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A period of slow contraction with equation of state w> 1, known as an ekpyrotic phase, has been

shown to flatten and smooth the universe if it begins the phase with small perturbations. In this paper, we

explore how robust and powerful the ekpyrotic smoothing mechanism is by beginning with highly

inhomogeneous and anisotropic initial conditions and numerically solving for the subsequent evolution of

the universe. Our studies, based on a universe with gravity plus a scalar field with a negative exponential

potential, show that some regions become homogeneous and isotropic while others exhibit inhomoge-

neous and anisotropic behavior in which the scalar field behaves like a fluid with w ¼ 1. We find that the

ekpyrotic smoothing mechanism is robust in the sense that the ratio of the proper volume of the smooth to

nonsmooth region grows exponentially fast along time slices of constant mean curvature.

DOI: 10.1103/PhysRevD.78.083537 PACS numbers: 98.80.Cq

I. INTRODUCTION

For over two decades, the only known mechanism for
homogenizing, isotropizing, and flattening the universe
was inflation, a period of accelerated expansion with an
equation of state w (ratio of pressure to energy density)
near �1. Its success in resolving the horizon and flatness
problems is a principal reason why inflation became an
essential part of the standard model of cosmology. In
recent years, an alternative mechanism has been discov-
ered in which smoothing and flattening occurs before the
big bang as the universe undergoes a period of slow con-
traction with w> 1. This alternative, known as the ekpyr-
otic mechanism [1,2], has been incorporated in alternatives
to standard big bang inflationary cosmology including the
‘‘ekpyrotic’’ [1], ‘‘new ekpyrotic’’ [3], and cyclic models
[4]. We note that both the inflationary and ekpyrotic
mechanisms can produce nearly scale-invariant spectra
for density perturbations in addition to smoothing and
flattening the universe.

Until now, the ekpyrotic mechanism has only been
shown to work in cases where the deviations from smooth-
ness and flatness are small and perturbative when the
ekpyrotic phase begins. The purpose of this paper is to
show that the ekpyrotic mechanism is powerful and robust
enough to smooth the universe even when the initial per-
turbations are large and nonlinear.

Let us first review how the inflation and the ekpyrotic
mechanisms work in the perturbative regime where the
cosmic evolution is well approximated by the Friedmann
equation with an anisotropy term:

H2 ¼ 8�G

3
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a2
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a6
; (1)

where H � _a=a is the Hubble parameter; aðtÞ is the
Friedmann-Robertson-Walker (FRW) scale factor normal-
ized so that the value today, t0, is aðt0Þ ¼ 1; �0

i represents
the present value of the energy density for component i,
where m represents nonrelativistic matter, r represents
radiation, and w represents an energy component with
equation of state w, such as a scalar field and its potential.
The last two terms on the right-hand side represent spatial
curvature and anisotropy.
For an expanding universe, the term that dominates

Eq. (1) after a long period of expansion is the one with
the smallest power of a in the denominator. With only
radiation and matter, the dominant term would be the
spatial curvature, leading to a universe that is unacceptably
open or closed by the present epoch. However, introducing
an energy component with w � �1 totally changes the
outcome because this component (�w) then has the small-
est exponent and dominates the Einstein equation, while
the curvature and anisotropy (and other energy compo-
nents) become negligible. This is the essence of how
inflation works if the initial conditions are perturbative.
For inflation, there are several ‘‘cosmic no-hair’’ theorems
in addition to numerical results supporting the claim that
homogeneity, isotropy, and flatness develop even when the
initial conditions are nonlinear and nonperturbative [5,6].
Now consider the analogous arguments for a contracting

universe. With aðtÞ shrinking, the dominant term in Eq. (1)
will be the one with the largest exponent of a in the
denominator. For a universe with matter and radiation
only, this would be the anisotropy term, which famously
overtakes the evolution and drives the universe into chaotic
mixmaster behavior. On the other hand, if there is an
energy component with w>þ1, then this energy compo-
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nent dominates instead of anisotropy or spatial curvature,
and chaotic mixmaster behavior never begins [2]. For a
scalar field � with potential energy density Vð�Þ, the ratio
of pressure to energy density is

w �
1
2
_�2 � V

1
2
_�2 þ V

; (2)

which can be significantly greater than unity when V is less
than zero and non-negligible, and which approachesw ¼ 1
if the scalar field kinetic energy dominates. The ekpyrotic
phase in ekpyrotic and cyclic models includes an effective
scalar field component of this type.

For the cyclic model, the ekpyrotic phase is preceded by
a period of dark energy domination and accelerated expan-
sion which, if sustained long enough, would make the
universe uniform and flat before the ekpyrotic contraction
phase begins. In this case, the perturbative argument above
should be reliable and sufficient to conclude that the uni-
verse is smooth and flat as it approaches the big crunch.
However, in the ekpyrotic or new ekpyrotic models, gen-
erally, or in the cyclic model with a very short dark energy
phase, the conditions at the beginning of the ekpyrotic
phase are under less control.

This paper investigates the robustness of the ekpyrotic
smoothing and flattening mechanism when the initial con-
ditions are nonlinear and nonperturbative to determine how
the situation compares with the perturbative case and with
inflation. For this study we are not concerned with any
particular form for the initial conditions that may be mo-
tivated by some specific model; rather, we would like to
understand how a generic, highly inhomogeneous and
anisotropic spacetime evolves under the influence of the
proposed smoothing mechanism, modeled here by a scalar
field with a negative exponential potential. Such negative
exponential potentials arise naturally in supergravity and in
string theory. Investigation of the proposed smoothing
mechanism requires numerical solution of the coupled
Einstein-scalar system of equations. For simplicity, we
restrict our studies to deviations from smoothness along a
single spatial dimension.

We use an orthonormal frame representation of the
equations written in terms of Hubble-normalized, scale-
invariant variables [7] similar to that described in [8],
though here coupling to a scalar field instead of a fluid,
and using constant-mean-curvature (CMC) time slices. We
discretize the equations using second-order accurate finite
difference techniques, and solve them with a variant of the
Berger and Oliger [9] adaptive mesh refinement (AMR)
algorithm for coupled elliptic-hyperbolic equations [10].
We find smooth regions that are scalar field dominated in
which the scalar field (kinetic plus potential energy den-
sity) component behaves like a fluid with w � 1, and also
regions where the scalar field kinetic energy dominates
over the potential energy and the scalar field behaves like
a fluid with w ¼ 1. These latter regions remain inhomoge-

neous and anisotropic, and throughout this paper we will
refer to these parts of the universe as the ‘‘anisotropic
regions.’’ Note however that the anisotropic regions are
neither anisotropy nor matter dominated because both the
scalar field and the anisotropy of the metric play important
roles in the dynamics. Futhermore, note that despite the
fact that matter in the smooth regions behaves effectively
like a fluid with w � 1, there is no issue of superluminal
propagation as might arise from an actual fluid with such
an equation of state. This is because we are always solving
the scalar wave equation with potential where disturbances
always propagate within the light cone. In the anisotropic
regions ‘‘spikes’’ also form, which are places where the
fields change on very small spatial scales, and are similar to
regions with this property that have been observed in
numerical simulations of singularities in vacuum space-
times [11]. Despite the presence of the scalar field, the
anisotropic regions exhibit dynamical behavior similar to
chaotic mixmaster vacuum solutions, where there are a
series of relatively quick transitions between longer epochs
where the solution can be described by a w ¼ 1 Bianchi
type I spacetime. A difference here though is that there are
only a finite number of transitions, so the mixmaster be-
havior terminates after several transitions. These dynamics
are also known to occur in spacetimes where the matter is a
fluid with w ¼ 1 [8,12]. AMR is necessary to resolve the
spiky features that form both in the anisotropic regions and,
in some instances, briefly in what will eventually become
smooth scalar field dominated regions, and to resolve the
almost domain wall-like transitions that develop between
the smooth and anisotropic regions.
The outline for the rest of the paper is as follows. In

Sec. II we describe the equations, initial conditions, and
numerical methods used to solve them. We present the
results in Sec. III. The primary conclusion is that a scalar
field with a potential inspired by cyclic models is a re-
markably powerful and robust smoothing mechanism dur-
ing a contracting phase of the universe, able to drive the
spacetime to homogeneity and isostropy even starting with
highly nonlinear deviations from a FRW spacetime.
Concluding remarks and a discussion of future work are
given in Sec. IV.

II. THE EQUATIONS AND SOLUTION METHOD

The method we use to evolve the Einstein-scalar equa-
tions is the scale-invariant tetrad method of Uggla et al. [7].
We use this method with constant-mean-curvature slicing
as is done in the vacuum simulations of [13] but with scalar
field matter instead of vacuum. Thus our system can be
thought of as the system of [13] but with extra variables
and equations describing the matter, and with extra source
terms for the influence of the matter on the metric evolu-
tion equations. More information on this type of method
can be found in [7,13].
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The spacetime is described in terms of a coordinate
system ðt; xiÞ and a tetrad ðe0; e�Þ where both the spatial
coordinate index i and the spatial tetrad index � go from 1
to 3. Choose e0 to be hypersurface orthogonal with the
relation between the tetrad and coordinates of the form
e0 ¼ N�1@t, and e� ¼ e�

i@i, where N is the lapse and the
shift is chosen to be zero. Choose the spatial frame fe�g to
be Fermi propagated along the integral curves of e0. The
commutators of the tetrad components are decomposed as
follows:

½e0; e�� ¼ _u�e0 � ðH��
� þ ��

�Þe�; (3)

½e�; e�� ¼ ð2a½����
� þ 	���n

��Þe�; (4)

where n�� is symmetric, and ��� is symmetric and trace-
free. The scale-invariant tetrad variables are defined by
@0 � e0=H and @� � e�=H while scale-invariant versions
of the other gravitational variables are given by

fE�
i;���; A

�; N��g � fe�i; ���; a
�; n��g=H: (5)

Note that the relation between the scale-invariant tetrad
variables and the coordinate derivatives is

@ 0 ¼ N �1@t; (6)

@ � ¼ E�
i@i; (7)

where N ¼ NH is the scale-invariant lapse. The matter
model is a scalar field � with potential V of the form

Vð�Þ ¼ �V0e
�k�; (8)

where V0 and k are positive constants. The scale-invariant
matter variables are given by

W ¼ @0�; (9)

S� ¼ @��; (10)

�V ¼ V=H2: (11)

The time coordinate t is chosen so that

e�t ¼ 3H: (12)

Here we have used the scale invariance of the physical
system to make both t and H dimensionless quantities.
Note that Eq. (12) means that the surfaces of constant time
are constant-mean-curvature surfaces. Note also that the
singularity is approached as t ! �1.

Because of Eq. (12) the scale-invariant lapse satisfies an
elliptic equation

�@�@�N þ 2A�@�N

þN ð3þ ����
�� þW2 � �VÞ ¼ 3: (13)

The gravitational quantities E�
i, A�, N

��, and ��� satisfy

the following hyperbolic evolution equations:

@tE�
i ¼ E�

i �N ðE�
i þ ��

�E�
iÞ; (14)

@tA� ¼ A� þ 1
2��

�@�N � @�N þN ð12@���
� � A�

� ��
�A�Þ;

(15)

@tN
�� ¼ N�� � 	��ð���

�Þ@�N þN ð�N��

þ 2Nð�
��

�Þ� � 	��ð�@���
�ÞÞ; (16)

@t��� ¼ ��� þ @h�@�iN þ Ah�@�iN

þ 	��ð�N�Þ
�@�N þN ½�3��� � @h�A�i

� 2Nh�
�N�i� þ N�

�Nh��i

þ 	��ð�ð@�N�Þ
� � 2A�N�Þ

�Þ þ Sh�S�i�: (17)

Here parentheses around a pair of indices denote the sym-
metric part, while angle brackets denote the symmetric
trace-free part.
The equations of motion for the matter variables are as

follows:

@t� ¼ NW; (18)

@tS� ¼ S� þW@�N þN ½@�W � ðS� þ ��
�S�Þ�;

(19)

@tW ¼ W þ S�@�N

þN
�
@�S� � 3W � 2A�S� � @ �V

@�

�
: (20)

In addition, the variables are subject to the vanishing of the
following constraint quantities:

ðCcomÞ
i ¼ 	��
½@�E�
i � A�E�

i� � N
�E�
i; (21)

ðCJÞ� ¼ @�N
�� þ 	���@�A� � 2A�N

��; (22)

ðCCÞ� ¼ @���
� � 3��

�A� � 	���N
����

� �WS�;

(23)

CG ¼ 1þ 2

3
@�A

� � A�A� � 1

6
N��N�� þ 1

12
ðN�

�Þ2

� 1

6
������ � 1

6
W2 � 1

6
S�S� � 1

3
�V; (24)

ðCSÞ� ¼ S� � @��: (25)

The evolution equations can be freely modified by add-
ing multiples of the constraints to them. In particular, for
numerical stability we add a multiple of ðCCÞ� to the right-
hand side of the evolution equation for A� [14].
The initial data must be chosen so that the constraint

equations are satisfied, and then the evolution equations
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will ensure that they remain satisfied. We find solutions of
the constraint equations essentially the sameway as is done
for more standard methods of numerical relativity: by
using the York method [15]. That is, we choose certain
components of the variables and then solve the constraints
for the rest. Our choice is by no means the most general one
possible; but it is general enough that we expect any
behavior that emerges from the evolution of these data to
reflect the general behavior of singularities for this type of
matter. This expectation is bolstered by the experience of
numerical simulations of vacuum singularities. In particu-
lar, the greatest restriction on the generality of our initial
data comes from the fact that we restrict our studies to
deviations in homogeneity along a single spatial direction.
Our spacetimes thus have two Killing fields. Nonetheless
we choose our initial data to be the sort that, in the vacuum
two Killing field case [16], were sufficiently general that
the behavior as the singularity was approached was the
same as that of more general initial data in the case with no
symmetries [17].

In the usual approach to numerical relativity the initial
data consist of the spatial metric and the extrinsic curva-
ture. The York method then involves choosing a metric
conformally related to the spatial metric and part of a
tensor conformally related to the extrinsic curvature, and
then solving for the conformal factor c as well as the rest
of the extrinsic curvature. Since we are using a tetrad
approach, we must also have an initial spatial triad con-
sistent with the initial spatial metric. For simplicity, we
choose the initial conformal metric to be flat and ðx; y; zÞ to
be the usual Cartesian coordinates for that metric, and we
choose the spatial triad to lie along those spatial directions.
Thus, the scale-free spatial triad becomes

E�
i ¼ H�1c�2��

i: (26)

It then follows from Eq. (4) that

A� ¼ �2c�1E�
i@ic ; (27)

N�� ¼ 0: (28)

The shear is essentially the trace-free part of the extrinsic
curvature, and as in the usual approach in numerical rela-
tivity, the constraint equations simplify for a particular
rescaling of the trace-free part of the extrinsic curvature
with the conformal factor. We therefore introduce the
quantity Z�� defined by

��� ¼ c�6Z��: (29)

Similar considerations apply to the matter variables, lead-
ing us to define the quantity Q given by

W ¼ c�6Q: (30)

Here we will specify Q, � and a part of Zik and solve the
constraint equations for the conformal factor c and the rest
of Zik. For convenience of the numerical simulations, we

choose periodic boundary conditions 0 � x � 2� with 0
and 2� identified, where x is the single spatial coordinate
that the metric and matter variables depend on. Also,
identifying the other spatial coordinates y and z means
that our simulation is of a spacetime with spatial topology
T3. Since the variables depend only on x and since x is
periodically identified, specifying a variable means giving
the coefficients of a Fourier expansion of that variable.
From Eq. (23) and our ansatz for the scale-invariant

variables, we obtain

@iZik ¼ Q@k�: (31)

In the vacuum case (i.e. for vanishing scalar field) this
equation simply becomes the condition that Zik is
divergence-free, which is in turn simply an algebraic con-
dition on the Fourier coefficients of Zik. Note that since
��� must be trace-free, so must Zik. A simple, but still

fairly general divergence-free and trace-free Zik is the
following:

Zik ¼
b2 � 0
� a1 cosxþ b1 a2 cosx
0 a2 cosx �b1 � b2 � a1 cosx

0
@

1
A;
(32)

where �, a1, a2, b1, and b2 are constants. We still keep this
divergence-free part of Zik but now add to it a piece that has
a nonzero divergence. We simply specify the Fourier co-
efficients of � and Q via

Qðx; t ¼ 0Þ ¼ f1
H

cosðm1xþ d1Þ; (33)

�ðx; t ¼ 0Þ ¼ f2 cosðm2xþ d2Þ; (34)

where f1, m1, d1, f2, m2, and d2 are constants. This turns
Eq. (31) into an algebraic equation for the Fourier coef-
ficients of this nonzero divergence piece of Zik which we
then solve.
Now imposing Eq. (24) our ansatz yields

@i@ic ¼ ð34H2 � 1
4VÞc 5 � 1

8ð@i�@i�Þc
� 1

8ðQ2 þ ZikZikÞH2c�7; (35)

which is solved for the conformal factor c using the
numerical methods described below.
The constraint equations (21) and (22) are automatically

satisfied by this ansatz. We then satisfy Eq. (25) by using
the given value of � to compute the initial value of S�.

Numerical code

We discretize the system of equations described in the
previous section using second-order accurate finite differ-
ence methods, with Berger and Oliger [9] style AMR as
provided by the PAMR toolkit [18]. On a single grid a two-
time level, Crank-Nicholson (CN)-like discretization
scheme is used. Standard centered spatial derivative opera-
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tors are employed, and in the hyperbolic evolution equa-
tions, spatial derivatives (and undifferentiated functions)
are averaged over the two time levels as usual within a CN
scheme. Kreiss-Oliger dissipation [19] is applied, and,
although not necessary for the stability of unigrid evolu-
tions, is important for reducing unphysical high-frequency
solution components sometimes introduced at refinement
boundaries. The elliptic equations are solved using a FAS
(full-approximation-storage) multigrid algorithm [20].

The elliptic slicing condition is incorporated into the
Berger and Oliger time-stepping algorithm using the
method described in [10]. Such modifications are neces-
sary to take advantage of time subcycling; however, here
we find that we can evolve the system without time sub-
cycling yet keep the time step equal to that of the coarsest
level in the hierarchy. In other words, with a spatial refine-
ment ratio of �sp a given level Li in the hierarchy (with

level L1 being the coarsest) will have a CFL (Courant-
Friedrichs-Lewy) factor 
i ¼ �ti=�xi ¼ �t1=�xi equal
to �sp

i�1 times that of the base level 
1. In a typical

simulation we use 
1 ¼ 0:2, �sp ¼ 2, and have run cases

where up to 25 levels of refinement were used, giving

25 � 3� 106. Our code shows no signs of instability,
and exhibits clear second-order convergence. Though tech-
nically the evolution scheme is implicit due to the CN
differencing, at each time step the code is able to converge
to a solution within several iterations at most. We surmise
that this rather atypical behavior for the solution of hyper-
bolic difference equations is due to the ultralocal nature of
the spacetime in the approach to the singularity [16,17].
This is reflected in the differential equations by the spatial
derivative terms becoming negligible; hence, they are es-
sentially reduced to a set of ordinary differential equations
in time, one at each grid point in the domain.

III. RESULTS

We have run simulations for a variety of initial condi-
tions; here we show results from a single example that
demonstrates the generic behavior: evolution from a highly
inhomogeneous, anisotropic universe with significant cur-
vature at the initial time to a universe containing distinct
volumes of either smooth, homogeneous w � 1 matter
dominated regions, or w ¼ 1 anisotropic regions.
Whenever a w � 1 region forms it grows exponentially
fast in proper volume relative to w ¼ 1 regions.

The particular initial conditions for this example are
[(32)–(34)]

a1 ¼ 0:70; a2 ¼ 0:10; � ¼ 0:01;

b1 ¼ 1:80; b2 ¼ �0:15; f1 ¼ 2:00;

m1 ¼ 1; d1 ¼ �1:7; f2 ¼ 0:15;

m2 ¼ 2; d2 ¼ �1:0;

and

V0 ¼ 0:1; k ¼ 10 (36)

for the scalar field potential parameters (8). The same
initial data were evolved with several resolutions to con-
firm second-order convergence; the highest resolution has
2049 points on the base level, and up to 12 additional levels
of 2:1 refinement.
It is enlightening to visualize the evolution via the

behavior of the matter (�m), shear (�s), and curvature
(�k) contributions to the normalized energy density, de-
fined as

�m � 1
6W

2 þ 1
6S

�S� þ 1
3
�V; (37)

�s � 1
6�

�����; (38)

�k � � 2

3
@�A

� þ A�A� þ 1

6
N��N�� � 1

12
ðN�

�Þ2;
(39)

where �m þ�s þ�k ¼ 1 by (24). Figure 1 shows these
quantities plotted at select times during the evolution
(which was stopped at t ¼ �150). Note that all features
in the solution are locally smooth—apparent step functions
in some of the plots are simply due to the large size of the
domain relative to the size of the feature. As an example,
Fig. 2 shows a zoom-in of the last panel of Fig. 1 about one
of the late-time spike structures that formed in the aniso-
tropic regime.
The effective equation of state parameter w is shown in

Fig. 3, which takes the following form in Hubble-

0

1

m

k

s

x

0

1

x x

t = 0 t = -2.5 t = -5.0

t = -7.5 t = -10.0 t = -150

FIG. 1 (color online). t ¼ const snapshots of the normalized
energy density in matter �m (solid line), curvature �k (dot-dash
line), and shear�s (dashed line) for 0 � x � 2� at several times
during the evolution of the initial data described in Sec. III. Time
runs from left to right along the top row and continues along the
bottom row. The shaded slit (dotted outline) in the last panel (t ¼
�150) indicates the range of x shown in the blowup in Fig. 2.
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normalized variables:

w ¼
1
2W

2 þ 1
2S

�S� � �V
1
2W

2 þ 1
2S

�S� þ �V
: (40)

By comparing Figs. 1 and 3 it is evident that at late times
the region that has smoothed out and become matter domi-
nated coincides with w � 1, whereas the anisotropic re-
gime evolves to w ¼ 1 (and exactly so to within numerical
truncation error).

The asymptotic behavior of the spacetime in the matter
dominated region appears to coincide with that of a space-
time with an isotropic singularity in the sense of Goode and
Wainwright [21]. We therefore conjecture that in an ekpyr-
otic phase with an exponential potential, an open set of
initial conditions leads to an isotropic singularity.

We can understand the behavior of the solution in the
asymptotic matter dominated region by applying the fol-

lowing approximation which we expect to hold to arbitrary
accuracy as the singularity is approached. To begin with,
we neglect all spatial derivatives (such an approximation
also holds in the anisotropic regions away from the isolated
spikes). The constraint (24) then reduces to

W2 þ 2 �V

6
� 1 � 0; (41)

and the slicing condition for N (13) becomes

3N � 3

3� �V
; (42)

where we have used (41) to simplify the expression. We
then assume that �V remains finite and nonzero as the
singularity is approached. This implies from (8), (11),
and (12) that � takes the asymptotic form

�ðx; tÞ � �0ðxÞ þ 2t

k
(43)

where k is the constant in the expression for the potential
V ¼ �V0 expð�k�Þ. Thus W (9) tends to

W � 2

kN
: (44)

Combining these relations gives

W � k; (45)

�V � 3� k2

2
; (46)

N � 2

k2
; (47)

and from (40)

w � k2=3� 1: (48)

We conjecture that at the singularity the above approxima-
tions become exact, namely,

lim
t!�1W ¼ k; (49)

lim
t!�1

�V ¼ 3� k2

2
; (50)

lim
t!�1N ¼ 2

k2
; (51)

lim
t!�1w ¼ k2=3� 1: (52)

Our simulations support this conjecture in that at late times
(t ¼ �150 in this example) these quantities have, to within
numerical truncation error, reached their limiting values.
Detailed analysis of the asymptotic dynamics can be car-
ried out following the method of [12,22,23].

0

10

20

30
w

w

x
0

10

20

30

x

t = 0 t = -2.5 t = -5.0

t = -7.5 t = -10.0 t = -150

x

FIG. 3. The effective equation of state parameter w (40) for the
simulation described in Sec. III, for 0 � x � 2� at the same
times as in Fig. 1. At late times w ! k2=3� 1 in the matter
dominated region, and w ! 1 in the anisotropic region [in this
simulation k ¼ 10 for the potential (8)].

x (blowup of small interval)

0

1

m

k

s

FIG. 2 (color online). Zooming in on one of the spike struc-
tures that formed in the anisotropic region at t ¼ �150, as
shown in Fig. 1.

GARFINKLE, LIM, PRETORIUS, AND STEINHARDT PHYSICAL REVIEW D 78, 083537 (2008)

083537-6



Figure 3 shows that as the singularity is approached the
coordinate volumes of the w ¼ 1 vs w � 1 regions of the
universe are comparable. However, it turns out that the
ratio of the proper volume of matter to anisotropic regions
grows exponentially with time. Let S denote the proper
spatial volume element associated with the spatial metric

hij of t ¼ const slices, i.e., S ¼ ffiffiffiffiffiffiffiffiffi
deth

p
. The fractional

change of S with respect to time is

@t lnS ¼ �1
2hij@th

ij; (53)

which can be written as

@t lnS ¼ 3N : (54)

Thus the scale-invariant lapseN is a direct measure of the
rate at which the local proper volume element changes with
time (and recall that t ! �1 as the singularity is ap-
proached). Figure 4 shows 3N from the simulation at
several times. In the asymptotic regime where spatial
gradients are negligible, N approaches a constant (42),
and thus (54) can be integrated to give

Sm / e6t=k
2
; w � 1; (55)

Sv / et; w ¼ 1; (56)

where we have used (42) where w � 1, and note that �V �
0whenw ¼ 1. Thus, at late times the ratioR of the proper
volume of matter to anisotropic regions of the universe
grows as

R ¼
R
SmdxR
Svdx

/ e�tð1�6=k2Þ: (57)

Thus, as long as k >
ffiffiffi
6

p
(which is equivalent to w> 1),

R ! 1 as t ! �1.
Figure 5 shows five state space orbits projected onto the

ð�þ;��Þ plane, where

�þ ¼ 1

2
ð�11 þ�22Þ; �� ¼ 1

2
ffiffiffi
3

p ð�11 ��22Þ: (58)

The orbits correspond to the evolution along the worldlines
at x ¼ 0, 3.0, 3.9, 4.0, 4.4. All five orbits begin in the upper
left quadrant, away from the origin, indicating anisotropic
initial data. Towards the singularity, the first three orbits
(solid lines) approach the origin of the plane, indicating
isotropization. The fourth (dotted line) and the fifth
(dashed line) do not isotropize.

IV. CONCLUSIONS

Our computations provide evidence that the ekpyrotic
mechanism for smoothing and flattening the universe is
robust and powerful, comparable qualitatively and quanti-
tatively to the inflationary mechanism incorporated in the
conventional big bang model. This evidence is the behav-
ior, as the singularity is approached, of a class of space-
times that, while not completely general, contain several
degrees of freedom and begin far from FRW spacetime.
Both the inflationary and the ekpyrotic mechanisms require
the addition of an energy component that is commonly
mocked up as a scalar field with potential energy. For
inflation, the important feature is that, for some initial
conditions, the scalar field can act like a fluid with w �
�1. It has been shown numerically that, beginning from

0

0.5

1

1.5

3N

3N

x
0

0.5

1

1.5

x x

t = 0 t = -2.5 t = -5.0

t = -7.5 t = -10.0 t = -150

FIG. 4. Three times the scale-invariant lapse N for the simu-
lation described in Sec. III, for 0 � x � 2� at the same output
times as Figs. 1 and 2.

1

2

3

4

5

Σ
+

Σ
−

FIG. 5. The state space orbits for worldlines at x ¼ 0, 3.0, 3.9,
4.0, 4.4. Towards the singularity, the first three orbits (solid lines)
approach the origin of the plane, indicating isotropization. The
fourth (dotted line) and the fifth (dashed line) do not isotropize.
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highly nonlinear and highly irregular initial conditions,
regions dominated by the scalar field and with w � �1
come to dominate the volume of the universe [6]. Similarly,
we have found that the regions in which the scalar field acts
like a fluid withw> 1 come to dominate the volume of the
universe during a contracting phase.

This result addresses one of the key criticisms raised
when the ekpyrotic model of the universe was first intro-
duced; namely, it was suggested that the model required
smooth initial conditions [24]. One of the motivations for
extending the ekpyrotic picture into a cyclic model was to
include a period of dark energy domination before the
ekpyrotic phase began in order to prepare smooth condi-
tions [4]. Now, from the results here, it is clear that the dark
energy epoch is not required for this purpose. Not only
does this allow the possibility that the dark energy phase
lasts only a few e-folds in the cyclic picture, as suggested in
[25], but it also opens the way for more general bouncing
cosmologies that incorporate the ekpyrotic mechanism but
do not cycle.

With these results in hand, we are now prepared to tackle
the bounce itself in the case that it is nonsingular [aðtÞ
shrinks to a nonzero value and then begins to increase]. For
the nonsingular bounce, the equation of state must decrease
from w> 1 to w<�1 for a finite period during which
anisotropy and inhomogeneity grow. Our goal is to deter-
mine if their growth can be kept at a level consistent with
observations, establishing the viability of these bouncing
cosmological models.
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