected power over a
population �A. The Neyman–Pearson framework for hypothesis testing defines the most
powerful test of size fA as a test that has the highest detection probability η (i.e., smallest false
dismissal fD) for a false-alarm probability of at most fA (e.g., see [23, 24]). In this framework
one compares the respective detection probabilities η of different detection statistics at a
given false-alarm probability fA, which defines the receiver–operator characteristics (ROC),
namely the function η(fA;�A).

In general, the relative performance of different detection statistics will depend on the
assumed probability distribution �A of signal parameters. One statistic can be more efficient
in certain parts of parameter space and less efficient in others. If a test is most powerful
over the whole parameter space (i.e., has the highest η(S∗;A) for all A ∈ A), it is called a
uniformly most powerful test.

4. Frequentist maximum-likelihood approach: the F-statistic

When comparing two simple hypotheses, such as HN and HS(A) for known A, the Neyman–
Pearson lemma states that the most powerful test (cf section 3.3) is the likelihood-ratio L,
defined as

L(x;A) ≡ pdf(x|HS(A))

pdf(x|HN)
. (13)

Assuming Gaussian noise and using (10), we explicitly obtain

L(x;A) = exp
[
(x|s) − 1

2 (s|s)] . (14)

However, in the case of a composite hypothesis HS with unknown amplitude parameters A,
the orthodox frequentist framework does not generally provide a canonical detection statistic.
Interestingly, one cannot even define a frequentist likelihood pdf(x|HS). A common but
ad hoc approach to dealing with composite hypotheses consists of using the maximum of the
likelihood ratio L(x;A) over the parameter space A, i.e. define

LML(x) ≡ max
A∈A

L(x;A) (15)

as a composite-hypothesis test: decide for HS if LML(x) > L∗ and HN otherwise. Using (14)
and (4), the likelihood-ratio function can be written more explicitly as

L(x;A) = exp
[
Aμxμ − 1

2A
μMμνAν

]
, (16)

where we defined

xμ ≡ (x|hμ(λs)), Mμν ≡ (hμ(λs)|hν(λs)). (17)

We see that L(x;A) is a Gaussian function in Aμ, so we can analytically maximize it to obtain

LML(x) = eF(x), with F(x) ≡ 1
2xμMμνxν, (18)
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with the inverse matrix Mμν defined via MμσMσν = δμ
ν . This defines the so-called F-

statistic, which was first derived in this context in [5]. The statistic 2F(x) can be shown to be
χ2-distributed with four degrees of freedom, and a non-centrality parameter ρ2 ≡ (s|s), where
ρ is called the (optimal) signal-to-noise ratio. The expectation value of 2F is E[2F] = 4+ρ2.

5. Bayesian hypothesis testing

The Bayesian hypothesis-testing framework follows uniquely from a straightforward
application of the probability axioms (cf [10, 25–27]). For any question of interest one
can (at least in principle) compute the probability of different hypotheses, optimally using
the available information such as the observed data x(t), and all our prior information and
assumptions, which we denote by ‘I’. Here we use the Bayesian approach to construct a
classical detection statistic, in order to compare its performance to the frequentist F-statistic
in the Neyman–Pearson framework.

For any hypothesis Hi we can directly express the probability of Hi being true given the
data x and our background assumptions I, namely

P(Hi |xI) = pdf(x|HiI )P (Hi |I )

pdf(x|I )
. (19)

This expression is known as Bayes’ theorem, and it follows directly from the product rule
of probabilities applied to pdf(Hix|I ). The term P(Hi |I ) is the prior probability for Hi .
Contrary to the orthodox frequentist framework, the (marginal) likelihood3 pdf(x|HiI ) of
observing data x given Hi is well defined even for composite hypotheses. In order to compute
pdf(x|HSI ), we simply use the product rule to write

pdf(A|xHSI ) = pdf(Ax|HSI )

pdf(x|HSI )
, (20)

and invoking the normalization condition
∫

pdf(A|xHSI ) d4A = 1, we obtain

pdf(x|HSI ) =
∫

A

pdf(Ax|HSI ) d4A

=
∫

A

pdf(x|AHSI ) pdf(A|HSI ) d4A. (21)

If {Hi}mi=1 is a set of m mutually exclusive and exhaustive hypotheses, i.e. exactly one of them
is true, then one obtains the normalization condition

∑m
i=1 P(Hi |xI) = 1, which determines

the denominator pdf(x|I ) in (19). We do not need to make this assumption, however, as we
can instead compute the relative probability of HS with respect to HN, which is known as the
(posterior) odds ratio OSN, namely

OSN(x|I ) ≡ P(HS|xI)

P (HN|xI)
= pdf(x|HSI )

pdf(x|HNI )

P (HS|I )

P (HN|I )
. (22)

This expression shows how the prior odds ratio P(HS|I )/P (HN|I ) gets ‘updated’ by the
observation of x, namely by multiplication with the (marginal) likelihood-ratio

BSN(x|I ) ≡ pdf(x|HSI )

pdf(x|HNI )
, (23)

which is known also as the Bayes factor. Note that the prior odds ratio is a constant factor
in OSN, and therefore plays no role in constructing a classical detection statistic S(x) (any

3 also known as the evidence.
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monotonic function of S(x) has the same power). Using (21) and (13), we can write the
Bayes factor (23) explicitly as

BSN(x|I ) =
∫

A

L(x;A) pdf(A|HSI ) d4A. (24)

Note that while the F-statistic (18) was obtained by maximizing the likelihood ratio L(x;A)

over the ‘nuisance parameters’ Aμ, the Bayes factor BSN(x) consists of marginalizing
L(x;A) with an amplitude prior pdf(A|HSI ). In order to uniquely specify the Bayes factor,
we therefore need to determine the function pdf(A|HSI ), which adequately describes our
ignorance of the pulsar amplitude parameters A.

5.1. Uniform priors in Aμ-coordinates: rediscovering the F-statistic

Considering the form (16) of L(x;A), a straightforward choice would be uniform priors in
coordinates Aμ. We refer to this as the ‘canonical prior’ �c, namely

pdf({Aμ}|HS�cI ) =
{
C if h0({Aμ}) < hmax

0 ,

0 otherwise,
(25)

where hmax
0 is the maximum amplitude we consider possible, and h0({Aμ}) is given by inversion

of equation (5). The normalization constant C is determined by
∫

A
pdf(A|HSI ) d4A = 1. The

actual choice of hmax
0 is unimportant for the properties of BSN(x) as a detection statistic,

because for large hmax
0 � 1, the marginalization (24) leads to a Gaussian integral, namely

BSN(x|�cI ) = C

∫
A

L(x;A) d4A

= C(2π)2(detM)−1/2 eF(x), (26)

where detM is the determinant of the matrix Mμν . We see that uniform amplitude priors in
Aμ-coordinates lead us back to the F-statistic (18). However, there is an additional antenna-
pattern factor (detM)−1/2, which depends on the sky position n̂ and the observation period.
For a targeted search with a single known sky position, this is a constant factor which does
not affect the power of the detection statistic, i.e. BSN(x|�cI ) is equivalent to F(x). This
weighting factor would play a role, however, when investigating searches over unknown sky
position. A similar effect was first noted in the Bayesian analysis of burst detection statistics
[15].

5.2. Physical priors in amplitude-space: introducing the B-statistic

Despite our assumed ‘ignorance’ about the amplitude parameters of the GW signal, we
have made a number of model assumptions about the geometry of the emitting system (see
section 2). In a sense the physical model describing the emitting system singles out a preferred
coordinate system in A, in which we should express our ignorance. We refer to the resulting
prior as the ‘physical prior’ �ph.

The initial phase φ0 is directly related to the rotation angle of the quadrupolar deformation
with respect to the rotation axis �� at some fixed reference time. The probability distribution
for φ0 is therefore independent of {h0, cos ι, ψ}, and by rotational symmetry we can assign a
uniform prior, i.e.

pdf(φ0|�phI ) = 1

2π
, φ0 ∈ [0, 2π). (27)

In section 2 and figure 1 we have seen that cos ι and ψ determine the orientation of the rotation
axis �� with respect to the observer frame {ξ̂ , ζ̂ ,−n̂}. If we have no information about the

7
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orientation of the emitting system, then rotational symmetry dictates an isotropic probability
distribution for ��. The surface element on the unit sphere of �� orientations can be expressed
as d2S = |d cos ι||dψ |, and because cos ι and ψ are independent degrees of freedom, their
respective prior probabilities are

pdf(cos ι|�phI ) = 1

2
, cos ι ∈ [−1, 1] (28)

pdf(ψ |�phI ) = 2

π
, ψ ∈ [−π/4, π/4) (29)

where we used the fact that gauge transformations {ψ → ψ + π/2, φ0 → φ0 + π} leave the
observed signal (4) unchanged, so ψ can always be brought into the range ψ ∈ [−π/4, π/4).
Note that these priors are identical to those used previously in Bayesian parameter estimation
[6, 16, 17] and Monte Carlo simulations for frequentist upper limits [7, 18].

Contrary to the angle variables cos ι, ψ and φ0, there is no unique natural choice of
uninformed prior for the amplitude h0. One could derive a prior for h0 from equation (2),
if astrophysical priors for the deformation ε, spin rate � and distance d are available. Other
possibilities include a ‘maximum entropy’ prior, or a Jeffreys prior. For simplicity, however,
we simply chose a uniform prior, namely

pdf(h0|�phI ) = 1

hmax
0

, h0 ∈ [
0, hmax

0

]
. (30)

Combining (27)–(30) we obtain an amplitude prior of the form

pdf(h0, cos ι, ψ, φ0|�phI ) = 1

2π2hmax
0

= C ′, h0 ∈ [
0, hmax

0

]
, (31)

which for simplicity of notation we refer to as the physical prior, while this qualifier can only
be justified for the angle variables. Substituting the prior �ph in the Bayes factor (24), and
assuming hmax

0 � 1, we now obtain

BSN(x|�phI ) = C ′
∫ ∞

0
dh0

∫ 1

−1
d cos ι

∫ π
4

− π
4

dψ

∫ 2π

0
dφ0L(x;A), (32)

with the likelihood ratio L(x;A) of equation (16). We use this Bayes factor as a new classical
detection statistic B(x), which we refer to as the ‘B-statistic’, namely

B(x) ≡ BSN(x|�phI ). (33)

5.3. Relation between amplitude priors �c and �ph

In order to compare the physical amplitude prior �ph of equation (31) to the canonical prior �c

of equation (25), we use the coordinate transformation (5) relating Aμ and Āi . The Jacobian
J of this transformation is found as

J ≡
∣∣∣∣det

(
∂Aμ

∂Āi

)∣∣∣∣ = h3
0

4
(1 − cos2 ι)3. (34)

Using the identity

pdf({Aμ}|�cI ) d4A = pdf({Āi}|�cI ) d4Ā, (35)

together with the relation d4A = Jd4Ā between volume elements, we can translate �c into
physical coordinates {Āi} = {h0, cos ι, ψ, φ0}, namely

pdf(h0, cos ι, ψ, φ0|�cI ) = C

4
h3

0(1 − cos2 ι)3, (36)

8
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which can be compared to the physical prior �ph in equation (31). We see that �c agrees with
�ph in assigning uniform prior probabilities to φ0 and ψ , but the prior densities on cos ι and
h0 are very different.

The canonical prior information �c, which is implicit in the F-statistic (cf section 5.1), is
therefore found to be rather unphysical: a higher prior probability is assigned to stronger
signals compared to weaker ones, and signals with near-linear polarization (cos ι ∼ 0,
corresponding to ‘edge-on’ emitters) are given undue weight compared to signals with near-
circular polarization (| cos ι| ∼ 1, corresponding to ‘face-on’ emitters). This amounts to
postulating a non-isotropic probability distribution for the orientation �� of spinning GW
sources, such that �� favors orientations orthogonal to the line of sight n̂.

6. Comparing detection efficiencies of F(x) and B(x)

6.1. Estimating the ROC curves

We use the classical Neyman–Pearson framework (cf section 3.3) in order to compare the
detection efficiency, or ‘power’, of the F-statistic (18) and the B-statistic (32). The practical
Monte Carlo procedure for estimating the ROC curve η(fA;�A) for any detection statistic S

is straightforward: first generate a large sample of NMC random draws {SN} of the statistic S

for the case of no signal, i.e. s = 0. From this distribution we can estimate the false-alarm
probability (11) as a function of the threshold S∗, namely

fA(S∗) ≈ NSN>S∗

NMC
, (37)

where NS>S∗ is the number of SN values found above the threshold S∗. Similarly, in the
signal case HS, we randomly draw signal parameters from the assumed population �A and
generate corresponding random draws {SS} of the statistic S. From this distribution we can
estimate the detection probability (12), namely

η(S∗;�A) ≈ NSS>S∗

NMC
. (38)

Inverting (37) to yield S∗(fA) and substituting this into (38), we obtain the ROC curve
η(fA;�A).

6.2. Parameters used in Monte-Carlo simulation

In targeted searches the Doppler parameters λ of the signal are known, and for simplicity of
this example we fixed these parameters as right ascension α = 2 rad, declination δ = −0.5 rad
and a constant frequency without spin-down. We assume the detector location to be LIGO
Hanford, and an observation with a GPS start time of t0 = 756 950 413 and a duration of T =
25 h. The resulting numerical components of the antenna-pattern matrix Mμν of
equation (17) are found asM11 = M33 = T

Sn
A,M22 = M44 = T

Sn
B andM12 = M34 = T

Sn
C,

with A = 0.154, B = 0.234 and C = −0.0104, with all other components (approximately)
zero. These parameters are given for the sake of completeness, the qualitative conclusions do
not depend on these choices. We used NMC = 106 random draws for each distribution, and
we estimate the errors on η(fA;�A) using a jackknife estimator (see [28]) with 100 subsets.
The estimated 1σ errors on the detection probability in the following ROC curves are always
less than σ(η) < 0.004.

9
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Figure 2. ROC curves η(fA; �A) comparing F-statistic (18), B-statistic (33) and the perfect-
match likelihood ratio L(As). The chosen signal populations �A have fixed SNR of ρ = 4, and
consist of (i) a single linearly polarized signal with cos ι = 0, ψ = 0 (left panel), and (ii) a (nearly)
circularly polarized signal with cos ι = 0.99, ψ = 0 (right panel).

6.3. Monte Carlo results

Because HS is a composite hypothesis, the ROC curves depend on the choice of injected signal
population �A. In order to illustrate the dependence on the amplitude parameter space, we
first consider two highly unphysical choices of signal populations, namely (i) �A consisting
of a single, linearly polarized signal with cos ι = 0, ψ = 0 and (ii) a single, (nearly) circularly
polarized signal with cos ι = 0.99, ψ = 0. In both cases we fixed the SNR of the signal to be
ρ = 4. Note that the choice of φ0 is irrelevant for both F and B. These two choices reflect
universes in which all spinning GW sources happen to be (i) edge-on or (ii) face-on, without
the observer having any knowledge about it. The results of these simulations are shown in
figure 2. For comparison purposes we also plot the perfect-match likelihood ratio L(As),
which is optimal by the Neyman–Pearson lemma for testing the simple hypothesis HS(As)

(cf section 3.3), but requires all signal parameters As to be exactly known beforehand.
We see that the F-statistic is more powerful than the B-statistic if the signal is linearly

polarized, while the B-statistic dominates for (near-) circularly polarized GWs. This is not
surprising given that the implicit F-statistic prior �c is biased in favor of linear polarization
(cf section 5.3). The results in figure 2 show that neither F- nor B-statistic is uniformly most
powerful (cf section 3.3) over the amplitude parameter space A. Note that this does not imply
that the F-statistic is more powerful if we know a given source to be (near-) linearly polarized.
One would fold this knowledge into the prior � in the Bayes factor (24), while there is no
natural way in which this knowledge can be incorporated into the F-statistic. The resulting
Bayes factor would therefore be more powerful than the F-statistic.

In the next step we look at more realistic situations in which the injected signals are drawn
from a population �A of randomly distributed cos ι and ψ , according to the physical prior �ph

(cf section 5.2), with (iii) a fixed SNR of ρ = 4 and (iv) a fixed amplitude of h0 = 10
√

Sn.
The results of these simulations are shown in figure 3. We see that in these situations the
B-statistic is consistently more powerful than the F-statistic. This is not surprising, given that
the amplitude prior �c that is implicit in the F-statistic differs substantially from the injected
‘real-world’ isotropic probability distribution �A on the orientation of ��. The B-statistic prior
�ph, on the other hand, is consistent with �A by construction (cf section 5.3). In fact, it can
be argued [12] that the Bayes factor with a signal prior that is consistent with the population

10
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Figure 3. ROC curves η(fA; �A) comparing F-statistic (18), B-statistic (33) and the perfect-
match likelihood ratio L(As). The signal populations �A consist of randomly distributed cos ι and
ψ , according to the physical prior �ph (cf section 5.2), with (iii) a fixed SNR of ρ = 4 and (iv) a
fixed amplitude of h0 = 10

√
Sn.

injected in the Monte Carlo simulation is by construction optimal in the sense of the highest
expected detection probability at a given false-alarm probability. One would therefore not
expect any other detection statistic to outperform B(x) in the simulations shown in figure 3.

7. Conclusions

We have shown that the maximum-likelihood F-statistic can be interpreted as a Bayes factor
with a simple, but unphysical, amplitude prior (and an additional unphysical sky-position
weighting). Using a more physical prior based on an isotropic probability distribution for
the unknown spin-axis orientation of emitting systems, we obtain a new detection statistic,
referred to as B-statistic. Monte Carlo simulations for signals with random (isotropic) spin-
axis orientations show that the B-statistic is more powerful (in terms of its expected detection
probability) than the F-statistic.

The F-statistic is therefore not ‘optimal’ in the classical sense. However, the F-statistic
sensitivity appears to be quite comparable to the B-statistic (see figure 3) in the range of
parameters considered, while being computationally more efficient (there are no integrations
required), and fully characterized by a known simple distribution. Interpreting it as a Bayes
factor clarifies its role as a statement about relative probabilities of hypotheses, and allows
one to use the F-statistic within a fully Bayesian framework. Such a choice would be based
on the simplicity and computational efficiency of the F-statistic, despite the fact that it is not
‘optimal’.
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