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a Departamento de F́ısica, Centro de F́ısica Teórica y Computacional,
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Abstract

In this work we classify the subalgebras satisfied by non-geometric Q-fluxes in type IIB orien-

tifolds on T6/(Z2 × Z2) with three moduli (S, T, U). We find that there are five subalgebras

compatible with the symmetries, each one leading to a characteristic flux-induced superpoten-

tial. Working in the 4-dimensional effective supergravity we obtain families of supersymmetric

AdS4 vacua with all moduli stabilized at small string coupling gs. Our results are mostly analytic

thanks to a judicious parametrization of the non-geometric, RR and NSNS fluxes. We are also

able to leave the flux-induced C4 and C8 RR tadpoles as free variables, thereby enabling us to

study which values are allowed for each Q-subalgebra. Another novel outcome is the appearance

of multiple vacua for special sets of fluxes. However, they generically have gs > 1 unless the

net number of O3/D3 or O7/D7 sources needed to cancel the tadpoles is large. We also discuss

briefly the issues of axionic shift symmetries and cancellation of Freed-Witten anomalies.
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1 Introduction

The study of flux compactifications in string theory has been pursued intensively in recent

years [1]. One important motivation is the possibility to stabilize the massless moduli at a

minimum of the potential induced by the fluxes. The simplest scenarios for this mechanism

are provided by type IIB and type IIA N=1 orientifolds with p-form fluxes turned on [1].

In IIA compactifications the mixture of NSNS and RR fluxes generates a superpotential

that depends on all closed string moduli allowing to stabilize them without invoking non-

perturbative effects [2–6]. Moreover, in the IIA setup it is natural to add the so-called

geometric f -fluxes that determine the isometry algebra of the internal space [3,4,6]. The

case of nilpotent algebras was studied in [7] and an example with internal su(2)2 was

spelled out in [8].

To recover T-duality between IIA and IIB compactifications, it is necessary to intro-

duce new parameters referred to as non-geometric fluxes [9–11]. The original observation

is that performing a T-duality to NSNS H̄-fluxes leads to geometric f -fluxes [12, 13].

Further T-dualities give rise to generalized Q and R-fluxes [9]. The Q’s are called non-

geometric because the emerging background after two T-dualities can be described locally

but not globally. The third T-duality is formal, evidence for the R-fluxes comes rather

from T-duality at the level of the effective superpotential [9]. Moreover, the Q and R-

fluxes logically extend [9,14] the set of structure constants of the gauge algebra, generated

by isometries and shifts of the B field, that is known to contain the geometric and NSNS

fluxes [15, 16].

In this article we consider type IIB orientifolds with O3/O7-planes in which only

NSNS H̄ and non-geometric Q-fluxes are invariant under the orientifold action. These

fluxes together induce a superpotential that depends on all closed string moduli. One

advantage of working with IIB is that the Q-fluxes by themselves appear as the structure

constants of a subalgebra of the full gauge algebra. However, one must keep in mind

that the H̄ and Q in IIB map into all kinds of fluxes in type IIA with O6-planes, and

into non-geometric R plus geometric f in IIB with O9/O5-planes. Similar examples with

generalized fluxes have been considered by several authors [9, 10, 17–22].
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Our guiding principle is precisely the classification of the subalgebras satisfied by the

non-geometric Q-fluxes. We will discuss a simplified scheme with additional symme-

tries in order to reduce the number of fluxes. Concretely, we study compactification on

(T2 × T2 × T2)/(Z2 × Z2), and further impose invariance under exchange of the internal

T2’s. In this way we obtain the same model with moduli (S, T, U) proposed in [9] and

generalized in [17]. We have classified the allowed subalgebras of the Q-fluxes of the

(S, T, U)-model. There are five inequivalent classes, namely so(4), so(3, 1), su(2) + u(1)3,

iso(3) and the nilpotent algebra denoted n(3.5) in [7]. The non-semisimple solutions are

contractions of so(4) consistent with the symmetries. A compelling byproduct is that

each subalgebra yields a characteristic flux-induced superpotential. The corresponding

12-dimensional gauge algebras can be easily identified after a convenient change of basis.

We are mostly interested in discovering supersymmetric flux backgrounds with non-

geometric fluxes switched on, and all moduli stabilized. To this end we work exclusively

with the D=4 effective action. We widen the search of vacua of [10] in several respects. A

key difference is that in most cases we can solve the F-flat conditions analytically and can

therefore derive explicit expressions for the moduli vevs in terms of the fluxes. The compu-

tations are facilitated by using a transformed complex structure Z = (αU + β)/(γU + δ),

invariant under the modular group SL(2, Z)U . The independent non-geometric fluxes are

precisely parametrized by Γ =
(

α β
γ δ

)
. The parametrization of NSNS and RR fluxes is also

dictated by Γ. By exploiting the variable Z we can effectively factor out the vacuum

degeneracy due to modular transformations.

There is a further vacuum degeneracy originating from special constant translations

in the axions Re S and ReT . We argue that vacua connected by this type of translations

are identical because the full background including the RR fluxes is invariant under such

axionic shifts.

In our analysis the values of the flux-induced C4 and C8 RR tadpoles are treated

as variables. To cancel these tadpoles in general requires to add D-branes besides the

orientifold planes. These D-branes are also constrained by cancellation of Freed-Witten

anomalies [6,18]. In our concrete setup, D3-branes and unmagnetized D7-branes wrapping

an internal T4 are free of anomalies and can be included. However, such D-branes do not
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give rise to charged chiral matter.

By treating the flux tadpoles as variables we can deduce in particular that the vacua

found in [10], having O3-planes and no O7/D7 sources, can only arise when the Q-

subalgebra is the compact so(4). For completeness we study the supersymmetric AdS4

minima due to the fluxes of all compatible Q-subalgebras, including the non-compact

so(3, 1). In general, such vacua exist in all cases but unusual types of sources might be

needed to cancel the tadpoles. Interestingly, in models based on semisimple subalgebras

we find that there can exist more than one vacuum for some combinations of fluxes.

It is well known that supersymmetric or no-scale Minkowski vacua in IIB orientifolds

with RR and NSNS fluxes require sources of negative RR charge such as O3-planes or

wrapped D7-branes [23]. However, working with the effective D=4 formalism we find

that O3-planes and/or D7-branes can be bypassed in fully stabilized supersymmetric

AdS4 vacua, provided specific non-geometric fluxes are turned on. It is conceivable that

such vacua only occur in the effective theory and will not survive after lifting to a full

string background. Helpful hints in this direction can come from our results relating

properties of the vacua with the gauge algebra. It might well be that only models built

on certain algebras can be lifted to full backgrounds. The newly proposed formulation

of non-geometric fluxes based on compactification on doubled twisted tori suggests that

the gauge algebra has to be compact or admit a discrete cocompact subgroup [24, 25].

It is also feasible that the recent description of non-geometric fluxes in the context of

generalized geometry [26] could be applied to deduce the generalized flux configurations

which allow supersymmetric vacua. A discussion of these issues is beyond our present

scope.

We now outline the paper. In section 2 we review the properties of the fluxes and

write down the flux-induced effective quantities needed to investigate the vacua. The

classification of the Q-subalgebras is carried out in section 3, where we also obtain the

parametrization of the non-geometric and NSNS fluxes that is crucial in the subsequent

analysis. In section 4 we introduce the transformed complex structure Z motivated by

modular invariance. Using this variable then points to the efficient parametrization of

the RR fluxes given in the appendix. In the end we are able to derive very compact
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expressions for the flux-induced superpotential and tadpoles according to the particular

Q-subalgebra. In section 5 we solve the F-flat conditions and collect the results that

distinguish the vacua with moduli stabilized. The salient features of these vacua are

discussed in section 6. Section 7 is devoted to some final comments.

2 Generalities

In this section we outline our notation to describe the non-geometric fluxes introduced

in [9]. To be specific we will work in the context of toroidal orientifolds with O3/O7-planes.

We will discuss the case of generic untwisted moduli, and also the simpler isotropic model

considered in [9].

2.1 Fluxes

The starting point is a type IIB string compactification on a six-torus T6 whose basis of

1-forms is denoted ηa. Moreover, we assume the factorized geometry

T6 = T2 × T2 × T2 : (η1 , η2) × (η3 , η4) × (η5 , η6) . (2.1)

As in [9], we will use greek indices α, β, γ for horizontal “− ” x-like directions (η1, η3, η5)

and latin indices i, j, k for vertical “|” y-like directions (η2, η4, η6) in the 2-tori.

The Z2 orientifold involution denoted σ acts as

σ : (η1 , η2 , η3 , η4 , η5 , η6) → (−η1 , −η2 , −η3 , −η4 , −η5 , −η6) . (2.2)

There are 64 O3-planes located at the fixed points of σ. We further impose a Z2 × Z2

orbifold symmetry with generators acting as

θ1 : (η1 , η2 , η3 , η4 , η5 , η6) → (η1 , η2 , −η3 , −η4 , −η5 , −η6) , (2.3)

θ2 : (η1 , η2 , η3 , η4 , η5 , η6) → (−η1 , −η2 , η3 , η4 , −η5 , −η6) .

Clearly, there is another order-two element θ3 = θ1θ2. Under this Z2 ×Z2 orbifold group,

only 3-forms with one leg in each 2-torus survive. This also occurs in the compactification

with an extra Z3 cyclic permutation of the three 2-tori that was studied in [9,10]. In that

6



case there are only O3-planes and two geometric moduli, namely the overall Kähler and

complex structure parameters. In contrast, in our setup, the full symmetry group Z3
2

includes additional orientifold actions σθI that have fixed 4-tori and lead to O7I-planes,

I = 1, 2, 3. Another difference is that in principle we have one Kähler and one complex

structure parameter for each 2-torus T2
I .

The Kähler form and the holomorphic 3-form that encode the geometric moduli of

the internal space can be written in a basis of invariant forms that also enters in the

description of background fluxes. Under the Z2 ×Z2 orbifold action the invariant 3-forms

are just

α0 = η135 ; α1 = η235 ; α2 = η451 ; α3 = η613 ,

β0 = η246 ; β1 = η146 ; β2 = η362 ; β3 = η524 .
(2.4)

where, e.g. η135 = η1 ∧ η3 ∧ η5. Clearly, these forms are all odd under the orientifold

involution σ. On the other hand, the invariant 2-forms and their dual 4-forms are

ω1 = η12 ; ω2 = η34 ; ω3 = η56 ,

ω̃1 = η3456 ; ω̃2 = η1256 ; ω̃3 = η1234 .
(2.5)

These forms are even under σ. We choose the orientation and normalization

∫

M6

η123456 = V6 . (2.6)

The positive constant V6 gives the volume of the internal space that we generically denote

M6. Notice that the basis satisfies

∫

M6

α0 ∧ β0 = −V6 ,

∫

M6

αI ∧ βJ =

∫

M6

ωI ∧ ω̃J = V6δ
J
I , I, J = 1, 2, 3. (2.7)

The Z2 × Z2 orbifold symmetry restricts the period matrix τ ij to be diagonal. Then, up

to normalization, the holomorphic 3-form is given by

Ω = (η1 + τ1η
2) ∧ (η3 + τ2η

4) ∧ (η5 + τ3η
6) = α0 + τK αK + βK τ1τ2τ3

τK

+ β0 τ1τ2τ3 , (2.8)

with the H3(M6, Z) basis displayed in (2.4).

The next step is to switch on background fluxes for the NSNS and RR 3-forms. Since

both H3 and F3 are odd under the orientifold involution, the allowed background fluxes
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can be expanded as

H̄3 = b3 α0 + b
(I)
2 αI + b

(I)
1 βI + b0 β0 , (2.9)

F̄3 = a3 α0 + a
(I)
2 αI + a

(I)
1 βI + a0 β0 . (2.10)

All flux coefficients are integers because the integrals of H̄3 and F̄3 over 3-cycles are

quantized. To avoid subtleties with exotic orientifold planes we take all fluxes to be

even [27, 28].

As argued originally in [12, 13], applying one T-duality transformation to the NSNS

fluxes can give rise to geometric fluxes fa
bc that correspond to structure constants of the

isometry algebra of the internal space. Performing further T-dualities leads to generalized

fluxes denoted Qab
c and Rabc [9]. The Qab

c are called non-geometric fluxes because the

resulting metric after two T-dualities yields a background that is locally but not globally

geometric [10, 11]. Compactifications with Rabc fluxes are not even locally geometric but

these fluxes are necessary to maintain T-duality between type IIA and type IIB. The

geometric and the R-fluxes must be even under the orientifold involution and are thus

totally absent in type IIB with O3/O7-planes. On the other hand, the non-geometric

fluxes must be odd and are fully permitted.

The main motivation of this work is to study supersymmetric vacua in toroidal type IIB

orientifolds with NSNS, RR and non-geometric Q-fluxes turned on. In our construction,

the Z2 × Z2 symmetry only allows 24 components of the flux tensor Qab
c , namely those

with one leg on each 2-torus. This set of non-geometric fluxes is displayed in table 1. All

components of the tensor Q are integers that we take to be even.

2.2 Effective action

The NSNS, RR and non-geometric fluxes induce a potential for the closed string moduli.

We will focus on the untwisted moduli of the toroidal orientifold. To write explicitly the

effective action, recall first that the axiodilaton and the complex structure moduli are

given by

S = C0 + ie−φ ; UI = τI ; I = 1, 2, 3 , (2.11)
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Type Components Fluxes

Q−−
− ≡ Qβγ

α Q35
1 , Q51

3 , Q13
5 c̃

(1)
1 , c̃

(2)
1 , c̃

(3)
1

Q
|−
| ≡ Qiβ

k Q61
4 , Q23

6 , Q45
2 ĉ

(1)
1 , ĉ

(2)
1 , ĉ

(3)
1

Q
−|
| ≡ Qαj

k Q14
6 , Q36

2 , Q52
4 č

(1)
1 , č

(2)
1 , č

(3)
1

Q−−
| ≡ Qαβ

k Q35
2 , Q51

4 , Q13
6 c

(1)
0 , c

(2)
0 , c

(3)
0

Q
||
− ≡ Qij

γ Q46
1 , Q62

3 , Q24
5 c

(1)
3 , c

(2)
3 , c

(3)
3

Q
|−
− ≡ Qiβ

γ Q23
5 , Q45

1 , Q61
3 č

(1)
2 , č

(2)
2 , č

(3)
2

Q
−|
− ≡ Qγi

β Q52
3 , Q14

5 , Q36
1 ĉ

(1)
2 , ĉ

(2)
2 , ĉ

(3)
2

Q
||
| ≡ Qij

k Q46
2 , Q62

4 , Q24
6 c̃

(1)
2 , c̃

(2)
2 , c̃

(3)
2

Table 1: Non-geometric Q-fluxes.

where C0 is the RR 0-form, φ is the 10-dimensional dilaton and the τI are the components

of the period matrix. The Kähler moduli TI are instead extracted from the expansion of

the complexified Kähler 4-form J , i.e. J = −∑
TI ω̃I . In turn, the real (axionic) part

of J arises from the RR 4-form C4 whereas the imaginary part is e−φJ ∧ J/2, where J is

the fundamental Kähler form. In fact, Im TI is basically the area of the 4-cycle dual to

the 4-form ω̃I .

We are interested in compactifications that preserve N=1 supersymmetry in four

dimensions. In this case we know that the scalar potential can be computed from the

Kähler potential and the superpotential. The Kähler potential for the moduli is given by

the usual expression

K = −
3∑

K=1

log
(
−i (UK − ŪK)

)
− log

(
−i (S − S̄)

)
−

3∑

K=1

log
(
−i (TK − T̄K)

)
, (2.12)

which is valid to first order in the string and sigma model perturbative expansions. The

NSNS and RR fluxes induce a superpotential only for S and the UI . In absence of non-

geometric fluxes Kähler moduli do not enter in the superpotential and non-perturbative

effects such as gaugino condensation are required to get vacua with all moduli fixed. The

Q-fluxes generate new couplings involving Kähler fields, thereby opening the possibility

to stabilize all types of closed string moduli.
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The general superpotential can be computed from [17]

W =

∫

M6

(G3 + QJ ) ∧ Ω , (2.13)

where G3 = F̄3 − S H̄3, and QJ is a 3-form with components defined by

(QJ )abc =
1

2
Qmn

[a Jbc]mn . (2.14)

Being a 3-form, QJ can be expanded in the basis (2.4). We obtain

QJ = TK

(
c
(K)
3 α0 − C(IK)

2 αI − C(IK)
1 βI + c

(K)
0 β0

)
, (2.15)

where C1 and C2 are the non-geometric flux matrices

C1 =




−c̃
(1)
1 č

(3)
1 ĉ

(2)
1

ĉ
(3)
1 −c̃

(2)
1 č

(1)
1

č
(2)
1 ĉ

(1)
1 −c̃

(3)
1


 , C2 =




−c̃
(1)
2 č

(3)
2 ĉ

(2)
2

ĉ
(3)
2 −c̃

(2)
2 č

(1)
2

č
(2)
2 ĉ

(1)
2 −c̃

(3)
2


 . (2.16)

The expansion for the 3-form G3 that combines the NSNS and the RR fluxes can be read

off from (2.9) and (2.10). Substituting the expansions of the holomorphic 3-form and the

background fluxes in (2.13) shows that the superpotential takes the form

W = P1(U) + P2(U) S +
3∑

K=1

P
(K)

3 (U) TK . (2.17)

The P ’s are cubic polynomials in the complex structure moduli given by

P1(U) = a0 −
3∑

K=1

a
(K)
1 UK +

3∑

K=1

a
(K)
2

U1U2U3

UK

− a3U1U2U3 , (2.18)

P2(U) = −b0 +

3∑

K=1

b
(K)
1 UK −

3∑

K=1

b
(K)
2

U1U2U3

UK
+ b3U1U2U3 , (2.19)

P
(K)

3 (U) = c
(K)
0 +

3∑

L=1

C (LK)
1 UL −

3∑

L=1

C (LK)
2

U1U2U3

UL

− c
(K)
3 U1U2U3 . (2.20)

The main feature of the flux superpotential is that it depends on all untwisted closed

string moduli.

At this point we have a model with seven moduli whose potential depends on forty flux

parameters. Finding vacua in this generic setup is rather cumbersome. For this reason we
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consider a simpler configuration in which the fluxes are isotropic. Concretely, we make

the Ansatz

c̃
(I)
1 ≡ c̃1 ; ĉ

(I)
1 ≡ ĉ1 ; č

(I)
1 ≡ č1 ; c̃

(I)
2 ≡ c̃2 ; ĉ

(I)
2 ≡ ĉ2 ; č

(I)
2 ≡ č2 ,

b
(I)
1 ≡ b1 ; b

(I)
2 ≡ b2 ; a

(I)
1 ≡ a1 ; a

(I)
2 ≡ a2 . (2.21)

Isotropic fluxes are summarized in tables 2 and 3.

F̄−−− F̄|−− F̄−|| F̄||| H̄−−− H̄|−− H̄−|| H̄|||

a3 a2 a1 a0 b3 b2 b1 b0

Table 2: NS and RR isotropic fluxes.

Q−−
− Q

|−
| Q

−|
| Q−−

| Q
||
− Q

|−
− Q

−|
− Q

||
|

c̃1 ĉ1 č1 c0 c3 č2 ĉ2 c̃2

Table 3: Non-geometric isotropic fluxes.

The Ansatz of isotropic fluxes is compatible with vacua in which the geometric moduli

are also isotropic, namely

U1 = U2 = U3 ≡ U ; T1 = T2 = T3 ≡ T . (2.22)

This means, that there is only one overall complex structure modulus U and one Kähler

modulus T . The model also includes the axiodilaton. In this case, the Kähler potential

and the superpotential reduce to

K = −3 log
(
−i (U − Ū)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)

W = P1(U) + P2(U) S + P3(U) T . (2.23)

The P ’s are now cubic polynomials in the single complex structure moduli. They are

given by

P1(U) = a0 − 3 a1 U + 3 a2 U2 − a3 U3 , (2.24)

P2(U) = −b0 + 3 b1 U − 3 b2 U2 + b3 U3 , (2.25)

P3(U) = 3
(
c0 + (ĉ1 + č1 − c̃1) U − (ĉ2 + č2 − c̃2) U2 − c3 U3

)
. (2.26)
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This is the model considered in [9, 10].

2.3 Bianchi identities and tadpoles

The NSNS and generalized fluxes that follow from the T-duality chain can be regarded

as structure constants of an extended symmetry algebra of the compactification [9, 14].

This algebra includes isometry generators Za as well as gauge symmetry generators Xa,

a = 1, . . . , 6, coming from the reduction of the B-field on T 6 with fluxes. We are interested

in type IIB with O3/O7-planes where geometric and R-fluxes are forbidden. In this case

the algebra is given by

[
Xa, Xb

]
= Qab

c Xc ,

[
Za, X

b
]

= Qbc
a Zc , (2.27)

[Za, Zb] = H̄abc Xc .

Notice that the Xa span a 6-dimensional subalgebra in which the non-geometric Qab
c are

the structure constants.

Computing the Jacobi identities of the full 12-dimensional algebra we obtain the con-

straints

H̄x[bc Qax
d] = 0 ; Q[ab

x Q
c]x
d = 0 . (2.28)

In the following we will refer to these identities in the shorthand notation H̄Q = 0 and

QQ = 0. The constraints on the fluxes can also be interpreted in terms of a nilpotency

condition D2 = 0 on the operator D = H ∧ +Q· introduced in [10].

The RR fluxes are also constrained by Bianchi identities of the type DF̄ = S, where S
is a generalized form due to sources that are assumed smeared instead of localized. These

Bianchi identities can be understood as tadpole cancellation conditions on the RR 4-form

C4 and C8 that couple to the sources. The sources are just the orientifold O3/O7-planes

and D3/D7-branes that can be present. In the IIB orientifold that we are considering

there is a flux-induced C4 tadpole due to the coupling

∫

M4×M6

C4 ∧ H̄3 ∧ F̄3 . (2.29)
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There are further C4 tadpoles due to O3-planes and to D3-branes that can also be added.

The total orientifold charge is -32, equally distributed among 64 O3-planes located at the

fixed points of the orientifold involution σ. Each D3-brane has charge +1 and if they are

located in the bulk, as opposed to fixed points of Z3
2, images must be included. Adding

the sources to the flux tadpole (2.29) leads to the cancellation condition

a0 b3 − a
(K)
1 b

(K)
2 + a

(K)
2 b

(K)
1 − a3 b0 = N3 , (2.30)

where N3 = 32 − ND3 and ND3 is the total number of D3-branes.

The non-geometric and RR fluxes can also combine to produce a tadpole for the RR

C8 form. The contraction QF̄3 is a 2-form and the flux-induced tadpole is due to the

coupling ∫

M4×M6

C8 ∧ (QF̄3) (2.31)

Expanding the 2-form (QF̄3) in the basis of 2-forms ωI , I = 1, 2, 3, yields coefficients

(QF̄3)I = a0 c
(I)
3 + a

(K)
1 C(KI)

2 − a
(K)
2 C(KI)

1 − a3 c
(I)
0 ; I = 1, 2, 3 . (2.32)

This means that there are induced tadpoles for C8 components of type C8 ∼ dvol4 ∧ ω̃I ,

where dvol4 is the space-time volume 4-form and ω̃I is the 4-form dual to ωI . On the

other hand, there are also C8 tadpoles due to O7I-planes that have a total charge +32

for each I. As discussed before, due to the orbifold group Z2 × Z2, there are O7I-planes

located at the 4 fixed tori of σθI , where θI are the three order-two elements of Z2 × Z2.

In the end we find the three tadpole cancellation conditions

a0 c
(I)
3 + a

(K)
1 C(KI)

2 − a
(K)
2 C(KI)

1 − a3 c
(I)
0 = N7I

; I = 1, 2, 3 , (2.33)

where N7I
= −32 + ND7I

and ND7I
is the number of D7I-branes that are generically

allowed.

In this work we mostly consider isotropic fluxes so that we will again make the Ansatz

(2.21). Jacobi identities as well as tadpoles cancellation conditions become simpler. Com-

puting QQ = 0 constraints from (2.28) leave us with

ĉ2 c̃1 − c̃1 č2 + č1 ĉ2 − c0 c3 = 0 ; c3 c̃1 − č2
2 + c̃2 ĉ2 − ĉ1 c3 = 0 ,

c3 c0 − č2 ĉ1 + c̃2 č1 − ĉ1 c̃2 = 0 ; c0 c̃2 − č2
1 + c̃1 ĉ1 − ĉ2 c0 = 0 , (2.34)
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plus one additional copy of each condition with či ↔ ĉi. An important result is that

saturating1 this ideal with respect to the conditions či 6= ĉi automatically implies that c̃i

is complex. Therefore, it must be that

č1 = ĉ1 ≡ c1 ; č2 = ĉ2 ≡ c2 . (2.35)

The cubic polynomial that couples the complex structure and Kähler moduli, c.f. (2.26),

then reduces to

P3(U) = 3
(
c0 + (2 c1 − c̃1) U − (2 c2 − c̃2) U2 − c3 U3

)
. (2.36)

Recall that the non-geometric fluxes are integer parameters.

Upon using (2.35), the Jacobi constraints satisfied by the non-geometric fluxes become

c0 (c2 − c̃2) + c1 (c1 − c̃1) = 0 ,

c2 (c2 − c̃2) + c3 (c1 − c̃1) = 0 , (2.37)

c0c3 − c1c2 = 0 .

This system of equations is easy to solve explicitly. The solution variety has three dis-

connected pieces of different dimensions. The first piece has dimension four and it is

characterized by fluxes

c3 = λp k2 ; c2 = λp k1 ; c̃1 = λq k2 + λk1 ;

c1 = λq k2 ; c0 = λq k1 ; c̃2 = λp k1 − λk2 .
(2.38)

Here λ = 1, (k1, k2) are two integers not zero simultaneously, and (λp, λq) are two rays

given by

λp = 1 +
p

GCD(k1, k2)
; λq = 1 +

q

GCD(k1, k2)
, (2.39)

where p, q,∈ Z. By convention GCD(n, 0) = |n|. With coefficients given by the fluxes

(2.38) the polynomial P3(U) turns out to factorize as

P3(U) = 3 (k1 + k2 U) (λq − λ U − λp U2) . (2.40)

1This can be done using a computational algebra program as Singular [29] and solving over the real

field. In [9], an analogous result is obtained manipulating this set of polynomial constraints by hand.
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Notice that we have taken into account that the non-geometric fluxes are integers. The

second piece of solutions is three dimensional, the set of fluxes can still be characterized

by (2.38) and P3(U) by (2.40), but with λ ≡ 0 and λp ≡ 1. Finally, the third piece has

only two dimensions with fluxes and P3(U) specified by setting λ ≡ 0, λp ≡ 0 and λq ≡ 1.

As a byproduct of the above analysis we have isolated the real root of P3(U) that

always exist. In the next section we will explain how the nature of the remaining two

roots is correlated with the type of algebra fulfilled by the Xa generators. For example,

we will see that in the third piece of solutions with k2 = 0, the algebra is nilpotent.

Let us now consider the constraints H̄Q = 0 that mix non-geometric and NSNS fluxes.

Inserting the isotropic fluxes in (2.28), and using (2.35), we find

b2c0 − b0c2 + b1(c1 − c̃1) = 0 ,

b3c0 − b1c2 + b2(c1 − c̃1) = 0 ,

b2c1 − b0c3 − b1(c2 − c̃2) = 0 , (2.41)

b3c1 − b1c3 − b2(c2 − c̃2) = 0 .

These conditions restrict the NSNS fluxes bA that determine the coupling between the

complex structure and the dilaton moduli through the polynomial P2(U) in (2.25). In the

next section we will discuss solutions to the full set of constraints that will lead to specific

forms for the polynomials P2(U) and P3(U).

The tadpole cancellation relations also become simpler in the isotropic case. In par-

ticular, the three constraints in (2.33), depending on I, reduce to just one condition.

Substituting the isotropic Ansatz and (2.35) we obtain

a0 b3 − 3 a1 b2 + 3 a2 b1 − a3 b0 = N3 , (2.42)

a0 c3 + a1 (2 c2 − c̃2) − a2 (2 c1 − c̃1) − a3 c0 = N7 . (2.43)

These conditions constraint the RR fluxes. We consider the net O3/D3 and O7/D7

charges, N3 and N7, to be free parameters.
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3 Algebras and fluxes

In this section we discuss solutions to the Jacobi identities satisfied by the NSNS and the

non-geometric Q fluxes. The key idea is twofold. First, the generators Xa in (2.27) span a

six-dimensional subalgebra whose structure constants are precisely the Qab
c . Second, when

these fluxes are invariant under the Z3
2 symmetry described in section 2.1, this subalgebra

is rather constrained. We expect only a few subalgebras to be allowed and our strategy

is to identify them. In this way we will manage to provide explicit parametrizations for

non-geometric fluxes that satisfy the identity QQ = 0. Once this is achieved, we will also

be able to find the corresponding NSNS fluxes that fulfill H̄Q = 0.

We want to consider in detail the set of isotropic non-geometric fluxes given in table

3 plus the conditions č1 = ĉ1 ≡ c1, č2 = ĉ2 ≡ c2. In this case the subalgebra simplifies to

[
X2I−1, X2J−1

]
= ǫIJK

(
c̃1 X2K−1 + c0 X2K

)
,

[
X2I−1, X2J

]
= ǫIJK

(
c2 X2K−1 + c1 X2K

)
, (3.1)

[
X2I , X2J

]
= ǫIJK

(
c3 X2K−1 + c̃2 X2K

)
,

where I, J, K = 1, 2, 3. The Jacobi identities of this algebra are given in (2.37). To reveal

further properties, it is instructive to compute the Cartan-Killing metric, denoted M,

with components

Mab = Qad
c Qbc

d . (3.2)

For the above algebra of isotropic fluxes we find that the six-dimensional matrix M is

block-diagonal, namely

M = diag (X2,X2,X2) . (3.3)

The 2 × 2 matrix X2 turns out to be

X2 = −2



 c̃2
1 + 2c0c2 + c2

1 c̃1c2 + c1c2 + c0c3 + c1c̃2

c̃1c2 + c1c2 + c0c3 + c1c̃2 c̃2
2 + 2c1c3 + c2

2



 . (3.4)

Since X2 is symmetric, we conclude that M can have up to two distinct real eigenvalues,

each with multiplicity three.
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The full 12-dimensional algebra also enjoys distinctive features. In the isotropic case

the remaining algebra commutators involving NSNS fluxes are given by

[Z2I−1, Z2J−1] = ǫIJK

(
b3 X2K−1 + b2 X2K

)
,

[Z2I−1, Z2J ] = ǫIJK

(
b2 X2K−1 + b1 X2K

)
, (3.5)

[Z2I , Z2J ] = ǫIJK

(
b1 X2K−1 + b0 X2K

)
.

The mixed piece of the algebra is determined by the non-geometric fluxes as

[
Z2I−1, X

2J−1
]

= ǫIJK (c̃1 Z2K−1 + c2 Z2K) ,

[
Z2I−1, X

2J
]

= ǫIJK (c2 Z2K−1 + c3 Z2K) ,

[
Z2I , X

2J−1
]

= ǫIJK (c0 Z2K−1 + c1 Z2K) , (3.6)

[
Z2I , X

2J
]

= ǫIJK (c1 Z2K−1 + c̃2 Z2K) .

Besides the Jacobi identities purely involving non-geometric fluxes, there are the addi-

tional mixed constraints (2.41).

Computing the full Cartan-Killing metric, denoted M12, shows that there are no mixed

XZ terms. In fact, the matrix is again block-diagonal

M12 = diag (X2,X2,X2,Z2,Z2,Z2) , (3.7)

with X2 shown above. The new 2 × 2 matrix Z2 is found to be

Z2 = −4


 b3c̃1 + 2b2c2 + b1c3 b2(c1 + c̃1) + b1(c2 + c̃2)

b2(c1 + c̃1) + b1(c2 + c̃2) b0c̃2 + 2b1c1 + b2c0


 . (3.8)

Here we have simplified using the Jacobi identities (2.41). We conclude that the allowed

12-dimensional algebras are such that the Cartan-Killing matrix can have up to four

distinct eigenvalues, each with multiplicity three.

Let us now return to the subalgebra spanned by the X generators and the task of

solving the constraints (2.37) that arise from the Jacobi identities QQ = 0. The idea

is to fulfill these constraints by choosing the non-geometric fluxes to be the structure

constants of six-dimensional Lie algebras whose Cartan-Killing matrix has the simple

block-diagonal form (3.3). To proceed it is convenient to distinguish whether M is non-

degenerate or not, i.e. whether the algebra is semisimple or not. If detM6=0, and M
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is negative definite, the only possible algebra is the compact so(4) ∼ su(2)2. On the

other hand, the only non-compact semisimple algebra with the required block structure

is so(3, 1). When detM = 0, the algebra is non-semisimple. In this class to begin we

find two compatible algebras, namely the direct sum su(2) + u(1)3 and the semi-direct

sum su(2) ⊕ u(1)3 that is isomorphic to the Euclidean algebra iso(3). The remaining

possibility is that the non-semisimple algebra be completely solvable. One example is the

nilpotent u(1)6 that we disregard because the non-geometric fluxes vanish identically. A

second non-trivial solvable algebra, that is actually nilpotent, will be discussed shortly.

After classifying the allowed 6-dimensional subalgebras the next step is to find the

set of corresponding non-geometric fluxes. Except for the nilpotent example, all other

cases have an su(2) factor. This suggests to make a change of basis from (X2I−1, X2I),

I = 1, 2, 3, to new generators (EI , ẼI) such that basically one type, say EI , spans su(2).

The Z3
2 symmetries of the fluxes require that we form combinations that transform in a

definite way, For instance, EI can only be a combination of X2I−1 and X2I with the same

I. Furthermore, for isotropic fluxes it is natural to make the same transformation for each

I. We will then make the SL(2, R) transformation


 EI

ẼI



 =
1

|Γ|2



 −α β

−γ δ







 X2I−1

X2I



 , (3.9)

for all I = 1, 2, 3. Here |Γ| = αδ − βγ, and it must be that |Γ| 6= 0. In the following we

will refer to (α, β, γ, δ) as the Γ parameters.

Substituting in (3.1) it is straightforward to obtain the algebra satisfied by the new

generators EI and ẼJ . This algebra will depend on the non-geometric fluxes as well

as on the parameters (α, β, γ, δ). We can then prescribe the commutators to have the

standard form for the allowed algebras found previously. For instance, in the direct

product examples we impose
[
EI , ẼJ

]
= 0.

In the following sections we will discuss each compatible 6-dimensional algebra in more

detail. The goal is to parametrize the non-geometric fluxes in terms of (α, β, γ, δ). By

construction these fluxes will satisfy the Jacobi identities of the algebra. We will then

solve the mixed constraints involving the NSNS fluxes. The main result will be an explicit

factorization of the cubic polynomials P3(U) and P2(U) that dictate the couplings among

18



the moduli.

3.1 Semisimple algebras

The algebra is semisimple when the Cartan-Killing metric is non-degenerate. This means

detM 6= 0 and hence detX2 6= 0. Now, six-dimensional semisimple algebras are com-

pletely classified. If M is negative definite the algebra is compact so that it must be

so(4) ∼ su(2) + su(2). When M has positive eigenvalues the algebra is non-compact and

it could be so(3, 1) or so(2, 2) but the latter does not fit the required block-diagonal form

(3.3).

3.1.1 so(4) ∼ su(2)2

The standard commutators of this algebra are

[
EI , EJ

]
= ǫIJKEK ;

[
ẼI , ẼJ

]
= ǫIJKẼK ;

[
EI , ẼJ

]
= 0 . (3.10)

After performing the change of basis in (3.1) we find that the non-geometric fluxes needed

to describe this algebra can be parametrized as

c0 = β δ (β + δ) ; c3 = −α γ (α + γ) ,

c1 = β δ (α + γ) ; c2 = −α γ (β + δ) ,

c̃2 = γ2 β + α2 δ ; c̃1 = − (γ β2 + α δ2) ,

(3.11)

provided that |Γ| = (αδ − βγ) 6= 0. It is easy to show that these fluxes verify the Jacobi

identities (2.37). What we have done is to trade the six non-geometric fluxes, constrained

by two independent conditions, by the four independent parameters (α, β, γ, δ). These

parameters are real but the resulting non-geometric fluxes in (3.11) must be integers.

For future purposes we need to determine the cubic polynomial P3(U) that corresponds

to the parametrized non-geometric fluxes. Substituting in (2.36) yields

P3(U) = 3(αU + β)(γU + δ)
[
(α + γ)U + (β + δ)

]
. (3.12)

This clearly shows that in this case P3 has three real roots. Moreover, the roots are all

different because |Γ| 6= 0. We will prove that for other algebras P3 has either complex roots
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or degenerate real roots. The remarkable conclusion is that P3 has three different real roots

if and only if the algebra of the non-geometric fluxes is the compact so(4) ∼ su(2) + su(2).

Alternatively, we may start with the condition that the polynomial has three different real

roots that we can choose to be at 0, −1 and ∞ without loss of generality. These roots

can then be moved to arbitrary real locations by a linear fractional transformation

Z =
αU + β

γU + δ
. (3.13)

with (α, β, γ, δ) ∈ R and |Γ| 6= 0. By comparing the roots of P3 in terms of the fluxes with

those in terms of the transformation parameters we rediscover the map (3.11) and the

associated su(2)2 algebra. In the next sections we will see that the variable Z introduced

above plays a very important physical rôle.

We now turn to the Jacobi constraints (2.41) involving the NSNS fluxes. Inserting

the non-geometric fluxes (3.11) we find that the bA can be completely fixed by the Γ

parameters plus two new real variables (ǫ1, ǫ2) as follows

b0 = − (ǫ1 β3 + ǫ2 δ3) ,

b1 = ǫ1 α β2 + ǫ2 γ δ2 , (3.14)

b2 = − (ǫ1 α2 β + ǫ2 γ2 δ) ,

b3 = ǫ1 α3 + ǫ2 γ3 .

We also need to compute the polynomial P2(U) that depends on the NSNS fluxes. Sub-

stituting the above bA in (2.25) yields

P2(U) = ǫ1(αU + β)3 + ǫ2(γU + δ)3 . (3.15)

It is easy to show that because |Γ| 6= 0, P2 has complex roots whenever ǫ1ǫ2 6= 0. Con-

trariwise, P2 has a triple real root if either ǫ1 or ǫ2 vanishes.

We may expect that the full 12-dimensional algebra has special properties when P2

has a triple root. Indeed, inserting the fluxes in (3.8) yields detZ2 = 16ǫ1ǫ2|Γ|6. Hence,

the full Cartan-Killing matrix M12 happens to be degenerate when ǫ1ǫ2 = 0. To learn

more about the full algebra it is convenient to switch from the original Za generators to
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a new basis (DI , D̃I) defined by


 DI

D̃I


 =

1

|Γ|2


 δ γ

β α





 Z2I−1

Z2I


 , (3.16)

for I = 1, 2, 3. It is straightforward to compute the piece of the full algebra generated by

the (DI , D̃I). Substituting the parametrized fluxes in (3.5) and (3.6) we obtain

[
DI , DJ

]
= −ǫ1 ǫIJKEK ;

[
D̃I , D̃J

]
= −ǫ2 ǫIJKẼK ,

[
EI , DJ

]
= ǫIJKDK ;

[
ẼI , D̃J

]
= ǫIJKD̃K .

(3.17)

All other commutators do vanish.

A quick inspection of the whole algebra encoded in (3.10) and (3.17) shows that when

either ǫ1, or ǫ2, is zero, the DI , or the D̃I , generate a 3-dimensional invariant Abelian

subalgebra. Moreover, when say ǫ1 = 0 and ǫ2 6= 0, the Z2 block of the full Cartan-Killing

metric has one zero and one non-zero eigenvalue which is negative for ǫ2 < 0 and positive

for ǫ2 > 0. The upshot is that when ǫ1ǫ2 = 0, the 12-dimensional algebra is iso(3) + g,

where g is either so(4) or so(3, 1). On the other hand, when ǫ1ǫ2 < 0, the algebra is

so(4) + so(3, 1), whereas for ǫ1, ǫ2 < 0 it is so(4)2, and for ǫ1, ǫ2 > 0 it is so(3, 1)2.

The methods developed in this section will be applied shortly to other subalgebras.

In summary, the non-geometric and NSNS fluxes can be parametrized using auxiliary

variables (α, β, γ, δ) and (ǫ1, ǫ2) in such a way that the Jacobi identities are satisfied and

flux-induced superpotential terms are explicitly factorized. The full 12-dimensional alge-

bras can be simply characterized after the changes of basis (3.9) and (3.16) are performed.

The auxiliary variables are constrained by the condition that the resulting fluxes be

integers. This issue deserves further explanation. There are two cases depending on

whether the polynomial P2(U) has complex roots or not. If it does not, we can take

ǫ1 = 0 to be concrete. From the structure of the NSNS fluxes in (3.14) it is then obvious

that, for α 6= 0, the quotient β/α is a rational number. Going back to the non-geometric

fluxes it can be shown that the ratios γ/α and δ/α, as well as α3 and ǫ2 also belong to

Q. If P2(U) admits complex roots the generic result is that ǫ2/ǫ1, β/α, α3, etc., involve

square roots of rationals. However, it happens that when at least one of the non-geometric

parameters (α, β, γ, δ) is zero then all well defined quotients are again rational numbers.
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3.1.2 so(3, 1)

This is the Lorentz algebra. We can take EI to be the angular momentum, and ẼJ to be

the boost generators. Thus, the algebra can be written as

[
EI , EJ

]
= ǫIJKEK ;

[
ẼI , ẼJ

]
= −ǫIJKEK ;

[
EI , ẼJ

]
= ǫIJKẼK . (3.18)

In this case the non-geometric fluxes that produce the algebra are found to be

c0 = −β
(
β2 + δ2

)
; c3 = α

(
α2 + γ2

)
,

c1 = −α
(
β2 + δ2

)
; c2 = β

(
α2 + γ2

)
,

c̃2 = −β (α2 − γ2) − 2 γ δ α ; c̃1 = α
(
β2 − δ2

)
+ 2 β γ δ ,

(3.19)

as long as |Γ| 6= 0.

Substituting the resulting non-geometric fluxes in (2.36) gives the P3(U) polynomial

P3(U) = −3(αU + β)
[
(αU + β)2 + (γU + δ)2

]
. (3.20)

Since Γ 6= 0, P3 always has complex roots. We will see that for non-semisimple algebras

all roots of P3 are real, as for the compact so(4). Hence, the important observation now

is that P3 has complex roots if and only if the algebra of the non-geometric fluxes is the

non-compact so(3, 1).

The Jacobi constraints (2.41) for the NSNS fluxes can again be solved in terms of the

Γ parameters plus two real constants that we again denote by (ǫ1, ǫ2). Concretely,

b0 = −β
(
β2 − 3δ2

)
ǫ1 − δ

(
δ2 − 3β2

)
ǫ2 ,

b1 = (αβ2 − 2βγδ − αδ2)ǫ1 +
(
γδ2 − 2αδβ − γβ2

)
ǫ2 , (3.21)

b2 =
(
βγ2 + 2γδα − βα2

)
ǫ1 +

(
δα2 + 2βγα − δγ2

)
ǫ2 ,

b3 = α
(
α2 − 3γ2

)
ǫ1 + γ

(
γ2 − 3α2

)
ǫ2 .

These fluxes give rise to

P2(U) = (γU + δ)3(ǫ1Z3 − 3ǫ2Z2 − 3ǫ1Z + ǫ2) , (3.22)

where Z = (αU + β)/(γU + δ) as before. The discriminant of this cubic polynomial is

always negative. Therefore, P2 has three different real roots.
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3.2 Non-semisimple algebras

In this case the algebra is the semidirect sum of a semisimple algebra and a solvable

invariant subalgebra. Lack of simplicity is detected imposing detM = 0 which requires

detX2 = 0, where X2 is shown in (3.4). Combining with the Jacobi identities (2.37)

we deduce that up to isomorphisms there are only two solutions in which the solvable

invariant subalgebra has dimension less than six. In practice this means that X2 has

only one zero eigenvalue. As expected from the underlying symmetries, this invariant

subalgebra can only have dimension three and be u(1)3. The semisimple piece can only

be su(2). The two solutions are the direct and semidirect sum discussed below.

The remaining possibility consistent with the symmetries is for the solvable invariant

subalgebra to have dimension six. The criterion for solvability is that the derived algebra

[g, g] be orthogonal to the whole algebra g with respect to the Cartan-Killing metric. In

our case this means Qab
c Mdc = 0, ∀a, b, d. The non-geometric fluxes further satisfy the

Jacobi identities Q
[ab
x Q

c]x
d = 0. On the other hand, the stronger condition for nilpotency

is Mdc = 0. For our algebra of isotropic fluxes given in (3.1), we find that all solvable flux

configurations are necessarily nilpotent. The proof can be carried out using the algebraic

package Singular to manipulate the various ideals. This result is consistent with the fact

that in our model M is block-diagonal so that when detM = 0, it has three or six

null eigenvalues and in the latter situation M is identically zero. One obvious nilpotent

algebra is u(1)6, but it is uninteresting because the associated fluxes vanish identically.

There is a second solution described in more detail below.

The allowed non-semisimple subalgebras can all be obtained starting from su(2)2 and

performing contractions consistent with the underlying symmetries of the isotropic fluxes.

For example, setting E ′ I = EI , Ẽ ′ I = λẼI in (3.10) and then letting λ → 0 obviously

gives the direct sum su(2) + u(1)3. More generically we can take E ′ I = λa(EI + ẼI),

Ẽ ′ I = λb(EI − ẼI), with a ≥ 0, b ≥ 0. The limit a = 0, b > 0, λ → 0 yields the Euclidean

algebra iso(3). Letting instead 2b = a > 0 and contracting gives the nilpotent algebra.

In the coming sections we present the explicit configurations of non-geometric fluxes

associated to the non-semisimple subalgebras. The parametrization of NSNS fluxes is also

computed. Evaluating the full 12-dimensional algebras in each case is straightforward.
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3.2.1 su(2) + u(1)3

Since the algebra is a direct sum and one factor is Abelian, the brackets take the simple

form
[
EI , EJ

]
= ǫIJKEK ;

[
ẼI , ẼJ

]
= 0 ;

[
EI , ẼJ

]
= 0 . (3.23)

Requiring that upon the change of basis the algebra (3.1) is of this type returns the

following non-geometric fluxes

c0 = β δ2 ; c3 = −α γ2 ,

c1 = β δ γ ; c2 = −α γ δ ,

c̃2 = γ2 β ; c̃1 = −α δ2 ,

(3.24)

assuming |Γ| 6= 0. These fluxes automatically satisfy the Jacobi identities (2.37). They

also satisfy the additional condition c0c2 = c1c̃1 arising from detX2 = 0.

The non-geometric fluxes of the algebra su(2) + u(1)3 lead to the P3(U) polynomial

P3(U) = 3(αU + β)(γU + δ)2 . (3.25)

Evidently, P3 has one single and one double real root.

The Jacobi identities H̄Q = 0 again fix the NSNS fluxes as in the previous cases. The

solution in terms of the free parameters is given by

b0 = − (ǫ1 β3 + ǫ2 δ3) ,

b1 = ǫ1 α β2 + ǫ2 γ δ2 , (3.26)

b2 = − (ǫ1 α2 β + ǫ2 γ2 δ) ,

b3 = ǫ1 α3 + ǫ2 γ3 .

For the associated polynomial P2(U) we then find

P2(U) = ǫ1(αU + β)3 + ǫ2(γU + δ)3 . (3.27)

As in the compact case, this P2 has complex roots whenever ǫ1ǫ2 6= 0.

3.2.2 su(2) ⊕ u(1)3 ∼ iso(3)

According to Levi’s theorem, in general this algebra can be characterized as

[
EI , EJ

]
= ǫIJK

(
EK + ẼK

)
;

[
ẼI , ẼJ

]
= 0 ;

[
EI , ẼJ

]
= ǫIJKẼK . (3.28)
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The typical form of the Euclidean algebra in three dimensions is recognized after the

isomorphism (EI − ẼI) → ÊI . The non-geometric fluxes needed to reproduce the above

commutators turn out to be

c0 = −δ2 (β − δ) ; c3 = γ2 (α − γ) ,

c1 = −δ2 (α − γ) ; c2 = γ2 (β − δ) ,

c̃2 = γ2 (β + δ) − 2 γ δ α ; c̃1 = −δ2 (α + γ) + 2 γ δ β ,

(3.29)

for |Γ| 6= 0. Besides the Jacobi identities these fluxes satisfy 4c0c2 = −(c1− c̃1)
2, by virtue

of detX2 = 0.

For the flux configuration of this algebra the P3(U) polynomial becomes

P3(U) = 3(γU + δ)2
[
(γ − α)U + (δ − β)

]
. (3.30)

As in the direct sum su(2) + u(1)3, P3 has one single and one double real root.

The NSNS fluxes can be determined from the Jacobi identities (2.41). Introducing

again parameters (ǫ1, ǫ2) leads to

b0 = −δ2 (β ǫ1 + δ ǫ2) ,

b1 = 1
3 δ(α δ + 2 β γ)ǫ1 + γ δ2 ǫ2 , (3.31)

b2 = −1
3γ(β γ + 2 α δ)ǫ1 − γ2 δ ǫ2 ,

b3 = γ2 (α ǫ1 + γ ǫ2) ,

The companion polynomial P2(U) of NSNS fluxes is fixed as

P2(U) = (γU + δ)2 [ǫ1(αU + β) + ǫ2(γU + δ)] . (3.32)

Analogous to the non-compact case, this P2 has only real roots, but one of them is

degenerate.

3.2.3 Nilpotent algebra

To search for flux configurations that generate a nilpotent algebra we impose that the

Cartan-Killing metric vanishes. Now, in our model M = 0 implies the much simpler

conditions detX2 = 0 and TrX2 = 0. Up to isomorphisms, we find only one non-trivial
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solution. This is the expected result based on the known classification of 6-dimensional

nilpotent algebras2.

From the 34 isomorphism classes of nilpotent algebras, besides u(1)6, only one is

compatible with isotropic fluxes invariant under Z2 ×Z2. The algebra is 2-step nilpotent

and its brackets can be written as

[
EI , EJ

]
= ǫIJKẼK ;

[
ẼI , ẼJ

]
= 0 ;

[
EI , ẼJ

]
= 0 . (3.33)

Up to isomorphisms this is the algebra labelled n(3.5) in Table 4 of [7].

The change of basis from the original (X2I−1, X2I) generators to the (EI , ẼI) is still

given by (3.9). Starting from the X commutators in (3.1) we can then deduce fluxes such

that the nilpotent algebra (3.33) is reproduced. In this way we obtain

c0 = δ3 ; c3 = −γ3 ,

c1 = δ2 γ ; c2 = −δ γ2 ,

c̃2 = δ γ2 ; c̃1 = −δ2 γ .

(3.34)

Notice that these fluxes only depend on two independent parameters. This occurs because

besides the Jacobi constraints there are two more conditions detX2 = 0 and TrX2 = 0.

The non-geometric fluxes of the nilpotent algebra generate the P3(U) polynomial

P3(U) = 3(γU + δ)3 . (3.35)

Clearly, P3 always has one triple real root.

In analogy with all previous examples, the H̄Q = 0 Jacobi identities determine the

NSNS fluxes in terms of two additional parameters (ǫ1, ǫ2). Inserting the non-geometric

fluxes of the nilpotent algebra in (2.41) readily yields

b0 = −δ2 (δ ǫ2 + γ ǫ1) ,

b1 = γ δ2 ǫ2 − 1
3 δ

(
δ2 − 2 γ2

)
ǫ1 , (3.36)

b2 = −γ2 δ ǫ2 + 1
3γ

(
2 δ2 − γ2

)
ǫ1 ,

b3 = γ2 (γ ǫ2 − δ ǫ1) .

2 A table and references to the original literature are given in [7].
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Substituting in (2.25) we easily obtain the corresponding polynomial

P2(U) = (γU + δ)2 [ǫ2(γU + δ) + ǫ1(γ − δU)] . (3.37)

As in su(2) ⊕ u(1)3, this P2 has one single and one double real root. Without loss of

generality we can choose α = −δ and β = γ in order to write P2 in terms of the variable

Z = (αU + β)/(γU + δ) as

P2(U) = (γU + δ)3(ǫ1Z + ǫ2) . (3.38)

The advantage of this choice of parameters will become evident when we perform a trans-

formation from U to Z in the scalar potential.

4 New variables and RR fluxes

In type IIB orientifolds, the superpotential depends on the complex structure parameter

U through the three cubic polynomials P1(U), P2(U) and P3(U) induced respectively by

RR, NSNS and non-geometric Q-fluxes. Our results in last section show that the last two

polynomials can be concisely written as

P2(U) = (γU + δ)3P2(Z) ; P3(U) = (γU + δ)3P3(Z) , (4.1)

where Z = (αU +β)/(γU +δ). The real parameters (α, β, γ, δ), with |Γ| = (αδ − βγ) 6= 0,

encode the non-geometric fluxes. For the NSNS fluxes two additional real constants (ǫ1, ǫ2)

are needed. As summarized in table 4, P2(Z) and P3(Z) take very specific forms according

to the subalgebra of the Q-fluxes.

A very nice property of the variable Z is its invariance under the SL(2, Z)U modular

transformations

U ′ =
k U + ℓ

m U + n
; k, ℓ, m, n ∈ Z ; kn − ℓm = 1 . (4.2)

Since this is a symmetry of the compactification, the effective action must be invariant.

The Kähler potential, K = −3 log[−i(U − Ū)] + · · · , clearly transforms as

K ′ = K + 3 log |mU + n|2 . (4.3)
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Q-subalgebra P3(Z)/3 P2(Z) P1(Z)

so(4) Z(Z + 1) ǫ1Z3 + ǫ2 ξ3(ǫ1 − ǫ2Z3) + 3ξ7Z(1 −Z)

ξ3(ǫ1 + 3ǫ2Z − 3ǫ1Z2 − ǫ2Z3)
so(3, 1) −Z(Z2 + 1) ǫ1Z3 − 3ǫ2Z2 − 3ǫ1Z + ǫ2

+3ξ7(Z2 + 1)

su(2) + u(1)3 Z ǫ1Z3 + ǫ2 ξ3(ǫ1 − ǫ2Z3) − 3ξ7Z2

su(2) ⊕ u(1)3 1 −Z ǫ1Z + ǫ2 3λ1Z + 3λ2Z2 + λ3Z3

nil 1 ǫ1Z + ǫ2 3λ1Z + 3λ2Z2 + λ3Z3

Table 4: Q-subalgebras and polynomials

Therefore, the physically important quantity eK |W |2 is invariant as long as the superpo-

tential satisfies

W ′ =
W

(mU + n)3
. (4.4)

In order for W to fulfill this property the fluxes must transform in definite patterns. In

fact, it follows that (4.4) holds separately for each of the flux induced polynomial Pi(U).

We claim that the fluxes transform under SL(2, Z)U precisely in such a manner that

Z ′ = Z. The proof begins by first finding how the Q-fluxes mix among themselves from

the condition P ′
3 = P3/(mU + n)3. For example, under U ′ = −1/U , the non-geometric

fluxes transform as

c′0 = −c3 , c′1 = c2 , c′2 = −c1 , c′3 = c0 , c̃ ′
1 = c̃2 , c̃ ′

2 = −c̃1 . (4.5)

Next we read off the corresponding transformation of the parameters (α, β, γ, δ) that are

better thought of as the elements of a matrix Γ. The result is

Γ′ =



 α′ β ′

γ′ δ′



 =



 α β

γ δ







 n −ℓ

−m k



 (4.6)

It easily follows that Z ′ = Z. Notice that |Γ′| = |Γ|.
For the NSNS fluxes we can study the transformation of P2 with coefficients given by

the bA. Alternatively, we may start from P2 written as function of Z as in (4.1). The

conclusion is that the transformation of the bA is also determined by Γ′ together with

(ǫ′1, ǫ
′
2) = (ǫ1, ǫ2). This is valid for all Q-subalgebras.
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At this point it must be evident that we want to change variables from U to Z. It

is also convenient to trade the axiodilaton S and the Kähler modulus T by new fields

defined by

S = S + ξs ; T = T + ξt , (4.7)

where the shifts ξs and ξt are some real parameters. The motivation is that such shifts in

the axions Re S and Re T can be reabsorbed into RR fluxes as explained in the following.

4.1 Parametrization of RR fluxes

The systematic procedure is to express the RR fluxes aA in such a way that their contri-

bution to the superpotential is of the form

P1(U) = (γU + δ)3P̂1(Z) , (4.8)

in complete analogy with (4.1). To arrive at this factorization we must relate the four RR

fluxes aA to the parameters (α, β, γ, δ) that define Z = (αU + β)/(γU + δ), and to four

additional independent variables. Obviously, P̂1(Z) can be expanded in the monomials

(1,Z,Z2,Z3). However, a more convenient basis contains the already known polynomials

P3 and P2 that are generically linearly independent. We still need two independent

polynomials and these are taken to be the duals P̃3 and P̃2. The dual P̃ is such that

P → P̃/Z3 when Z → −1/Z. The last two subalgebras in table 4 must be treated

slightly different because linear independence of P3 and P2 fails for particular properties

of the NSNS flux parameter ǫ1.

We concretely make the expansion

P̂1(Z) = ξsP2(Z) + ξtP3(Z) + P1(Z) . (4.9)

In the full superpotential the first two terms in P̂1 will precisely offset the axionic shifts

in the new variables S and T . Let us now discuss the remaining piece P1(Z) that also

depends on the Q-subalgebra and is displayed in table 4. As explained before, for the

first three subalgebras in the table we can further choose

P1(Z) = ξ7P̃3(Z) − ξ3P̃2(Z) . (4.10)
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A motivation for this choice is that the RR tadpoles turn out to depend on the RR fluxes

only through the coefficients (ξ3, ξ7).

For the last two subalgebras in table 4, P3 and P2 are not independent when ǫ1 takes

a particular critical value. For su(2) ⊕ u(1)3 this happens when ǫ1 = −ǫ2, whereas for

the nilpotent algebra the critical value is ǫ1 = 0. To take into account these possibilities,

compensating at the same time for the axionic shifts, we still make the decomposition

(4.9) but with

P1(Z) = 3λ1Z + 3λ2Z2 + λ3Z3 . (4.11)

Away from the critical values of ǫ1 we can take λ1 = 0 because ξs and ξt are independent

parameters. At the critical value necessarily λ1 6= 0 but in this case ξs and ξt enter in

the RR fluxes in only one linearly independent combination. The RR tadpoles happen to

depend just on the parameters (λ2, λ3).

The next step is to compare the expansion of P1(U) in U with its factorized form, c.f.

(4.8) and (2.24). In this way we can obtain an explicit parametrization of the RR fluxes

aA in terms of the variables that determine P̂1(Z), namely (ξs, ξt) together with (ξ3, ξ7) or

(λ1, λ2, λ3), depending on the Q-subalgebra. These results are collected in the appendix.

We stress that the ξ’s and λ’s are real parameters but the emerging RR fluxes must be

integers.

A vacuum solution in which the moduli (Z,S, T ) are fixed generically requires specific

values of the non-geometric, NSNS and RR fluxes. These fluxes also generate RR tad-

poles that must be balanced by adding orientifold planes or D-branes. To determine the

type of sources that must be included we need to evaluate the RR tadpole cancellation

conditions using all parametrized fluxes. Substituting in (2.42) and (2.43) we arrive at

the very compact expressions for the number of sources N3 and N7 gathered in table 5.

As advertised before, the RR fluxes only enter either through the parameters (ξ3, ξ7) or

(λ2, λ3). The non-geometric and NSNS fluxes only contribute through |Γ|3 and (ǫ1, ǫ2).

We will see that there is also a clear correlation of the tadpoles with the vevs of the

moduli.

Finally, let us remark that, just like (ǫ1, ǫ2), the ξ and λ variables are all invari-

ant under modular transformations of the complex structure U . Indeed, from the ex-
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Q-subalgebra N3/|Γ|3 N7/|Γ|3

so(4) (ǫ2
1 + ǫ2

2) ξ3 2 ξ7

so(3, 1) 4(ǫ2
1 + ǫ2

2) ξ3 4 ξ7

su(2) + u(1)3 (ǫ2
1 + ǫ2

2) ξ3 ξ7

su(2) ⊕ u(1)3 λ2 ǫ1 − λ3 ǫ2 λ2 + λ3

nil λ2 ǫ1 − λ3 ǫ2 λ3

Table 5: Q-subalgebras and RR tadpoles

plicit parametrization of the RR fluxes aA we deduce that their correct behavior under

SL(2, Z)U , analogous to (4.5), precisely follows from the transformation of (α, β, γ, δ) in

(4.6). This is of course consistent with the fact that the number of sources N3 and N7 in

the tadpoles are physical quantities that must be modular invariant.

4.2 Moduli potential in the new variables

We have just seen how a systematic parametrization of the fluxes has guided us to new

moduli fields denoted (Z,S, T ). As we may expect, the effective action in the transformed

variables also takes a form more suitable for finding vacua. The shifts in the axionic

real parts of the axiodilaton and the Kähler field do not affect the Kähler potential K

whereas in the superpotential W they can be reabsorbed in RR fluxes. On the other

hand, the change from the complex structure U to Z is the SL(2, R) transformation

U = (β − δZ)/(γZ − α) whose effect on K and W is completely analogous to a modular

transformation except for factors of |Γ| = (αδ − βγ). Combining previous results we

obtain eK |W |2 → eK|W|2, where the transformed Kähler potential K and superpotential

W are given by

K = −3 log
(
−i (U − Ū)

)
− log

(
−i (S − S̄)

)
− 3 log

(
−i (Z − Z̄)

)
, (4.12)

W = |Γ|3/2 [T P3(Z) + S P2(Z) + P1(Z)] . (4.13)

The flux-induced polynomials Pi(Z) are displayed in table 4 for each Q-subalgebra. In the

effective 4-dimensional action with N=1 supergravity the functions K and W determine
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the scalar potential of the moduli according to

V = eK

{
∑

Φ=Z,S,T

KΦΦ̄|DΦW|2 − 3|W|2
}

. (4.14)

We are interested in supersymmetric minima for which DΦW = ∂ΦW + W∂ΦK = 0, for

all fields.

5 Supersymmetric vacua

This section is devoted to searching for supersymmetric vacua of the moduli potential

induced by RR, NSNS and non-geometric fluxes together. We will show that by using

our new variables the problem simplifies substantially and analytic solutions are feasible.

Supersymmetric vacua are characterized by the vanishing of the F-terms. In our setup

the conditions are

DT W =
∂W
∂T +

3iW
2Im T = 0 ,

DSW =
∂W
∂S +

iW
2ImS = 0 , (5.1)

DZW =
∂W
∂Z +

3iW
2ImZ = 0 .

The task is to determine whether there are solutions with moduli completely stabilized

at vevs denoted

Z0 = x0 + iy0 ; S0 = s0 + iσ0 ; T0 = t0 + iµ0 . (5.2)

The vacua are either Minkowski or AdS because the potential (4.14) at the minimum is

given by V0 = −3eK0 |W0|2 ≤ 0.

Besides stabilization, there are further physical requirements. At the minimum the

imaginary part of the axiodilaton, σ0, must be positive for the reason it is the inverse of

the string coupling constant gs. It can be argued that the geometric moduli are subject

to similar conditions. The main assumption is that they arise from the metric of the

internal space, which is T6 in absence of fluxes. In particular, the Kähler modulus has

Im T = e−φA, where A is the area of a 4-dimensional subtorus. Hence, it must be µ0 > 0.
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Notice also that the internal volume is measured by Vint = (µ0/σ0)
3/2. For the transformed

complex structure Z it happens that ImZ = |Γ|ImU/|γU + δ|2. Therefore, necessarily

ImZ0 = y0 6= 0 because for Im U0 = 0 the internal space is degenerate. Without loss of

generality we choose that Im U0 is always positive.

Another physical issue is whether the moduli take values such that the effective super-

gravity action is a reliable approximation to string theory. Specifically, the string coupling

gs = 1/σ0 is expected to be small to justify the exclusion of non-perturbative string ef-

fects. Conventionally, there is also a requirement of large internal volume to disregard

corrections in α′. However, in presence of non-geometric fluxes the internal space might

be a T-fold in which there can exist cycles with sizes related by T-duality [14, 30]. Thus,

for large volume there could be tiny cycles whose associated winding modes would be

light. To date these effects are not well understood. At any rate, in this work we limit

ourselves to finding supersymmetric vacua of an effective field theory defined by a very

precise Kähler potential and flux-induced superpotential. A more detailed discussion of

the landscape of vacua is left for section 6. We will see that the moduli can be fixed at

small string coupling and cosmological constant.

In the following we will first consider supersymmetric Minkowski vacua that have

W = 0 at the minimum. In our approach it is straightforward to show that for isotropic

fluxes such vacua are disallowed. We then turn our attention to the richer class of AdS4

vacua. Since superpotential terms adopt very specific forms depending on the particular

subalgebra satisfied by the non-geometric fluxes, we will study the corresponding vacua

case by case. We will mostly focus on the model associated to the non-geometric fluxes

of the compact su(2)2 but will also consider other allowed subalgebras to some extent.

5.1 Minkowski vacua

Minkowski solutions with zero cosmological constant require that the potential vanishes.

Imposing supersymmetry further implies that the superpotential must be zero at the

minimum (Z0,S0, T0). A key property of the superpotential (4.13) is its linearity in S
and T . This implies in particular that the F-flat conditions DSW = 0 and DT W = 0,
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together with W = 0, reduce just to

P3(Z0) = P2(Z0) = P1(Z0) = 0 . (5.3)

The third condition DZW = 0 yields a linear relation between S0 and T0 so that not

all moduli can be stabilized. The situation is actually worse because (5.3) cannot be

fulfilled appropriately. Indeed, for the specific polynomials for each subalgebra shown in

table 4, it is evident that P3 and P2 can only have a common real root Z0. But then

Im U0 = ImZ0 = 0 and this is inconsistent with a well defined internal space.

It must be emphasized that we are assuming that non-geometric fluxes, and their

induced P3, are non-trivial. Our motivation is to fix the Kähler modulus without invoking

non-perturbative effects. If only RR and NSNS fluxes are turned on there do exist physical

supersymmetric Minkowski vacua in which only the axiodilaton and the complex structure

are stabilized [28,31]. In such solutions the RR and NSNS fluxes must still satisfy a non-

linear constraint [31, 32].

No-go results for supersymmetric Minkowski vacua in presence of non-geometric fluxes

have been obtained previously [17,19,32] 3. In [17] the existence was disproved supposing

special solutions for the Jacobi identities (2.37). We are now extending the proof to all

possible non-trivial isotropic non-geometric fluxes solving these constraints.

5.2 AdS4 vacua

We now want to solve the supersymmetry conditions when W 6= 0. The three complex

equations DΦW = 0, Φ = Z,S, T , in principle admit solutions with all moduli fixed at

values Z0 = x0 + iy0, S0 = s0 + iσ0, and T0 = t0 + iµ0. We will also impose the physical

requirements σ0 > 0, µ0 > 0 and Im U0 > 0 which implies |Γ|y0 > 0. In general existence

of such solutions demands that the fluxes satisfy some specific properties.

In the AdS4 vacua, P2 and P3 are necessarily different from zero. Moreover, combining

the equations DSW = 0 and DT W = 0 shows that at the minimum Im (P3/P2) = 0, or

3In [19] it is further shown that Minkowski vacua with all moduli stabilized can exist in more general

setups having more complex structure than Kähler moduli (in IIB language).
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equivalently

(P3P∗
2 − P∗

3P2) |0 = 0 . (5.4)

From this condition we can quickly extract useful information. For example, for the

polynomials of the nilpotent subalgebra we find that ǫ1 = 0. Similarly, for the semidirect

product su(2) ⊕ u(1)3, it follows that ǫ1 = −ǫ2. Thus, in these two cases P2 and P3 are

forced to be parallel and equation (5.4) is inconsequential for the moduli. Having one

equation less means that all moduli cannot be fixed. In fact, what happens is that only

a linear combination of the axions s0 and t0 is determined [6].

Another instructive example is that of the su(2) + u(1)3 subalgebra. With the poly-

nomials provided in table 4 the condition (5.4) implies

ǫ2 − 2ǫ1x0(x
2
0 + y2

0) = 0 , (5.5)

where we already used that y0 6= 0. Now we see that forcefully ǫ1 6= 0 because otherwise

ǫ2, and thus P2 itself, would vanish. However, it could be ǫ2 = 0 and then x0 = 0. If

ǫ2 6= 0 we will just have one equation that gives y0 in terms of x0.

In other examples with P2 and P3 not parallel there are analogous results. It can

happen that (5.4) already fixes x0 or it gives y0 as function of x0. The remaining five

equations can be used to obtain S0 and T0 in terms of y0 or x0, and to find a polynomial

equation that determines y0 or x0. This procedure can be efficiently carried out using the

algebraic package Singular. The results are described below in more detail.

The superpotential for each Q-subalgebra is constructed with the flux-induced poly-

nomials listed in table 4. The numbers of sources needed to cancel tadpoles are given in

table 5. Recall that O3-planes (D3-branes) make a positive (negative) contribution to N3,

whereas O7-planes (D7-branes) yield negative (positive) values of N7.

Each supersymmetric vacua can be distinguished by the modular invariant values of

the string coupling constant gs and the potential at the minimum V0 that is equal to the

cosmological constant up to normalization. In the models at hand these quantities are

given by

V0 = − 3|W0|2
128 y3

0 µ3
0 σ0

; gs =
1

σ0

. (5.6)
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In all examples the vevs of the moduli y0, σ0, µ0, as well as the value W0 of the superpo-

tential at the minimum, can be completely determined and will be given explicitly. It is

then straightforward to evaluate the characteristic data (V0, gs).

5.2.1 Nilpotent subalgebra

When ǫ1 = 0, the model based on the non-geometric fluxes of the nilpotent subalgebra is

U ↔ T dual to a IIA orientifold with only RR and NSNS fluxes already considered in the

literature [5,6]. Supersymmetry actually requires ǫ1 = 0. There are some salient features

that are easily reproduced in our setup. For instance, a solution exists only if λ3 6= 0 and

(λ1λ3 − λ2
2) > 0. The axions s0 and t0 can only be fixed in the linear combination

3t0 + ǫ2s0 =
λ2

λ2
3

(3λ1λ2 − 2λ2
2) . (5.7)

The rest of the moduli are determined as

x0 = −λ2

λ3

; y2
0 =

5(λ1λ3 − λ2
2)

3λ2
3

; σ0 = −2(λ1λ3 − λ2
2)y0

3ǫ2λ3

; µ0 = ǫ2σ0 . (5.8)

The cosmological constant can be computed using W0 = 2iµ0|Γ|3/2.

From the results we deduce that ǫ2 > 0, and λ3 > 0 for y0 < 0. Then Im U0 > 0

requires |Γ| < 0 as it happens for the nilpotent algebra. The tadpole conditions then

verify N3 = −λ3ǫ2|Γ|3 > 0 and N7 = λ3|Γ|3 < 0. The relevant conclusion is that the

model necessarily requires O3-planes and O7-planes.

5.2.2 Semidirect sum su(2) ⊕ u(1)3

The non-geometric fluxes of this subalgebra are U ↔ T dual to NSNS plus geometric

fluxes in a IIA orientifold. Models of this type have been studied previously [3, 4, 6]. For

completeness we will briefly summarize our results that totally agree with the general

solution presented in [6]. Existence of a supersymmetric minimum imposes the constraint

ǫ1 = −ǫ2. In this case it occurs again that the axions s0 and t0 can only be determined

in a linear combination given by

3t0 + ǫ2s0 = 3λ1 + 3λ2(9 − 7x0) + 3λ3x0(9 − 8x0) . (5.9)
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The imaginary parts of the axiodilaton and the Kähler field are stabilized at values

µ0 = ǫ2σ0 ; ǫ2σ0 = 6(λ2 + λ3x0)y0 . (5.10)

Notice that ǫ2 must be positive. It also follows that W0 = 2iµ0(1 − x0 − iy0)|Γ|3/2. The

vevs of x0 and y0 depend on whether the RR flux parameter λ3 is zero or not.

When λ3 = 0 we obtain

x0 = 1 ; 3λ2y
2
0 = −(λ1 + λ2) . (5.11)

Notice that λ2 6= 0 to guarantee σ0 6= 0. In fact, choosing y0 > 0 it must be λ2 > 0. For

the number of sources we find N3 = −λ2ǫ2|Γ|3 < 0 and N7 = λ2|Γ|3 > 0. Therefore, D3

and D7-branes must be included.

When λ3 6= 0 we instead find

λ3y
2
0 = 15(x0 − 1)(λ2 + λ3x0) , (5.12)

whereas x0 must be a root of the cubic equation

160(x0−1)3+294(1+
λ2

λ3
)(x0−1)2+135(1+

λ2

λ3
)2(x0−1)+

1

λ3
(λ3+3λ2+3λ1) = 0 . (5.13)

The solution for x0 must be real and such that y2
0 > 0. For the tadpoles we now have

N7 = |Γ|3(λ2+λ3) and N3 = −ǫ2N7. Thus, in general N3 and N7 have opposite signs. The

remarkable feature is that now they can be zero simultaneously. This occurs when the

RR parameters satisfy λ2 = −λ3, in which case the cubic equation for x0 can be solved

exactly.

5.2.3 Direct sum su(2) + u(1)3

As explained before, necessarily ǫ1 6= 0. Let us consider ǫ2 = 0 which is the condition

for P2 to have only real roots. Now it happens that all moduli can be determined. The

axions are fixed at x0 = 0, s0 = 0 and t0 = 0, whereas the real parts have vevs

y2
0 =

ǫ1ξ3

ξ7
; σ0 = −2ξ2

7y0

ǫ2
1ξ3

; µ0 = 2ξ7y0 . (5.14)

The cosmological constant is easily found substituting W0 = −2µ0y0|Γ|3/2. Clearly, the

solution exists only if ξ3 6= 0 and ξ7 6= 0. Moreover, ǫ1ξ3ξ7 > 0 and if we take y0 > 0,
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ξ3 < 0, ξ7 > 0 and ǫ1 < 0. The numbers of sources satisfy N3 < 0 and N7 > 0, so that D3

and D7-branes are needed.

Taking ǫ2 6= 0 we deduce that there are no solutions at all when ξ7 = 0 and ξ3 6= 0.

However, there are minima that require ǫ1 < 0 and N7 > 0 when ξ3 = 0.

5.2.4 Non-compact so(3, 1)

This is the only flux configuration for which P3(Z) has complex roots. It also happens that

P2(Z) always has three different real roots. We will briefly discuss the vacua according

to whether the NSNS flux parameter ǫ2 vanishes or not.

• ǫ2 = 0

In this setup the axions are determined to be x0 = 0, s0 = 0 and t0 = 0. For the

imaginary parts of the Kähler modulus and the axiodilaton we obtain

µ0 =
ǫ1σ0(3 + y2

0)

(1 − y2
0)

; ǫ1σ0 =
1

2y0(3 + y2
0)

[
3ξ7(y

2
0 − 1) − ǫ1ξ3(3y

2
0 + 1)

]
. (5.15)

To evaluate the potential at the minimum we use W0 = 2µ0y0(1 − y2
0)|Γ|3/2. Notice that

ξ3 and ξ7 cannot be zero simultaneously and that y2
0 = 1 is not allowed. Actually, the

imaginary part of the transformed complex structure satisfies a third order polynomial

equation in y2
0 given by

ǫ1ξ3(5y
6
0 + 13y4

0 + 15y2
0 − 1) − ξ7(y

2
0 − 1)(5y4

0 + 6y2
0 − 3) = 0 . (5.16)

We are interested in real roots y0 6= 0 and y0 6= ±1.

Although we have not made an exhaustive analysis, it is clear that the solutions of

(5.16) depend on the range of the ratio ξ7/ǫ1ξ3. For instance, there are values for which

there is no real root at all, as it occurs e.g. for 2ξ7 = −ǫ1ξ3. For other values there might

be only one real positive solution for y2
0. An special example happens when ξ3 = 0 and

the net O3/D3 charge N3 is zero, while the net O7/D7 charge N7 is negative as implied

by the conditions µ0 > 0 and |Γ|y0 > 0. Similarly, when ξ7 = 0 , there is only one solution

in which N7 = 0 while N3 < 0.

The third possibility is to have two allowed solutions. For instance, taking ξ7 = 2ǫ1ξ3

gives roots y2
0 = 1/5 and y2

0 = 1 + 2
√

2. However, in principle the corresponding vacua
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cannot be realized simultaneously because the net charges would have to jump. In fact,

for y2
0 < 1, it happens that N3N7 > 0, whereas for y2

0 > 1, it must be N3N7 < 0. It can

also arise that both solutions have y2
0 < 1. For example, when ξ7 = −30ǫ1ξ3 each of the

two vacua has N3 > 0 and N7 < 0. We will explore the phenomenon of multiple AdS

vacua in more detail for the non-geometric fluxes of the su(2)2 algebra.

• ǫ2 6= 0

We have only studied the special cases when one of the flux-tadpoles N3 or N7 is zero.

We find that when ǫ1 = 0 the F-flat conditions can not be solved but for ǫ1 > 0 there are

consistent solutions for a particular range of |ǫ2/ǫ1|. Vacua with ξ3 = 0 exist provided

that ξ7 < 0. Vacua with no O7/D7 flux-tadpoles, i.e. with ξ7 = 0, require ξ3 < 0. One

important conclusion is that for the fluxes of the non-compact Q-subalgebra solutions

with N7 = 0 must have N3 < 0.

5.2.5 Compact su(2)2

This is the only situation in which the polynomial P3(U) induced by the non-geometric

fluxes has three different real roots. The polynomial P2(U) generated by NSNS fluxes has

complex roots whenever ǫ1ǫ2 6= 0, and one triple real root otherwise. We will study the

vacua in both cases in some detail.

The full model based on the non-geometric fluxes of su(2)2 has an interesting residual

symmetry that exchanges the NSNS auxiliary parameters. It can be shown that the

effective action is invariant under ǫ1 ↔ ǫ2, ξ3 → ξ3 and ξ7 → ξ7, together with the field

transformations

Z → 1/Z∗ ; S → −S∗ ; T → −T ∗ . (5.17)

This symmetry leaves one of the P3 roots invariant while exchanging the other two.

5.2.5.1 P2(U) with triple real root

Due to the symmetry (5.17) it is enough to consider ǫ1 = 0 and ǫ2 6= 0. In this model the

axions are stabilized at vevs

x0 = −1

2
; ǫ2s0 = 3ξ7 −

ǫ2ξ3

2
; t0 = ξ7 −

ǫ2ξ3

2
. (5.18)
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The imaginary parts of the Kähler modulus and the axiodilaton are fixed in terms of y0

according to

µ0 = − 4ǫ2σ0

(1 + 4y2
0)

; ǫ2σ0 = −y0

[
3ξ7 +

ǫ2ξ3

8
(4y2

0 − 3)
]

. (5.19)

At the minimum W0 = 2iǫ2σ0|Γ|3/2. Clearly ξ3 and ξ7 cannot vanish simultaneously

so that the model always requires additional sources to cancel tadpoles. Observe that

necessarily ǫ2 < 0.

The modulus y0 is determined by the fourth order polynomial equation

ǫ2ξ3(4y
2
0 − 1)(4y2

0 + 5) − 8ξ7(4y
2
0 − 5) = 0 . (5.20)

In the two special cases ξ7 = 0 and ξ3 = 0 an exact solution is easily found. When ξ3ξ7 6= 0

there can be two AdS solutions. The corresponding vacua, which can be characterized by

the net tadpoles N3 and N7, are described more extensively in the following.

• N7 = 0

When ξ7 = 0 the vevs have the very simple expressions

y2
0 =

1

4
; σ0 =

ξ3y0

4
; µ0 = −2ǫ2σ0 ; V0 =

12|Γ|3y0

ǫ2ξ2
3

. (5.21)

Since both µ0 and σ0 are positive, it must be ǫ2 < 0, and taking y0 > 0, ξ3 > 0. Therefore,

N3 > 0 and O3-planes must be included.

• N3 = 0

This is the case ξ3 = 0. The moduli and the cosmological constant are fixed at values

y2
0 =

5

4
; ǫ2σ0 = −3ξ7y0 ; µ0 = −2

3
ǫ2σ0 ; V0 =

9|Γ|3ǫ2y0

500 ξ2
7

. (5.22)

Necessarily ǫ2 < 0, and choosing y0 > 0, ξ7 > 0. Hence, N7 > 0 and D7-branes are

required.

• N3N7 6= 0

The solutions for y0 depend on the ratio ξ7/ǫ2ξ3. A detailed analysis can be easily

performed because the polynomial equation (5.20) is quadratic in y2
0. We find that there

are no real solutions in the interval 1/8 < ξ7/ǫ2ξ3 < (7 + 2
√

10)/4. On the other hand, when
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0 < ξ7/ǫ2ξ3 < 1/8, there is only one real positive solution for y2
0 and it requires N3 > 0 and

N7 < 0. For ξ7/ǫ2ξ3 ≤ 0 there is only one acceptable root for y2
0 and it leads to N3 > 0 and

N7 ≥ 0. A more interesting range of parameters is ξ7/ǫ2ξ3 > (7 + 2
√

10)/4 because there

are two allowed solutions for y2
0 and for both it must be that N3 < 0 and N7 > 0. The

upshot is that there can be metastable AdS vacua in the presence of D3 and D7-branes.

5.2.5.2 P2(U) with complex roots

The F-flat conditions can be unfolded to obtain analytic expressions for the vevs of all

moduli. However, for generic range of parameters, a higher order polynomial equation has

to be solved to determine y0 in the end. The main interesting feature is the appearance of

multiple vacua even when N3N7 = 0, i.e. when there are either no O7/D7 or no O3/D3

net charges present. We will first describe the overall picture and then present examples.

For definiteness we always choose y0 > 0 so that |Γ| > 0 is required to have Im U0 > 0 for

the complex structure.

To obtain and examine the results it is useful to make some redefinitions. The idea

is to leave as few free parameters as possible in the F-flat equations. Since ǫ1 is different

from zero we can work with the ratio

ρ =
ǫ2

ǫ1
. (5.23)

By virtue of the residual symmetry (5.17) there is an invariance under ρ → 1/ρ. There-

fore, we can restrict to the range −1 ≤ ρ ≤ 1, where the boundary corresponds to the

fixed points of the inversion. Furthermore, as discussed at the end of section 3.1.1, the

parameter ρ is either a rational number or involves at most square roots of rationals.

When ξ3 6= 0 it is also convenient to introduce new variables as

T = ǫ1ξ3 T̂ ; S = ξ3Ŝ ; ξ7 = ǫ1ξ3(ρ
2 + 1)η . (5.24)

The definition of the parameter η seems awkward but it simplifies the results. Notice that

η → ηρ under (5.17). In the new variables the superpotential becomes

W = |Γ|3/2ǫ1ξ3[3 T̂ Z(Z + 1) + Ŝ(Z3 + ρ) + (1 − ρZ3) + 3η(1 + ρ2)Z(1 − Z)] . (5.25)
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Since the F-flat conditions are homogeneous in W the resulting equations will only depend

on the parameters ρ and η. When ξ3 = 0 we just make different field redefinitions, i.e.

T = ǫ1ξ7 T̂ and S = ξ7 Ŝ, so that the free parameters will be ρ and ξ7/ǫ1.

Manipulating the F-flat conditions enables us to find the vevs T0 and S0 as functions

of (x0, y0). The expressions are tractable but bulky so that we refrain from presenting

them. The exception is the handy relation between the size and string coupling moduli

µ0 =
ǫ1σ0(3x

2
0 − y2

0)

1 + 2x0

, (5.26)

which is valid when x0 6= −1
2 and y2

0 6= 3
4 . There is a solution with x0 = −1

2 and y2
0 = 3

4 but

it has µ0 = −ǫ1(1 + ρ)σ0, µ0 = 3ξ7y0, and it requires η = −(1 + ρ)/(ρ2 − 7ρ + 1). There

is another vacuum with x0 = −1
2 that occurs when ρ → ∞ (ǫ1 = 0) and was discussed in

section 5.2.5. The case x2
0 = y2

0, which is better treated separately, requires ξ7 6= 0 unless

ρ = 0.

The residual unknowns (x0, y0) are determined from the coupled system

y4
0 + 2x0(1 + x0)y

2
0 − ρ(2x0 + 1) + x3

0(x0 + 2) = 0 , (5.27)

y6
0 (1 + 2ηx0 − 2η) +

(
1 + 30ηx0

3 − x0
2 + 18ηx0

2 − 6 ρη
)
y4

0

+ x0

(
54ηx0

4 + 11x0
3 + 42ηx0

3 + 8x0
2 + 12ρηx0 − 4x0 − 6ρη

)
y2

0 (5.28)

+
(
2ρ + 4ρx0 + 11x0

3 + 13x0
4
) (

2 ρη + 2ηx0
3 + x0

2 + x0

)
= 0 .

The corresponding equations when ξ3 = 0 can be obtained taking the limit η → ∞.

Eliminating y0 for generic parameters gives a ninth-order polynomial equation for x0.

For some range of parameters the above equations can admit several solutions for

Z0 = x0 + iy0, which in turn yield consistent values for the remaining moduli. The

existence of multiple vacua is most easily detected in the limiting cases in which one of

the net tadpoles N7 or N3 vanishes, equivalently when ξ7 = 0 (η = 0) or ξ3 = 0 (η → ∞).

In either limit the NSNS parameter ρ can still be adjusted. We expect the results to be

invariant under ρ → 1/ρ and this is indeed what happens.

We have mostly looked at models having no O7/D7 net charge, namely with η = 0. It

turns out that the solutions require ξ3 > 0 so that N3 > 0 and O3-planes must be present.

Below we list the main results.
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1. For ρ = 1 there are no minima with moduli stabilized.

2. For ρ = −1 there is only one distinct vacuum with data

Z0 = −0.876 + 1.158 i ; S0 = ξ3(−0.381 + 0.238 i) ; T0 = ǫ1ξ3(0.602 − 0.305 i) ; V0 = 2.38 |Γ|3

ξ2

3
ǫ1

.

(5.29)

Notice that necessarily ξ3 > 0 and ǫ1 < 0. Actually, for ρ = −1, there is a second

consistent solution but it is related to the above by the residual symmetry (5.17).

3. There can be only one solution when ρc ≤ ρ < 1, where ρc = −0.7267361874. The

critical value ρc is such that the discriminant of the polynomial equation that determines

x0 is zero. Consistency requires ǫ1 < 0 and ξ3 > 0 so that O3-planes are needed. For

instance, when ρ = 0 the solution is exact and has

Z0 = −1 + i ; S0 =
ξ3

8
(4 + i) ; T0 =

ǫ1ξ3

4
(2 − i) ; V0 =

6 |Γ|3
ξ2

3
ǫ1

. (5.30)

As expected, upon the transformation (5.17) this vacuum coincides with that having

ξ7 = 0 and ǫ1 = 0, given in (5.21). For other values of ρ the solution is numerical. For

example, taking ρ = 1
2 leads to the vevs

Z0 = −1.036 + 0.834 i ; S0 = ξ3(1.561 + 0.192) ; T0 = ξ3ǫ1(1.055 − 0.453 i) ; V0 = 2.283|Γ|3

ξ2

3
ǫ1

.

(5.31)

4. The important upshot is that in the interval −1 < ρ < ρc there can be two distinct

solutions for the same set of fluxes. An example with ρ = −4
5 is shown in table 6. Notice

that the last two solutions can exist for ξ3 > 0 and ǫ1 > 0. The first solution can also

occur but for ξ3 > 0 and ǫ1 < 0.

Z0 S0/ξ3 T0/ξ3ǫ1 V0 ξ2
3 ǫ1/|Γ|3

−0.91105442+ 1.14050441 i −0.26002362 + 0.19059447 i 0.53128071− 0.27572497 i 3.353

−0.43550654+ 0.73478523 i 0.28605555 + 0.55017649 i 0.60410811 + 0.12407321 i -2.168

−0.40368586+ 0.57866160 i 0.49215445 + 0.33255331 i 0.57101568 + 0.26593032 i -1.880

Table 6: Degenerate vacua for ξ7 = 0 and ρ = −4
5 .

For models having no O3/D3 net charge a detailed analysis is clearly feasible but we

have only sampled narrow ranges of the adjustable parameter ρ. Consistent solutions
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must have ǫ1 < 0 and ξ7 > 0. Hence, N7 > 0 and D7-branes must be included. There are

values of ρ, e.g. ρ = −1, for which there are no vacua with stabilized moduli. For ρ = 1

there is only one minimum which can be computed exactly. More interestingly, models

of this type can also exhibit multiple vacua. In table 7 we show one example with ρ = 3
4 .

Observe that both solutions exist for ǫ1 < 0 and ξ7 > 0.

Z0 ǫ1S0/ξ7 T0/ξ7 V0 ξ2

7
/ǫ1|Γ|3

−0.88312113 + 0.74580943 i −6.1818994− 1.6867660 i −4.20643209+ 3.92605399 i 0.026

0.20646056 + 0.89488895 i 0.03039439− 2.49813344 i −0.06455485+ 1.18981502 i 0.084

Table 7: Vacua for ξ3 = 0 and ρ = 3
4 .

6 Aspects of the non-geometric landscape

In this section we discuss the main aspects of the AdS4 vacua in our models that are

standard examples of type IIB toroidal orientifolds with O3/O7-planes. Besides the ax-

iodilaton S, after an isotropic Ansatz the massless scalars reduce to the overall complex

structure U and the size modulus T . Fluxes of the RR and NSNS 3-forms generate a

potential that gives masses only to S and U . The new ingredient here are non-geometric

Q-fluxes, that are required to restore T-duality between type IIA and type IIB, and that

induce a superpotential for the Kähler field T . The various fluxes must satisfy certain

constraints arising from Jacobi or Bianchi identities. The problem is then to minimize the

scalar potential while solving the constraints. The question is whether there are solutions

with all moduli stabilized. We have seen that the answer is affirmative and now we intend

to analyze it in more detail.

It is instructive to begin by recounting the findings of the previous sections. The initial

step is to classify the subalgebras whose structure constants are the Q’s. With the isotropic

Ansatz there are only five classes. For each type, the non-geometric fluxes can be written

in terms of four auxiliary parameters
(

α β
γ δ

)
= Γ, in such a way that the Jacobi identities

are automatically satisfied. Other fluxes can also be parametrized using Γ plus additional

variables: (ǫ1, ǫ2) for NSNS, and (ξ3, ξ7, ξs, ξt) or (λ1, λ2, λ3, ξs, ξt) for RR. The significance
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of Γ is that it defines a transformed complex structure Z = (αU + β)/(γU + δ) that is

invariant under the modular group SL(2, Z)U . The effective action can be expressed in

terms of Z according to the Q-subalgebra. Once the subalgebra is chosen the vacua will

depend only on the variables Γ, (ǫ1, ǫ2), and (ξ3, ξ7) or (λ1, λ2, λ3), that in turn determine

the values of the cosmological constant and the string coupling (V0, gs), as well as the net

tadpoles (N3, N7). In many examples, the vevs of the moduli can be determined in closed

form.

Our approach to analyze the vacua in presence of non-geometric fluxes has the great

advantage that the degeneracy due to modular transformations of the complex structure

is already taken into account. Inequivalent vacua are just labelled by the vevs (Z0, S0, T0)

that are modular invariant. In practice this means that we can study families of modular

invariant vacua by choosing a particular structure for Γ. In section 6.2 we will give

concrete examples.

There is an additional vacuum degeneracy because the characteristic data (V0, gs) hap-

pen to be independent of the parameters (ξs, ξt). The explanation is that they correspond

to shifts of the axions Re S and ReT which can be reabsorbed in the RR fluxes. The

flux-induced RR tadpoles (N3, N7) are blind to (ξs, ξt) as well. Apparently, generic shifts

in Re S and Re T are not symmetries of the compactification, so that two vacua differing

only in the RR flux parameters (ξs, ξt) would be truly distinct. We argue below that the

vacua are equivalent because the full background is symmetric under S → S − ξs, and

T → T − ξt.

In absence of non-geometric fluxes the 3-form RR field strength that appears in the

10-dimensional action is given by F3 = dC2 − H3 ∧ C0 + F̄3, where H3 = dB2 + H̄3. The

natural generalization to include non-geometric fluxes is

F3 = dC2 − H3 ∧ C0 + QC4 + F̄3 , (6.1)

where QC4 is a 3-form that we can extract from (2.15) because ReJ = C4. In fact,

C4 = −Re T
∑

I ω̃I , where ω̃I are the basis 4-forms. Recall also that C0 = Re S. Notice

then that F3 involves the axions in question. The relevant result is that F3 is invariant4

4We thank P. Cámara for giving us this hint.
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under the shifts S → S− ξs, and T → T − ξt. To show this we first compute the variation

of F̄3 using the universal terms (A.1) in the parametrization of the RR fluxes and then

substitute in (6.1). In the effective D=4 action the result is simply that the superpotential

is invariant under these axionic shifts and the corresponding transformation of the RR

fluxes. In turn this follows from (2.26) after substituting (A.1).

6.1 Overview

We now describe in order some prominent features of the AdS4 vacua with non-geometric

Q-fluxes switched on.

1. The explicit results of section 5.2 indicate that in all models the vevs σ0 = Im S0

and µ0 = Im T0 are correlated. This generic property follows from the F-flat conditions

simply because the superpotential is linear in the axiodilaton and the Kähler modulus.

Recall that the vevs in question determine physically important quantities, namely the

string coupling gs = 1/σ0, and the overall internal volume Vint = (µ0/σ0)
3/2. To trust the

perturbative string approximation gs must be small and we will shortly explain, as already

shown in [10], that generically there are regions in flux space in which both gs and the

cosmological constant are small, while Vint is large. We stress again the caveat that even at

large overall volume there could still exist light winding string states when non-geometric

fluxes are in play. These effects are certainly important in trying to lift the solutions to

full string vacua. In this paper we only claim to have found vacua of the effective field

theory with a precise set of massless fields and interactions due to generalized fluxes.

2. Another common feature of all models is the relation between moduli vevs and net RR

charges. In type IIB toroidal orientifolds it is known that in Minkowski supersymmetric

vacua the contribution of RR and NSNS fluxes to the C4 tadpole is positive (N3 > 0) and

this occurs if and only if Im S0 > 0 [28]. The interpretation is that to cancel the tadpole

due to F̄3 and H̄3 it is mandatory to include O3-planes, whereas D3-branes can be added

only as long as N3 stays positive. This is also true for no-scale Minkowski vacua in which

supersymmetry is broken by the F-term of the Kähler field. Turning on non-geometric

fluxes enables to stabilize all moduli at a supersymmetric AdS4 minimum. At the same
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time, the Q-fluxes induce a C8 tadpole of magnitude N7 that can be cancelled by adding

O7-planes and/or D7-branes. We find in general that the vevs Im S0 and Im T0, that must

be positive, are correlated to the tadpoles (N3, N7). According to the Q-subalgebra there

are several possibilities for the type of sources that have to be included. For example, the

models considered in [10], having N3 > 0 and N7 = 0, proceed only with the fluxes of the

compact su(2)2.

For the Q-fluxes of the nilalgebra, and the semidirect sum su(2) ⊕ u(1)3, there is a relation

N3 = −ǫ2N7, with ǫ2 > 0. Only in the latter case it is allowed to have N3 = N7 = 0, and

the sources can be avoided altogether. For the fluxes of su(2) + u(1)3 it turns out that

orientifold planes are unnecessary to cancel tadpoles, but both D3 and D7-branes must

be added (N3 < 0, N7 > 0).

The fluxes of the semisimple subalgebras are more flexible. In particular, it can happen

that one flux-tadpole vanishes while the other must have a definite sign. Moreover, the

sign is opposite for the compact and non-compact cases. For instance, when N7 = 0,

N3 > 0 and O3-planes are obligatory for the su(2)2 fluxes, while for so(3, 1) N3 < 0 and

D3-branes are required.

The magnitudes of the vevs are also proportional to the net tadpoles. This then implies

that the string coupling typically decreases when N3 and/or N7 increase. However, the

number of D-branes cannot be increased arbitrarily without taking into account their

backreaction.

3. Consistency of the vacua can in fact be related to the full 12-dimensional algebra in

which the H̄ and Q-fluxes are the structure constants. The reason is that the conditions

Im S0 > 0 and Im T0 > 0 also impose restrictions on the signs of the NSNS parameters

(ǫ1, ǫ2). For instance, in section 5.2.5 we have seen that for Q-fluxes of the compact

so(4) ∼ su(2)2, the solutions with ǫ1 = 0 require ǫ2 < 0. This in turn implies, as explained

in section 3.1.1, that the full gauge algebra is so(4) + iso(3). Another simple example is

the model based on the su(2) + u(1)3 Q-subalgebra. The vacua of 5.2.3 with ǫ2 = 0

require ǫ1 < 0 and it can then be shown that the full gauge algebra is so(4) + u(1)6. A

more detailed study of the 12-dimensional algebras is left for future work [34].
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4. We defer to section 6.2 a more thorough discussion of the landscape of values attained

by the string coupling gs and the cosmological constant V0, for the fluxes of the compact

su(2)2 Q-subalgebra. The situation for so(3, 1) is similar and can be analyzed using the

results of section 5.2.4. The model based on the direct product su(2) + u(1)3 is different

because both N3 and N7 must be non-zero, but it can still be shown that there exist vacua

with small gs and V0. The models built using the nilpotent and semidirect Q-subalgebras

have been studied in their T-dual IIA formulation in refs. [5, 6], where it was found that

there are infinite families of vacua within the perturbative region.

5. A peculiar result is the appearance of multiple vacua for certain combination of fluxes.

These events occur only in models based on the semisimple Q-subalgebras. They can

have N3N7 = 0 or N3N7 6= 0, but in the former case both NSNS parameters (ǫ1, ǫ2) must

be non-zero. Reaching small string coupling and cosmological constant typically requires

that N3 and/or N7 be sufficiently large.

6. To cancel RR tadpoles it might be necessary to add stacks of D3 and/or D7-branes.

These additional D-branes could also generate a charged chiral spectrum but more gen-

erally a different sector of D-branes will serve this purpose. In any case, the D-branes

that can be included are constrained by cancellation of Freed-Witten anomalies [6,18]. In

absence of non-geometric fluxes the condition amounts to the vanishing of H̄3 when inte-

grated over any internal 3-cycle wrapped by the D-branes. For unmagnetized D7-branes

in T6/Z2 ×Z2, with H̄3 given in (2.9), it is easy to see that the condition is met, whereas

for D3-branes it is trivial. When Q-fluxes are switched on the modified condition [18] is

still satisfied basically because the 3-form QJ , defined in (2.15), can be expanded in the

same basis as H̄3.

D3-branes and unmagnetized D7-branes in T6/Z2 × Z2 do not give rise to charged chiral

matter. Therefore the models will not have U(1) chiral anomalies. This is consistent with

the fact that the axions ReS and ReT are generically stabilized by the fluxes and having

acquired a mass they could not participate in the Green-Schwarz mechanism to cancel

the chiral anomalies5.

5We thank L. Ibáñez for discussions on this point.
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To construct a more phenomenologically viable scenario one could introduce magnetized

D9-branes as in the T6/Z2 × Z2 type IIB orientifolds with NSNS and RR fluxes that

were considered some time ago [33]. Now, care has to be taken because magnetized D9-

branes suffer from Freed-Witten anomalies. They are actually forbidden in absence of

non-geometric fluxes when H̄3 6= 0.

The effect of the Q-fluxes can be studied as explained in [18]. Cancellation of Freed-Witten

anomalies translates into invariance of the superpotential under shifts S → S + qsν and

T → T + qtν, where the real charges (qs, qt) depend on the U(1) gauged by the D-brane.

Applying this prescription we conclude that in our setup with isotropic fluxes magnetized

D9-branes could be introduced only in models based on the nilpotent and semidirect

sum su(2) ⊕ u(1)3 Q-subalgebras. The reason is that only in these cases the flux-induced

polynomials P2(U) and P3(U) can be chosen parallel and then W can remain invariant

under the axionic shifts. Equivalently, only in these cases the axions Re S and Re T are

not fully determined and the residual massless linear combination can give mass to an

anomalous U(1). For other Q-subalgebras the polynomials P2(U) and P3(U) are linearly

independent and both axions are completely stabilized.

It would be interesting to study the consistency conditions on magnetized D9-branes in

models with non-isotropic fluxes. In principle there could exist configuration of fluxes

such that the general superpotential (2.17-2.20) is invariant under axionic shifts of S and

the Kähler moduli TI .

6.2 Families of modular invariant vacua

To generate specific families of vacua we first choose the Q-subalgebra and then select the

parameters in Γ. In general Γ can be chosen so that the non-geometric fluxes are even

integers. The NSNS fluxes turn out to be even integers by picking (ǫ1, ǫ2) appropriately.

One can also start from given non-geometric and NSNS even integer fluxes and deduce the

corresponding Γ and (ǫ1, ǫ2). Similar remarks apply to the RR fluxes. We will illustrate

the procedure for the compact su(2)2.

If one of the parameters vanishes, say γ = 0, it can be shown from (3.11) that the
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ratios δ/α and β/α are rational numbers (recall that |Γ| 6= 0 so that α, δ 6= 0). It then

follows that by a modular transformation, c.f. (4.6), we can go to a canonical gauge in

which also β = 0.

The canonical diagonal gauge γ = β = 0 is completely generic when ǫ2 = 0 (ǫ1 6= 0).

In this case we find that β/α and γ/δ are rational because they are given respectively by

quotients of NSNS and non-geometric fluxes. Therefore, β and γ can be gauged away by

modular transformations. If instead ǫ1 = 0, but ǫ2 6= 0, we can take α = δ = 0.

When ǫ1ǫ2 6= 0 we can still use the canonical gauge but it will not give the most general

results that are obtained simply by considering α, β, γ, δ 6= 0.

6.2.1 Canonical families for su(2)2 fluxes

For each subalgebra we can obtain families of vacua starting from the canonical gauge

defined by γ = β = 0. In the su(2)2 case only the non-geometric fluxes c̃1 and c̃2 are

different from zero and can be written as

c̃1 = −2m ; c̃2 = 2n ; m, n ∈ Z . (6.2)

From (3.11) we easily find α/δ = n/m, δ3 = 2m2/n, so that |Γ|3 = 4nm. The non-zero

NSNS and RR fluxes are easily found to be

b0 = −2m2

n
ǫ2 ; b3 =

2n2

m
ǫ1 ; a0 =

2m2

n
(ǫ1ξ3 + ǫ2ξs) , (6.3)

a1 = −2m(ξt + ξ7) ; a2 = 2n(ξt − ξ7) ; a3 = −2n2

m
(ǫ1ξs − ǫ2ξ3) .

Since the b’s and a’s are (even) integers, it is obvious that (ǫ1, ǫ2) and (ξ3, ξ7, ξs, ξt) are all

rational numbers.

The moduli vevs depend on (ξ3, ξ7) and (ǫ1, ǫ2). For concreteness, and to compare

with the results of [10], we focus on the case ξ7 = 0. Other cases can be studied using the

results of section 5.2.5. When ξ7 = 0 the RR fluxes a1 and a2 are spurious, they can be

eliminated by setting ξt = 0, i.e. by a shift in Re T .

To continue we have to distinguish whether one of the NSNS parameters ǫ1 or ǫ2 is

zero. Recall that in this case the flux induced polynomial P2 does not have complex roots.
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• ǫ1ǫ2 = 0

Let us consider ǫ2 = 0. Then, also a3, or ξs, is irrelevant and can be set to zero by a

shift in Re S. The important physical parameters are ǫ1 and ξ3, they can be deduced from

b3 and a0. Notice also that at this point N3 = a0b3. Using (5.30) we obtain the values of

the cosmological constant and the string coupling

V0 =
48 m6b3

3

n3N2
3

; gs =
8 m3b2

3

n3N3
. (6.4)

Consistency requires ǫ1 < 0 and ξ3 > 0, or equivalently V0 < 0 and gs > 0. For the

purpose of counting distinct vacua we can safely assume b3 > 0 and then m, n < 0.

As noticed in [10], the important outcome is that gs and V0 can be made arbitrarily

small by keeping b3 and m fixed while letting n → ∞.

In our approach it is also easy to see that (V0, gs) always take values of the form (6.4)

whenever P2 has only real roots. This follows because all vacua are related by modular

transformations plus axionic shifts. However, if as in [10] we want to count the vacua

with fluxes bounded by an upper limit L, it does not suffice to just consider the canonical

gauge. The reason is that by performing modular transformations and axionic shifts we

can reach larger effective values of b3 that seem to violate the tadpole condition. Rather

than an elaborate argument we will just provide a simple example. We can go to a non-

canonical gauge with γ = 0 but β 6= 0 and also take ξt = 0 but ξs 6= 0. With these

choices it is straightforward to show that N3 = a0b3 − a3b0, which would allow to take

e.g. b3 = N3 that is forbidden when b0 = 0 (β = 0), or a3 = 0 (ξs = 0), because a0 must

be even. To do detailed vacua statistics it is necessary to use generic gauge and axionic

shifts.

• ǫ1ǫ2 6= 0

As in section 5.2.5 we set ǫ2 = ρǫ1. In the canonical gauge the parameter ρ is a rational

number that we assume to be given. We choose to vary the NSNS flux b3 that determines

ǫ1 =
mb3

2n2
; b0 = −ρ m3b3

n3
, (6.5)

where m, n are the integers coming from the non-geometric fluxes. The vacuum data have

been found to be

V0 =
4FV nm

ǫ1ξ2
3

; gs =
1

Fgξ3
, (6.6)
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where we used |Γ|3 = 4nm. The numerical factors FV and Fg depend on ρ. For instance,

for ρ = 0, FV = 6 and Fg = 1/8. Other examples are given in section 5.2.5. We remark

that for ρ in a particular range there can be multiple vacua, meaning that for some ρ the

above numerical factors might take different values (e.g. table 6).

It is most convenient to extract ξ3 from the tadpole relation N3 = 4mnǫ2
1(1 + ρ2)ξ3,

which in terms of the integer fluxes reads N3 = a0b3−a3b0. Combining all the information

we readily find

V0 =
8FV m6b3

3(1 + ρ2)2

n3N2
3

; gs =
m3b2

3(1 + ρ2)

Fg n3N3

. (6.7)

Unlike the case when ρ = 0, in general we cannot keep m and b3 fixed while letting

n → ∞. The reason is that the NSNS flux b0 in (6.5) must be an integer.

The main conclusion is that it is not always possible to obtain small string coupling

and cosmological constant. In fact, when ρ 6= 0, there are no vacua with gs < 1 unless

the tadpole N3 is sufficiently big. To prove this, notice first that the string coupling can

be rewritten as gs = −b3b0(1 + ρ2)/(FsρN3). The most favorable situation occurs when

ρ = −1 for which Fs = 0.238. The smallest allowed NSNS fluxes are b0 = b3 = 2

(compatible with ρ = −1). Hence, the minimum value of the coupling is gmin
s = 8/(FsN3)

and gmin
s < 1 would require N3 > 33. The situation is worse for values of ρ such that

multiple vacua can appear. The problem is that since such ρ’s are rational, b3 must be

largish for b0 to be integer. Going to a more general gauge does not change the conclusion.

We have just provided a quantitative, almost analytic, explanation of why there are

no perturbative vacua when the flux polynomial P2 has complex roots and N3 is not large

enough. This observation was first made in [10] based on a purely numerical analysis.

7 Final remarks

In this paper we have investigated supersymmetric flux vacua in a type IIB orientifold

with RR, NSNS and non-geometric Q-fluxes turned on. We enlarged the related analysis

of [10] by considering the most general fluxes solving the Jacobi identities, and by including

variable numbers of O3/D3 and O7/D7 sources to cancel the flux-induced RR tadpoles.

52



Our approach is based on the classification of the subalgebras satisfied by the non-

geometric fluxes. A convenient parametrization of the Q-fluxes leads to an auxiliary

complex structure that turns out to be invariant under modular transformations. Writing

the superpotential in terms of this invariant field simplifies solving the F-flat conditions

and enables us to obtain analytic expressions for the moduli vevs. We have found families

of supersymmetric AdS4 vacua in all models defined by the inequivalent Q-subalgebras.

General properties of the solutions were discussed in section 6. The vacua typically exist

in all cases, provided that arbitrary values of the flux-induced RR tadpoles are allowed.

In type IIB orientifolds with only RR and NSNS fluxes there is a non-trivial induced

tadpole that must be cancelled by O3-planes or wrapped D7-branes. But including non-

geometric fluxes can require other types of sources. For instance, similar to well under-

stood AdS4 models in type IIA, the induced flux-tadpoles might vanish implying that

sources can be avoided. There are also examples in which sources of positive RR charge

are sufficient to cancel the tadpoles. As one might expect, these latter exotic vacua occur

in models built using Q-fluxes satisfying the non-compact so(3, 1) subalgebra. Such so-

lutions might be ruled out once a deeper understanding of non-geometric fluxes has been

developed.

We discussed a simplified set of fluxes but our methods could be used to study other

configurations. The starting point would be the classification of the Q-subalgebras con-

sistent with the underlying symmetries.

Although our main goal was to explore supersymmetric vacua with moduli stabilized,

our results could have further applications. We have succeeded in connecting properties

of the vacua to the underlying gauge algebra and this can help towards extending the

description of non-geometric fluxes beyond the effective action limit. At present one of

the most challenging problems in need of new insights is precisely to formulate string

theory on general backgrounds at the microscopic level.
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ity and support at several stages of this paper, and CDCH-UCV for a research grant No.

PI-03-007127-2008. A.G. acknowledges the financial support of a FPI (MEC) grant ref-

erence BES-2005-8412. This work has been partially supported by CICYT, Spain, under

contract FPA 2007-60252, and the Comunidad de Madrid through Proyecto HEPHACOS

S-0505/ESP-0346.

54



Appendix: Parametrized RR fluxes

In this appendix we give the explicit expressions for the original RR fluxes aA in terms

of the axionic shifts (ξs, ξt) and the tadpole parameters (ξ3, ξ7) or (λ2, λ3), depending on

the Q-subalgebra. For the semidirect sum su(2) ⊕ u(1)3 and the nilpotent algebra there

is another auxiliary variable λ1 as explained in 4.1. In all cases there is a non-singular

rotation matrix from the aA’s to the new variables.

In principle the ξ’s and λ’s are just real constants but the resulting aA fluxes must

be integers. The exact nature of these parameters can be elucidated starting with the

non-geometric fluxes of each subalgebra. For example, following the discussion at the end

of section 3.1.1, for su(2)2 when ǫ1ǫ2 = 0 it transpires that (ξ3, ξ7, ξs, ξt) ∈ Q.

There is a universal structure in the RR fluxes that is worth noticing. For all Q-

subalgebras the dependence on the axionic shift parameters (ξs, ξt) is of the form

a0 = −b0ξs + 3c0ξt + · · ·

a1 = −b1ξs − (2c1 − c̃1)ξt + · · · (A.1)

a2 = −b2ξs − (2c2 − c̃2)ξt + · · ·

a3 = −b3ξs + 3c3ξt + · · ·

where · · · stands for extra terms depending on the tadpole parameters.

A.1 Compact su(2)2 background.

a0 = δ3(ǫ1ξ3 + ǫ2ξs) + β3(ǫ1ξs − ǫ2ξ3) + 3δβ2(ξt − ξ7) + 3βδ2(ξt + ξ7)

a1 = −γδ2(ǫ1ξ3 + ǫ2ξs) − αβ2(ǫ1ξs − ǫ2ξ3) − β(βγ + 2αδ)(ξt − ξ7) − δ(αδ + 2βγ)(ξt + ξ7)

a2 = δγ2(ǫ1ξ3 + ǫ2ξs) + βα2(ǫ1ξs − ǫ2ξ3) + α(αδ + 2βγ)(ξt − ξ7) + γ(βγ + 2αδ)(ξt + ξ7)

a3 = −γ3(ǫ1ξ3 + ǫ2ξs) − α3(ǫ1ξs − ǫ2ξ3) − 3γα2(ξt − ξ7) − 3αγ2(ξt + ξ7)
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A.2 Non-compact so(3, 1) background.

a0 = δ(δ2 − 3β2)(ǫ1ξ3 + ǫ2ξs) + β(β2 − 3δ2)(ǫ1ξs − ǫ2ξ3) − 3(β2 + δ2)(βξt − δξ7)

a1 = (γβ2 + 2αβδ − γδ2)(ǫ1ξ3 + ǫ2ξs) + (αδ2 + 2βγδ − αβ2)(ǫ1ξs − ǫ2ξ3)

+(β2 + δ2)(αξt − γξ7) + 2(αβ + γδ)(βξt − δξ7)

a2 = (δγ2 − 2αβγ − δα2)(ǫ1ξ3 + ǫ2ξs) + (βα2 − 2αγδ − βγ2)(ǫ1ξs − ǫ2ξ3)

−2(αβ + γδ)(αξt − γξ7) − (α2 + γ2)(βξt − δξ7)

a3 = −γ(γ2 − 3α2)(ǫ1ξ3 + ǫ2ξs) − α(α2 − 3γ2)(ǫ1ξs − ǫ2ξ3) + 3(α2 + γ2)(αξt − γξ7)

A.3 Direct sum su(2) + u(1)3 background.

a0 = δ3(ǫ1ξ3 + ǫ2ξs) + β3(ǫ1ξs − ǫ2ξ3) + 3βδ2ξt − 3δβ2ξ7

a1 = −γδ2(ǫ1ξ3 + ǫ2ξs) − αβ2(ǫ1ξs − ǫ2ξ3) − δ(αδ + 2βγ)ξt + β(βγ + 2αδ)ξ7

a2 = δγ2(ǫ1ξ3 + ǫ2ξs) + βα2(ǫ1ξs − ǫ2ξ3) + γ(βγ + 2αδ)ξt − α(αδ + 2βγ)ξ7

a3 = −γ3(ǫ1ξ3 + ǫ2ξs) − α3(ǫ1ξs − ǫ2ξ3) − 3αγ2ξt + 3γα2ξ7

A.4 Semidirect sum su(2) ⊕ u(1)3 background.

a0 = δ3(ǫ2ξs + 3ξt) + βδ2(ǫ1ξs − 3ξt + 3λ1) + 3δβ2λ2 + β3λ3

a1 = −γδ2(ǫ2ξs + 3ξt) − 1
3δ(αδ + 2βγ)(ǫ1ξs − 3ξt + 3λ1) − β(βγ + 2αδ)λ2 − αβ2λ3

a2 = δγ2(ǫ2ξs + 3ξt) + 1
3γ(βγ + 2αδ)(ǫ1ξs − 3ξt + 3λ1) + α(αδ + 2βγ)λ2 + βα2λ3

a3 = −γ3(ǫ2ξs + 3ξt) − αγ2(ǫ1ξs − 3ξt + 3λ1) − 3γα2λ2 − α3λ3

A.5 Nilpotent nil background.

a0 = δ3(ǫ2ξs + 3ξt) + γδ2(ǫ1ξs + 3λ1) + 3δγ2λ2 + γ3λ3

a1 = −γδ2(ǫ2ξs + 3ξt) + 1
3δ(δ

2 − 2γ2)(ǫ1ξs + 3λ1) − γ(γ2 − 2δ2)λ2 + δγ2λ3

a2 = δγ2(ǫ2ξs + 3ξt) + 1
3γ(γ2 − 2δ2)(ǫ1ξs + 3λ1) + δ(δ2 − 2γ2)λ2 + γδ2λ3

a3 = −γ3(ǫ2ξs + 3ξt) + δγ2(ǫ1ξs + 3λ1) − 3γδ2λ2 + δ3λ3
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D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking

59

http://arXiv.org/abs/hep-th/0105097
http://arXiv.org/abs/0711.4818
http://arXiv.org/abs/0712.1026
http://arXiv.org/abs/0807.4527
http://arXiv.org/abs/hep-th/0201029
http://arXiv.org/abs/hep-th/0201028
http://www.singular.uni-kl.de/
http://arXiv.org/abs/hep-th/0406102
http://arXiv.org/abs/hep-th/0411061
http://arXiv.org/abs/0801.1508
http://arXiv.org/abs/hep-th/0303016
http://arXiv.org/abs/hep-th/0303024


in chiral type IIb orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3

[arXiv:hep-th/0406092];

F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71

(2005) 011701 [arXiv:hep-th/0408059]; Building MSSM flux vacua, JHEP 0411 (2004) 041

[arXiv:hep-th/0409132];

M. Cvetic and T. Liu, Three-family supersymmetric standard models, flux compactification

and moduli stabilization, Phys. Lett. B 610 (2005) 122 [arXiv:hep-th/0409032].

[34] A. Guarino et al., work in progress.

60

http://arXiv.org/abs/hep-th/0406092
http://arXiv.org/abs/hep-th/0408059
http://arXiv.org/abs/hep-th/0409132
http://arXiv.org/abs/hep-th/0409032

	Introduction
	Generalities
	Fluxes
	Effective action
	Bianchi identities and tadpoles

	Algebras and fluxes
	Semisimple algebras
	so(4) su(2)2
	so(3,1)

	Non-semisimple algebras
	su(2)+ u(1)3
	su(2)u(1)3 iso(3)
	Nilpotent algebra


	New variables and RR fluxes
	Parametrization of RR fluxes
	Moduli potential in the new variables

	Supersymmetric vacua
	Minkowski vacua
	AdS4 vacua
	Nilpotent subalgebra
	Semidirect sum su(2) u(1)3
	Direct sum su(2)+ u(1)3
	Non-compact so(3,1)
	Compact su(2)2
	  5.2.5.1  P2(U) with triple real root 
	  5.2.5.2  P2(U) with complex roots


	Aspects of the non-geometric landscape
	Overview
	Families of modular invariant vacua
	Canonical families for su(2)2 fluxes


	Final remarks
	  Appendix: Parametrized RR fluxes

