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Evolution of an extended Ricci flow system
Bernhard List

We show that Hamilton’s Ricci flow and the static Einstein vac-
uum equations are closely connected by the following system of
geometric evolution equations:

∂tg = −2Rc(g) + 2αndu ⊗ du,

∂tu = Δgu,

where g(t) is a Riemannian metric, u(t) a scalar function and αn

a constant depending only on the dimension n ≥ 3. This provides
an interesting and useful link from problems in low-dimensional
topology and geometry to physical questions in general relativity.

1. Introduction

In the last 20 years, the Ricci flow system for a Riemannian metric intro-
duced in [1]

∂tg = −2Rc(g)

has been used with great success for the construction of canonical metrics on
Riemannian manifolds of low dimension. In his first paper on the Ricci flow,
Hamilton proved that given an initial metric with positive Ricci curvature in
three dimensions, a rescaled solution for t → ∞ exists and has constant pos-
itive curvature. Many further results in direction of a proof of the Poincare
conjecture followed. Some of these are collected in [2]. The recent approach
of Perelman to prove the full geometrization conjecture added new ideas to
Hamilton’s program [6, 7]. In particular, Perelman showed that the Ricci
flow can be interpreted as a gradient flow of an entropy functional and thus
that the canonical metrics are stationary points of this entropy in the vari-
ational sense.

Our purpose is to develop a corresponding theory for canonical objects
with a certain physical interpretation. We prove the existence of an entropy
E such that the stationary points are solutions to the static Einstein vacuum
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equations and study an extended parabolic system

∂tg = −2Rc(g) + 2αndu ⊗ du,

∂tu = Δgu,
(1.1)

which is equivalent to the gradient flow of E. For applications on noncom-
pact asymptotically flat manifolds, we prove short time existence for the
system (1.1) on complete manifolds.

For a closer examination of the solutions, we provide a range of a priori
estimates. These include local interior estimates on balls for all derivatives
of Rm and u, but also global supremum bounds and time decay estimates.
We obtain a long time existence result from these estimates, saying that
solutions continue to exist as long as the curvature Rm of g(t) stays bounded.

From the variational structure we obtain a monotonicity formula for the
flow, which we use to prove a noncollapsing result. This is crucial to obtain
the injectivity radius bounds necessary for a compactness theorem. Using
this result, we obtain compactness of a set of solutions satisfying natural
bounds.

In addition, we apply the noncollapsing and the a priori estimates to
prove that rapidly forming singularities of the flow at finite time can be
rescaled to ancient solutions of the Ricci flow. This makes the study of
singularity formation (and also the usage of surgery) possible.

A main motivation to study (1.1) stems from its connection to general
relativity. An important issue in the numerical evolution of the Einstein
equations is the construction of good initial data sets which have to satisfy
the so-called constraint equations. In general, this is a hard problem
[8, § 2.1, 9]. A parabolic system could be used to improve these data sets.
Since this should work in particular for static solutions, our system is an
interesting candidate for such a smoothing operator. It should be possible
to approximate static solutions by solutions to (1.1).

Another application relates to the quasi-local mass definition of Bartnik
in [10] and the recent paper of [11]. After adding suitable parabolic boundary
conditions, our system could be helpful in the construction of the static
minimal mass extension which would provide the minimum in the definition
of this mass according to Bartnik’s conjecture.

With regard to these applications, we conclude this paper with the study
of (1.1) on asymptotically flat manifolds. We consider two classes of asymp-
totically flat manifolds and prove that for given initial data in one of these
classes, the flow preserves the asymptotic structure for t < ∞. Moreover,
we show that the ADM mass of the initial data is preserved for finite times.
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2. Preliminaries

We consider smooth n-dimensional complete Riemannian manifolds Σ or
M where M is always used to specify a closed manifold. For a Riemannian
metric g we denote the Levi–Civita connection by ∇ and its curvature tensor
by Rm. The Ricci tensor is denoted by Rc, the scalar curvature by R and
the volume element by dV . If we need to make clear to which metric these
tensors belong, we write Rm(g) and so on. The exterior derivative of a form
is denoted by d.

Given some coordinate system {x1, . . . , xn} we abbreviate ∂i := ∂
∂xi for

the partial derivatives with respect to these coordinates, ∇i := ∇∂/∂i
for

the covariant derivatives associated to g, and ∂t for partial differentiation
with respect to time. We denote the components of the Hessian ∇2 of
some function u by ∇i∇ju := ∇2

iju and similar for higher derivatives. The
components of the metric g itself are given by {gij}, and the inverse metric
g−1 on the cotangent bundle T ∗Σ is represented by {gij}. The Laplacian of
a function u with respect to g is given by

Δgu = gij∇i∇ju = gij
(
∂i∂ju − Γk

ij∂ku
)
.

Denote the set of smooth Riemannian metrics on Σ by M(Σ) and the space
of smooth functions by C∞(Σ). The Riemannian metric g induces norms on
the tensor algebra. In coordinates it is given for a tensor B :=

{
Bj1...jl

i1...ik

}
by

(2.1) |B|2 := gi1m1 · · · · · gikmk · gj1n1 · · · · · gjlnl
· Bj1···jl

i1···ik
· Bn1···nl

m1···mk
,

where we use the Einstein summation convention, meaning that we sum over
a repeated lower and upper index from 1 to n. In normal coordinates, the
summation can be over two lower indices. The convention is used throughout
this paper. We also write A ∗ B for a linear combination of contractions of
components of the two tensors A and B when the precise form and number
of these terms is irrelevant for the computation. In this notation, factors g
and g−1 are suppressed.

To motivate our physical interest, we give a short introduction to static
vacuum solutions of the Einstein equations. Further material can be found in
[12, chapter 2] and [13, chapter 6]. A very thorough and detailed discussion
is provided in [14].

From a geometrical point of view, a Lorentzian manifold (L4, h) is said
to be static if there exists a 1-parameter group of isometries with timelike
orbits and a spacelike hypersurface Σ which is orthogonal to these orbits.
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Physically this reflects the fact that the solutions are independent of time,
therefore having a time translation and reflection symmetry. Equivalent is
the existence of a timelike, hypersurface orthogonal Killing vector field ξ.

A vacuum solution to the Einstein equations satisfies Rc(h) ≡ 0. These
solutions describe the gravitational field in a region of spacetime that does
not contain any matter.

The combination of these concepts is a static vacuum solution. The most
important example in this class is the Schwarzschild solution. It describes
the gravitational field in the exterior region around an isolated nonrotating
spherically symmetric body like a star or a black hole. In suitably chosen
coordinates, a static Einstein vacuum metric has the following simple form:

h = −V 2(x1, x2, x3)dt2 +
3∑

i,j=1

gij(x1, x2, x3)dxidxj ,

where {xi} are the coordinates on Σ, t is the orbit coordinate of ξ, V :=√
−h(ξ, ξ)2, and g is a Riemannian metric on Σ. Consequently h is deter-

mined by the Lapse function V and the metric g on the spatial slices. The
static Einstein vacuum equations in terms of V and g projected onto the
hypersurface are given by

Rc(g) = V −1∇2V,

V −1ΔgV = 0.
(2.2)

This is shown in [12, 3.4–3.5]. Vice versa, a pair (V, g) satisfying equa-
tion (2.2) gives rise to a uniquely determined static vacuum solution
[12, Theorem 2–3.3].

As an example, we apply these ideas to the Schwarzschild solution. The
Lorentz metric of the Schwarzschild spacetime is given in spherical spatial
coordinates (t, r, θ, φ) on R × R

3 by

(2.3) h = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2 (dθ2 + sin2 θdφ2) ,

where m is the mass parameter. One calculates that it satisfies (2.2) for
V =

(
1 − 2m

r

)1/2 and g the spatial part of h on the slices t = const.
The system (2.2) can be simplified considerably by removing the second

derivatives of V on the right hand side via a conformal transformation. Note
that we do not want to restrict ourselves to dimension n = 3 in the following,
but work on manifolds Σ of arbitrary dimension n ≥ 3.
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Lemma 2.1. Define g̃ := e2αψ · g for a function ψ ∈ C∞(Σ) and a constant
α ∈ R. Let f ∈ C∞(Σ) be an arbitrary function. Then the following holds:

R̃ij = Rij − (n − 2)α∇i∇jψ + (n − 2)α2∂iψ∂jψ − αΔgψ · gij

− (n − 2)α2|dψ|2g · gij

Δg̃f = e−2αψ
(
Δgf + (n − 2)α · g(dψ, df)

)
.

Defining u := lnV and using the conformal transformation g̃ :=
e(2/(n−2))u · g, we get from (2.2) and Lemma 2.1 with f := ψ := u and α :=
1/(n − 2):

R̃ij = Rij − ∇i∇ju +
1

n − 2
∂iu∂ju − 1

n − 2
(
Δgu + |du|2g

)
· gij

=
(
∇i∇ju + ∂iu∂ju

)
− ∇i∇ju +

1
n − 2

∂iu∂ju − 1
n − 2

e−uΔgeu · gij

=
n − 1
n − 2

∂iu∂ju

Δg̃u = e(−2/(n−2))u
(

Δgu +
n − 2
n − 2

|du|2g
)

= 0.

This is the conformal formulation of the static Einstein vacuum equations
for (g̃, u):

R̃ij = n−1
n−2∂iu∂ju,

Δg̃u = 0,
(2.4)

which is equivalent to Rc(h) = 0 for the following Lorentz metric on R ⊗ R
n:

h = −e(2/(n−2))udt2 + e−(2/(n−2))ugij dxidxj .

One solution to (2.4) is the conformal equivalent of the Schwarzschild metric
(2.3). The spatial metric on the slices t = const is given by g̃ = dr2 + r(r − 2m)(
dθ2 + sin2 θdφ2

)
and the logarithm of the Lapse function u := lnV = 1

2(
ln(r − 2m) − ln r

)
. Other examples are solutions (g, u) on R × Mn where

Mn is a Riemannian manifold, g a Ricci-flat metric and u ≡ const.

3. Flow equations and entropy

The purpose of this paper is to study the following initial value problem for
a Riemannian metric g(t) and a smooth function u(t) together with given
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initial data (g̃, ũ) ∈ M(Σ) × C∞(Σ):

∂tg = −2Rc(g) + 2αndu ⊗ du,

∂tu = Δgu,
(3.1)

where we define αn := n−1
n−2 . We also introduce the symmetric tensor field

Sy ∈ Sym2(Σ) and its trace S := gijSij :

Sij := Rij − αn∂iu∂ju and S := R − αn|du|2.

An important property of (3.1) is its variational structure. In particular it
is equivalent to the gradient flow of the following entropy functional:

Definition 3.1. Let Σ be a smooth n-dimensional Riemannian manifold for
n ≥ 3. The entropy of a configuration (g, u, f) ∈ M(Σ) × C∞(Σ) × C∞(Σ)
is defined as follows:

En(g, u, f) :=
∫

Σ

(
R − αn|du|2 + |df |2

)
e−f dV.

Following an idea of Perelman in [6, §1], we include the diffeomorphisms of
Σ (with potential function f(t)) into the entropy and get the variation:

δE[g, u, f ](v, w, h)

=
∫

Σ

(
vij

{
−Rij − ∇i∇jf + αn∂iu∂ju

}

+ 4αnw

{
1
2
Δu − 1

2
〈du, df〉

})
e−f dV

+
∫

Σ

(
tr v

2
− h

)
{
2Δf − |df |2 + R − αn|du|2

}
e−f dV.

Defining h := (tr v)/2 (which fixes the volume form e−f dV and therefore
couples the variation of f to the variation of g), we finally arrive at

δE[g, u, f ](v, w) =
∫

Σ

(
vij ·

{
−Rij − ∇i∇jf + αn∂iu∂ju

}

+ 4αnw ·
{

1
2
Δu − 1

2
〈du, df〉

})
e−f dV,

(3.2)

where E is now a functional of g and u alone since f is determined by g
and u. We introduce a weighted scalar product on the configuration space
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H := M(Σ) × C∞(Σ):

〈(g1, u1), (g2, u2)〉H :=
∫

Σ

(
〈g1, g2〉 + 4αn〈u1, u2〉

)
e−f dV,

where 〈·, ·〉 denotes the pointwise Euclidean scalar product. Then the gradi-
ent flow for En after multiplication by 2 is given by (3.2) and the definition
of h as follows:

∂tgij := (grad1 E)ij = −2Rij + 2αn∂iu∂ju − 2∇i∇jf,

∂tu := (grad2 E) = Δu − du(∇f),

∂tf := h = tr v
2 = −Δf − R + αn|du|2.

(3.3)

The application of the diffeomorphisms generated by ∇f(t) yields the equiv-
alent system

∂tgij = −2Rij + 2αn∂iu∂ju,

∂tu = Δu,

∂tf = −Δf + |df |2 − R + αn|du|2.
(3.4)

It is crucial that the right hand side of the equation for g only involves first
derivatives of u. If there is a Hessian term, a transformation in this way is
not possible.

If u ≡ c = const and g(t) is an arbitrary solution to Hamilton’s Ricci
flow, then the pair (g(t), c) solves (3.1). An arbitrary solution (g, u) of the
static Einstein vacuum equations (2.4) is automatically a stationary solution
of the flow equations. Vice versa the first two equations in (3.4) imply that a
stationary solution must satisfy the static Einstein vacuum equations (2.4).
Note that the results of this section are in perfect agreement with the work
of Perelman in [6] when we set u ≡ const.

We collect the evolution equations we are going to need later on. The
complete computations can be found in [15, §2].

Lemma 3.2. Let (g, u)(t) be a solution to (3.1). Then the following evolu-
tion equations hold:

∂tR = ΔR + 2|Rc|2 + 2αn|Δu|2 − 2αn|∇2u|2 − 4αn〈Rc, du ⊗ du〉,
∂tRij = ΔRij − 2RipRjp + 2Rpiqj

(
Rpq − αn∂pu∂qu

)
+ 2αnΔu∇i∇ju

− 2αn∇p∇iu∇p∇ju,
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∂tΓk
ij = gkl (−∇iRjl − ∇jRil + ∇lRij + 2αn∇i∇ju∂lu) ,

(3.5)

∂t|du|2 = Δ|du|2 − 2|∇2u|2 − 2αn|du|4,
(3.6)

∂t(∇i∇ju) = Δ(∇i∇ju) + 2Ripjq∇p∇qu − Rip∇j∇pu − Rjp∇i∇pu

− 2αn|du|2∇i∇ju,

∂tSij = ΔSij − RipSjp − RjpSip − 2RpijqSpq + 2αnΔu∇i∇ju,

∂tS = ΔS + 2|Sy|2 + 2αn|Δu|2,

∂tRijkl = ΔRijkl +2(Bijkl −Bijlk −Biljk +Bikjl)−RijplRkp +RijkpRlp

+ RpjklRpi + RipklRpj + 2αn(∇i∇ku∇j∇lu − ∇i∇lu∇j∇ku),

∂t|Rm|2 ≤ Δ|Rm|2 −2|∇Rm|2 +C|Rm|3 +C|Rm||∇2u|2 +C|du|2|Rm|2,
(3.7)

∂t|∇2u|2 ≤ Δ|∇2u|2 − 2|∇3u|2 + C|Rm||∇2u|2 + C|du|2|∇2u|2.
(3.8)

Here {Bijkl} is the tensor introduced in [1, §7] and C = C(n) depends only
on n.

As an application for (3.6) we prove:

Lemma 3.3. Let (g, u)(t) be a solution to (3.1) on [0, T ) × M for closed
M with initial data (g̃, ũ). Define c0 := supM |dũ|20, where | · | is with respect
to g̃. Assume that the curvature satisfies |Rm|2(t) ≤ k0 for t ∈ [0, T ). Then
all metrics g(t) are equivalent and we can estimate

e−CT g̃(x) ≤ g(t, x) ≤ eCT g̃(x) ∀(t, x) ∈ [0, T ) × M

for a constant C = C(n, k0, c0) depending only on n, k0, c0. In fact C =
2(n

√
k0 + αnc0).

Proof. The proof is straightforward using the maximum principle for |du|2
and Gronwall’s inequality [15, Lemma 2.8]. �

We prove that En(t) really is an entropy. This lemma holds also on complete
manifolds Σ as long as the integration by parts can be justified.
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Lemma 3.4. Let (g, u, f)(t) be a solution on [0, T ) × M . Then the entropy
evolves according to:

∂tEn(g, u, f)(t) = 2
∫

M

(
|Sy + ∇2f |2 + αn|Δu − du(∇f)|2

)
e−f dV ≥ 0.

In particular the entropy is nondecreasing. Equality holds if and only if
(g, u, f)(t) satisfies

Sy + ∇2f = 0 and Δu − du(∇f) = 0.

Such a solution is called a gradient soliton.

Proof. Inserting the evolution equations just computed and performing sev-
eral integrations by parts the result follows from a straightforward calcula-
tion; see [15, Lemma 2.13]. �

4. Short time existence

As the Ricci flow, the system (3.1) is weakly parabolic. Therefore we can
use DeTurck’s method [16] to prove short time existence and uniqueness on
closed manifolds. For the complete case we show [15, §3] that the proof of
Shi [17] can be modified to the situation at hand. This yields the following
general existence theorem:

Theorem 4.1. Let (Σ, g̃) be a smooth complete noncompact n-dimensional
Riemannian manifold with |R̃m|20 ≤ k0. Let ũ ∈ C∞(Σ) satisfy |ũ|20 +
|∇̃ũ|20 ≤ c0 and |∇̃2ũ|20 ≤ s0. Then there exists a constant T = T (n, k0, c0) >
c(n) · 1/(

√
k0 + c0) such that the initial value problem

∂tg = −2Rc + 2αndu ⊗ du,

∂tu = Δu,

with initial values g(0) = g̃ and u(0) = ũ on Σ has a smooth solution (g, u)(t)
on [0, T ] × Σ. Moreover the solution satisfies

C−1g̃ ≤ g(t) ≤ Cg̃ ∀t ∈ [0, T ]

for some constant C = C(n, k0, c0, s0), and on [0, T ] × Σ there is a bound

|Rm|2 + |u|2 + |du|2 + |∇2u|2 ≤ c = c(n, k0, c0, s0).
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Proof. We refer to [15, §3] for the complete proof and just point out where
modifications to the proof for the Ricci flow in [17] have been necessary.

The first step is to prove existence for the modified equivalent strongly
parabolic system on compact domains. Using the test function ϕ from [17,
Lemma 2.2] we see that g(t) can be estimated from below by g̃ since the
additional term in the evolution equation for ϕ has a sign. A global bound
for |∇̃u|20 [15, Lemma 3.5] together with a continuity argument [15, Lemma
3.6] proves the upper bound for g(t), yielding equivalence of the metrics g(t)
and g̃ [15, Theorem 3.7]. A careful combination of the evolution equations
for |∇̃kg|20 and |∇̃ku|20 for all k ≥ 0 provides the necessary interior a priori
estimates [15, Proposition 3.8,3.9]. Here we need the global bound for the
gradient of u again to overcome difficulties arising from the appearance of
u in the evolution equations of the necessary test functions. In particular,
there are differences from the fact that the initial value of these test functions
does not vanish anymore.

Collecting these results, the theorem of Arzela–Ascoli provides a
sequence of solutions on an exhaustion of Σ converging to a limiting global
solution of the modified parabolic system [15, Theorem 3.12]. We prove inte-
gral estimates [15, Lemma 3.16,3.20] and global supremum estimates [15,
Proposition 3.14,3.21] (depending only on the initial bounds on Rm and du,
whereas the interior estimates depended on the full C∞ norm of g̃). This is
possible since the estimates for the derivatives of g and u can be combined
in the right way. Therefore we can define a smooth pullback of the solution
of the modified system to a global solution of the original weakly parabolic
system (3.1) together with the stated estimates [15, Theorem 3.22]. �

Remark 4.2. We do not prove uniqueness of the solution in Theorem 4.1.
However, the result in [18] strongly suggests that solutions satisfying the
above bounds are unique. In particular [19, Appendix B.3] applies to (3.1)
on complete and asymptotically flat manifolds.

5. A priori estimates and long time existence

To prove interior estimates, we need a time-dependent scaling function.

Lemma 5.1. Let R > 0 be a fixed radius and T > 0 be a fixed time. Let
ϕ : [0, T ] → R

+ be defined by ϕ(t) := R2t
R2+t . It satisfies for all k ≥ 0 and all

t ∈ [0, T ] :

∂tϕ
k+1 = (k + 1)ϕk,(5.1)
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ϕ ≤ R2.(5.2)

We will estimate the solutions on the following union of metric balls at
different times.

Definition 5.2. Let g(t) be a time-dependent Riemannian metric on a
complete manifold Σ with distance function dt(x, y). Let x0 ∈ Σ and a
radius R > 0 be given. Then we define

B(τ, x0, R) :=
⋃

t∈[0,τ ]

B̄t
R(x0) ⊂ [0, τ ] × Σ

as the union of the geodesic balls B̄t
R(x0) :=

{
(t, x) ∈ {t} × Σ

∣
∣dt(x0, x) ≤R

}
.

We need to estimate the time derivative of the metric distance:

Lemma 5.3. Let (g, u)(t) be a solution to (3.1) on [0, T ] × Σ. Let x0, x1
be two fixed points in Σ and dt(x0, x1) their time-dependent distance. Then
we can estimate its time derivative:

−Λdt(x0, x1) ≤ d

dt
dt(x0, x1) ≤ Ωdt(x0, x1)

whenever sup[0,T ]×Σ |Rc| ≤ Λ and sup[0,T ]×Σ |Sy| ≤ Ω. The result is still
true, if the bounds only hold along all minimizing geodesics between x0 and
x1 at all times 0 ≤ t ≤ T .

Proof. Let γ : [0, L] → Σ be a smooth curve parameterized by arc length.
We compute the time derivative of the g(t)-length of γ which exists in the
sense of difference quotients:

∂tL
t(γ) =

∫

γ

1
2|γ̇|t

· (∂tgij)γ̇iγ̇j ds = −
∫

γ
Sy(γ̇, γ̇)ds.

Consider the compact set Γ of smooth curves γ parameterized by arc length
and having at most a finite but large length L:

Γ :=
{
γ
∣
∣γ : [0, L0(γ)] → Σ, γ(0) = x0, γ(L0(γ)) = x1, L

0(γ) ≤ L
}
.

Since dt(x0, x1) = infγ∈Γ Lt(γ) by definition, we apply [3, Lemma 3.5] to
conclude

− sup
γ∈Γ(t)

{∫

γ
Sy(γ̇, γ̇)ds

}
≤ d

dt
(dt(x0, x1)) ≤ − inf

γ∈Γ(t)

{∫

γ
Sy(γ̇, γ̇)ds

}
.
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Here Γ(t) is the set of minimizing geodesics between x0 and x1 at time t.
For a proof see [15, Lemma 6.4]. Now the estimates

−
∫

γ
Sy(γ̇, γ̇)ds = −

∫

γ
Rc(γ̇, γ̇)ds + αn

∫

γ
|du(γ̇)|2ds ≥ − sup

[0,T ]×Σ
|Rc| · Lt(γ)

= − sup
[0,T ]×Σ

|Rc| · dt(x0, x1) ≥ −Λ · dt(x0, x1)

and

−
∫

γ
Sy(γ̇, γ̇)ds ≤ sup

[0,T ]×Σ
|Sy| · dt(x0, x1) ≤ Λ · dt(x0, x)

for all γ ∈ Γ(t) imply the desired result. �

Lemma 5.3 allows us to compare the distance of points at two different times.
In particular, it implies that the sets B(τ, x0, R) are compact.

Corollary 5.4. Assume (g, u)(t) is a solution to (3.1) on [0, T ] × Σ. Let
points x0, x1 ∈ Σ and times 0 ≤ t1, t2 ≤ T be chosen. If |Rc| ≤ Λ and |Sy| ≤
Ω holds along all minimizing geodesics γ connecting x0 and x1 at times
0 ≤ t ≤ T , then the distances can be compared as follows:

e−Λ(t2−t1) dt1(x0, x1) ≤ dt2(x0, x1) ≤ eΩ(t2−t1) dt1(x0, x1).

Proof. We apply Lemma 5.3 and integrate on [t1, t2]. After exponentiation
the result follows. �

We are in the position now to introduce the cutoff function:

Lemma 5.5. Let η : B(T, x0, R) → R
+ be the cutoff function defined by

η(t, x) := (R2 − 1
2d2

t (x0, x))2. Then for all θ ∈ [0, 1), it has the properties:

η ≤ R4,(5.3)

η−1 ≤ (1 − θ)−2R−4 on B(T, θR, x0),(5.4)

|∇η|2 ≤ 4R2 · η.(5.5)

Whenever supB(T,x0,R) |Rc| · R2 ≤ C̃ holds, there is the additional estimate

(5.6)
(
∂t − Δ

)
η ≤ C(n)C̃ · R2

for a scaling invariant constant C̃ and C(n) depending only on n.
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Proof. Equations (5.3) and (5.4) are immediate. Equation (5.5) follows
from |∇d| = 1. The Laplacian Comparison Theorem [20, Corollary 1.2] and
Lemma 5.3 yield an estimate for (Δ − ∂t)dt. See [15, Lemma 6.8] for com-
putational details. �

The evolution equations for u and |du|2 give us good control on the behavior
of the logarithm of the Lapse function. We start on closed M :

Lemma 5.6. Let (g, u)(t) be a solution on [0, T ) × M with initial data
(g̃, ũ). Then for all t ∈ (0, T ] the following a priori estimates hold:

sup
x∈M

|du|2(t, x) ≤ max
x∈M

|dũ|20(x)(5.7)

sup
x∈M

|du|2(t, x) ≤ 1
2αn

t−1.(5.8)

Proof. The compact maximum principle applied to (3.6) proves (5.7). A
closer look reveals

∂t

(
t · |du|2

)
≤ 1 · |du|2 + t

(
Δu − 2|∇2u|2 − 2αn|du|4

)
≤ Δ

(
t · |du|2

)

+ t−1(t|du|2 − 2αnt2|du|4
)

such that we get at the first point (t∗, x∗) ∈ [0, τ ] × M , with τ < T arbitrary,
where f := t · |du|2 attains its maximum:

0 ≤ t−1(f − 2αnf2).

This implies for t > 0

f
(
1 − 2αnf

)
≥ 0

which forces f ≤ 1
2αn

on (0, T ) × M , implying |du|2 ≤ 1
2αn

t−1 independent
of the initial data. In addition, this yields a uniform bound on [T2 , T ) and
therefore the claim for t = T . �

Using (3.6) and (3.8), we can control the Hessian of u on closed manifolds:

Proposition 5.7. Let (g, u)(t) be a solution to (3.1) for t ∈ [0, T ) on a
closed manifold M with initial data (g̃, ũ). Define c0 := maxM |dũ|20 and
s0 := maxM |∇̃2ũ|20. If |Rm|2 ≤ k0 holds on [0, T ) × M , then there is a con-
stant c = c(n) depending only on n such that (∇2u)(t) satisfies:

|∇2u|2(t) ≤ s0 + c(n)
(√

k0 + c0)
)

· c0 ∀t ∈ [0, T ).
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Proof. Equation (5.7) shows that |du|2(t, x) is bounded on [0, T ] × M by
its initial value c0. Combining the evolution equations for |du|2 and |∇2u|2
from (3.8), we find

(5.9)
(
∂t − Δ

)
(|∇2u|2 + λ|du|2) ≤

(
C1|Rm| + C2|du|2 − 2λ

)
|∇2u|2

for constants C1, C2 depending only on n. Choose the constant 2λ bigger
than C1|Rm| + C2|du|2 ≤ C1 ·

√
k0 + C2 · c0 using the curvature bound and

the bound for |du|. This yields

|∇2u|2(t) ≤ |∇2u|2(0) + λ|du|2(0) ≤ s0 + λ(n, k0, c0) · c0

for all t ∈ [0, T ) by the maximum principle since the right hand side of (5.9)
is then negative. �
To prove a priori estimates for solutions of (3.1), it is useful to collect the
component functions of Rm(g) and ∇2u in a vector-valued function Φ as
follows:

(5.10) Φ := (Rijkl,∇p∇qu), i, j, k, l, p, q = 1, . . . , n.

We estimate Φ pointwise using the Euclidean vector norm in p ∈ Σ

|Φ|2p := |Rm|2p + |∇2u|2p,

which is the representation of the norm (2.1) in normal coordinates at p.
This combination of tensors is natural considering their scaling properties.
We extend the definition accordingly to higher derivatives and prove:

Lemma 5.8. Let (g, u)(t) be a solution to (3.1). Then for all k ≥ 0 there
exists a constant C = C(n, k) such that we have the inequality

∂t|∇kΦ|2 ≤ Δ|∇kΦ|2 − 2|∇k+1Φ|2

+ C

⎧
⎨

⎩

∑

α+β=k

|∇αΦ||∇βΦ||∇kΦ|+
∑

α+β=k−1

|du||∇αΦ||∇βΦ||∇kΦ|

+
∑

α+β+γ=k−2

|∇αΦ||∇βΦ||∇γΦ||∇kΦ| + |du|2|∇kΦ|2
⎫
⎬

⎭
.

Proof. The evolution equations for ∇kRm and ∇k+2u are proven by induc-
tion on k. Since the structure is similar, they can be combined to an equation
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for ∇kΦ. An application of the Cauchy–Schwarz inequality yields the result.
The complete calculation is done in [15, §2.7]. �

Since we can estimate |Rm|2 + |∇2u|2 for solutions of (3.1) on complete
Σ, it is possible to prove a priori bounds for the logarithm of the Lapse
function u(t) also on complete, noncompact manifolds. To this end, we
need a maximum principle for these manifolds:

Theorem 5.9. Let Σ be a complete Riemannian manifold and (g, u)(t) be
the solution of (3.1) on [0, T ] × Σ constructed in Theorem 4.1 with T < ∞.
Let f be a smooth function on [0, T ] × Σ. Assume that there is a vector field
a ∈ X ([0, T ] × Σ), and a function b ∈ C∞([0, T ] × Σ) satisfying sup[0,T ]×Σ(
|a| + |b|

)
≤ α, and that

(
∂t − Δ

)
f ≤ a · ∇f + bf,

f(0) ≤ 0 on Σ,

|∇f |2 ≤ β on [0, T ] × Σ

holds for some numbers α, β < ∞. Then f ≤ 0 holds on [0, T ] × Σ.

Proof. This is a specialization of the quite general maximum principle [21,
Theorem 4.3]. Using the knowledge on solutions of (3.1) this version is
proven in [15, Theorem 6.10]. �

This theorem not only yields the time decay estimate for du but also a
supremum bound on u.

Lemma 5.10. Let (g, u)(t) be the solution from Theorem 4.1 on [0, T ) × Σ
with initial value (g̃, ũ). Then the following bounds hold for all t > 0 as long
as the solution exists:

inf
x∈Σ

ũ(x) ≤ u(t, x) ≤ sup
x∈Σ

ũ(x)(5.11)

sup
x∈Σ

|du|2(t, x) ≤ B · t−1.(5.12)

where B := supx∈Σ |ũ|20(x).

Proof. We apply Theorem 5.9 to u1(t, x) := u(t, x) − supx∈Σ ũ(x) and
u2(t, x) := infx∈Σ ũ(x)−u(t, x). Using the bound |du|2 ≤ C = C(n, k0, c0, s0)
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from Theorem 4.1 the first claim follows. For the second, we use the test
function f := t|du|2 + |u|2 − B. Theorem 5.9 implies that

0 ≥ f(t) = t|du|2 + |u|2 − B ⇒ t|du|2 ≤ B − |u|2 ≤ B

for all t > 0 in view of (3.6) and the bound on |u|2 + |du|2 + |∇2u|2 from
Theorem 4.1. �
In addition to the global estimates above we also prove a local bound for
|du|2. The technique is adapted from [21, §3] and goes back to [17]. We will
use the same ideas for the more complicated estimates to follow.

Lemma 5.11. Let (g, u)(t) be a solution to (3.1) on [0, T ) × Σ. Fix x0 ∈ Σ
and a radius R > 0. If there is an estimate

sup
B(T,x0,R)

R2|Rc| ≤ C̃,

then for all θ ∈ [0, 1) and all t ∈ (0, T ] there is a constant C(n), depending
only on n, such that

sup
x∈Bt

θR(x0)
|du|2(t, x) ≤ C(n)(1 − θ)−2C̃

(
1

R2 +
1
t

)
.

Proof. We define f := ϕ · |du|2. A calculation using (3.6) and (5.1) shows

(
∂t − Δ

)
f ≤ ϕ−1(f − 2αnf2).

We multiply by the cut-off function η defined in Lemma 5.5 and calculate
on B(T, x0, R):

(
∂t − Δ

)
(fη) ≤ ϕ−1(f − 2αnf2) · η − 2∇η∇f + f · C(n)C̃R2

from (5.6) using the curvature bound. Rewriting the second term and apply-
ing (5.5)

−2∇η∇f = −2η−1∇η∇(ηf) + 2η−1|∇η|2f ≤ −2η−1∇η∇(ηf) + 8R2f,

we find

(
∂t − Δ

)
(fη) ≤ −2αnϕ−1f2η + ϕ−1fη − 2η−1∇η∇(fη)

+ C(n)C̃R2 · f + 8R2 · f.
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Fix τ ∈ [0, T ). Since ϕ(0) = 0, η|∂Bt
R(x0) = 0 for all t ∈ [0, τ ] and fη ≥ 0, the

first maximum point (t∗, x∗) of fη in the compact set B(τ, x0, R) must be
an interior point. Consequently,

∂t(fη) ≥ 0, Δ(fη) ≤ 0, ∇(fη) = 0,

holds at (t∗, x∗) and we obtain, assuming C̃ ≥ 1:

2αnϕ−1f2η ≤ ϕ−1fη + C(n)C̃R2 · f.

Using (5.3) on the right hand side and multiplying by ϕη, we find

(5.13) 2αnf2η2 ≤ fη · R4 + C(n)C̃R2ϕ · fη ≤ (2αn − 1)f2η2 + C(n)C̃2R8

due to Young’s inequality and (5.2). Since (t∗, x∗) was a maximum point,
we get

sup
B(τ,x0,R)

fη ≤ C(n)C̃R4.

The estimate (5.4) for η−1 together with (5.13) implies that for any θ ∈ [0, 1)

sup
x∈Bt

θR(x0)
|du|2(t, x) ≤ C(n)(1 − θ)−2C̃ϕ−1

holds, proving the lemma for all 0 < t < T . Since the estimate is uniform on
[T/2, T ), it also holds for t = T , completing the proof of Lemma 5.11. �
We estimate the derivatives of Φ where Φ is defined as in (5.10), giving
an explicit dependence of the result on the initial curvature bound. This
constitutes a regularity theory for the solutions of (3.1) in the sense that
solutions with bounded curvature are always smooth.

Theorem 5.12. Let (Σ, g̃) be complete. Let (g, u)(t) be a solution to (3.1)
on [0, T ) × Σ satisfying

(5.14) sup
B(T,x0,R)

R4|Rm|2 ≤ C̃2

for some radius R > 0 and some point x0 ∈ Σ. Then the derivatives of Φ
satisfy for all m ≥ 0 and for all t ∈ (0, T ] the estimates

sup
x∈Bt

R/2(x0)
|∇mΦ|2(t, x) ≤ C(n, m)C̃m+2

(
1

R2 +
1
t

)m+2

,

where C = C(n, m) is a constant depending only on n and m.
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Proof. The proof is an induction argument, using similar techniques as in the
proof of Lemma 5.11. The curvature bound (5.14) together with Lemma 5.11
provides the estimate

sup
B(T,x0,θ−1R)

ϕ|du|2 ≤ CC̃

for θ−1 := 5
6 . Similarly, we estimate ∇2u using ϕ|Rm| ≤ R2|Rm| in combi-

nation with (5.14). See [15, Proposition 6.14] for details. Setting θ0 := 3
4 ,

we therefore find that

sup
B(T,x0,θ0R)

ϕ2|Φ|2 = sup
B(T,x0,θ0R)

ϕ2(|Rm|2 + |∇2u|2
)

≤ C̃2(1 + C(1 − θ0)−2) ≤ CC̃2

holds, where C depends only on n. This proves the theorem in the case
where m = 0. Denote in the following by C a constant depending only on n
and m which can change its value from line to line. In the induction step,
we assume that

(5.15) sup
x∈Bt

θsR(x0)
ϕs+2|∇sΦ|2(t, x) ≤ C(1 − θs)−2C̃s+2 ≤ CC̃s+2

holds for all t ∈ (0, T ] and all 0 ≤ s ≤ m. The choice of θs := 1
2 + 1

s+4 guar-
antees 1

2 < θs < 1 for all s and θi > θj for all i < j. We assume without
loss of generality that C̃ ≥ 1 in the following. To prove the estimate for
s = m + 1, we define a test function

f(t, x) := ϕm+3(t)|∇m+1Φ|2(t, x)
(
λ + ϕm+2(t)|∇mΦ|2(t, x)

)
,

where λ is constant and will be chosen later. The evolution of f is given by

(
∂t − Δ

)
f =

(
∂t − Δ

)
(ϕm+3|∇m+1Φ|2) · (λ + ϕm+2|∇mΦ|2)

+ ϕm+3|∇m+1Φ|2 ·
(
∂t − Δ

)
(ϕm+2|∇mΦ|2)

− 2ϕm+3∇|∇m+1Φ|2ϕm+2∇|∇mΦ|2.
(5.16)

We estimate the individual terms on Bt
θmR(x0), using the estimate for the

derivatives of Φ from Lemma 5.8 and the evolution equation for ϕ (5.1).
Pairing the correct powers of ϕ with the derivatives of Φ such that the

product is scaling invariant and applying the induction hypotheses (5.15)
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and Young’s inequality, we find for the first term:
(
∂t − Δ

)
ϕm+3|∇m+1Φ|2 ≤ −2ϕm+3|∇m+2Φ|2 + CC̃ϕ−1 · ϕm+3|∇m+1Φ|2

+ CC̃m+4ϕ−1.

The second term in (5.16) can be estimated analogously:
(
∂t − Δ

)
(λ + ϕm+2|∇mΦ|2) · ϕm+3|∇m+1Φ|2

≤ −3
2ϕ2m+5|∇m+1Φ|4 + Cϕ−1C̃f + Cϕ−1C̃2(m+3).

The cross term in (5.16) is controlled using the Katos inequality as follows:

− 2ϕm+3∇|∇m+1Φ|2ϕm+2∇|∇mΦ|2

≤ ϕm+3(2|∇m+2Φ|(λ + ϕm+2|∇mΦ|2)1/2)

· ((λ + ϕm+2|∇mΦ|2)−1/2 · 4ϕm+2|∇mΦ||∇m+1Φ|2)
≤ 2ϕm+3|∇m+2Φ|2(λ + ϕm+2|∇mΦ|2)

+
8ϕm+2|∇mΦ|2

λ + ϕm+2|∇mΦ|2 · ϕ2m+5|∇m+1Φ|4.

Altogether the evolution (5.16) of f comes down to

(
∂t − Δ

)
f ≤ ϕ2m+5|∇m+1Φ|4

(
8ϕm+2|∇mΦ|2

λ + ϕm+2|∇mΦ|2 − 3
2

)
+ CC̃ϕ−1f

+ Cϕ−1C̃m+4(λ + ϕm+2|∇mΦ|2) + Cϕ−1C̃2(m+3).

We choose λ := 7C̃m+2 ≥ 7ϕm+2|∇mΨ|2 ≥ 1 and compute

8ϕm+2|∇m+2Φ|2
λ + ϕm+2|∇mΦ|2 − 3

2 ≤ −1
2

and (λ + ϕm+2|∇mΦ|2) ≤ 8C̃m+2.

Then the first term can be completed to f2 and we conclude again applying
Young’s inequality:

(
∂t − Δ

)
f ≤ − 1

256 C̃−2(m+2)ϕ−1f2 + CC̃2(m+3)ϕ−1.

To localize this estimate, we multiply f by η from Lemma 5.5 and get on
the ball Bt

θmR(x0):

(
∂t − Δ

)
(fη) ≤ − 1

256 C̃−2(m+2)ϕ−1f2η + CC̃2(m+3)ϕ−1η − 2η−1∇η∇(ηf)

+ C(1 + C̃)R2 · f



1026 Bernhard List

where we used the evolution equation (5.6) for η. Fix τ ∈ [0, T ). At the
first maximum point (t∗, x∗) in B(τ, x0, θm), we get (similarly to the proof
of Lemma 5.11) with C̃ ≥ 1 that

0 ≤ − 1
256 C̃−2(m+2)ϕ−1f2η + CC̃2(m+3)ϕ−1η + CC̃R2f.

This can be simplified using η−1 ≤ (1 − θm+1)−2R−4 ≤ CR−4 on Bt
θm+1R

(x0)
from (5.4) to

|∇m+1Φ|2 ≤ CC̃2m+5(λ + ϕm+2|∇mΦ|2
)−1

ϕ−(m+3)

≤ CC̃2m+5(7C̃m+2)−1ϕ−(m+3)

for all (t, x) ∈ B(τ, x0, θm+1R) because (t∗, x∗) was maximal in B(τ, x0,
θmR). Since τ ∈ [0, T ) is arbitrary, this estimate is uniform on [T2 , T ) and
therefore also valid for t = T . This proves the induction step, and since
θm > 1

2 for all m ≥ 0, it also proves the theorem. �

Other versions of the theorem are given in [15, §6.3]. We use the interior
estimates to prove a characterization of long time existence for solutions of
(3.1). To this end, we first deduce some general properties for solutions on
compact manifolds.

Proposition 5.13. Let (g, u)(t) be a solution to (3.1) on [0, T ) × M . Then
there is a constant c = c(n) such that we get for all 0 ≤ t ≤ min{T, c/K(0)}
where K(t) := supx∈M |Rm|(t, x):

K(t) ≤ 2K(0).

Proof. We examine the evolution equation (3.7):

∂t|Rm|2 ≤ Δ|Rm|2 + C|Rm|3 + C|Rm||∇2u|2 + C|du|2|Rm|2.

K(t) is Lipschitz continuous and its derivative (in the sense of difference
quotients) satisfies

d

dt
K(t)2 ≤ CK(t)3

since we have |du|2(t) ≤ CK(t) from Lemma 5.11 and |∇2u|2(t) ≤ CK2(t)
from Theorem 5.12 where C depends only on n. Solving the associated
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ordinary differential equation, we find

K(t) ≤
(

1
K(0)

− C

2
t

)−1

for t < 2
CK(0) . Taking c = 1/C yields the claim. �

Corollary 5.14. Let (g, u)(t) be a solution to (3.1) on [0, T ) × M where T
is the maximal time of existence. Define k0 := maxx∈M |Rm|2(0, x). Then
there is c = c(n) such that T > c/

√
k0.

Proof. From Proposition 5.13 we know that the solution has bounded curva-
ture on [0, c/

√
k0]. This implies the smoothness of (g, u)(t) up to that time

using Theorem 5.12. �

The necessary and sufficient condition for long time existence of solutions
on a closed manifold M is given as follows:

Theorem 5.15. Let (g, u)(t) be a solution to (3.1) on [0, T ) × M for closed
M with initial data (g̃, ũ). Assume that T < ∞ is maximally chosen such
that the solution cannot be extended beyond T . Then the curvature of g(t)
has to become unbounded for t → T in the sense that

lim
t↗T

[
sup
x∈M

|Rm|2(t, x)
]

= ∞.

Proof. We show first that lim supt↗T

[
supx∈M |Rm|2(t, x)

]
= ∞ and suppose

to the contrary that the curvature stays bounded on [0, T ], say |Rm|2 ≤ k0.
Inequality (5.7) implies |Rm| + |du|2 ≤ C̃ on [0, T ] × M . In addition, we
know from Theorem 5.12 that the solution is smooth on [0, T ]. In particular,
we can take a smooth limit for t → T . Taking (g, u)(T ) as initial data, the
short time existence result provides a solution on a time interval [T, T + δ).
This solution extends the original one smoothly beyond T since the bounds
in Theorem 5.12 imply bounds also for all time derivatives of g(T ). This
contradicts the choice of T . The limits superior can be replaced by a proper
limit similar to [22, Theorem 6.45] using Proposition 5.13. �

6. The monotonicity formula

Since the entropy E is not sufficient for all our purposes, we replace it by
a scaling invariant integral. To this end, we introduce an explicit scale
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parameter τ as it is done in [6, §3]. One can think of τ as time measured
backwards from some fixed time. We define the entropy W as

W (g, u, f, τ) :=
∫

M

[
τ(S + |df |2) + f − n

]
(4πτ)−n/2e−fdV

for a positive real number τ . It is straightforward to see that W is invariant
under diffeomorphisms and scaling invariant for all constants α > 0 in the
following sense:

W (αg, u, f, ατ) = W (g, u, f, τ).

A calculation as before yields the variation

δW [g, u, f, τ ](v, w, h, σ)

=
∫

M
vij · {−τSij − τ∇i∇jf} + 4αnw ·

{τ

2
Δu − τ

2
〈du, df〉

}
dm

+
∫

M

[(
tr v

2
− h

)
· {2τΔf − 2τ |df |2} + h + σ · {S + |df |2}

]
dm

+
∫

M

(
tr v

2
− h − nσ

2τ

)
[τ(S + |df |2) + f − n]dm.

Since we think of τ as backward time, we set σ ≡ −1. As before we choose
the variation of f such that the measure is kept fixed:

h :=
tr v

2
+

n

2τ
⇒ tr v

2
− h +

n

2τ
= 0.

Fix f and choose h as above. In the same way fix τ and choose σ as above.
Considering W as a functional of g and u alone, we finally get:

δW [g, u, f, τ ](v, w)

=
∫

M
vij · {−τSij − τ∇i∇jf}+w·2αnτ{Δu − 〈du, df〉}dm

+
∫

M

⎡

⎢
⎣τ · n

2τ

(
2|df |2 − 2Δf

)

︸ ︷︷ ︸
=0

+h − S − |df |2
︸︷︷︸
=Δf

⎤

⎥
⎦ dm.

(6.1)

Since the following identity is valid on closed M

0 = (4πτ)−n/2
∫

M
Δe−f dV =

∫

M

(
|df |2 − Δf

)
(4πτ)−n/2e−fdV,



Evolution of an extended Ricci flow system 1029

we can cancel one term in (6.1) and replace |df |2 by Δf in the other. If we
deform W along the variation given by the evolution equations

v := ∂tg := −2Sy − 2∇2f,

w := ∂tu := Δu − 〈du, df〉,

h := ∂tf :=
tr v

2
+

n

2τ
= −Δf − S +

n

2τ
,

σ := ∂tτ := −1,

(6.2)

we calculate that

∂tW (g, u, f, τ)(t)

=
∫

M

[
2τ |Sy + ∇2f |2 + 2αnτ |Δu − 〈du, df〉|2 − 2Δf − 2S +

n

2τ

]
dm.

Since

2τ

∣
∣
∣
∣Sy + ∇2f − 1

2τ
g

∣
∣
∣
∣

2

= 2τ |Sy + ∇2f |2 + 2τ

(
n

4τ2 − 1
τ
S − 1

τ
Δf

)
,

everything comes together to the following result:

Theorem 6.1. Let M be a closed Riemannian manifold and (g, u, f, τ)(t)
a solution on [0, T ) × M of the evolution equations

∂tg = −2Sy,
∂tu = Δu,

∂tf = −Δf + |∇f |2 − S +
n

2τ
,

∂tτ = −1.

Then the following monotonicity formula holds:
(6.3)

∂tW (t) =
∫

M

[
2τ |Sy + ∇2f − 1

2τ
g|2 + 2αnτ |Δu − du(∇f)|2

]
dm ≥ 0.

In particular, the entropy W is nondecreasing. Equality holds if and only if
(g, u, f, τ)(t) satisfies

Sy + ∇2f − 1
2τ g = 0 and Δu − du(∇f) = 0.

Such a solution is called a homothetic shrinking gradient soliton.
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Proof. We apply the diffeomorphisms generated by ∇f(t) to the system (6.2)
in the same way as we did for (3.3). The result follows considering that W
is invariant under diffeomorphisms. More details are given in [15, §4]. �

Remark 6.2. Note that the theorem is still true for a complete noncompact
manifold Σ as long as the integrations by parts can be justified. This is
possible for example by imposing decay conditions on (g, u, f).

We derive a useful quantity from W .

Definition 6.3. Let (g, u, τ) ∈ M(M) × C∞(M) × R
+ be given. Then we

define:

μ := μ(g, u, τ) := inf
f∈C∞(M)

{
W (g, u, f, τ) :

∫

M
(4πτ)−n/2e−fdV = 1

}
.

Proposition 6.4. Let M be closed and connected. Then μ is attained by a
smooth function f̄ ∈ C∞(M) satisfying the normalization constraint.

Proof. We adapt the method from [23] to our situation and refer to the proof
of [15, Proposition 5.8] for the technical details. �

Remark 6.5. W is still bounded below on complete Σ, but a weakly con-
vergent minimizing sequence in W 1,2 need not converge strongly in any Lp

space, i.e., the support of the functions in the sequence could become infinite
or move out to infinity. It should be possible to find a contradiction to this
scenario on asymptotically flat manifolds. A noncollapsing result analogous
to Theorem 7.2 would then follow immediately.

Lemma 6.6. Suppose (g, u)(t) is a solution to (3.1) on [0, T ) × M where
M is closed. Fix a τ̄ ∈ [0, T ) and define τ(t) := τ̄ − t. Then μ(g, u, τ)(t)
is nondecreasing in t. If d

dtμ(t) = 0, the solution is a gradient shrinking
soliton.

Proof. Fix t0 and let f̄ be a minimizer for μ at time t0. Solving ∂tf =
−Δf − S + n

2τ backwards in time with initial data f̄ at t0, we conclude
from (6.3) for all t < t0 that

μ(t) ≤ W (g, u, f, τ)(t) ≤ W (g(t0), u(t0), f̄ , τ(0)) = μ(t0).

Therefore, μ(t) is nondecreasing in time. The equality case follows from the
equality case for W . �
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We use the monotonicity formula to prove bounds on the injectivity radius
of a solution. Another application, which is motivated by Perelman [7], is
the proof of nonexistence of periodic solutions, so-called breathers. We just
state the result and skip the details.

Theorem 6.7. Let (g, u)(t) be a steady/expanding/shrinking breather on
a closed manifold M . Then it necessarily is a steady/expanding/shrinking
gradient soliton. In the steady case, (M, g) is Ricci-flat and u is constant.
In the expanding case, (M, g) is Einstein and u is constant.

Proof. The complete proof is given in [15, §5]. �

7. Finite-time singularities

In general, solutions will only exist for a certain finite time due to curvature
blowup. To be able to study singularity formation, it is absolutely crucial
to keep control on the injectivity radius when rescaling the solution.

Definition 7.1. A solution (g, u)(t) is locally collapsing at T , if there are
sequences of times (tk), tk → T and balls (Bk) := (Brk

(pk)) at time tk such
that r2

k/tk is bounded, the curvature satisfies |Rm|(tk) ≤ r−2
k on Bk, and the

volume decreases like r−n
k vol(Bk) → 0.

Inspired by Perelman’s construction [7, §4], we prove:

Theorem 7.2. Suppose M is closed and T < ∞. Then a solution (g, u)(t)
of (3.1) on [0, T ) is noncollapsed on [0, T ] × M .

Proof. Assume to the contrary the existence of sequences (tk) and (Bk) as
above. Setting φ := e−f/2, we realize that μ(g, u, τ)(t) is the infimum of

(7.1) W̃ (g, u, w, τ) :=
∫

M

[
τ
(
4|dφ|2 + Sφ2) − φ2 lnφ2 − nφ2](4πτ)−n/2 dV

given the constraint

(7.2)
∫

M
φ2(4πτ)−n/2 dV = 1.

Set τ(t) := (tk + r2
k) − t and define a test function φk(x) := eCkξ

(
r−1
k

d(x, pk)
)

at time tk where ξ ∈ C∞(R+) satisfies ξ ≡ 1 on [0, 1
2 ], ξ ↘ on [12 , 1]

and ξ ≡ 0 on [0,∞). Choose Ck such that the normalization condition (7.2)
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for φk is satisfied. Noting that φk vanishes outside Bk and that τ(tk) = r2
k,

we compute

(4π)n/2 = r−n
k

∫

M
φ2

k dV = e2Ckr−n
k

∫

Bk

ξ2 dV ≤ e2Ck r−n
k vol(Bk)︸ ︷︷ ︸

−→0

which forces Ck → +∞ for k → ∞. We insert φk and r2
k into (7.1) and get

W̃ (g, u, φk, r
2
k) = (4π)−n/2r−n

k e2Ck

∫

Bk

4r2
k|ξ′|2 · (r−2

k |∇d|2) − 2ξ2 ln ξ
)
dV

+ r2
k

∫

Bk

Sφ2
k(4π)−n/2r−n

k dV − n − 2Ck

≤(4π)−n/2r−n
k e2Ck

∫

Bk

(
4|ξ′|2−2ξ2 ln ξ

)
dV

+ r2
k max

Bk

S −n−2Ck.

(7.3)

Set V (r) := vol(Brk
(pk)). Using the curvature bound Rc ≥ −(n − 1)C2r−2

k

on Bk, we can compare V (r) with the volume Ṽ (r) of the ball in the model
space of negative constant sectional curvature. The Bishop Volume Com-
parison Theorem [20, Theorem 1.3] implies that

V (rk) − V (rk/2) ≤ (C ′ − 1)V (rk/2).

Since ξ ≡ 1 on Brk/2(pk), this allows us to estimate
∫

Bk

(
4|ξ′|2 − 2ξ2 ln ξ

)
dV ≤ max

rk/2≤d(pk,x)≤rk

∣
∣4|ξ′|2 − 2ξ2 ln ξ

∣
∣ ·

[
V (rk) − V (rk/2)

]

≤ C · V (rk/2) ≤ C

∫

Bk

ξ2 dV = C(4π)n/2rn
k e−2Ck .

Plugging this into (7.3), we conclude for a constant C̃ independent of k:

W̃ (g, u, φk, r
2
k) ≤ C + r2

k max
Bk

(
R − 2|du|2

)
− n − 2Ck

≤ C + r2
k max

Bk

R − 2Ck

≤ C̃ − 2Ck
k→∞−→ −∞

where we estimated max R ≤ n2 · r−2
k by the initial bound on Rm. Choos-

ing τ(t) = (tk + r2
k) − t, the monotonicity of μ from Lemma 6.6 shows for
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k → ∞:

μ(g(0), u(0), tk + r2
k) ≤ μ(g(tk), u(tk), r2

k) ≤ W̃ (g(tk), u(tk), φk, r
2
k) −→ −∞.

But μ(0) > −∞ since g(0) and u(0) are fixed and smooth and tk + r2
k is

bounded. �

The notion of noncollapse can be made more precise:

Definition 7.3. A metric g is said to be κ-noncollapsed on the scale ρ, if
every metric ball Br(x0) of radius r < ρ such that supx∈Br(x0) |Rm| ≤ r−2

has volume at least κrn.

Thus Theorem 7.2 implies on closed M that g(t) is κ-noncollapsed on
the scale

√
T for all t ∈ [0, T ) and some κ depending only on n, supM |R̃m|0,

inj(g̃), and T . Note that control on the volume of small balls is sufficient
for a lower bound on the injectivity radius of M [24, Theorem 4.7] and [15,
Proposition 7.7].

To be able to speak of compactness for solutions to (3.1), we need to
define convergence for sequences of such solutions:

Definition 7.4. Let (gk, uk)(t) be a family of solutions to (3.1) on
[TA, TO) × Σk where Σk is complete. Let xk be a base point in Σk. Further-
more, let Σ∞ be a complete Riemannian manifold, (g∞, u∞)(t) a solution to
(3.1), and x∞ ∈ Σ∞ be a base point. Then the sequence (Σk, (gk, uk)(t), xk)
converges to (Σ∞, (g∞, u∞)(t), x∞), if there exists a sequence of open sets
Uk ⊂ Σ∞ containing x∞, and a sequence of diffeomorphisms Fk : Uk → Vk

where Vk ⊂ Σk is open, satisfying Fk(x∞) = xk such that any compact set in
Σ∞ eventually lies in all Uk and the pullbacks g̃k(t) := F ∗

k gk(t) and ũk(t) :=
F ∗

k uk(t) converge to (g∞, u∞)(t) on every compact subset of (TA, TO) × Σ∞
uniformly together with all their derivatives.

Using the interior estimates in Theorem 5.12, we can prove compactness
of a set of solutions.

Theorem 7.5. Let TA, TO be given such that −∞ ≤ TA < TO ≤ ∞. Fix
t0 ∈ (TA, TO). Let (Σk, gk(t), uk(t), xk) be a pointed sequence of complete
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solutions to (3.1) for t ∈ [TA, TO) with

sup
Σk

|Rmk|gk(t)(t) ≤ C0 ∀t ∈ (TA, TO),

sup
Σk

|uk|(TA) ≤ C ′
0,(7.4)

where C0 and C ′
0 are independent of k. Assume in addition that (gk, uk)(t0)

is κ-noncollapsed for some κ > 0 independent of k. Then there exists a
subsequence

(Σk, gk(t), uk(t), xk)
C∞

−→ (Σ∞, g∞(t), u∞(t), x∞),

converging to a complete, κ-noncollapsed solution of (3.1). All derivatives
of the curvature Rm∞ and of u∞ are bounded above and there is a lower
bound on the injectivity radius of g∞.

We need an auxiliary lemma similar to [4, Lemma 2.4] to get estimates
for the solutions (gk, uk)(t) with respect to the limit metric g∞(t) using
bounds at t = t0 and bounds for gk(t), uk(t) with respect to the metrics
gk(t).

Lemma 7.6. Let (Σ, g) be a Riemannian manifold and K ⊂ Σ be a compact
subset. Assume (gk, uk)(t) is a collection of solutions to (3.1), defined on
neighborhoods of [α, ω] × K such that α < 0 < ω. Let ∇, | · | denote covari-
ant differentiation and length with respect to g and k∇, | · |k with respect to
gk. Furthermore, suppose that at time t = 0 on K we have the bounds

(a) cg(X, X) ≤ gk(X, X) ≤ Cg(X, X) for all X ∈ X (Σ),

(b) |∇p+1gk| ≤ Ĉp+1, |∇puk| ≤ Ĉ ′
p for all p ≥ 0,

and in addition

(c) sup
[α,ω]×K

(
|k∇pRmk|k + |k∇puk|k

)
≤ Cp + C ′

p for all p ≥ 0

with constants c, C, Ĉp, Ĉ
′
p, Cp, C

′
p independent of k. Then the following

holds:

(i) c̃g(X, X) ≤ gk(X, X) ≤ C̃g(X, X) on [α, ω] × K,

(ii) sup
[α,ω]×K

(
|∇p+1gk| + |∇puk|

)
≤ C̃p+1 + C̃ ′

p for all p ≥ 0

for constants c̃, C̃, C̃p, C̃
′
p independent of k, α, ω and K.
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Proof. From (a) and (c) we obtain the equivalence of the metrics gk(t) to
gk(0) and therefore also to g analogously to [4, Lemma 2.4] for constants c̃
and C̃ depending only on n, C0, Ĉ

′
1, T and C. Denote by Z from now on all

constants depending only on c̃, C̃.
The evolution (3.5) of Γk together with (c) yields the estimate:

∣
∣∂t

(
Γk − Γ

)∣∣
k

≤ c(n)|k∇Rck|k + c(n)|duk|k|k∇2uk|k ≤ C1 + Ĉ1Ĉ2 =: A1

for a constant A1 = A1(n, C1, Ĉ1, Ĉ2). Since ∇gk � Γk − Γ � k∇ − ∇, we
deduce

|∂t∇gk| ≤ c(n)
∣
∣∂t

(
Γk − Γ

)∣∣ ≤ c(n)Z
∣
∣∂t

(
Γk − Γ

)∣∣
k

≤ Z · A1.

Using the bounds (b) on ∇gk at t = 0, an integration gives

∣
∣∇gk

∣
∣(t) =

∣
∣
∣
∣∇gk(0) +

∫ t

0
∂τ∇gk(τ)dτ

∣
∣
∣
∣ ≤ |∇gk|(0) + ZA1T

≤ Ĉ1 + ZA1T =: C̃1.

(7.5)

Since uk is bounded on [α, ω] × K by (c) and | · | = | · |k on functions, we
easily obtain

(7.6) |uk|(t) = |uk|k(t) ≤ C0 =: C̃ ′
0.

Similarly, (c) and (i) yield for the differential

(7.7) |∇uk|(t) = |duk|(t) = |k∇uk|(t) ≤ Z · |k∇uk|k(t) ≤ Z · C1 =: C̃ ′
1.

Since we already have a bound for ∇gk on [α, ω] × K, we can estimate ∇2u
at time t as follows:

∂t∇2uk = ∇2fk = (∇ − k∇)dfk + k∇dfk = ∇gk ∗ k∇fk + k∇2fk

where fk(t) := Δkuk(t) ∈ C∞([TA, TO) × Σ) is just an abbreviation. There-
fore, we get

|∂t∇2uk| ≤ |∇gk|Z|k∇fk|k + Z|k∇2fk|k ≤ C̃1ZC(n)C ′
3 + ZC(n)C ′

4 =: B2

from (c). Using (b), an integration gives for C̃ ′
2 = C̃ ′

2(n, c̃, C̃, C̃1, C
′
3, C

′
4, T ):

|∇2uk|(t) ≤ |∇2uk|(0) +
∫ t

0
|∂τ∇2uk(τ)|dτ ≤ Ĉ ′

2 + B2T =: C̃ ′
2.

Higher derivatives of (gk, uk) with respect to g can be estimated in pairs
(∇pgk,∇p+1uk) [15, 8.10]. The technique is similar for all p ≥ 2, so we only
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state the case p = 2 as reference. Since ∇ commutes with ∂t, we get an
expression for ∂t∇pgk from the flow equations (3.1):

∂t∇2gk = ∇2(−2Rck + 2αn duk ⊗ duk

)

= ∇2Rck + ∇3uk ∗ duk + ∇2uk ∗ ∇2uk.

Using k∇ − ∇ � ∇gk, this can be rewritten in the following way:

∇2Rck = ∇gk ∗ ∇gk ∗ Rck + ∇gk ∗ k∇Rck + k∇∇gk ∗ Rck

+ ∇gk ∗ k∇Rck + k∇2Rck.

From the identity k∇∇gk = ∇2gk + ∇gk ∗ ∇gk, we get altogether:

∂t∇2gk = ∇2gk ∗ Rck + ∇3uk ∗ ∇uk + ∇gk ∗ ∇gk ∗ Rck + ∇gk ∗ k∇Rck

+ k∇2Rck + ∇2uk ∗ ∇2uk.

Therefore, it is necessary to control ∇3uk to get an estimate for ∇2gk. Keep-
ing this in mind, we estimate using (c):

|∂t∇2gk| ≤ ZC0|∇2gk| + ZC̃ ′
1|∇3uk| + Z

{
C̃2

1C0 + C̃1C1 + C2 + (C̃ ′
2)

2}

≤ A1(|∇2gk| + |∇3uk|) + A2,

(7.8)

defining A1 := Z max{C0, C̃
′
1} and A2 = A2(n, c̃, C̃, C0, C1, C2, C̃1, C̃ ′

2).
Doing the same calculation for ∇3uk, we get

∂t∇3uk = (∇gk ∗ ∇gk +∇2gk + ∇gk ∗ ∇gk) ∗ k∇fk + ∇gk ∗ k∇2fk + k∇3fk.

This leads to the estimate (again using (c)):

|∂t∇3uk| ≤ ZC(n)C ′
3|∇2gk| + C(n)Z

{
C̃2

1C ′
3 + C̃1C

′
4 + C ′

5
}

≤ A3|∇2gk| + A4,
(7.9)

where A3 = A3(n, c̃, C̃, C ′
3) and A4 = A4(n, c̃, C̃, C̃1, C

′
3, C

′
4, C

′
5). Putting

(7.8) and (7.9) together and realizing that | · | is independent of time, we
arrive at

∣
∣∂t

(
|∇2gk| + |∇3uk|

)∣∣ =
∣
∣|∂t∇2gk| + |∂t∇3uk|

∣
∣

≤ A1
(
|∇2gk| + |∇3uk|

)
+ A2 + A3|∇2gk| + A4

≤ B1
(
|∇2gk| + |∇3uk|

)
+ B2.
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We can use (b) to integrate the equation in time as before and obtain

(7.10) |∇2gk|(t) + |∇3uk|(t) ≤ C̃2 = C̃ ′
3.

Here both constants depend only on n, c̃, C̃, Ĉ2, Ĉ ′
3, C̃1, C0, C1, C2, C

′
3, C

′
4, C

′
5

and T . Together with (7.5), (7.6), (7.7) and the analogs of (7.10) for p > 2,
(ii) follows. �

Proof of Theorem 7.5. Assume without loss of generality that TA, TO < ∞
and t0 = 0. Let (gk, uk)(t) be a sequence of solutions on [TA, TO) × Σk such
that |Rmk|2k(t) ≤ C0. Then we can bound the injectivity radius inj(gk(0)) >
δ at time t = 0 uniformly in k from the κ-noncollapsing assumption (κ is
also uniform in k) using [24, Theorem 4.7] and the uniform curvature bound.

The uniform bound |uk(TA)| ≤ C ′
0 from (7.4) implies not only a uniform

bound |uk| ≤ C ′
0 on [TA, TO) × Σ from (5.11), but also a uniform bound

|duk|2k ≤ C ′
1 = C ′

1(C0, T ), using (5.7). Here C ′
1 only depends on C ′

0 and T .
Therefore, we can apply Theorem 5.12 to get the uniform bounds

(7.11) sup
(TA,TO)×Σk

(
|k∇iRmk|k + |k∇i+2uk|k

)
≤ Ci = Ci(n, T, C0, C

′
0)

for all i ≥ 0, where the Ci are constants depending only on the curvature
bound C0, the initial bound on uk given by C ′

0, n and T , but not on k.
Using these bounds at t = 0 and the lower injectivity radius bound, we

can apply [2, Theorem 16.1] to get a convergent subsequence of (Σk, gk(0),
xk) at time t = 0 to a limit (Σ∞, G, x∞). Note that the convergence is
with respect to the limit metric G. The pullbacks g̃k := F ∗

k gk(t) and ũk :=
F ∗

k uk(t) are defined for all times t ∈ (TA, TO) though. To prove convergence
of gk, uk for all t, we need uniform estimates for the derivatives of g̃k, ũk

on (TA, TO) × Σ∞. These estimates follow from Lemma 7.6 on all compact
subsets [α, ω] × K ⊂ (TA, TO) × Σ. Therefore, we can find a subsequence
converging uniformly on every compact subset of (TA, TO) × Σ∞. The limit
g∞(t) := limk→∞ g̃k(t) will agree at time t = 0 with G since it already con-
verged there by construction. Defining u∞(t) := limk→∞ ũk(t), we see that
(g∞, u∞)(t) is also a solution of (3.1) since the convergence is smooth and
taking the limit commutes with all derivatives. Furthermore, it satisfies
the same bounds on derivatives and the injectivity radius. If TA = ∞
or TO = ∞, we apply the theorem for a sequence of times TAj

→ −∞ or
TOj

→ ∞, respectively, on finite time intervals. A diagonalization argument
yields a subsequence converging on the union of these intervals [4, §2]. �
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Due to the noncollapsing result in Theorem 7.2, we can rescale the solution
at a singular time. This can be seen as a microscopic view on the solution
when approaching the singularity. Then a comparison of the solution near
the singular time and close enough to the singular point with the rescaling
limit is possible. It is crucial to know what these regions look like to set up
the delicate surgery procedures as described in [5] or [7]. We first give some
definitions.

Definition 7.7. A solution (g, u)(t) to (3.1) on a complete Riemannian
manifold is called ancient, if it exists for all t ∈ (−∞, T ] up to some time
T ≥ 0.

Definition 7.8. Let (g, u)(t) be a maximal solution to (3.1) on [0, T ) × Σ
for some T ∈ (0,∞]. A sequence (tk, xk) ⊂ [0, T ) × Σ is called an essen-
tial blowup sequence, if ti → T , and there is a constant C ≥ 1 such that
sup[0,tk]×Σ |Rm|(t, x) ≤ C|Rm|(tk, xk).

Theorem 7.9. Let (g, u)(t) be a solution to (3.1) on [0, T ) × M for M
closed and T finite. Assume (tk, xk) is an essential blowup sequence and set
Bk := |Rm|(tk, xk). Define the rescalings

gk(s) := Bk · g(s/Bk + tk), uk(s) := u(s/Bk + tk).

Then a subsequence of (M, gk(s), uk(s), xk) converges smoothly on compact
subsets of [0, T ) × M to a complete ancient solution (M∞, g∞(s), u∞(s), x∞)
which is noncollapsed on all scales for some κ > 0. Moreover, u∞(s) ≡ const
and g∞(s) is a solution to the Ricci Flow.

Proof. We want to apply Theorem 7.5 to the sequence of rescalings (M, gk(s),
uk(s), xk). By choice of the scale factor, the rescaled solution exists for
s ∈ [−Bk · tk, 0], and we can compute

sup
x∈M

|Rmk|gk
(s, x) = B−1

k sup
x∈M

|Rm|(s/Bk + tk, x) ≤ B−1
k · CBk = C

for all s ∈ [−Bk · tk, 0] from the scaling behavior of |Rm|. Since u is con-
trolled using (5.11), we get a uniform bound sup |uk|(s) ≤ C ′ on [−Bk ·
tk, 0] × M independent of k since u ∈ C∞(M) is scaling invariant. Finally,
because (g, u)(t) is defined on a finite time interval and on closed M , we
know from Theorem 7.2 that it is κ-noncollapsed on the scale

√
T for some

κ > 0 depending only on the initial data. A short calculation shows that
the rescaled solutions (gk, uk)(s) are also κ-noncollapsed for the same κ,
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but on larger and larger scales ρk :=
√

BkT . (Remember that Bk → ∞.)
Therefore, we can apply Theorem 7.5 on all time intervals [−A, 0], A > 0,
to conclude the existence of a subsequence converging to a complete solu-
tion (M∞, g∞(s), u∞(s), x∞). The limit is ancient since −Bk · tk → −∞ for
k → ∞ and κ-noncollapsed on all scales since ρk → ∞.

It remains to show that the limit is in fact a solution to Ricci Flow. To
this end, we will show that |du∞|2g∞

≡ 0. Recall the a priori estimate (5.8)
for |du|2 which is valid for all t ∈ (0, T ):

sup
x∈M

|du|2(t, x) ≤ 1
2αn

t−1.

Since we have gk := Bk · g, we get for all s ∈ (−∞, 0] and k big enough that

|duk|2gk
(s) = (gk)ij∂iuk∂juk = B−1

k · |du|2(s/Bk + tk) ≤ 1
2αn

B−1
k · Bk

s + tkBk

= 1
2αn

· 1
s + tkBk

holds. Passing to the limit k → ∞ for fixed s, we conclude that |du∞|g∞(s) ≡
0. Since s is arbitrary, the system (3.1) reduces to the Ricci Flow equation
for g∞ on (−∞, 0] × M∞. �

The following immediate consequence is proven in [15, Corollary 8.7]:

Corollary 7.10. For every maximal solution (g, u)(t) of the system (3.1)
on [0, T ) × M for T < ∞ and closed M , there is a sequence of dilations
such that the limit is a complete, ancient solution to the Ricci flow which is
κ-noncollapsed on all scales for some κ > 0.

Remark 7.11. Although we can always find an essential blowup sequence
at a singular time T of a given maximal solution (g, u)(t), we point out
that there may be other singularities forming at the same time but with
a higher blowup rate. These are called slowly forming singularities. To
fully understand the solution at time T , one also needs to understand these
singularities. In [2, §16] dilation limits at singularities are referred to as
singularity models and are classified in two types I and II(a) for T < ∞.
Following [6, §11,§12], we do not make this distinction. Perelman instead
uses “ancient κ-solutions” to study the Ricci flow singularities.
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8. Asymptotically flat solutions

We consider complete and asymptotically flat manifolds (Σ, g̃, ũ). This
extends the usefulness of (3.1) to physical applications, in particular to the
study of isolated systems. This class of solutions to the Einstein equations
consists of metrics describing the gravitational field of a single body like a
star or a black hole. The model for such a solution is an asymptotically flat
manifold where the metric satisfies certain decay conditions near infinity.
We prove for two definitions of asymptotic flatness that the decay behavior
at time t = 0 is maintained as long as the solution satisfies a supremum
bound. However, the following estimate is valid for all solutions satisfying
the stated bounds, for example for all solutions given by Theorem 4.1.

Lemma 8.1. Let (g, u)(t) solve (3.1) on [0, T ] × Σ with initial data (g̃, ũ)
such that |Rm| + |∇2u| + |du|2 ≤

√
K on [0, T ] × Σ. Then for t ∈ [0, T ], any

x0 ∈ Σ and any R > 0, the estimate

sup
x∈Bt

R/4(x0)
|Φ|2(t, x) ≤ 2 sup

x∈B0
R(x0)

|Φ|20(0, x) · eCC̃t/R2

holds, where C̃ := max{R2 ·
√

K, 1} is a scaling invariant constant and C
depends only on n.

Proof. The assumptions imply that R2
(
|Φ| + |du|2

)
≤ R2 ·

√
K holds on

B(T, x0, R). Set C̃ := max{R2 ·
√

K, 1}. Using the evolution equation for
|Φ|2 from Lemma 5.8, we get

(
∂t − Δ

)
|Φ|2 ≤ −2|∇Φ|2 + C(n)C̃R−2 · |Φ|2.

Define the cut-off function η̃(t, x) := R−4 ·
(
R2 − 1

2d2
t (x0, x)

)2 for a fixed
radius R > 0. It differs from the one defined in Lemma 5.5 only by the
factor R−4, and we therefore can use the results obtained in Lemma 5.5 for
η modified by this factor. Setting f := |Φ|2 · η̃, we compute

(
∂t − Δ

)
f ≤ −2|∇Φ|2η̃ + C(n)C̃R−2{f + |Φ|2} + |∇Φ|2η̃ + C(n)R−2f

≤ C(n)C̃R−2f ,
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using the bound η̃−1 ≤ 16
9 on B(T, x0, R/4) and C̃ ≥ 1. From |∇d| = 1, we

estimated

−2∇|Φ|2∇η ≤ 4|∇Φ||Φ| · (R2 − r)|∇d2|
R4 =

(
|∇Φ|R

2 − d2

R2 · 8|∇d||d||Φ|
R2

)

≤ |∇Φ|2η̃ + CR−2|Φ|2.

The solution v(t) = v(0) · eCC̃t/R2
to the associated ordinary differential

equation with initial value v(0) := 9
8 supx∈B0

R(x0) f(0, x) is a barrier for f(t)
for all t ≥ 0, and we therefore get

sup
x∈Bt

R/4(x0)

[
|Φ|2(t, x) · η̃(t, x)

]
≤ 9

8 sup
x∈B0

R(x0)

[
|Φ|2(0, x) · η̃(0)

]
eCC̃t/R2

.

Using η̃(0) ≤ 1 and η̃−1 ≤ 16
9 on B(T, x0, R/4), the desired result follows. �

Lemma 8.2. Let (g, u)(t) be a solution to (3.1) on [0, T ] × Σ with initial
data (g̃, ũ) such that |Rc|2 ≤ K on [0, T ] × Σ. Then we get for t ∈ [0, T ],
any x0 ∈ Σ and any R > 0 the estimate

sup
x∈Bt

R/4(x0)
|du|2(t, x) ≤ 2 sup

x∈B0
R(x0)

|dũ|20(0, x) · eCC̃t/R2
,

where C̃ := max{R2 ·
√

K, 1} is a scaling invariant constant and C depends
only on n.

Proof. Since |du|2 satisfies (3.6), a bound on the Ricci curvature is sufficient
to apply (5.6). The remaining proof is analogous to the proof of Lemma
8.1. �
A strong definition of asymptotic flatness is given as follows:

Definition 8.3. Let Σ be a complete n-dimensional connected Riemannian
manifold. (Σ, g, u) is called strongly asymptotically flat of mass m, if there
is a compact subset K ⊂ Σ such that ΣK := Σ \ K is diffeomorphic to R

n \
B1(0) and (g, u) satisfy in the exterior region ΣK :

∣
∣g −

(
1 − 2m

r̃

)
δ
∣
∣ ≤ C0 · r̃−2,(8.1)

|∂kg| ≤ Ck · r̃−k−1, k = 1, 2, 3,
∣
∣u + m

r̃

∣
∣ ≤ D0 · r̃−2,

|∂ku| ≤ Dk · r̃−k−1, k = 1, 2, 3,(8.2)
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for some constants Ck, Dk, k = 0, . . . , 3 where r̃(x) :=
√

x2
1 + · · · + x2

n is the
radial coordinate of R

n and | · | and ∂ are with respect to δ.

A very important physical property of an asymptotically flat manifold
is its ADM mass. For manifolds as defined above, it is given by the coef-
ficient m in the expansion of (g, u). The general definition can be found
in [25] where it is also shown that the ADM mass is invariantly defined
and independent of the asymptotic coordinate system. We prove that the
flow (3.1) preserves the class of asymptotically flat manifolds as defined
above. Observe that this theorem holds for all asymptotically flat solutions
if uniqueness holds in Theorem 4.1.

Theorem 8.4. Let (g, u)(t) be the solution to (3.1) on [0, T ] × Σ for T < ∞
with initial data (g̃, ũ) given by Theorem 4.1. Assume that (Σ, g̃, ũ) is
strongly asymptotically flat of mass m := m(g̃) with K = B̄0

ρ(O) for con-
stants Ck, Dk. Then (Σ, g(t), u(t)) is strongly asymptotically flat for all
t ∈ [0, T ]. In particular, there is a constant C(t) = C(t, k0, c0, s0, Ck, Dk, n)
depending only on time, the bounds from Theorem 4.1 and the asymptotic
decay of (g̃, ũ) such that

∣
∣
∣
∣g(t) −

(
1 − 2m

r̃

)
δ

∣
∣
∣
∣
0
+

∣
∣
∣u(t) +

m

r̃

∣
∣
∣
0

≤ C(t) · r̃−2

|∂kg|0 + |∂ku|0 ≤ C(t) · r̃−k−1

holds on [0, T ] × Σ \ B2ρ(O) for k = 1, 2, 3 with C(t) → ∞ for t → ∞. In
particular, the ADM mass is preserved by the flow and we have m(g(t)) = m
for all t ∈ [0, T ].

Proof. Let (Σ, g̃, ũ) be asymptotically flat on ΣK := Σ \ B̄ρ(O). Assume
without loss of generality that ρ ≥ 1. We know from the definition that
there is a constant C̄ such that

sup
x∈ΣK

[
|Φ|0(0, x)r̃3(x)

]
≤ C sup

x∈ΣK

[
(|∂2g̃|0+|∂g̃|20+|∂2ũ|0+|∂g̃|0|∂ũ|0)r̃3] ≤ C̄.

Fix x0 ∈ Σ \ B0
2ρ(O) and choose R := 1

4 r̃(x0). Using the equivalence of the
norms | · |0 and | · | and the bounds on |Φ| + |du|2 from Theorem 4.1, we can
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apply Lemma 8.1 to find

|Φ|20(t, x0) ≤ ect|Φ|2(t, x0) · η̃(t, x0) ≤ ect sup
x∈Bt

R/4(x0)

[
|Φ|20(t, x) · η̃(t, x)

]

≤ ect · 2 sup
x∈B0

R(x0)

[
|Φ|20(0, x) · η̃(0, x)

]
· eCC̃t/R2

≤ 2ect sup
x∈B0

R(x0)

[
|Φ|20(0, x)

]
· eCC̃t/R2

for a constant c depending only on n, k0, c0, where c0 := supΣ |dũ|20. Since
B̄0

R(x0) is compact, the supremum is attained at some point x∗ ∈ B0
R(x0).

Multiplying by r̃6(x0) leads to

|Φ|20(t, x0) · r̃6(x0) ≤ 2ecteCC̃t/R2 · |Φ|20(0, x∗) · r̃6(x0).

Examining the constants, we see that either C̃ = 1 and eCC̃t/R2 ≤ eCt/ρ2
or

C̃ = R2 ·
√

K such that eCC̃t/R2 ≤ eC
√

Kt. In both cases, we get ecteCC̃t/R2 ≤
ec̄t for a constant c̄ = c̄(n, k0, c0, s0, ρ) independent of x0, where s0 := supΣ
|∇̃2ũ|20. On all of B0

R(x0), there is the estimate

r̃(x) ≥ r̃(x0) − R = 3
4 r̃(x0)

such that we obtain

|Φ|20(t, x0) · r̃6(x0) ≤ 12ec̄t ·
(
|Φ|20(0, x∗) · r̃6(x∗)

)
≤ 12C̄2ec̄t.

Note that the choice of R guarantees that the ball B0
R(x0) is fully contained

in ΣK . Furthermore, the constants c̄ and C̄ do not depend on x0. This
implies that the estimate is uniform for all x ∈ Σ \ B0

2ρ(O) and we have

(8.3) |Φ|0(t, x) ≤ A · r̃−3(x)

on [0, T ] × Σ \ B0
2ρ(O) for a constant A = A(t) depending only on t with

A(t) → ∞ for t → ∞. In the same way as above, we get using Lemma 8.2

(8.4) |du|20(t, x) ≤ B · r̃(x)−4
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on [0, T ] × Σ \ B̄2ρ(x0) with B(t) → ∞ for t → ∞. The estimates (8.3) and
(8.4) allow us to integrate pointwise for all x ∈ Σ \ B0

2ρ(O)

∣
∣
∣
∣g(t) −

(
1 − 2m

r̃

)
δ

∣
∣
∣
∣
0

≤ C0r̃
−2 +

∫ t

0
|∂tg(τ)|0 dτ ≤ C̃0r̃

−2

+ 2αn

∫ t

0

(
|Rc|0 + |du|20

)
(τ)dτ

≤ C̃0r̃
−2 +

(
Ar̃−3 + Br̃−4) · T = C̃0 · r̃−2,

(8.5)

where C̃0 = C̃0(n, C0, A, B, T ) is independent of x. For u(t), we integrate

∣
∣
∣u(t) +

m

r

∣
∣
∣
0

≤ D0r̃
−2 +

∫ t

0
|∂tu(τ)|0 dτ ≤ D0r̃

−2 +
∫ t

0
|Δu|0(τ)dτ

≤ D0r̃
−2 + nAT · Cr̃−3 = D̃0 · r̃−2,

(8.6)

where D̃0 = D̃0(n, D0, A, B, T ) also does not depend on x. This shows that
(g, u)(t) remains asymptotically flat at the zeroth order on Σ \ B0

2ρ(O).
To estimate the first derivative of g, we need the first derivative of Φ.

From Lemma 5.8, we have

(
∂t − Δ

)
|∇Φ|2 ≤ −2|∇2Φ|2 + C

{
|Φ||∇Φ|2 + |du||Φ|2|∇Φ| + |du|2|∇Φ|2

}
.

Estimating (|du|2 + |Φ|) ≤ C̃R−2 as before and using Young’s inequality,
this implies

(
∂t − Δ

)
|∇Φ|2 ≤ −2|∇2Φ|2 + CC̃R−2|∇Φ|2 + A4r̃−12.

The remaining calculations go through as above such that we find for f :=
|∇Φ|2 · η̃:

(
∂t − Δ

)
f ≤ CC̃R−2f + CA4r̃−12(x0).

Here we used that η̃ ≤ 1 on B(T, x0, R) and r̃−1(x) ≤ 4
3 r̃−1(x0). Let v(t) be

the solution to
d
dtv(t) = CC̃R−2v(t) + CA4r̃−12(x0)

with initial value v(0) := 9
8 supx∈B0

R(x0) f(0, x). Then v is given explicitly by

v(t) = −CA4r̃−12(x0) · R2

CC̃
+ eCC̃t/R2 ·

(
v(0) + CA4r̃−12(x0) · R2

CC̃

)

≤ eCC̃t/R2 ·
(
v(0) + CA4r̃−10(x0)

)
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from the choice of R and C̃ ≥ 1. Since v is a barrier for f for t > 0, we find

sup
x∈Bt

R/4(x0)

[
|∇Φ|2(t, x) · η̃(t, x)

]

≤ 2

(

sup
x∈B0

R(x0)

[
|∇Φ|20(0, x)η̃(0, x)

]
+ CA4r̃−10(x0)

)

· eCC̃t/R2
.

The asymptotic conditions for |∂3g| and |∂3u| imply that for x ∈ Σ \ B0
ρ(O)

at t = 0, we have
|∇Φ|0(0, x) ≤ C̄ · r̃−4

independent of x. We find at a point x∗ ∈ B0
R(x0) where the supremum is

attained that

|∇Φ|2(t, x0) · r̃8(x0) ≤
(
2|∇Φ|20(0, x∗) · r̃8(x0) + CA4r̃−10 · r̃8(x0)

)
· eCC̃t/R2

≤ (32C̄ + CA4r̃−2(x0))eCC̃t/R2
=: E(t)

holds, where E(t) does not depend on x. Here we also used r̃−1(x0) ≤ 1.
This implies the decay

|∇Φ|0(t, x0) ≤ E(t) · r̃−4(x0)

on [0, T ] × B2ρ(x0). Observe that E(t) → ∞ for t → ∞. Integration gives

|∂g|0(t) ≤ |∂g̃|0 +
∫ t

0
|∂t∂g|0(τ)dτ ≤ C1 · r̃−3

+ 2αn sup
τ∈[0,T ]

(|∇Rc|0 + |du|0|∇2u|0)(τ) · T

≤ C1 · r̃−3 + 2αnT · Er̃−4 + 2αnT
√

BAr̃−5 ≤ C̃1 · r̃−3.

Together with (8.4), we get the desired asymptotics for ∂g and ∂u. We have
from (8.5) and (8.6)

|∂2g|0 ≤ |Rm|0 + |∂g|20 ≤ A · r̃−3 + C̃2
1 · r̃−4 ≤ C̃2 · r̃−3,

|∂2u|0 ≤ |∇2u|0 + |∂g|0|∂u|0 ≤ A · r̃−3 + C̃1 · r̃−2 · D̃1 · r̃−2 ≤ D2 · r̃−3,

establishing the claim for k = 2. The remaining case k = 3 is handled analo-
gously. Since g̃ and δ are equivalent, this proves that the asymptotic flatness
is preserved. The estimates (8.5) and (8.6) show that the change of (g, u) in
time is of order r̃−2. Therefore the asymptotic form (8.1) and (8.2) of the
initial data is preserved. It immediately follows that the ADM mass stays
constant under the flow (3.1). �
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The same can be proved for the following weaker definition of asymptotic
flatness.

Definition 8.5. Let Σ be a complete n-dimensional connected Riemannian
manifold. (Σ, g, u) is called asymptotically flat, if there is a compact subset
K ⊂ Σ such that ΣK := Σ \ K is diffeomorphic to R

n \ B1(0) and (g, u)
satisfy in the exterior region ΣK

|g − δ| + |u| ≤ C0 · r̃−1,

|∂kg| + |∂ku| ≤ Ck · r̃−k−1, k = 1, 2, 3,

for constants Ck, where r̃(x) :=
√

x2
1 + · · · + x2

n is the radial coordinate of
R

n and | · | and ∂ are with respect to the Euclidean metric.

Theorem 8.6. Let (g, u)(t) be the solution to (3.1) on [0, T ] × Σ for T <
∞ with initial data (g̃, ũ) given by Theorem 4.1. Assume that (Σ, g̃, ũ) is
asymptotically flat with K = B̄0

ρ(O) for constants Ck. Then (Σ, g(t), u(t)) is
asymptotically flat for all t ∈ [0, T ]. In particular, there is a constant C(t) =
C(t, k0, c0, s0, Ck, n) depending only on time, the bounds from Theorem 4.1
and the asymptotic decay of (g̃, ũ) such that

|g(t) − δ|0 + |u(t)|0 ≤ C(t) · r̃−1

|∂kg|0 + |∂ku|0 ≤ C(t) · r̃−k−1

holds on [0, T ] × Σ \ B2ρ(O) for k = 1, 2, 3, where C(t) → ∞ for t → ∞. In
addition, the ADM mass stays constant in time and we have mADM (g(t)) =
mADM (g̃) for all t ∈ [0, T ].

Proof. The proof is analogous to the proof of Theorem 8.4. The integration
(8.5) of the metric does not change the first-order term in r̃ which determines
the mass of g(t). �

Remark 8.7. Although the mass is constant for solutions of (3.1) on finite
time intervals, we expect that the mass mADM(g∞) of the limit (g∞, u∞)
of a global solution (g, u)(t) for t → ∞ jumps. In particular, it is not clear
that the limit in time commutes with the spatial limit.
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