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The realization of a scalable quantum information processor has emerged over the past decade 
as one of the central challenges at the interface of fundamental science and engineering. 
Here we propose and analyse an architecture for a scalable, solid-state quantum information 
processor capable of operating at room temperature. Our approach is based on recent 
experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we 
demonstrate that the multiple challenges associated with operation at ambient temperature, 
individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and 
low decoherence rates can be simultaneously achieved under realistic, experimentally relevant 
conditions. The architecture uses a novel approach to quantum information transfer and 
includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent 
constraints currently limiting the realization of scalable quantum processors and will provide 
fundamental insights into the physics of non-equilibrium many-body quantum systems. 
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The majority of realistic approaches to quantum information 
processing impose stringent requirements on the qubit envi-
ronment, ranging from ultra-high vacuum to ultra-low tem-

perature1–3. Such requirements, designed to isolate the qubit from 
external noise, often represent major experimental hurdles and may 
eventually limit the potential technological impact of a quantum 
information processor. For these reasons, developing a realistic 
framework for a feasible solid-state quantum processor capable of 
operating at room temperature is of both fundamental and practi-
cal importance. Nitrogen-vacancy (NV) colour centres in diamond 
stand out among other promising qubit implementations4–7 in that 
their electronic spins can be individually polarized, manipulated 
and optically detected under room-temperature conditions. Each 
NV centre constitutes an individual two-qubit quantum register as 
it also contains a localized nuclear spin. The nuclear spin, which has 
an extremely long coherence time, can serve as a memory qubit, 
storing quantum information, while the electronic spin can be used 
to initialize, read-out, and mediate coupling between nuclear spins 
of adjacent registers. Magnetic dipole interactions allow for coher-
ent coupling between NV centres spatially separated by tens of 
nanometers. Although, in principle, a perfect array of NV centres 
would enable scalable quantum information processing, in practice, 
the finite creation efficiency of such centres, along with the require-
ments for parallelism, necessitate the coupling of registers separated 
by significantly larger distances.

Recent advances involving the quantum manipulation of NV 
defects have allowed researchers to achieve sub-diffraction limited 
resolution, single-shot read-out, and dipole-coupling-mediated  
entanglement between neighbouring NV electronic spins8–18. 
Despite such substantial developments, it remains unclear whether 
these individual pieces, each of which invariably require a unique 
set of experimental conditions, can be seamlessly unified into a scal-
able room-temperature architecture19. Thus, the development of an 
architectural blueprint that combines the associated experimental 
facets, while demonstrating that such a combination can enable 
high-fidelity quantum operations, is of crucial importance.

In what follows, we describe and analyse a feasible architecture 
for a room-temperature, diamond-based quantum information 
processor. Our approach makes use of an array of single NV centres, 
created through ion implantation and subsequent annealing11,20. 
To overcome the challenge of coupling remote NV registers, we 
develop a novel method that enables coherent long-range interac-
tions between NV centres, mediated by an optically un-addressable 
‘dark’ spin chain data bus (DSCB)21. For concreteness, within our 
architecture, we will consider the specific implementation of such a 
DSCB by utilizing implanted nitrogen impurities (P1 centres) with 
spin 1/2, as shown in Fig. 1a8,22. We analyse realistic imperfections 
and decoherence mechanisms, concluding that the implementation 
of this architecture is feasible with current experimental technology. 
Moreover, we demonstrate the possibility of high-fidelity remote 
coupling gates, whose error rates fall below the threshold for quan-
tum error correction in a two-dimensional (2D) surface code23.

Results
The NV qubit register. Single NV registers contain a spin triplet 
electronic ground state (S = 1) and can be optically pumped and 
initialized to the 0 e spin state, which has no magnetic dipole 
coupling with other NV registers or impurities. After optical 
initialization, the electronic spin of each register remains in the 0 e 
state, unless coherently transferred to the 1 e state by a resonant 
microwave (MW) pulse, as shown in Fig. 1a10–13. The NV nuclear 
spin associated with nitrogen atoms (I = 1/2 for 15N) possesses an 
extremely long coherence time (13C nuclear spins could also in 
principle be utilized) and will serve as the memory qubit in our 
system24,25; manipulation of the nuclear spin is accomplished with 
radio frequency (RF) pulses26. The Hamiltonian governing the 

electronic and nuclear spins of the NV register is

H S BS BI AS Ie n z e z n z z z, ,= + + +∆0
2 m m

with zero-field splitting ∆0 = 2.87GHz, electronic spin gyromagnetic 
ratio µe =  − 2.8 MHz/Gauss, nuclear spin gyromagnetic ratio 
µn =  − 0.43 kHz/Gauss, and hyperfine coupling A = 3.0 MHz10. The 
application of a magnetic field along the NV-axis (z̆) ensures full 
addressability of the two-qubit system, resulting in the energy levels 
shown in Fig. 1a. A universal set of two-qubit quantum operations 
can easily be achieved with only MW and RF controls, as shown in 
Fig. 1b and detailed in Methods26.

Furthermore, it is possible to selectively read-out the state of the 
NV register; for example, to read-out the nuclear qubit of a regis-
ter, we apply a CnNOTe gate to couple the electronic and nuclear 
spins, thereby allowing for read-out of the electronic spin based on 
fluorescence detection. Our approach to scalability will ultimately 
involve a hierarchical design principle that ensures a spatial sepa-
ration between NV registers, which is of order the optical wave-
length; while this will, in principle, enable individualized read-out, 
additional use of a red Laguerre-Gaussian donut beam can further 
enhance read-out fidelities14. Indeed, the read-out of individual reg-
isters may be complicated by the strong fluorescence background 
from neighbouring NV centres. To suppress this background fluo-
rescence, a red donut beam can be used, with its minimum located at 
the particular NV centre being read-out14. Whereas the fluorescence 
signal from the NV register located at the minimum persists, the 
remaining illuminated registers will be dominated by the stimulated 
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Figure 1 | Schematic representation of individual NV registers within 
bulk diamond. (a) Each NV register contains a nuclear spin I = 1/2 
(yellow), providing quantum memory, and an electronic spin S = 1 (green). 
Dark spins (black) represent elements of an optically un-addressable spin 
chain, which coherently couples spatially separated NV registers. The NV 
level structure (in a high B field) is shown. A resonant MW (ΩMW) pulse 
coherently transfers the electronic spin of the register from 0 e to 1 e; 
subsequent manipulation of the nuclear spin is accomplished through an 
RF pulse (ΩRF). The far detuned −1 e state can be neglected to create an 
effective two-qubit register. However, the full three-level NV structure will 
be utilized in horizontal DSCB-mediated coherent coupling of NV registers. 
(b) A universal set of two-qubit gates can easily be achieved with only 
MW and RF controls26. Electronic spin manipulation can be accomplished 
with a MW field, where t represents the duration of the MW pulse. By 
exploiting the hyperfine coupling between the electronic and nuclear spin, 
one can achieve controlled-NOT operations conditioned on either spin. In 
particular, a CeNOTn gate can be accomplished by utilizing a RF π-pulse, 
which flips the nuclear spin conditioned on the electronic spin being in |1〉e. 
Similarly, a CnNOTe gate can be accomplished by utilizing the hyperfine 
interaction to generate a controlled-phase (CP) gate, where τ represents 
the duration of the wait time required to achieve such a hyperfine-driven 
CP gate. Performed between two single-qubit Hadamard gates (π/2-
pulses) on the electronic spin, such a CP gate generates the desired 
CnNOTe gate. Finally, combining the CeNOTn and CnNOTe gates allows  
for the execution of a swap gate.
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emission induced by the red donut beam. In addition to suppress-
ing the background noise, the red donut beam can also suppress 
the nuclear decoherence of the remaining NV registers, by reducing  
the amount of time these registers spend in the electronic-excited 
state (Supplementary Note 1)27. Moreover, this approach may be 
particularly applicable in the case where NV registers are separated 
by sub-optical-wavelength distances. After each round of fluores-
cence detection, the electronic spin is polarized to the 0 e state, while 
the Iz component of the nuclear spin, a quantum non-demolition  
observable, remains unchanged28. Therefore, it is possible to repeat 
this read-out procedure multiple times to improve the read-out 
fidelity15,16. A strong magnetic field Bz ,0 1∼  Tesla along the NV 
axis should be used to decouple the electronic and nuclear spins to 
achieve high-fidelity single-shot read-out of NV registers16. In addi-
tion to sub-wavelength read-out, optical donut beams also introduce 
the possibility of selectively manipulating individual NV registers 
with sub-wavelength resolution. In this case, we envision the use 
of a green Laguerre-Gaussian donut beam; whereas un-illuminated 
NV centres may respond to a resonant MW pulse, illuminated regis-
ters undergo a strong optical cycling transition that suppresses their 
response to MW pulses due to the quantum Zeno effect29,30.

Approach to scalable architecture. One of the key requirements for 
fault-tolerant quantum computation is the ability to perform paral-
lel gate operations. In our approach, this is achieved by consider-
ing a hierarchy of controllability. The lowest level of the hierarchy 
consists of an individual optically addressable plaquette with hori-
zontal and vertical spatial dimensions ~100–500 nm, containing a 
single computational NV register, as shown in Fig. 2a. The plaquette 
dimensions are chosen such that register control and read-out can 
be achieved using conventional far-field or sub-wavelength optical 
techniques10,14,24,30,31. The second level, termed a super-plaquette 
(~10 µm ×10 µm), consists of a lattice of plaquettes whose compu-
tational registers are coupled through DSCBs. At the highest level 
of the hierarchy, we consider an array of super-plaquettes, where 
individual super-plaquettes are controlled by confined MW fields32. 
In particular, micro-solenoids can confine fields to within super-
plaquettes, allowing for parallel operations at the super-plaquette 
level. For example, as shown in Fig. 2, independent MW pulses 
can allow for simultaneous operations on the electronic spins of all 
computational NV registers within all super-plaquettes. To control 
registers at the super-plaquette boundaries, we define a dual super-
plaquette lattice (Fig. 2a). Localized MW fields, within such a dual 
lattice, can provide a smooth transition between the boundaries of 
neighbouring super-plaquettes.

Taking advantage of the separation of length scales inherent to 
optical control and MW confinement provides a mechanism to 
achieve parallelism; indeed, the hierarchical control of plaquettes, 
super-plaquettes and super-plaquette arrays allows for simultane-
ous single- and two-qubit gate operations, which are fundamental 
to fault-tolerant computation. One of the key differences between 
the currently proposed architecture and previous proposals6,33, is 
that the design here does not rely on optically resolved transitions, 
which are only accessible at cryogenic temperatures.

The required 2D array of NV centres can be created via a two-
step implantation process. We envision first implanting single nitro-
gen atoms along particular rows within each plaquette, as shown in 
Fig. 2b; subsequent annealing occurs until the creation of an NV 
centre, after which, a second nitrogen implantation step generates 
the spin chain data bus. The selective manipulation of individual 
registers within our 2D array is enabled by the application of a spa-
tially dependent external magnetic field z̆B y y B zz z( ) = +( )˘,a 0 ; this 
1D magnetic field gradient is sufficiently strong (α~105 T m − 1) to 
allow for spectroscopic MW addressing of individual NV registers, 
each of which occupies a unique row in the super-plaquette, as 
shown in Fig. 2b32,34,35.

Dark spin chain data bus. To coherently couple two spatially sepa-
rated NV centres, we consider two distinct approaches. First, we 
consider an approach, which is appropriate for spin-state transfer 
along the direction of the magnetic field gradient, in which indi-
vidual addressing of spins is possible. This allows for an adiabatic 
sequential swap between neighbouring qubits and, consequently, 
between the ends of the chain. Alternatively, in the situation where 
individual addressing of spins is not possible (that is, in the direction 
transverse to the field gradient), we show that global control pulses 
achieve effective Hamiltonian evolution, which enables quantum 
state transfer through the spin chain. In both cases, we show that 
perfect state transfer and remote coupling gates are possible even 
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Figure 2 | The architecture for a room-temperature solid-state quantum 
computer. (a) A 2D hierarchical lattice allowing for length-scale-based 
control, which enables fully parallel operations. At the lowest level, 
individual plaquettes are outlined in grey and each contains a single 
computational NV register. At the second level of hierarchy, a super-
plaquette, outlined in white, encompasses a lattice of plaquettes; each 
super-plaquette is separately manipulated by micro-solenoid confined 
MW fields. To allow for quantum information transfer across boundaries 
of super-plaquettes, there exists a dual super-plaquette lattice outlined in 
red. (b) The schematic NV register implantation within a super-plaquette. 
Two rows of individual plaquettes within a super-plaquette are shown. NV 
registers, consisting of an electronic (green) and nuclear (yellow) spin are 
shown within a staggered up-sloping array that is row-repetitive. Individual 
rows within a single plaquette are specified by an integer n with n = 1 being 
the bottom row and n = M being the top row. To achieve a staggered 
structure, we specify a unique implantation row within each plaquette 
wherein single impurities are implanted and subsequently annealed. For 
a given row of plaquettes, the implantation row corresponding to the left-
most plaquette is n  =  1, whereas the plaquette to the immediate right has 
implantation row n  =  2; this pattern continues until the final plaquette 
in a given row, which by construction, has the highest implantation row 
number. The implantation process is repeated for each row of plaquettes 
within the super-plaquette and creates an array of NV registers, which 
each occupy a unique row in the super-plaquette. Because each NV 
register occupies a unique row within the super-plaquette, the magnetic 
field gradient in the ŷ̂ direction allows for individual spectroscopic 
addressing of single registers. Coherent coupling of spatially separated  
NV registers in adjacent plaquettes is mediated by a DSCB and is 
schematically represented by the curved lines connecting individual 
registers. The second implantation step corresponds to the creation of 
these horizontal and vertical dark spin chains.
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when the intermediate spin chain is completely unpolarized (infi-
nite spin temperature).

We begin by analysing the adiabatic sequential swap in a spin-
1/2 chain. This approach is suitable to couple registers in plaquettes 
that are vertically adjacent, relying on the individual addressability 
of qubits and utilizing the magnetic dipole coupling between spin-
chain elements. As shown in the Supplementary Methods, under 
the secular approximation, the magnetic dipole coupling between a 
pair of neighbouring spins can be reduced to Ising form

H S S Sz z

i
i i

z
int

,
( ) ,= + +

=
∑4 1 2

1 2
0k w d

where κ is the relevant component of the dipole tensor, ω0 captures 
the electronic Zeeman energy, and δi characterizes both the hyper-
fine term (nuclear spin dependent) and the magnetic field gradi-
ent. From the Ising Hamiltonian, an XX interaction between qubits 
can be distilled by driving with H S tdrive i i x

i
i= +=∑ 1 2 0, cos[( ) ]Ω w d ,  

leading to (under the rotating wave approximation, in the rotating frame, 
with | |Ω Ω1 2+ k , and in a rotated basis with (x,y,z)→(z,  − y, x))

H S S S S S Sz z
int ( ) .= + + ++ − − +k 1 2 1 2 1 1 2 2Ω Ω

The spin-flip process in Hint is highly suppressed in the limit of 
| |Ω Ω1 2− k , whereas the same process is dominant in the case 
of | |Ω Ω1 2− k . Hence, by slowly ramping the Rabi frequencies 
Ω1 and Ω2 through one another, adiabatic swap of the quantum 
states of the two impurities can be achieved through rapid adi-
abatic passage, as shown in Fig. 3a. Generalizing to arbitrary length  
spin chains yields H S S S S Si i i i i i i i

z
int ( )= + +∑ ∑+

+
− −

+
+k 1 1 Ω , whereby 

the sequential adiabatic swap of quantum states along the spin 
chain can be achieved by successively tuning individual Rabi fre-
quencies across one another. During the adiabatic swap of a sin-
gle pair of spins, higher order interactions, such as those resulting 
from next-to-nearest neighbours, will be suppressed because of the 
differences in Rabi frequencies. By including the magnetic dipole 
coupling between the electronic spin of the NV register and the spin 
chain quantum channel, we arrive at an effective mixed spin chain 
with the DSCB connecting the two electronic spins of the vertically  
separated NV registers.

Crucially, such an adiabatic sequential swap is robust against 
variations in the coupling strength κ, which can be induced by the 
imprecise implantation of impurities that form the spin-1/2 chain; in 
particular, even for the case of varying κi,i + 1, perfect adiabatic swap 
occurs so long as the rate at which Ωi and Ωi + 1 are ramped through 
one another is sufficiently small. Within the proposed architecture, 
the impurities forming the horizontal spin chain will not induce 
operational errors during the vertical adiabatic sequential swap as 
the design principle allows for selective spin echoing (Fig. 5).

Next, we consider a second method, termed free-fermion state 
transfer (FFST) developed in ref. 36, to coherently couple NV regis-
ters in the horizontal direction. In contrast to the adiabatic sequential 
swap, the method utilizes only global control over dark impurities and 
effective Hamiltonian evolution. The relaxation of the requirement 
of individual control over elements of the dark spin chain renders 
this second method, applicable for coherent coupling between  
NV registers in horizontally adjacent plaquettes, transverse to the 
direction of the field gradient. In particular, the protocol achieves 
coherent coupling through an unpolarized, infinite-temperature 
spin chain, employing purely Hamiltonian evolution under

H g S S S S

S S S S

N

i

N

i i i i

FFST NV NV h c= + +

+ +

+ − + −

=

−
+

+
− −

+
+∑

( . .)

(

1 1 2

1

1

1 1k ))

(2)(2)

(3)(3)

(4)(4)

as shown in Fig. 3b. This Hamiltonian, obtained in a similar fashion  
equation (3), results in coherent interactions between NV centres, 
which is best understood through an analogy with eigenmode tun-
neling in a many-body system. Specifically, the spin chain described 
by HFFST can be viewed as a system of non-interacting fermions. As 
described in ref. 36, by tuning the NV centres into resonance with a 
single fermionic eigenmode, an effective three-state system can be 
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Figure 3 | DSCB-mediated coherent coupling of spatially separated 
NV registers. (a) Adiabatic sequential swap along the vertical direction, 
parallel to the magnetic field gradient. Individual addressing of impurities, 
enabled by the field gradient, allows for a slow ramping of the Rabi 
frequencies Ωi and Ωj through one another; this achieves adiabatic swap of 
the quantum states of the two impurities through rapid adiabatic passage. 
Thus, sequential adiabatic swap of quantum states along the spin chain can 
be achieved by successively tuning individual Rabi frequencies across one 
another. (b) FFST in the horizontal direction, transverse to the magnetic 
field gradient. The coupling strength between the end qubits and the 
spin chain is g, whereas the interchain coupling strength is κ. Schematic 
representation of the level structure of the NV electronic spin and a dark 
impurity spin. Controlling the NV-impurity coupling g is an essential 
component of FFST and occurs by driving the NV in two-photon resonance, 
with Rabi frequency Ω and detuning ∆. (c) Schematic circuit diagram 
outlining the protocol to achieve coherent coupling between the nuclear 
memory qubits of spatially separated NV registers. First, the nuclear and 
electronic qubits of a single register are swapped. Next, the electronic 
qubits of the two NV centres to be coupled are swapped through the 
DSCB. Finally, a two-qubit gate between the electronic and nuclear  
spin of the second register is performed, before the memory qubit is 
returned to the nuclear spin of the original NV centre. 
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realized. Mediated by this fermionic eigenmode, the electronic states 
of two remote NV centres can be coherently swapped. Coupled with 
arbitrary two-qubit gates between the nuclear and electronic spin 
(Fig. 1b; Methods), an electronic swap gate enables universal com-
putation between spatially remote nuclear spin memories, as shown 
in Fig. 3c. Crucially, such a swap gate is insensitive to the polariza-
tion of the intermediate dark spins and high-fidelity quantum state 
transfer can be achieved, provided that the fermionic mode is delo-
calized and that the coupling, g, of the NV qubit to the spin chain is 
controllable. As detailed in the Methods, by utilizing the three-level 
NV ground-state structure (Fig. 3b), it is possible to fully control the 
NV-chain coupling. This tunability also ensures that FFST is funda-
mentally robust to experimentally relevant coupling-strength disor-
der, which could be induced by implantation imprecision. Indeed, 
by separately tuning the NV-chain coupling on either side of the 
DSCB, it is possible to compensate for both disorder-induced asym-
metry in the fermionic eigenmode as well as altered eigenenergies 
(Supplementary Methods)36–38.

Implementation, operational errors and gate fidelities. The spe-
cific implementation of the DSCB can be achieved with implanted 
nitrogen impurity ions. Dipole coupling between neighbouring 
nitrogen electronic spins forms the DSCB, whereas dipole cou-
pling between the NV and nitrogen electronic spins forms the 
qubit–DSCB interaction; non-secular terms of this magnetic dipole 
coupling are highly suppressed owing to the spatially dependent 
external magnetic field Bz(y), resulting in the effective interaction 
found in equation (2). In addition, the nitrogen impurities possess 
a strong hyperfine coupling, the principal axis of which can take 
on four possible orientations due to tetrahedral symmetry39–41. 
Dynamic Jahn–Teller (JT) reorientation of the nitrogen impu-
rity’s hyperfine principal axis results in two particular considera-
tions, namely the addressing of additional JT frequencies yielding 
a denser super-plaquette frequency spectrum and the JT-governed 
spin-lattice relaxation time T N

1  (Supplementary Methods). As T N
1  

is characterized by an Arrhenius rate equation40 at ambient tem-
peratures, a combination of a static electric field and slight cooling 
by ~50 K allows for a substantial extension of the relaxation time to 
~1 s; hence, in the following consideration of operational errors, we 
will assume that we are limited by T1

NV, the spin-lattice relaxation 
time of the NV centre.

We now consider various imperfections, which may introduce 
operational errors. In particular, we consider the errors associated 
with the sequential swap-mediated coupling between vertically 
adjacent registers and the FFST between horizontally adjacent reg-
isters. We begin by discussing the analytic error estimate associated 
with each method, after which, we summarize the results of full 
numerical simulations (Supplementary Methods).

First, we consider the accumulated infidelity associated with the 
adiabatic sequential swap,

p N p p p p perr
SS

off
SS

adia dip T
SS

T
SS≈ + + + +( ).1 2

The first term, poff
SS

i g∼ ( / )Ω ∆ 2, represents off-resonant cross-
talk induced by MW manipulations with Rabi frequency Ωi. Here 
∆g characterizes the gradient-induced splitting achieved within the 
super-plaquette frequency spectrum (Supplementary Methods). 
The second term, padia, corresponds to the non-adiabatic correc-
tion resulting from an optimized adiabatic ramp profile42–44. The 
third term, pdip i∼ ( / )k Ω 2, is directly obtained from equation (3) 
and corresponds to additional off-resonant errors. The fourth error 
term, pT

SS
1 corresponds to the depolarization error induced by the 

finite NV T1 time, while the final error term, pT
SS

2 corresponds to the 
infidelity induced by dephasing. As each error term is considered 
within the context of a single adiabatic swap, the total error contains 

(5)(5)

an additional factor of N, representing the chain length, which is 
plaquette size dependent.

We can similarly consider the accumulated infidelity associated 
with FFST,

p p p p p perr off f g T T
FFST FFST FFST FFST≈ + + + +1 2 .

In direct analogy to perr
SS , the first term in perr

FFST corresponds to the 
excitation of an NV register by off-resonant MW fields. The second 
term, pf, corresponds to the undesired coupling with off-resonant  
fermionic modes. Since the coupling strength is characterized by 
g N/ 36, while the splitting of the eigenenergy spectrum ~κ/N, such 
an off-resonant error induces an infidelity ∼ ( )( / )/( / )g N Nk

2
. The 

third error term, pg, results from the protocol designed to control, 
g, the NV-chain coupling (see Methods for details). Directly analo-
gous to perr

SS , the fourth and fifth terms correspond to errors induced 
by the operational time, tFFST, which causes both depolarization and 
dephasing.

Finally, we perform numerical simulations, taking into account 
the nitrogen JT frequencies, to characterize the infidelity of both 
the adiabatic sequential swap and FFST within the NV architecture, 
as shown in Fig. 4. The results of these calculations are in excel-
lent agreement with the above theoretical predictions. In particular, 
these simulations reveal that, for sufficiently long T1 100NV ∼ ms,  
operational infidelities in both DSCB methods can be kept  
below 10 − 2.

These simulations clearly show that the T1 time of the NV elec-
tronic spin is of critical importance in obtaining high-fidelity quan-
tum operations. While at room temperature, T1 appears to vary 
depending on the particular sample and on the specific properties 
of the local NV environment, such as strain, values on the order of 
10 ms are generally obtained24,39. However, the spin-lattice relaxa-
tion mechanism governing T1 is most likely related to an Orbach 
process45,46, which is strongly temperature dependent. In such a 
case, modest cooling of the sample by ~50 K, is likely to extend T1 

(6)(6)
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Figure 4 | Numerical simulation of the DSCB fidelity. (a) The operational 
infidelity associated with the adiabatic sequential swap for N = 18. The 
simulations account for the JT orientation of nitrogen impurities and utilize 
the optimized adiabatic ramp profile42. Simulations utilize an optimized 
coupling strength of 8.71 kHz (18.1 nm spacing). Full numerical integration 
of the time-dependent Schrödinger equation produces infidelity contour 
plots as a function of total swap time and T1

nV. (b) Numerical simulations 
of the operational infidelity associated with FFST for N = 7. Non-nearest 
neighbour interactions are assumed to be refocused through dynamic 
decoupling as described in the Methods. Simulations, which utilize an 
optimized coupling strength of 12.6kHz (16 nm spacing), are based on 
a full diagonalization and also account for the JT orientation of nitrogen 
impurities. Infidelity contour plots are again shown as a function of total 
swap time and T1

nV.
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by more than an order of magnitude, thereby making high-fidelity 
gates possible.

Given that such numerical estimations suggest the possibility of 
achieving high-fidelity two-qubit operations between remote NV 
registers, the proposed architecture seems well suited to the imple-
mentation of topological quantum error correction. In particular, 
we imagine implementing a 2D surface code, which requires only 
nearest-neighbour two-qubit gates and single-qubit preparation 
and measurement23,47,48. Recent progress in optimizing this sur-
face code has yielded an error threshold of ε~1.4% (ref. 49), which 
is above the estimated infidelity corresponding to both the adi-
abatic sequential swap and FFST; thus, in principle, implementation  
of such a 2D surface code can allow for successful topological  
quantum error correction, and hence, fault tolerant quantum  
computation50.

Discussion
The above considerations indicate the feasibility of experimen-
tally realizing a solid-state quantum computer capable of operat-
ing under ambient conditions at or near room temperature. We 
emphasize that a majority of the elements required for the realiza-
tion of individual qubits in our architecture have already been dem-
onstrated. In our approach, these techniques are supplemented by 
both a new mechanism for remote register coupling between NV 
centres as well as a hierarchical design principle, which facilitates 
scalability. The remote coupling mechanisms discussed can natu-
rally be implemented via nitrogen ion implantation in ultra-pure 
diamond crystals and are robust to realistic imperfections and  
disorder36. Moreover, single errors during quantum state transfer 
are localized to individual transport channels and do not have a 
propagating effect on the remaining computation.

While we hope that the proposed architecture evinces the  
feasibility of room temperature quantum information process-
ing, the implementation and integration of the various proposed  
elements still require significant advances in areas ranging from 
engineering to materials science. Crucially, recent results have 
demonstrated substantial progress towards overcoming challenges 
such as the optimization of planar microcoil arrays51,52 and efficient 
beam steering in micromirror systems53. Furthermore, by eliminat-
ing requirements for cryogenic temperatures, our blueprint aims to 
make the realization of a scalable quantum computer significantly 
more practical.

The present work opens a number of new directions that can 
subsequently be explored. In particular, although we have consid-
ered the direct errors associated with DSCB-mediated coupling, it is 
instructive to note that the fidelity of such quantum gates can often 
be significantly improved, using techniques from optimal control 
theory54,55. For example, such methods of optimal control, while 
negating the detrimental effects of decoherence, can also simulta-
neously allow for the implementation of high-fidelity gates, despite 
both frequency and coupling disorder as induced by ion implan-
tation errors. Indeed, the ability to precisely guide the quantum 
evolution via optimal control, even when the system complexity 
is exacerbated by environmental coupling, provides an alternative 
solution to improve single- and two-qubit gate fidelities56. In addi-
tion, it is well known that the local strain field surrounding each 
NV centre can significantly alter the register’s properties; hence, 
through a detailed understanding of electric field induced strain,  
it may be possible to improve the coherence properties of the  
qubit. Moreover, the long coherence times of individual P1 centres, 
each of which harbours an associated nuclear spin, suggest the pos-
sibility of utilizing these dark spins as computational resources in 
and of themselves57. Beyond these specific applications, a number 
of scientific avenues can be explored, including, for example,  
understanding and controlling the non-equilibrium dynamics of 
disordered spin systems.

Methods
Controlling qubit-chain coupling in the NV architecture. To achieve an effec-
tive Hamiltonian of the form given by equation (4), it is essential to control the 
coupling strength between the NV register and the neighbouring impurity. Here we 
utilize the three levels of the NV electronic spin58 to effectively control g, as shown 
in Fig. 3b, whereby the Hamiltonian (under MW driving) can be written as

H
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x
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− 〉〈 + 〉〈− +

− +
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where Ω represents the Rabi frequency on the NV register, ∆ represents the associ-
ated detuning, and ΩN represents the Rabi frequency on the nitrogen impurity. In 
this case, as the NV two-photon detuning is zero, it is convenient to define bright 

and dark states, | | |B〉 = 〉+ − 〉1 1
2

 and | | |D〉 = 〉− − 〉1 1
2

; further, in the resulting 

two-level picture, the associated dressed states are | | ( / ) |+〉 ≈ 〉 + 〉B 2 0Ω ∆  and 
| | ( / ) |−〉 ≈ 〉 − 〉0 2Ω ∆ B , in the limit Ω ∆ . Hence, rewriting the Hamiltonian in 
this limit yields
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Thus, by working within the NV subspace {|D〉,| − 〉}, it is possible to completely 
control the coupling between the NV register and Nitrogen impurity, g ∼k ( / )Ω ∆ ,  
by tuning the Rabi frequency and detuning. It is possible to work in the required 
two-state subspace by ensuring that k∆ and hence, that the | + 〉 state remains 
unpopulated, with corresponding off-resonant error κ2/∆2.

Furthermore, we evince a possible scheme to coherently map the quantum 
information that is stored in the nuclear memory into the desired electronic sub-
space. For example, consider mapping |0〉(α|↑〉 + β|↓〉) to (α| − 〉 + β|D〉)|↑〉,  
where the first (tensor) factor corresponds to the electronic state and the second 
corresponds to the nuclear state of a single NV. The proposed mapping can be 
achieved in a two-step process. First, by simultaneously performing a π − pulse on 
the transitions |0〉|↓〉→| − 1〉|↓〉 and |0〉|↓〉→|1〉|↓〉 with oppositely signed 
Rabi frequencies, one can map |0〉|↓〉 to |D〉|↓〉. Next, one utilizes an RF pulse 
to flip the nuclear spin, which yields |D〉|↓〉→|D〉|↑〉. Finally, turning Ω on in 
an adiabatic fashion ensures that the state preparation populates only |D〉 and | − 〉, 
thereby mapping the quantum information into the desired electronic subspace.

Arbitrary two-qubit gates within the NV register. Whereas the DSCB enables 
long-range quantum logic between spatially separated NV electronic spins, univer-
sal two-qubit gates between the nuclear spin quantum memories require additional 
local logic between nuclear and electronic spins, as outlined in Fig. 1b. Here we 
specify, in detail, the implementation of such local logic gates. A strong MW pulse 
(with ΩMW A) can perform an arbitrary electronic spin rotation independent 
of the nuclear spin state. This can be mapped to a nuclear spin rotation by imple-
menting a swap gate between the nuclear and electronic spins. Such a swap gate 
can be decomposed into three controlled-NOT gates: CeNOTn CnNOTeCeNOTn. 
A CeNOTn gate can be accomplished by utilizing an RF π-pulse (with ΩRF A),  
which flips the nuclear spin conditioned on the electronic spin being in |1〉e. 
Finally, a hyperfine-driven controlled-phase gate enables the remaining CnNOTe 
gate (up to single Hadamards on the electronic spin). This demonstrates that a 
universal set of local two-qubit gates between NV electronic and nuclear spins can 
easily be achieved with only MW and RF controls26. Such arbitrary local logic is 
crucial to enable the preparation of nuclear spin quantum information and forms 
an important portion of DSCB-mediated remote coupling (Fig. 3c).

Specific implementation of architecture. In this section, we offer a specific 
implementation of the architectural design principle and discuss the various in-
gredients required to achieve DSCB-mediated coherent coupling between spatially 
separated NV registers. In particular, we consider the refocusing of non-nearest 
neighbour interactions along the horizontal spin chain.

(7)(7)

(8)(8)

(9)(9)
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The effective Hamiltonian evinced in equation (4) has nearest neighbour form; 
although next-nearest-neighbour interactions will represent a correction, we show 
that such interactions can be refocused within the current architectural design, and 
further, that, in principle, interactions beyond next-nearest-neighbour can also 
be refocused. In particular, the horizontal spin chain (N total spins) is arranged 

in a staggered saw-tooth fashion, as shown in Fig. 5. Within such an architecture, 
nearest neighbour coupling terms correspond to all pairs of adjacent spins, each 
separated by ~20 nm, with corresponding interaction Hamiltonian

H S S S S S S S SN N A B B C C D D A= ( )∑ + − + − + − +
′

−+ + + +k h.c.

where the sum runs over all nearest neighbour pairs in a given dark spin chain. 
Thus, next-to-nearest neighbour terms for each spin correspond to the subsequent 
strongest interaction

H S S S S

S S S S
NN NN A C B D

NN C A D B

= +

+ + +

∑ + − + −

′
+

′
− +

′
−

k

k

( )

( ) . .h c

where the prime denotes the next link in the saw-tooth chain as shown in Fig. 5.  
In addition to the impurity spins, FFST incorporates the electronic spin of the  
NV register into a mixed spin chain. It is important to note that the spin-flip 
Hamiltonians HN and HNN are derived from the secular approximated Ising cou-
pling by the application of driving fields as per equation (3). As each row (1,2,3,4) 
is separately addressable by virtue of the magnetic field gradient (applying four 
frequencies per row to ensure that all JT and nuclear spin states are addressed), it 
is possible to apply a spin-echo procedure to refocus the next-nearest-neighbour 
terms. In particular, by flipping the spins in rows 1 and 2 (Fig. 5) after time Td/2, 
where Td is a small fraction of the desired evolution duration, the next-nearest-
neighbour interactions are refocused since each term contains spins from only row 
1 or 2. However, half of the nearest neighbour interactions are also refocused, leav-
ing effective evolution under the Hamiltonian H S S S Seff N A B C D1 = ( )∑ + − + −+ +k h.c. 
Analogously, by flipping the spins in rows 2 and 3, effective evolution under the 
Hamiltonian H S S S Seff N B C D A2 = ( )∑ + − +

′
−+ +k h.c. is achieved, again with HNN 

refocused. Combining the evolution according to Heff1 and Heff2 yields the desired 
nearest-neighbour Hamiltonian with next-to-nearest neighbour interactions 
refocused. However, as Heff1 and Heff2 do not commute, it will be necessary to 
employ piecewise evolution according to the Trotter–Suzuki formalism59. Further 
refocusing of higher order non-nearest neighbour interactions can also be achieved 
by extending the number of rows corresponding to the saw-tooth design; such  
an extension allows for the isolation of each specific pair of nearest neighbour 
interactions, thereby achieving the desired nearest-neighbour evolution through  
a Trotter sequence. 
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