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Zusammenfassung

Diese Doktorarbeit ist dem Studium der Quantenvielteichentheorie gewidmet. Die
dazugehörige Forschung wurde im Rahmen der Matrix Product States (MPS) und
deren Generalisierung in höheren Dimensionen, Projected Entangled Pair States
(PEPS) durchgeführt. Im ersten Teil dieser Arbeit beschäftigen wir uns näher
mit den mathematischen Eigenschaften solcher Tensornetzwerkzustände. Die ersten
Kapitel behandeln eindimensionale Systeme. Dabei nutzen wir die Verbindungen
zwischen MPS und Quantenkanälen um mehrere neue Ergebnisse, wie zum Beispiel
die Quanten-Wielandt-Ungleichung oder die Konditionen für die Konstruktion lokal-
invarianter Zustände unter einer Symmetriegruppe zu beweisen. Kapitel 5-7 sind
höherdimensionalen Systemen gewidmet. Hier definieren wir die Bedingungen für
die Herstellung invarianter PEPS . Im zweiten Teil der Arbeit gehen wir auf die
Anwendung in kondensierter Materie ein. Das achte Kapitel zeigt mehrere Meth-
oden quasi-lösbare Hamiltonoperatoren mit Zweikörperwechselwirkung und SU(2)-
Symmetrie zu konstruieren, während wir im neunten Kapitel darlegen, dass diese
Tensornetzwerkzustände als Labor für die Kondensierte-Materie-Theorie genutzt
werden können: Zum Beispiel in der Charakterisierung der String-Order, der Ver-
allgemeinerung des Lieb-Schultz-Mattis-Theorems, dem Beweis neuer Theoreme die
versuchen die Quantenverschränkung mit Magnetisierung oder mit Langstreckenin-
teraktion in Verbindung zu setzen und vielem mehr.

This thesis is devoted to the study of quantum many-body systems. This inves-
tigation is performed in the framework of Matrix Product States (MPS) and their
generalization to higher dimensions, Projected Entangled Pair States (PEPS). In
the first part of the work, we discuss the mathematical properties of such tensor
network states in depth. In the first chapters we deal with one-dimensional systems,
for which we use the connections between MPS and completely positive maps to
prove several new results, such as the quantum version of the Wielandt’s inequality
or the construction of locally invariant states under a symmetry group. Chapters 5-7
are dedicated to higher-dimensional systems, for which we provide the conditions to
construct invariant PEPS. The second part of the thesis is dedicated to applications
in condensed matter. In chapter 8 we provide several methods of constructing quasi-
solvable Hamiltonians with two-body interactions, while in chapter 9 we show that
these tensor network states can be used as a laboratory for theoretical condensed
matter in, for instance, the characterization of the string-order, the generalization
of the Lieb-Schultz-Mattis theorem, the demonstration of new theorems relating
entanglement to magnetisation or to long-range interactions, etc.
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Abstract

This Thesis contributes to the development of the theory of tensor network states
in many–body systems. The first part is dedicated to improving our comprehension
of the mathematical properties of such states; in the second part, these properties
are employed to obtain results in condensed matter and quantum magnetism. The
cornerstone of these advances is the possibility of a local characterization of global
features. Properties such as the uniqueness of the ground state, the existence of
a non–vanishing spectral gap above this ground state, or the characterization of
symmetries are encoded in the tensor. This is based on the connection between
Matrix Product States and completely positive maps in one–dimensional systems.
For higher–dimensional networks, where such a connection does not exist, one can
attempt to transform the question into the former one–dimensional problem.

We prove a quantum generalization of the Wielandt’s inequality, well–known in
the context of classical channels and Markov chains. This inequality provides an
upper bound for the number of spins which must be gathered in order to find a
gapped parent Hamiltonian which has the Matrix Product State as a unique ground
state. The bound, surprisingly, depends only on the tensor’s physical and bond
dimensions, and not on the explicit entries of the tensor. Many previous results on
Matrix Product States depended on the existence of this upper bound.

With this in hand, we provide a local characterization of the symmetries in
both Matrix Product States and Projected Entangled Pair States. As almost every
interesting Hamiltonian in condensed matter exhibits some kind of symmetry, to
be able to locally characterize these symmetries in the tensors is a key question.
Furthermore, we employ this characterization to systematically construct quasi–
solvable SU(2)–invariant Hamiltonians with two–body interactions.

Finally, we apply the advances achieved in Matrix Product States’ and Pro-
jected Entangled Pair States’ theories to characterize the existence of string order
in one–dimensional systems (proposing as well an extension to higher dimensions),
to provide generalizations of existing theorems in the context of tensor networks,
and to exploit the simplicity of the structure of these states in order to make use of
them as a theoretical laboratory for condensed matter. An example of this would be
the proved relationship between fractional magnetization and entanglement, or the
proposed one which links long–range interacting Hamiltonians to the entanglement
of their ground states.

v





Contents

Introduction 1

1 Fundamentals of MPS 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Construction of Matrix Product States . . . . . . . . . . . . . . . . . 11

1.2.1 A constructive definition . . . . . . . . . . . . . . . . . . . . . 11
1.3 Canonical form for Matrix Product States . . . . . . . . . . . . . . . 13

1.3.1 OBC–MPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 PBC–MPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Finitely correlated states . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 A bit about quantum channels . . . . . . . . . . . . . . . . . . 23
1.4.2 Finitely correlated states . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Reduced density matrix and expectation values . . . . . . . . 31

2 Injectivity 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Strong irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Classical channels and Wielandt’s inequality . . . . . . . . . . . . . . 45
2.5 Quantum Wielandt’s inequality . . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Primitivity, full Kraus rank and strong irreducibility . . . . . 49
2.5.2 Quantum Wielandt’s inequality . . . . . . . . . . . . . . . . . 51
2.5.3 An application: zero-error capacity . . . . . . . . . . . . . . . 55

3 Parent Hamiltonians 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Definition of Parent Hamiltonian . . . . . . . . . . . . . . . . . . . . 58
3.3 Uniqueness of the ground state . . . . . . . . . . . . . . . . . . . . . 62
3.4 Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Kinsfolk Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



CONTENTS

4 Symmetries in MPS 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Definition and characterization . . . . . . . . . . . . . . . . . . . . . 70
4.3 Uniqueness of the construction method . . . . . . . . . . . . . . . . . 73

4.3.1 The case of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Irreducibility implies injectivity . . . . . . . . . . . . . . . . . . . . . 76

5 Fundamentals of PEPS 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Constructing Projected Entangled Pair States . . . . . . . . . . . . . 80

5.2.1 Regular 2D lattices . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 A canonical form for PEPS . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Canonical form for MPS: improvement . . . . . . . . . . . . . 84
5.3.2 Canonical form for PEPS . . . . . . . . . . . . . . . . . . . . 87

6 Injectivity and parent Hamiltonians in PEPS 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Parent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Definition of parent Hamiltonian . . . . . . . . . . . . . . . . 103
6.3.2 Uniqueness of the ground state . . . . . . . . . . . . . . . . . 104
6.3.3 Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Symmetries in PEPS 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Characterization of symmetries . . . . . . . . . . . . . . . . . . . . . 110
7.3 Uniqueness of the construction method . . . . . . . . . . . . . . . . . 112

8 Quasi–solvable 1D Hamiltonians 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 SU(2) invariant kinsfolk Hamiltonians . . . . . . . . . . . . . . . . . 116

8.2.1 Completeness of the method . . . . . . . . . . . . . . . . . . . 117
8.2.2 Examples of SU(2) two–body Hamiltonians . . . . . . . . . . 119

8.3 Exact renormalization construction . . . . . . . . . . . . . . . . . . . 126
8.3.1 Real–space exact renormalization process . . . . . . . . . . . . 126
8.3.2 Quantum spin chains with SU(2) symmetry . . . . . . . . . . 128

viii



CONTENTS

9 A laboratory for Condensed Matter 137
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Frustration–free Hamiltonians and MPS . . . . . . . . . . . . . . . . 139
9.3 String order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3.1 Definition of string order in spin chains . . . . . . . . . . . . . 141
9.3.2 String order and FCS . . . . . . . . . . . . . . . . . . . . . . . 142
9.3.3 Alternative definition and generalizations . . . . . . . . . . . . 145

9.4 Wilson loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.5 Lieb–Schultz–Mattis–type theorems . . . . . . . . . . . . . . . . . . . 148

9.5.1 Lieb–Schultz–Mattis theorem . . . . . . . . . . . . . . . . . . 150
9.5.2 2D Oshikawa–Yamanaka–Affleck theorem . . . . . . . . . . . . 154

9.6 Fractional magnetization vs. entanglement . . . . . . . . . . . . . . . 157
9.6.1 Inverse Oshikawa–Yamanaka–Affleck theorem . . . . . . . . . 158
9.6.2 Fractional magnetization vs. entanglement . . . . . . . . . . . 160

9.7 Long–range Hamiltonians vs entanglement . . . . . . . . . . . . . . . 161
9.7.1 Bounding distances between MPS . . . . . . . . . . . . . . . . 162
9.7.2 Generic Matrix Product States . . . . . . . . . . . . . . . . . 165
9.7.3 Long–range Hamiltonians vs entanglement . . . . . . . . . . . 168

Conclusions and Outlook 171

Bibliography 175

Acknowledgment 187

ix





Introduction

This work is devoted to the study of quantum spin many–body systems, and their
properties and applications in condensed matter. The spectral resolution of Hamil-
tonians acting on many–body systems is a highly complex problem, because of the
exponential growth of the associated Hilbert space with the number of particles.
This exponential growth is a valuable characteristic for the purposes of quantum
information theory, since it permits an exponential speed–up in quantum computa-
tion tasks, and in condensed matter it is also a never–ending source of unexpected
behaviours and surprising results, such as phase transitions [WOVC06, VWC09],
fractionalization of physical quantities [AMU75, KDP80, Lau81, Gre94, OYA97],
and rare matter phases (for instance, certain glass structures [Sch91, Ell90]). These
examples show that the resolution of Hamiltonians acting on many–body systems
is a mathematical problem of the utmost importance in several fields of Physics.

Figure 1: Fractional quantum Hall effect
is probably the best–known fractionaliza-
tion effect. (Image based on [TAN+10])

Nevertheless, it is difficult to deal
with these systems, because they are
hardly tractable by classical means, so
new mathematical techniques must be
developed. Thankfully, the fact that
many of the interactions in Nature are
local, translates into a non–uniform dis-
tribution of the ground states of such
Hamiltonians in the Hilbert space. Or,
in other words, one requires, on average,
an exponentially long time to entangle
a state by evolving a non–entangled one
by means of a local–interacting Hamil-
tonian. Therefore, an effective manage-
ment of the problem demands a local
treatment of such states, which is pre-
cisely the objective pursued throughout
this work by means of tensor networks.

Although there are many different kinds of tensor networks (for instance, the
MERA states proposed by G. Vidal [Vid07]), here we use this term to refer to both
Matrix Product States and Projected Entangled Pair States. These state Ansätze
fulfil the local structure requirement mentioned above, and they are the keystone of
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Introduction

(a) (b)

Figure 2: (a) A group at Padova University recently published an experiment in
which individual photons are reflected off a satellite orbiting almost 1500 kms above
the Earth, one step closer to the construction of a quantum channel between space
and Earth and the establishment of a truly secure communication system [ea08]
(Credit: ESA). (b) The representation by means of a quantum channel of any quan-
tum operation.

the hereby presented work.

The idea of Matrix Product States originally appeared in the framework of the
Density Matrix Renormalization Group (DMRG) method, developed for the resolu-
tion of one–dimensional systems with short–range interactions at zero temperature.
This method’s mathematical foundations in terms of the current language of tensor
networks were established by Östlund et al. [ÖR95], by taking White’s algorithm
[Whi92, Whi93] as a starting point. Afterwards, techniques based on this work have
successfully extended DMRG to more general situations, such as representations
of mixed states, systems at non–zero temperature [VGRC04], and larger dimen-
sions [VC04a, MVC09]. It is precisely in the field of numerical analysis where these
tensor network Ansätze have found their most enthusiastic public and have been
more widely implemented, since DMRG enables an understanding of the physical
properties of quantum many–body systems with groundbreaking precision.

As inferred from above, this Matrix Product States formalism was developed
from the DMRG without fully understanding the grounds of its success, and this
question was not solved even after the formulation by Östlund and Rommer. This
comprehension came later, when the connection between Matrix Product States and
quantum information was established [FNW92, PGVWC07, VPC04], in particular
with the theory on quantum channels or completely positive maps.

A large number of modern developments in Matrix Product States stem from

2
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(a) (b)

Figure 3: Tensor networks. (a) A Matrix Product State with periodic boundary
conditions is represented by a ring of tensors. (b) A Projected Entangled Pair State
with periodic boundary conditions on a two–dimensional square lattice, i.e. with
the topology of a torus.

the application of the techniques available in completely positive maps. These tech-
niques have been particularly successful in establishing a local description (i.e. in
terms of the local tensor) of global properties, such as the necessary and suffi-
cient conditions for these Matrix Product States to be unique ground states of local
gapped frustration–free Hamiltonians [FNW92, PGVWC07], the characterization of
the symmetries of the state [SWPGC09], or the decay–law fulfilled by two–point
correlation functions [FNW92].

A couple of complementary quantum information–based works by Verstraete
et al. [VC06] and Hastings [Has07a] finally drew attention to the real relevance
of the Matrix Product States formalism in the framework of many–body systems.
These two seminal works established that the ground state of every one–dimensional
gapped Hamiltonian is faithfully described by a Matrix Product State. As a conse-
quence, they provide not only a definite explanation of the reason why the DMRG
method succeeds with such great accuracy, but also an explicit evidence of the rele-
vance of the tiny corner of the Hilbert space generated by the Matrix Product States
in order to describe the usual quantum states constructed by means of many–body
Hamiltonians. This idea is one of the cornerstones of this work, as shown below.

Although we started by mentioning general tensor networks, we have only dis-
cussed one–dimensional systems in the previous paragraphs. One could expect
higher–dimensional systems to show a richer and more complex behaviour, but a
more difficult mathematical description and treatment as well. Therefore, a pre-
vious extensive grasp of the one–dimensional problem is not only useful, but also
necessary. Then, Projected Entangled Pair States were proposed as a generaliza-
tion of Matrix Product States for higher dimensions [VC04a, PGVCW08], providing
an efficient description of quantum states, as well. Unfortunately, there exists no
connection between Projected Entangled Pair States and completely positive maps,
which makes the mathematical treatment of the former much more challenging.

3
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This results, as a consequence, in Matrix Product States’ features not being directly
translatable into characteristics of Projected Entangled Pair States.

Figure 4: Werner Heisenberg
in 1927 (Credit: AIP Niels
Bohr Library)

Even thought we have so far referred to many–
body systems in general, it is beyond doubt that
the main target of the machinery described above
are spin systems. Of all the questions which can
be studied in spin systems, the microscopic de-
scription of magnetism is the most relevant one.
Since its publication, W. Heisenberg’s well–known
spin model, H =

∑
i Si · Si+1, has become the

archetypal model in the study of microscopic spin
dynamics. Its physical relevance increased when
Mattheis [Mat61a, Mat61b] and Paul [Pau60b,
Pau60a] showed that both the ground states and the
elementary excited states of every chain of molecules
where the valence electrons occupy nondegenerate
s–orbitals are well described by an effective Heisen-
berg Hamiltonian, which couples nearest–neighbour
spins antiferromagnetically and neglects all the elec-
tronic degrees of freedom [Mat81]. On the other
hand, if two or more valence states are allowed
to conduct electrons on each atom, one might ex-
pect [LM66] that an effective Heisenberg Hamiltonian with ferromagnetic nearest–
neighbour interactions describes the magnetic degrees of freedom of the chain (but
not the electronic ones).

The list of well–known names associated with the development of the quantum
theory of magnetism is long. Nevertheless, Elliot H. Lieb stands out for his contri-
butions to the establishment of the mathematical foundations of this theory. His
name is associated with many of the best–known results in the field [Aue98], as we
will show throughout this Thesis. For instance, the Lieb–Schultz–Mattis Theorem
[LSM61] is especially relevant in this work. It shows that the gap above the ground
state of every SU(2)–invariant many–body Hamiltonian composed by semi–integer
spins vanishes in the thermodynamic limit. This Theorem turned out to be the
most relevant support for the Haldane hypothesis [Hal83a, Hal83b], by establishing
a connection between the microscopic bosonic or fermionic character of spins with an
SU(2)–invariant interactions, and a macroscopic property: the existence of a non–
trivial spectral gap above the unique ground state of the Hamiltonian. However, a
completely general formal proof of this type of results is actually difficult to obtain,
and requires an unfathomable mathematical machinery of functional analysis and
algebra [Has04, NS07].

Consequently, one might wonder why not employ the results obtained for tensor
networks to advance in the mathematical foundations of quantum magnetism with
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(a) (b)

Figure 5: (a) Elliot H. Lieb. (b) The Lieb–Schultz–Mattis Theorem states that the
gap over the ground state of an SU(2)–invariant Hamiltonian with semi–integer spin
vanishes in the thermodynamic limit, being upper–bounded by ∝ 1

N
.

spin systems. Up until recently, the mathematical properties of tensor networks
had not been mastered well enough for this task. Therefore, during the last three
decades, we have been availing ourselves of Matrix Product States as a source of
examples and counter–examples to support some hypotheses and discard others.

Let us review some of the most relevant examples. For instance, Majumdar
and Ghosh [MG69, Maj70] provided the first (unexpected) example of translational
invariant Hamiltonian with a continuous local SU(2) symmetry, but with gap and
(faster than) exponentially decaying correlation functions. Afterwards, Affleck et
al. proposed in their seminal work [AKLT88] an exactly solvable gapped model,
widely known as AKLT model, which proved to be not only a major theoretical
advance, by introducing the parent Hamiltonian method of constructing frustration–
free Hamiltonians which expose this state as a ground state, but also the first support
for the Haldane hypothesis. Haldane proposed that the Heisenberg Hamiltonian
corresponding to a system constituted by integer spins is gapped, while the one
corresponding to semi–integer spins is gapless, statement which was against the
common belief at that time. To support his hypothesis, he provided several obscure
quantum field theory–based arguments [Hal83a, Hal83b], so this did not convince
the condensed matter community. The Lieb–Schultz–Mattis Theorem mentioned
above proved the second part of his statement corresponding to semi–integer spins.

The most general one–dimensional SU(2)–invariant nearest–neighbour interact-
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ing Hamiltonian for spin 1 is the bilinear–biquadratic model :

H =
∑
i

(Si · Si+1) + β(Si · Si+1)2

when β = 0, this model corresponds to the Heisenberg Hamiltonian which, according
to the Haldane hypothesis, must have a unique massive ground state. However,
the Hamiltonian had already been solved for β = −1 in the so–called Takhtajan–
Babudjian model, by means of the Bethe Ansatz [Bab82, Bab83, Tak82], showing a
unique gapless ground state. For β < −1 this presents a two–fold dimerized ground
state. For β = 1 the model has an exact SU(3) symmetry and it is massless [Aff86].
The Heisenberg Hamiltonian is between these two points. Therefore, there is no
evidence that allows us to expect a massive phase in −1 < β < 1, which is the
reason of the initially scarce acceptance of the Haldane hypothesis. The AKLT
model corresponds to β = 1

3
. Its authors analytically proved the uniqueness of the

ground state and the existence of a non–trivial spectral gap above this ground state
[AKLT88]. Hence, this was the confirmation of the existence of a massive phase and
an indication of the trueness of the Haldane hypothesis.

Figure 6: The Oshikawa–Yamanaka–Affleck
Theorem predicts the existence, under cer-
tain circumstances, of plateaux with fractional
magnetization when a magnetic field is applied
on a one–dimensional spin system.

These two examples illustrate,
in quite an accurate way, the
manner in which tensor networks
have usually been employed. As
pointed out above, the knowl-
edge of the mathematical proper-
ties of these states was not ma-
ture enough to overcome the task
of rigorously proving in this frame-
work theorems on spin systems
and quantum magnetism. Nev-
ertheless, the theories of Ma-
trix Product States and Projected
Entangled Pair States flourished
during the last decade [FNW92,
VC04a, VC04b, VC06, PGVWC07,
Has07a, PGVCW08, PGWS+08,
SWPGC09, PGSGG+10] and we are
currently poised to finally face up to
this obstacle in this Thesis.

The present work is split into
two parts, the first one containing both already established and recently developed
results about Matrix Product States and Projected Entangled Pair States; the sec-
ond one is dedicated to the applications of the previous results to problems in spin
systems and magnetism. This work is organized in the following manner:

6
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Figure 7: The correlation function of the AKLT state decays exponentially, which
means no long–range order. However, it only has contribution of states for which
every spin up is followed by an spin down in the |1,ms〉 basis, with any number of
spins in the state |0〉 between them. This gives a sort of hidden order, very much
related with the symmetry of the system, called string order.

• Chapters 1–4 are consigned to the study of states in one–dimensional systems
by means of Matrix Product States, providing a concise but complete sum-
mary of the theory of these tensor networks, where previous results and the
recent developments are superposed. There are three reasons to opt for this
structure in lieu of a more specific one centred on the newer results: firstly,
this enables us to view the results in context, allowing a better comprehension
of their meaning; secondly, there is a lack of updated reviews about the topic,
with results spread over many papers with significantly different notations;
finally, there are results well–known among the tensor networks community
but unrecognised by other communities, which could, in principle, be inter-
ested in this topic. The new results are mainly concentrated in Chapter 2,
where both a complete description of the concept of injectivity and the proof
of the quantum Wielandt’s inequality are provided, and Chapter 4, where
we characterize the necessary and sufficient conditions to construct invari-
ant Matrix Product States under symmetry groups. These results appear in
[SPGWC10] and [SWPGC09], respectively. The other results are extracted
from [FNW92, PGVWC07, BJKW00, Wol09].

• Chapters 5–7 are devoted to states in higher–dimensional systems, specially
two–dimensional many–body systems. We follow a structure of contents sim-
ilar to the previous Chapter, not only for the reasons put forward in the last
paragraph, but also to explicitly present the differences between Matrix Prod-
uct States and Projected Entangled Pair States, founded on the absence of
connections between the latter and completely positive maps. The new results
are condensed in Chapters 5 and 7 and they can be found in [PGSGG+10].
The other results are mainly based on [PGVCW08].

7
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• In Chapter 8, two methods of constructing quasi–solvable SU(2)–invariant
Hamiltonians with two–body interactions are provided. The SU(2) symmetry
is the most natural one in spin–interacting systems, so it is reasonable to
search for exactly solvable models showing this symmetry. Furthermore, the
interactions usually occur by means of two–body operators, so it is also natural
to seek Hamiltonians with this type of structure. The first method permits
us to construct Hamiltonians with a given structure and the Matrix Product
State as an eigenstate, and not only as a ground state [SWPGC09]. The second
method is an exact renormalization group technique which is complementary
to the previous one, since it allows us to find all possible strongly frustration–
free Hamiltonians with nearest–neighbour interactions [TS10].

• Chapter 9 contains several results connecting the theory of Matrix Product
States with the quantum theory of magnetism, and condensed matter in gen-
eral. In Section 9.3 we prove that the existence of string order in a quantum
state is intimately related to the presence of local symmetries [PGWS+08].
In Section 9.5, we provide a proof of the Lieb–Schultz–Mattis Theorem (see
Fig. 5b) and its generalization for U(1) symmetry, known as Oshikawa–
Yamanaka–Affleck Theorem (see Fig. 6), in the context of tensor networks
[SWPGC09, PGSGG+10]. Sections 9.4 and 9.2 show, in the first case, an ap-
plication of the results about symmetries in Projected Entangled Pair States
[PGSGG+10] to topological quantum computation and, in the second case,
a dichotomy theorem about the ground state of frustration–free Hamiltoni-
ans. The last two Sections exhibit the best illustrations of the idea introduced
above: the use of tensor networks as a laboratory to experiment with theo-
retical condensed matter, attempting to extrapolate the results to the general
Hilbert space (these results will appear in a paper now in preparation). For
instance, in Section 9.6 we show a theorem which relates the fractional mag-
netization of a state to the entanglement present in this state. In Section 9.7,
we prove that, under certain conditions, the states which are unique ground
states of a gapped Hamiltonian with long–range interactions, display long–
range entanglement.
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De omni re scibili...
et quibusdam aliis.

François Voltaire
(1694-1778)

1
One dimensional systems:

Matrix Product States

1.1 Introduction

This first Chapter is devoted to one–dimensional quantum spin many–body systems.
As already argued in the Introduction, the spectral resolution of Hamiltonians acting
on many–body systems is a very interesting but highly complex problem, because of
the exponential growth of the associated Hilbert space with the number of particles.
In quantum information theory, this allows an exponential speed–up in quantum
computation tasks, and in condensed matter is a never–ending source of unexpected
behaviours and surprising results, such as phase transitions [WOVC06, VWC09],
fractionalization of physical quantities [AMU75, KDP80, Lau81, Gre94, OYA97],
and rare matter phases, like certain glass structures [Sch91, Ell90].

The Matrix Product States formalism was developed from the Density Matrix
Renormalization Group (DMRG), the best–known numerical method to compute
ground state properties of many–body systems, without a full comprehension of the
grounds of its success. This method allows us to analyse the low–energy spectrum
of one–dimensional spin systems efficiently and with unprecedented precision, which
enables us to understand the main properties of the different phases of condensed
matter systems.

DMRG was originally proposed for 1D quantum (zero temperature) systems
with short–range interactions [Whi92, Whi93]. However, the method has been ex-
tended to many other situations [PHKW99], and even to higher dimensions [VC04a,
MVC09]. As pointed out above, the reason why the method worked so well was not
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CHAPTER 1. FUNDAMENTALS OF MPS

entirely understood in the original paper by White [Whi92], until the connection
with MPS was proposed by Östlund et al. [ÖR95]. However, a complete and co-
herent theoretical picture was only reached when the underlying connections with
quantum information theory was established [FNW92, PGVWC07, VPC04], in par-
ticular with the theory of completely positive maps.

As a consequence, a large number of results in condensed matter theory stems
from the application of the techniques available in completely positive maps to
Matrix Product States. These techniques, which are introduced in this Chapter,
have been particularly successful in establishing a local description (i.e. in terms of
the tensor) of global features, a leitmotiv in the forthcoming chapters.

In this Chapter, we provide a complete overview about Matrix Product States,
from the Ansätze which end with the construction of such states, to the main char-
acteristics shown by them. We include recent developments, updating the results
shown in previous reviews [PGVWC07]. The structure of the Chapter is as follows:

• Many of the properties of the Matrix Product States straightforwardly follow
from the construction of these states. Therefore, in Section 1.2, we describe in
detail one of the possible construction methods: the Valence Bond Solid state.
This approach is physically intuitive and constitutes a solid background for
the correct understanding of the forthcoming results.

• We characterize the freedom in the representation of Matrix Product States in
Section 1.3. As a consequence, the question about which the most adequate
representation naturally emerges, and it is treated. We show that there exists
a canonical form with block–diagonal structure coming from the classification
of complete positive maps [FNW92, PGVWC07]. We explicitly distinguish
between states with open and states with periodic boundary conditions, dis-
cussing the inherent features associated with both of them. The results of this
Section are mainly taken from [PGVWC07]. Nonetheless, some of the proofs
have been slightly changed and some additional lemmas have been included
to make the Chapter more accessible for the condensed matter community.

• In Section 1.4, we describe states in the thermodynamic limit. These states,
named Finitely Correlated States, were proposed in the seminal work [FNW92]
as a generalization of the relevant findings from [AKLT88]. It is in this limit
where, in fact, the connections with the completely positive maps turn out to
be more relevant, so the Section is opened with a summary of the most relevant
results about quantum channels [Wol09]. With this in hand, we discuss the
properties of the Finitely Correlated States in the natural framework of the
reduced density matrix, providing calculations for expectation values of local
operators and the computation of two–point correlation functions.

10



1.2. CONSTRUCTION OF MATRIX PRODUCT STATES

(a) (b)

Figure 1.1: Matrix Product States construction. (a) Two virtual Hilbert spaces
of dimensions Dk and Dk+1 are mapped to a Hilbert space of dimension d by means
of a linear map A[k]. (b) The maps are applied to two consecutive sites connected
by a maximally entangled state. By successive applications, a Matrix Product State
with open boundary conditions is generated.

1.2 Construction of Matrix Product States

In this Section, we provide a constructive definition of Matrix Product States (MPS)
with Open Boundary Conditions (OBC). We show the existence of a canonical form
for the representations of Matrix Product States, which will prove to be a key tool
for the rest of this Thesis. We also show that a translational invariant state always
admits a site–independent representation of the matrices.

1.2.1 A constructive definition of Matrix Product States
and the Valence Bond Picture

Let us consider a pure quantum state |ψ〉 ∈ C⊗dN in an N–site spin system, with
each of the spins associated to a d–dimensional Hilbert space. There are differ-
ent methods of constructing the matrix product Ansatz, each of which with its
advantages and disadvantages. Here, we use the Valence Bond Picture (VBP)
[PGVWC07, VC04b], since this is a very intuitive approach. Let us consider N
aligned local spins (d–dimensional Hilbert spaces), such that each of them has a
couple of ancillary D–dimensional spins, as shown in Fig. 1.1a. These ancillas are
called virtual spins throughout this work. Let us assume that every pair of vir-
tual spins, one of them corresponding to site k− 1 and the other to k (neighbouring
physical spins), is in an unnormalized maximally entangled state |χ〉 =

∑D
α=1 |α, α〉,

which is called bond and gives the construction its name (see Fig. 1.1b). Let us
define the site–dependent linear maps A[k] : CDk ⊗CDk+1 → Cd, where k labels each

11



CHAPTER 1. FUNDAMENTALS OF MPS

Figure 1.2: MPS–OBC. Tensor network representation of a Matrix Product State
with open boundary conditions. The vectors encoding such boundary conditions are
represented by the cones in the extremities.

site. This map depends on d ·Dk ·Dk+1 parameters and can be written for site k as

A[k] =
d∑

ik=1

∑
α,β

A
[k]
ik,α,β

|ik〉〈α, β|
�� ��1.1

where |i〉 ∈ Cd is a basis of the physical Hilbert space, and |α〉 ∈ CDk−1 and
|β〉 ∈ CDkdenote the states of two ancillary spins, which encode the boundary
conditions, as illustrated in Fig. 1.2. Let us now apply the map twice, as shown in
Fig. 1.1b:

|ψ(2)
α,β〉 = (A[k−1] ⊗A[k])

(
|α〉

Dk∑
γ=1

|γ, γ〉 |β〉
)

=

( ∑
ik−1,ik

µ1,µ2,ν1,ν2

A
[k−1]
ik−1,µ1ν1

A
[k]
ik,µ2ν2

|ik−1 ik〉〈µ1 ν1| 〈ν2 µ2|
) (
|α〉

Dk∑
γ=1

|γ, γ〉 |β〉
)

=

∑
ik−1,ik
γ

A
[k−1]
ik−1,αγ

A
[k]
ik,γβ
|ik−1 ik〉 =

d∑
ik−1,ik=1

〈α|A[k−1]
ik−1

A
[k]
ik
|β〉 |ik−1 ik〉

where in the last equality we have rewritten the sum as a product of matrices. By
repeating the process over N sites, one straightforwardly gets:

|ψ(N)
α,β 〉 =

d∑
i1,...,iN=1

〈α|A[1]
i1
· · ·A[N ]

iN
|β〉 |i1 . . . iN〉

�� ��1.2

The states which can be represented by the structure given in Eq. 1.2 con-
stitute the set of Matrix Product States with open boundary conditions
(MPS–OBC) (see Fig. 1.2). In these states, there is a set of d matrices {A[k]

ik
∈

MDk,Dk+1
}dik=1 for every site k, and the vectors 〈α| and |β〉 encode the bound-

ary conditions. The maximum of the dimensions of the ancillary Hilbert spaces,
D = maxkDk, is generally denominated bond dimension or virtual dimension.
Every MPS–OBC can be represented by square matrices with bond dimension D by

12
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(a) (b)

Figure 1.3: Representations of MPS. (a) Representation of an MPS constructed
by means of the VBP, in which two virtual Hilbert spaces of dimensions Dk and
Dk+1 are mapped to a Hilbert space of dimension d by means of a linear map A.
(b) Representation of the MPS as a tensor network: the vertical leg represents the
physical Hilbert space (spin), while the two horizontal ones are the bonds.

padding the remaining matrix entries with zeros. This is especially relevant when
the MPS has periodic boundary conditions, as we will see in the following Section. In
Fig. 1.3, we show the two most common graphical representations of MPS: with the
physical spins and the ancillary differentiated, and as a three-legged tensor, where
one corresponds to the physical spin and the other to the virtual ones.

It is also common in the literature to replace 〈α|A[1]
i1
→ A

[1]
i1
∈ M1,D1 , i.e. the

first matrix is a row–vector which contains the information about the boundary
condition. This also applies to its counterpart A

[N ]
iN
|β〉.

Let us note that the total Hilbert space has dimension dN , while the dimension
of the Hilbert subspace generated by the MPS is smaller than d ·D2 · N , where D
is the bond dimension defined above, i.e. the number of required parameters grows
linearly with N , instead of exponentially. This allows an efficient simulation of
many–body quantum states which are writeable as MPS, something which cannot
be done with a general state. Moreover, these states show a local structure (they are
described in terms of local tensors) and present non–trivial correlations, as shown
in Subsubsection 1.4.3.4.

Finally, let us remark that the mean field Ansatz |ψ〉 = |φ〉⊗N , i.e. the product
states, can be understood as an MPS with bond dimension D = 1.

1.3 Canonical form for Matrix Product States

We have shown the structure of an MPS–OBC in the previous Section. However, one
can expect that there is freedom in the choice of the matrices A

[k]
ik

in Eq. 1.2. In this
Section, we establish all possible degrees of freedom of choice, showing as well that
the matrices representing every MPS–OBC can be expressed in a block–diagonal
form, which is called canonical form. This is a consequence of the deep relationship
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between MPS and quantum channels, which is widely discussed in Section 1.4. The
existence of such a canonical form has relevant consequences for the proof of several
features of MPS, as shown in the following sections.

1.3.1 Matrix Product States with open boundary
conditions

In this Subsection, we show that the matrices which define an MPS can be written
in a canonical form. This canonical form turns out to be keystone in the proofs of
several theorems. We also show the freedom in the choice of the matrices describing
an MPS. The Ansatz for an N–particle MPS–OBC in Eq. 1.2 can be written as:

|ψ(N)〉 =
d∑

i1,...,iN=1

A
[1]
i1
· · ·A[N ]

iN
|i1 . . . iN〉

�� ��1.3

where A
[k]
ik
∈ MDk,Dk+1

, 1 < k < N , and the replacements 〈α|A[1]
i1
→ A

[1]
i1
∈ M1,D1

and A
[N ]
iN
|β〉 → A

[N ]
iN
∈ MDN−1,1 have been used. This notation is employed here

since it allows us to write the theorems in a more compact form. Then, the existence
of a canonical form is ensured by the following Theorem:

Theorem 1 (Canonical form with OBC) Let us consider any N–site quantum
state |ψ〉 with physical dimension d, |ψ〉 ∈ (Cd)⊗N . Then, there always exists a

D ≤ db
N
2
c MPS–OBC representation with the structure shown in Eq. 1.3, such that:

1.
∑d

i=1A
[k]
i A

[k]†
i = 1Dk , 1 ≤ k ≤ N

2.
∑d

i=1A
[k]†
i Λ

[k−1]
A

[k]
i = Λ

[k]
, 1 ≤ k ≤ N , Λ[k] ∈ MDk+1

being diagonal, strictly
positive (and hence, full–rank) and with tr

[
Λ[k]
]

= 1. Particularly, Λ[0] =

Λ[N ] = 1.

Any representation of an MPS–OBC fulfilling these conditions is said to be in the
canonical form. 2

Proof The complete proof can be found in [Vid03], but let us summarize the
main idea here in the form shown in [PGVWC07]. The local decomposition can
be obtained by successive application of Schmidt or singular value decompositions
(SVD) on |ψ〉. The fact that there exists a decomposition fulfilling conditions 1.

and 2. is obtainable by exploiting the freedom A
[k]
i A

[k+1]
i = (A

[k]
i X)(X−1A

[k+1]
i ), for

every invertible X. The following Theorem ensures the existence of these matrices.�

The following Theorem is proven in [SWPGC09]. The proof, which shows that the
entire freedom in any MPS–OBC is given by local matrix multiplication in the space
of virtual spins, is not difficult but it is long and is not transcribed here.
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Theorem 2 (Freedom in the choice of matrices (OBC)) Let us consider a
state |ψ〉 ∈ (Cd)⊗N with an MPS–OBC representation given by

|ψ〉 =
∑

i1,...,iN

B
[1]
i1
· · ·B[N ]

iN
|i1 . . . iN〉

Then, there exist, in general, non–square matrices Yk and Zk, with YkZk = 1, such
that, by defining

A
[1]
i = B

[1]
i Z1 A

[N ]
i = YN−1B

[N ]
i

A
[k]
i = Yk−1B

[k]
i Zk, 1 < k < N

the new matrices also describe |ψ〉 and they are in the canonical form. Additionally,
the multiplication by invertible matrices provides the only freedom of choice. 2

There are several consequences that derive from these theorems, which can be
summarized as follows

• The canonical form is unique by construction, up to permutations and degen-
eracies in the Schmidt decomposition.

• Any state whose reduced density matrix fulfils rank
[
ρ[n]
]
≤ D, 1 ≤ n ≤ N ,

can be written as an MPS–OBC with bond dimension smaller than or equal
to D.

• The only freedom in the representation of an MPS–OBC is local matrix mul-
tiplication.

• The proof of Theorem 2 is constructive and actually provides the method for
obtaining the canonical form.

The following examples show the MPS–OBC which represent the W–state and
the Majumdar–Ghosh state:

Example 1 The W–state for N sites is defined as

|WN〉 = |1
N−1︷ ︸︸ ︷

0 . . . 0〉+ · · ·+ |
N−1︷ ︸︸ ︷

0 . . . 0 1〉.

This state, which is translational invariant, appears as the ground state of the fer-
romagnetic XX–model with strong transverse magnetic field. This state admits a
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site–dependent representation with D = 2 given, for 1 < k < N , by:

A
[1]
0 =

(
1 0

)
A

[1]
1 =

(
0 1

)
A

[k]
0 =

(
1 0
0 1

)
A

[k]
1 =

(
0 1
0 0

)
A

[N ]
0 =

(
0
1

)
A

[N ]
1 =

(
1
0

)
2

Example 2 The Majumdar–Ghosh model, published in [MG69], was the first exam-
ple of translational invariant Hamiltonian with a continuous local SU(2) symmetry,
gap and faster than exponentially decaying correlation function. The ground state is
a two–fold degenerate manifold essentially formed by a dimerized state and its one–
site–displaced state. The matrices describing the 2N–particle (non–translational
invariant) dimerized state is given, for 1 ≤ k ≤ N , by:

A
[2k−1]
0 =

(
1 0

)
A

[2k−1]
1 =

(
0 1

)
A

[2k]
0 =

(
1
0

)
A

[2k]
1 =

(
0
1

)
2

1.3.2 Matrix Product States with periodic boundary condi-
tions

In this Subsection, we focus on a very particular and important kind of boundary
conditions: periodic boundary conditions (PBC). These can be considered as a par-
ticular case of OBC, where the extremities of the chain are connected, transforming
it into a ring (see Fig. 1.4). Then, a maximally entangled state connecting the
extremities is introduced. As a consequence, Eq. 1.2 can be rewritten as

|ψ(N)
α,β 〉 =

d∑
i1,...,iN=1

tr
[
A

[1]
i1
· · ·A[N ]

iN
|β〉〈α|

]
|i1 . . . iN〉y∑

α,β

δα,β

|ψ(N)〉 =
d∑

i1,...,iN=1

tr
[
A

[1]
i1
· · ·A[N ]

iN

]
|i1 . . . iN〉

�� ��1.4

Therefore, the states with the structure given by Eq. 1.4 represent the family of
Matrix Product States with periodic boundary conditions (MPS–PBC) (see

16
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Figure 1.4: MPS–PBC. Tensor network representation of a Matrix Product State
with periodic boundary conditions. The extremities of the chain are identified,
transforming it into a ring.

Fig. 1.4). As stated above, PBC are physically implemented in a ring where the ex-
tremities are identified, instead of in an open chain. Mathematically, it corresponds
to replacing the vectors in the ends of the open chain by a trace.

These boundary conditions are relevant in condensed matter when the sys-
tem length reaches the thermodynamic limit (macroscopic number of particles).
When the number of particles is large, it is reasonable to consider that the measured
properties are local and, hence, that we work far from the boundaries. Therefore one
can essentially forget about the surface effects by introducing PBC. They are also
broadly employed in condensed matter because of the better convergence properties
which many functions have in this topology (a torus).

In particular, the study of translational invariant systems is of the utmost im-
portance in condensed matter theory, since it is connected, by means of Noether’s
Theorem [Noe18], to a conserved quantity: the momentum (in this case, as the
translational invariance is on a lattice, it is more suitable to talk about quasi–
momentum). This is a very relevant tool in the spectral resolution of Hamilto-
nians, which has as a consequence that almost every solvable Hamiltonian shows
this symmetry. Although the symmetries in MPS–PBC are discussed in detail in
Chapter 4, let us now discuss translational invariant MPS (TI–MPS), since they are
closely related to PBC. The aim of this Section is to establish the properties of such
states, as well as the characterization of their matrix description, a relevant task
since the main results shown in this Thesis are all about TI–MPS.

Let us start by defining translational invariant states. We provide here two
definitions: the first one is the strict mathematical definition, while the second one,
which is more restrictive, is also physically more intuitive definition, which is the
one taken in condensed matter.
Definition 1 (Translational invariant state 1) A state |ψ(N)〉 ∈ (Cd)⊗N with
periodic boundary conditions is called translational invariant (TI) if this is an
eigenvector of the translation operator τ . As (with these boundary conditions) the
operator is idempotent, τN = 1, the eigenvalues are complex phases. 2
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The Definition above establishes the mathematical condition for a state to be trans-
lational invariant. However, a more restrictive definition of translational invariant
state is also widely used (including in this work).

Definition 2 (Translational invariant state 2) A state |ψ(N)〉 ∈ (Cd)⊗N with
periodic boundary conditions is called (strongly) translational invariant when
it is an eigenstate of the translation operator with eigenvalue +1. 2

The latter corresponds more accurately to the physical idea of translational invari-
ance in condensed matter, since no global phase appears after a one–site translation.
In any case, whether the definition of TI–state used in a theorem is the one provided
by Definition 1 or Definition 2 will be specified in the corresponding section to avoid
confusion.

It is clear that, by taking the matrices which define the MPS–PBC as site–
independent, i.e. A

[k]
i = Ai, ∀k, the state is translational invariant in the sense

of Definition 2. The following Theorem [PGVWC07, Theorem 3] shows that the
converse is also true and that any TI–state can always be written by means of a
site–independent set of matrices.

Theorem 3 (Site–independent representation of TI–states) Every TI–MPS
defined on a finite chain has a site–independent MPS representation

|ψ(N)〉 =
d∑

i1,...,iN=1

tr [Ai1 · · ·AiN ] |i1 . . . iN〉
�� ��1.5

where A
[k]
i = Ai. Starting from the site–dependent representation with bond dimen-

sion D, the TI–representation could require a bond dimension ND, which increases
with the length of the chain. 2

Proof Let us start with the site–dependent representation of the state given by
the matrices A

[k]
i and let us consider the following d matrices:

Bi = N−
1
N


0 A

[1]
i 0 · · · 0

0 0 A
[2]
i · · · 0

...
...

...
. . . 0

0 0 0 · · · A
[N−1]
i

A
[N ]
i 0 0 · · · 0


which leads to

d∑
i1,...,iN=1

tr [Bi1 · · ·BiN ] |i1 . . . iN〉 =

d∑
i1,...,iN=1

tr
[
A

[1]
i1
· · ·A[N ]

iN

]
|i1 . . . iN〉 = |ψ(N)〉
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where we have used translational invariance in the last step. Therefore, from the
construction of B–matrices, one can see that the TI–representation could require a
bond dimension which grows with the number of particles. However, there are many
relevant cases in which D can be chosen independently of the number of particles.�

The W–state is an example in which it is necessary to increase the bond di-
mension with the length of the ring when a site–independent representation for the
MPS is required. We also show here the translational invariant representation of
the Majumdar–Ghosh state.

Example 3 As we stated in Example 1, the W–state is translational invariant, but
there is no translational invariant number–of–particles–independent representation
(in particular, with D = 2, which is the dimension used in case of a non–translational
invariant representation). In fact, it is proven in [PGVWC07, Corollary 1] that

D ≥ O(N
1
3 ), so the translational invariant representation requires a bond dimension

which increases with the number of particles. 2

Example 4 In Example 2, we provided the matrices for the dimerized state. How-
ever, the Majumdar–Ghosh state also can be described with a translational invariant
representation (in the sense of Definition 2) given by the Kraus operators:

A
[1]
0 =

0 1 0
0 0 −1√

2

0 0 0

 A
[1]
1 =

 0 0 0
1√
2

0 0

0 1 0



This example also illustrates that the bond dimension must be increased when we
represent the translational invariant state. 2

From this point on, we call the matrices which describe a TI–MPS Kraus op-
erators. The reason lies within the deep connections between these matrices and
the Kraus operators which describe quantum channels. This will become clear in
Sections 1.4 and 2.2.

Once it is established that it is always possible to take a site–independent rep-
resentation for any translational invariant state, let us prove that one can always
decompose the matrices of a TI–MPS into a canonical form. The proof of the fol-
lowing Theorem (this is essentially the proof of [PGVWC07, Theorem 4] with some
slight changes for the sake of clarity) is constructive and provides the method to
actually obtaining such a canonical form.
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Theorem 4 (Canonical form with TI) Let us consider any N–site quantum TI–
MPS |ψ〉 ∈ (Cd)⊗N with physical dimension d and bond dimension D, and let us
assume that it has a site–independent representation with the structure shown in Eq.
1.5. Then, the Kraus operators Ai can be written in a block–diagonal form as

Ai =


λ1A

1
i 0 · · · 0

0 λ2A
2
i · · · 0

...
...

. . .
...

0 0 · · · λnA
n
i

 �� ��1.6

with 1 ≥ λk > 0, and every block fulfils the following conditions:

1.
∑d

i=1A
k
iA

k†
i = 1D, 1 ≤ k ≤ n, usually called gauge condition.

2.
∑d

i=1A
k †
i ΛkAki = Λk, 1 ≤ k ≤ n, Λk being diagonal, strictly positive (and

hence, full–rank) and with tr
[
Λk
]

= 1.

3. 1 is the only fixed point of the operator Ek(X) =
∑d

i=1A
k
iXA

k †
i , 1 ≤ k ≤ n.

Any representation of an MPS–PBC fulfilling these conditions is in the canonical
form. The bond dimension of the TI–MPS in the canonical form is always smaller
than or equal to D. 2

Proof We can assume w.l.o.g. that the spectral radius of E is 1 since, in any other
case, we can always redefine the Kraus operators by multiplying them by a constant.
Let us denote the fixed point of E by X ≥ 0, i.e. E(X) = X. If X is invertible, then

by denoting Bi = X−
1
2AiX

1
2 , the gauge condition

∑d
i=1BiB

†
i is fulfilled.

Otherwise, X is not invertible, but it is positive and can be expanded on an
orthonormal basis as X =

∑
α λα |α〉〈α| with λα > 0. Let us denote by PR =∑

α |α〉〈α| the projector onto the subspace R spanned by { |α〉}. By means of
Lüder’s theorem (see Theorem 8), the fixed point must fulfil [Ai, X] = 0, which
is trivially equivalent to [Ai, PRX] = PR[Ai, X] + [Ai, PR]X = [Ai, PR]X = 0. Let
us denote X−1 =

∑
α λ
−1
α |α〉〈α| , so multiplying the previous expression by the left,

we obtain

[Ai, PR]XX−1 = [Ai, PR]PR = 0 ⇒ AiPR = PRAiPR
�� ��1.7

Let us call P⊥R = 1− PR, then

|ψ(N)〉 =
d∑

i1,...,iN=1

tr [PRAi1 · · ·AiN ] |ii . . . iN〉 +

+
d∑

i1,...,iN=1

tr
[
P⊥RAi1 · · ·AiN

]
|ii . . . iN〉

�� ��1.8
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By means of Eq. 1.7, the first term of Eq. 1.8 becomes tr[PRAi1PR · · ·PRAiNPR],
which corresponds to a TI–MPS with bond dimension dimR. Analogously, by re-
placing PR = 1−P⊥R , we get that P⊥RAi = P⊥RAiP

⊥
R , and we can rewrite the second

term in Eq. 1.8 as a TI–MPS with Kraus operators Ci = P⊥RAiP
⊥
R . Therefore, we

can trivially rewrite the initial state with matrices

Ai ↪→
(
Bi 0
0 Ci

)
By repeating the process, we end up with a block–diagonal representation of the
matrices Ai ↪→

⊕n
k=1B

k
i , in which property 1. is fulfilled in every block and the

fixed point is invertible.
Let us now prove by contradiction that these blocks also fulfil property 3. Let

us assume that there exists another hermitian fixed point Yk 6= 1 for Ek(Yk) =∑d
i=1B

k
i YkB

k †
i = Yk. Then, this fixed point can be expanded as Yk =

∑
α λ

(k)
α |α〉〈α|

with λ
(k)
1 ≥ · · · ≥ λ

(k)
n . Obviously, Ỹk = 1 − 1

λ
(k)
1

Yk is also a positive fixed point,

since both 1 and Yk are fixed points, but this is not full–rank, which contradicts the
initial hypothesis.

The same argumentation can be used to prove that the dual channel (see Defini-
tion 5) E∗(X) =

∑d
i=1B

k †
i XBk

i has a unique strictly positive fixed point Zk. This is

diagonalizable, Λk = UkZkU
†
k , so we can redefine B̃k

i = UkB
k
i U
†
k and the new Kraus

operators fulfil property 2. without actually changing properties 1. and 3. �

The proof contains tools which come from completely positive maps (cp maps)
which are explained with further details in Section 1.4, but this simple proof already
allows us to glimpse their power.

Note that, in the Theorem, some λj appear in the matrix while, in the proof,
they do not appear explicitly. In fact, they emerge from the very first line of the
proof. The operator E is a cp linear map and hence it admits a spectral decomposition
E(Xk) = λkXk (eigenvalue equation), with 1 ≥ λk > 0 due to positivity. Then, the
blocks in the decomposition correspond to invariant subspaces of the linear map.
As a consequence, the canonical form above is essentially the idea of expanding an
operator T into its eigenbasis.

Finally, let us clarify the reason for always considering positive fixed points. The
following Lemma1 shows that this is completely general:

Lemma 1 (Fixed points can be taken positive) If X 6= 0 is a fixed point of a
completely positive linear map E, E(X) =

∑
k A
†
kXAk = X, then X can be written

as a (complex) linear combination of positive fixed points. 2

Proof Firstly, let us note that X = 1
2
(X + X†)− i

2
(iX − iX†), and that E(X) =

X ⇔ E(X†) = X†. By linearity, this means that the fixed point can be expressed

1In fact, this Lemma is a consequence of the quantum version of the Perron–Frobenius Theorem
(see [EHK78, Lemma 5.2] and [Rus02]).
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as a linear combination of two hermitian fixed points, so we can take wlog X as
hermitian. Let us now show that every hermitian fixed point can be written as a
combination of positive fixed points, X = 1

2
(
√
X2 + X) − 1

2
(
√
X2 −X), where the

positive root is taken for all the eigenvalues (this means that
√
X2 = |X|, where

|X| must be understood as the absolute value of all eigenvalues of X). By Lüder’s
theorem, X2 is obviously a fixed point, since [X2, Ai] = {X, [X,Ai]} = 0. Therefore,
our objective is to prove that if X2 ≥ 0 is a fixed point of a complete positive map,
then X ≥ 0 is also a fixed point. By hypothesis, 0 =: [X2, Ai] = {X, [X,Ai]}. Let us
work in the basis in which X is diagonal, so X =

∑r
i xi |i〉〈i| . Then, in coordinates,

(xj + xk)〈j|Y |k〉 = 0, where Y = [X,Ai]. If |j〉 or |k〉 are in the support of X,
then (xj +xk) > 0 and 〈j|Y |k〉 = 0. Otherwise, 〈j|Y |k〉 = 0 by definition, because
Y = [X,Ai]. This proves that [X,Ai] = 0 if X ≥ 0, which means that X is also a
fixed point and the lemma follows straightforwardly. �

Finally, in the proof of the Theorem we assume that there is only one fixed point
corresponding to an eigenvalue 1. The general case is slightly more complicated and
yields a further decomposition into a superposition of periodic states. We explain
such a decomposition, and its consequences, with further details in Section 1.4.

By reproducing the structure shown when we studied MPS–OBC, the natural
question is now the freedom in the choice of Kraus operators. The following Theorem
shows that the essential gauge freedom arises from multiplying the Kraus operators
by an invertible matrix.

Theorem 5 (Gauge freedom for PBC) Let |ψ(N)
A 〉 and |ψ(N)

B 〉 be two TI–MPS
with N sites and generated by Kraus operators {Ai ∈ MD}di=1 and {Bi ∈ MD}di=1,

respectively. Then, if these two states are equal, i.e. |ψ(N)
A 〉 = eiθ |ψ(N)

B 〉, with suffi-

ciently large N , there exists an invertible X such that Ai = ei
θ
NXBiX

−1 ∀i. 2

The proof of this Theorem is shown in Subsection 5.3.1 instead of here, since we
require the mathematical tools described in Section 2.2. We also explain there the
meaning of sufficiently large N .

1.4 Finitely correlated states

In this Section, we introduce the concept of quantum channel : a communication
channel which can transmit quantum information. Mathematically, it is a complete
positive trace–preserving map mapping density operator spaces. We show several
mathematical results in quantum channels from which the Kraus representation
theorem stands out, since it allows the connection with TI–MPS [FNW92]. This
Theorem establishes that every complete positive map can be described by a set of
matrices, called Kraus operators (this is the reason why we denominate the matri-
ces describing MPS in this way). If these matrices are used to describe a TI–MPS,
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then many characteristics of the complete positive map are reflected in relevant fea-
tures of TI–MPS. For instance, it is well–known [Mur90] that Kraus operators are
representations of the generators of a finite–dimensional C∗–algebra, and that there
always exists a basis in which these representations are block–diagonal, directly con-
necting this point of view to the canonical form [EHK78]. Another feature inherited
by MPS connects the total decoherence of any state by successive uses of a quantum
channel with the existence of a local Hamiltonian, such that it has the MPS as a
unique ground state with a non–trivial spectral gap above it.

This framework provides an efficient description of TI–MPS in the thermody-
namic limit, i.e. the limit in which the number of particles tends to infinity. In
particular, we will focus here on a very relevant subset of TI–MPS called finitely
correlated states, firstly defined in [FNW92].

The description of the states in the thermodynamic limit is provided in the
natural language of the reduced density matrix, which is employed for the efficient
computation of expectation values and correlation functions, finally proving the
exponential clustering feature put forward in Section 1.2.

1.4.1 A bit about quantum channels

In this Subsection, we define the concept of quantum channel and show some relevant
results on complete positive maps which are employed in the rest of this Thesis. In
lieu of proving the theorems here, we provide references to the original papers, as
well as more recent works, for the interested reader.

Let us start by defining the concept of quantum channel by specifying the intu-
itive physical properties which a general transformation between density matrices
must show [Pre98, Wol09]:

Definition 3 (Quantum channel) A quantum channel is a general transfor-
mation E between states defined in the bounded operator spaces ρ ∈ B(H1) and
E(ρ) ∈ B(H2), where the Hilbert spaces H1,2 are finite–dimensional, such that it is:

1. Trace preserving. If E(ρ) is interpreted as a density matrix, then tr [E(ρ)] =
tr [ρ] = 1, so the transformation must preserve the trace.

2. Linear. Non–linear transformations can in general violate causality, so all
transformations between states must be linear.

3. Completely positive. E(ρ) is a density matrix, so it is positive. Therefore, E
maps positive operators into positive operators. The map E is called com-
pletely positive when the operator 1⊗E is positive, i.e. when (1⊗E)ρAB ≥ 0,
for all ρAB ∈ B(HA ⊗HB). 2

In general, we consider cases where the initial and final Hilbert spaces are isomorphic,
i.e. H1 ' H2, but this is not necessary.
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It is also possible to define a quantum channel in a general mathematical for-
malism of operator algebras [Wol09, Section 1.3], without making use of the density
matrix formalism.

Complete positivity comes from the fact that, if we consider an initial bipartite
system H = HA ⊗ HB with Alice and Bob sharing an entangled state, in which
Alice makes nothing and Bob applies a quantum operation, the output must be a
permited (positive) state as well. There are operations, such as the partial transpose,
which may yield non–positive states. So the complete positivity is a necessary
condition. Nonetheless, given a linear trace–preserving map E , verifying whether
this transformation is completely positive from the definition above is very difficult.
However, there is a much simpler criterion [Wol09, Proposition 1.2] which arises
from the definition:

Lemma 2 (Complete positivity criterion) A transformation E ∈ B(H), dimH =
D, is completely positive iff

τ := (1D ⊗ E)( |Ω〉〈Ω| ) ≥ 0

where |Ω〉 ∈ H ⊗ H is a maximally entangled state and τ is usually called Choi–
Jamio lkowski operator. 2

Let us now enunciate the Kraus representation theorem, which is a key result in
quantum channels and a cornerstone for the results showed in this Thesis, owing to
the fact that it allows the connection between quantum channels and MPS:

Theorem 6 (Kraus representation theorem) A linear map E : B(H1)→ B(H2)
with dimH1 = D1 and dimH2 = D2 is completely positive iff it can be repre-
sented in the form

E(·) =
d∑

k=1

A†k · Ak

Ak ∈MD1,D2, with the following properties:

1. Normalization. E is trace preserving iff
∑d

k=1AkA
†
k = 1 and unital iff∑d

k=1A
†
kAk = 1.

2. Kraus rank. The minimal number of Kraus operators {Ak ∈ MD1,D2}dk=1 is
r = rank [τ ] ≤ D1 ·D2, where τ is the Choi–Jamio lkowski operator defined in
Lemma 2, and r is called Kraus rank, Choi rank or Kraus–Choi rank.

3. Orthogonality. There is a representation with d = rank [τ ] for which the Kraus

operators are orthogonal in the Hilbert–Schmidt sense, i.e. tr
[
AiA

†
j

]
∝ δij.

4. Unitary freedom. Two sets of Kraus operators {Ak} and {Bk} represent the
same linear map E iff they are related by a unitary blend U , i.e. Bj =

∑
k UjkAk

(where the smaller set is padded with zeros). 2

24



1.4. FINITELY CORRELATED STATES

Proof The original proof is published in [BK83, Kra87] but there is an elegant
proof closer to the language used here in [Wol09, Theorem 2.1]. �

The composition of two quantum channels E1 and E2, E2(E1(·)), with Kraus
operators A and B respectively, is obviously another quantum channel, (E1 ◦ E2)(·),
whose Kraus operators are nothing but the product of the Kraus operators of the
individual channels, BjAi. Therefore, if a quantum channel E with D1 = D2 = D is
considered, the N–times composition with itself, i.e. EN(·), has the set of products
{Ai1 · · ·AiN} as Kraus operators.

The matrices which define an MPS can be used as Kraus operators defining a
complete positive map and vice versa. The fact that the Kraus operators defining
the N–times composition of a quantum channel with itself also describe the coeffi-
cients of the TI–MPS, allows the MPS to inherit the strong mathematical techniques
developed for the composition of complete positive maps, which are especially rele-
vant for the study of the thermodynamic limit of TI states. This finally clarifies the
reason why we denominate the matrices which define the MPS Kraus operators. As
a final remark about the connections between completely positive maps and MPS,
the trace–preserving condition immediately reminds us of the canonical form shown
in Section 1.3.

The Kraus rank r = rank [τ ] defined above is the rank of τ as an operator
and this must not be confused with the rank of E as a linear map, since they are
not equivalent. For instance, the ideal channel E : ρ → ρ is obviously full–rank
as a linear map, since E is invertible, but the Kraus rank is r = 1, since it can be
represented by means of only one Kraus operator A = 1. In the same way, the
channel E(·) ≡ tr [·] =

∑D
k=1〈k| · |k〉 has rank 1 as a linear map, but Kraus rank D.

Let us focus now on the last property in Theorem 6, in which the freedom in
the choice of Kraus operators in order to describe the same quantum channel is
established. The unitary blend which relates equivalent quantum channels is not
generally equivalent to the multiplication by invertible matrices allowed by MPS. In
fact, two representations of the same quantum channel produce in general different
MPS and, conversely, two equivalent representations of MPS produce non–equivalent
quantum channels.

The physical representation of a quantum channel (Fig. 1.5) consists of an initial
state, defined by the density matrix ρ0 which interacts with an environment in an
initial state |0〉〈0| in such a way that the total system (state + environment) is
closed, being the interaction modelled by a unitary matrix U . Finally, we trace out
the environment producing a final state with density matrix ρ′. Mathematically,

ρ′ = E(ρ0) = trenv

[
U (ρ0 ⊗ |0〉〈0| )U †

] �� ��1.9

As a complete positive trace–preserving map, the Kraus representation theorem
ensures that it can be represented by means of Kraus operators. Let us now relate
the unitary U to them. If { |i〉} is an orthonormal basis, then the Kraus operators
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Figure 1.5: Quantum channel. Any quantum transformation can be represented
by a quantum channel, and it can be understood as the initial state interacting with
an environment by means of a unitary transformation.

[Pre98, Section 3.2] of the quantum channel 1.9 are given by

Ai = trenv [U (1⊗ |i〉〈0| )]

One can straightforwardly check that
∑

iAiA
†
i = 1 with this definition.

It is possible to prove by means of Stinespring’s representation theorem [Wol09,
NC00] that the process described above is nothing but a quantum channel fulfilling
the conditions required in Definition 3 and vice versa, every quantum channel can
be associated to a state–environment interaction picture.

One can always assume w.l.o.g. [PGVWC07, Theorem 2.5] that every completely
positive map E : B(H)→ B(H), with dimH = D, has spectral radius 1 and at least
one positive fixed point E(Λ) = Λ with 0 ≤ Λ ∈ MD associated to this eigenvalue.
However, if the eigenspace associated to the eigenvalue 1 is degenerate, then there is
a convex set of fixed points with at most D2 extreme points. Let us now enunciate
a couple of very powerful theorems related to fixed points of quantum channels.

Theorem 7 (Carathéodory’s theorem) Let us consider a d–dimensional real
vector space and a convex set Ω in it, generated by the extreme points Λ = {Λi}χi=1,
χ > d. Then, every point in Ω can be expressed as a convex combination of, at most,
d+ 1 extreme points from Λ. 2

Proof The original reference is [Car11], but a more modern proof can be found in
[Eck93]. �

Obviously, the d+1 extreme points are not global, but depend on the point described.
Before enunciating the second theorem, known as Lüder’s Theorem, let us define the
commutant of a set of matrices.

Definition 4 (Commutant) Let K = {Ai ∈ MD} be a set of matrices. Then,
the commutant of K is the set of operators which commute with all elements in
K, i.e. {X | [X,Ai] = 0,∀i}. 2
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Figure 1.6: Fixed point. The fixed point of a quantum channel is the final state
resulting after many applications of the quantum channel. If the quantum channel
is very decoherent, then the final state is independent of the initial one.

The commutant is obviously never an empty set, since it always contains the identity.

Theorem 8 (Lüder’s Theorem) The set of fixed points P of a quantum channel
coincides with the commutant of the set of Kraus operators which define it. 2

Proof A proof of this Theorem can be found in [BJKW00]. �

Let us now define dual channel.

Definition 5 (Dual channel) Let E : B(H) → B(H), with B(H) ⊆ MD, be a
quantum channel. Then, its dual channel E∗ is defined as the quantum channel
fulfilling tr [E(X)Y ] = tr [XE∗(Y )], for all positive X and Y . The Kraus represen-
tation of the channel E(·) =

∑
k A
†
k · Ak leads to E∗(·) =

∑
k Ak · A

†
k. 2

1.4.2 Finitely correlated states

In this Subsection, we start focussing on infinite systems. We recall the definition of
finitely correlated states, firstly introduced by M. Fannes et al in [FNW92], in which
a successful generalization of the findings in [AKLT88] is provided. The authors
introduced several techniques excerpted from complete positive maps, providing a
mathematical background for the TI–MPS in the thermodynamic limit. The results
shown here are mainly based on the point of view and notation used in [PGVWC07].
The finitely correlated states are translational invariant states defined on an
infinite chain, i.e. in the thermodynamic limit. They are constructed by means of a
completely positive trace–preserving map E : B(CD)→ B(CD ⊗ Cd) and the fixed–
point density operator Λ of the map Λ = trd[E(Λ)] (see Fig. 1.6). In the language
used in Subsection 1.2.1, CD is the Hilbert space associated to the virtual spin and
Cd is the Hilbert space corresponding to the physical spin.

The most important finitely correlated states are the purely generated ones,
where the map E(·) = V † · V is generated by a partial isometry V : CD ⊗Cd → CD,
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Figure 1.7: MPS in the Hilbert Space. Although the set of Matrix Product
States with fixed bond dimension is a tiny corner of the total Hilbert space, this is a
very important corner, since ground states of local Hamiltonians are well described
by them [VC06, Has07a].

with V V † = 1D, V †V = P , and P a projector with rank smaller than or equal to D.
The isometry can be related to the Kraus operators by the invertible relationship:

V =
d∑
i=1

D∑
α,β=1

(Ai)α,β |α〉〈β i|
�� ��1.10

The isometry conditions are directly translated into the canonical form conditions
shown in Theorem 4, and the fixed points of E and E coincide. Let us enunciate
a couple of theorems proven in [FNW92] which show some important properties of
the finitely correlated states.

Theorem 9 (Density of FCS) The set of purely generated finitely correlated states
is weakly dense within the set of all translational invariant states on the infinite
chain. 2

In order to explain the meaning of weakly dense, let us consider a set P = {ρk} in
certain Hilbert space H and a bounded functional F : B(H) → B(H′) (H and H′
two finite–dimensional Hilbert spaces), then the set P is weakly dense in H if, for
any F, there exists a sequence of elements in P such that limρk∈P tr [F(ρk − ρ)]→ 0.
Under this perspective, Theorem 9 means that, by considering funtionals such as
multiplication by local operators, one can find a sequence of finitely correlated states
which approximate expectation values accurately, which is translated into the fact
that they are an adequate Ansatz for numerical calculations of, for instance, ground
state energies or correlation functions. This is a complementary result to the ones
proven by F. Verstraete et al [VC06] and M. Hastings [Has07a], in which it is proven
that the ground state of every gapped Hamiltonian can be well described by MPS
(see Fig. 1.7).
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Theorem 10 (Ergodicity) A finitely correlated state is ergodic, i.e. an extreme
point within all possible translational invariant states, iff the completely positive map
E has a non–degenerate eigenvalue 1. 2

This Theorem implies that every finitely correlated state can be decomposed into a
combination of ergodic finitely correlated states with a unique decomposition, since
they are extreme points of a convex hull.

Let us establish a connection with the canonical form in Theorem 4. As we
stated above, the isometry condition is deeply related to the canonical form. In the
basis which gives the canonical form, the Kraus operators are written with a block
diagonal structure in which each block is multiplied by the correspondent eigenvalue
of E , whose modulus is smaller than or equal to 1. When we multiply the Kraus
operators to construct the state, the multiplicative constants accumulate, while
the norm of the block remains stable. This results in a suppression of the blocks
corresponding to eigenvalues with modulus smaller than 1, which is exponential in
the length of the chain. Then, the states in the canonical form correspond, in the
thermodynamic limit, to ergodic finitely correlated states.

We have now the necessary mathematical background to study the case where
the completely positive map has other eigenvalues of modulus 1, which were ignored
in the proof of Theorem 4. Every ergodic finitely correlated state can be decomposed
into the sum of p p-periodic states, each of them corresponding to a root of unity
exp(2πi

p
m), with 0 ≤ m ≤ p − 1, in the spectrum of E . This statement is strictly

enunciated in the following Theorem, which improves [PGVWC07, Theorem 5].

Theorem 11 (Periodic decomposition) Let |ψ〉 ∈ (Cd)⊗N be a TI–MPS gener-
ated by the set of Kraus operators {Ak ∈MD}dk=1 and such that they have only one
block in the canonical representation. Let us assume that the map E has 1 ≤ p ≤ D2

eigenvalues with modulus one, then we have the dichotomy

• If p is a factor of N , then |ψ〉 can be decomposed into p p-periodic different and
injective states with a Dl–dimensional representation, such that

∑p
l=1 Dl = D.

• Otherwise |ψ〉 = 0. This is not a restriction in the thermodynamic limit. 2

Proof The Theorem is a consequence of the spectral properties of the complete
positive map E proven in [FNW92]. It was proven that, if the identity is the only

fixed point of E , then there exists a p ∈ N such that the powers {ωk = ei
2πk
p }pk=1 are

all the eigenvalues of E with modulus 1 and each of them is a simple root.
Moreover, there is a unitary U =

∑p
k=1 ω

kPk, where Pk is a complete set of
orthogonal projectors

∑p
k=1 Pk = 1, such that ∀X ∈ MD, E(XPk) = E(X)Pk−1 (k

is a cyclic index). We assume w.l.o.g. that these projectors are diagonalized in the
canonical basis. It is straightforward to show that the latter implies that

AjPk = Pk−1Aj, ∀j, k
�� ��1.11
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This, together with the decomposition of the trace as tr [· · · ] =
∑p

k=1 tr [Pk · · ·Pk],
leads to a decomposition of the state into a superposition of MPS |ψk〉, i.e. |ψ〉 =∑p

k=1 |ψk〉, with site–dependent matrices A(k)
[j]
i = Pk+j−1AijPk+j. This means that

each state |ψk〉 is p–periodic and, as PkPl = δklPk, this is non–zero iff p is a factor
of N .

This proves that Ep has exactly a p–fold degeneracy of the eigenvalue 1. More-
over, the space of fixed points is generated by {Pk}, since

Ep(X) =
∑
j,k

PjEp(PjXPk)Pk
�� ��1.12

while the space of fixed points of the dual channel is generated by {PkΛPk}.
We use this to show that the states |ψk〉 are injective and different. Let us start

with injectivity : an MPS is injective if the associated completely positive map shows
only one eigenvalue of modulus 1 and the correspondent eigenvector Λ is full–rank
(see Definition 8 for further details). To see this, it is sufficient to show that the
associated complete positive map Epk (X) = PkEp(PkXPk)Pk, with X = PkXPk, has
Pk as the only fixed point, PkΛPk as the only fixed point of the dual channel and
no other eigenvalues of modulus 1. This is obvious, however, from Eq. 1.12 and the
results found on the set of fixed points.

Once it is proven that they are injective, showing that they are different is trivial
by contradiction. For simplicity’s sake, let us argue in the case of two 2–periodic
states, but the argumentation can be straightforwardly extended to the general case.
Let us assume that there are two equal states, and by making use of the uniqueness of
the canonical form for injective TI–MPS, one has that rank [P1] = rank [P2] = D and
P1AiAjP1 = UP2AiAjP2U

†, ∀i, j. Then, in addition to matrices P1 =
∑D

i=1 |i〉〈i|
and P2 =

∑2D
i=D+1 |i〉〈i| , also the matrix

Λ =
2D∑
i=1

|i〉〈i+D|

is trivially a fixed point of E2, contradicting that they are injective. �

This Theorem brings us to the definition of pure finitely correlated states :

Definition 6 (Pure FCS) A finitely correlated state is pure when this is purely
generated and 1 is the only eigenvalue of E with modulus 1. 2

Therefore, pure finitely correlated states are the bricks from which one can construct
the rest of finitely correlated states, and they match the TI–MPS whose canonical
form has only one block corresponding to an eigenvalue of E with modulus 1.

Let us remark that the results shown for chains with finite length are more
general than the ones shown in the theory of finitely correlated states. It is meant
that finitely correlated states can be recovered by taking the thermodynamic limit
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in the theory developed for finite chains. However, in this process the same finitely
correlated state could arise from different TI–MPS; for instance, those with a non–
equivalent composition of blocks corresponding to eigenvalues with modulus smaller
than 1, because the blocks are suppressed in the process.

1.4.3 Reduced density matrix and expectation values

In this Subsection, we construct the expression for the n–particle reduced density
matrix corresponding to a TI–MPS in the thermodynamic limit. We provide the
expression in terms of both Kraus operators and the partial isometry V , defined in
Eq. 1.10. We make use of this to define as well the expression for expectation values
of local operators in the framework of TI–MPS. Finally, we compute the two–point
correlation function, proving an important property of the MPS which is exponential
clustering, i.e. the correlation function decays exponentially.

1.4.3.1 Reduced density matrix from Kraus operators

We start by constructing the reduced density matrix in terms of the Kraus operators.
In general, the definition of the reduced density matrix for a compact regionR (which
in the one–dimensional case means an n–particle block) is

ρ(n) = lim
N→∞

trRc [ |ψ(N)〉〈ψ(N)| ]
�� ��1.13

where the trace is taken over the complementary region of R, Rc. This is the general
definition of the n–particle reduced density matrix. Let us now apply this to TI–
MPS (Fig. 1.8 gives a graphical idea of the process). As the state is translational
invariant, we can consider w.l.o.g. that the region R is constituted by the first n
particles, so

trRc [ |ψ(N)〉〈ψ(N)| ] = trR⊥
[ d∑
i1,...,iN
j1,...,jN

tr [Ai1 · · ·AiN ] tr [Aj1 · · ·AjN ] |i1 . . . iN〉〈j1 . . . jN |
]

=
d∑

i1,...,iN
j1,...,jN

tr [Ai1 · · ·AiN ] tr
[
Āj1 · · · ĀjN

]
|i1 . . . in〉〈j1 . . . jn|

δin+1,jn+1 · · · δiN ,jN

=
d∑

i1,...,in
j1,...,jn

tr
[
(Ai1 ⊗ Āj1) · · · (Ain ⊗ Ājn)EN−n

1

]
|i1 . . . in〉〈j1 . . . jn|

�� ��1.14

where E1 =
∑d

i=1 Ai ⊗ Āi is a representation of the dual quantum channel E∗ (see
Definition 5) written as a linear map acting on a vector space instead of on a space of
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Figure 1.8: Reduced density matrix. Representation of the n–particle reduced
density matrix constructed from an MPS. The physical legs of the two states are
contracted except in the support of the reduced density matrix.

matrices. As they are linear maps, the entries of E1 are automatically determined
once one chooses how to do the mapping ρ ↔ |ρ〉. In this case, we chose the
partial transpose in the second subspace. Therefore, if ρ =

∑
α,β ραβ |α〉〈β| , then

|ρ〉 =
∑

α,β ραβ |α, β〉. Once this is chosen, the definition for E1 straightforwardly
follows from E∗. Let us define this matrix:

Definition 7 (Transfer matrix) The matrix representation of the dual channel
E∗ given by E1 =

∑d
i=1Ai⊗Āi, is called transfer matrix in the language of MPS.2

Obviously, E†
1

is the representation as a linear mapping of the quantum channel
E itself, so the spectra of the quantum channel and its dual are related by conju-
gation. The term left eigenvectors of E1 is commonly used when one refers to the
eigenvectors of E†

1
.

It is clear by construction that the spectra of E∗ (and hence, the spectrum of E
by conjugation) and E are equal. This means that, if λk and Λk are an eigenvalue
and its corresponding eigenvector of E∗, i.e. E∗(Λk) = λkΛk, then E1 |Λk〉 = λk |Λk〉.

We assume that there is only one eigenvalue λ of E∗ such that |λ| = 1 (otherwise,
one can decompose the state into pure finitely correlated states and apply this to
each block). The fixed point is 1, due to the gauge condition

∑
iAiA

†
i = 1, while we

call Λ the fixed point of the channel. Then, from the polar decomposition [NC00]
of E1, one can easily write2

E1 = |1〉〈Λ| +O(|λ2|)
�� ��1.15

where λ2 is the second largest eigenvalue in modulus. The second term in Eq. 1.15
is obviously suppressed in the thermodynamic limit,

lim
N→∞

EN
1

= |1〉〈Λ|
�� ��1.16

2The polar decomposition ensures that every matrix M can be written as M = UA, with
U unitary and A ≥ 0. This is the key for proving that every matrix M =

∑
i λi |ri〉〈li| , where

M†M |ri〉 = λ2i |ri〉 and MM† |li〉 = λ2i |li〉.
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Therefore, by taking the thermodynamic limit in Eq. 1.14 and replacing Eq. 1.16
in the resultant expression, one obtains

ρ(n) =
d∑

i1,...,in
j1,...,jn

〈Λ| (Ai1 ⊗ Āj1) · · · (Ain ⊗ Ājn) |1〉 |i1 . . . in〉〈j1 . . . jn|

=
d∑

i1,...,in
j1,...,jn

D∑
α,β=1

Λα〈α|Ai1 · · ·Ain |β〉〈β|A
†
jn
· · ·A†j1 |α〉 |i1 . . . in〉〈j1 . . . jn|

Therefore, by using that
∑D

β=1 |β〉〈β| = 1D together with the properties of the
trace, one finally obtains

ρ(n) =
d∑

i1,...,in
j1,...,jn

tr
[
A†jn · · ·A

†
j1

ΛAi1 · · ·Ain
]
|i1 . . . in〉〈j1 . . . jn|

�� ��1.17

which is the expression for the n–particle reduced density matrix in a very
large spin chain (thermodynamic limit). The fixed point Λ encodes exactly the
entanglement between the block and the rest of chain in the thermodynamic limit.

One can easily check that rank
[
ρ(n)
]
≤ D2 from Eq. 1.17. Let us define the

vectors |ψ(n)
αβ 〉 =

∑
i1,...,in

〈α|Ai1 · · ·Ain |β〉 |i1 . . . in〉, then Eq. 1.17 is nothing but

ρ(n) =
D∑

α,β=1

Λα |ψ(n)
αβ 〉〈ψ

(n)
αβ |

which clearly has rank smaller than or equal to D2.

1.4.3.2 Reduced density matrix from partial isometry

We provide here another expression for the reduced density matrix in terms of the
isometry V defined in Subsection 1.4.2. This does not provide any mathematical
advantage, but it sometimes turns out to be more convenient, for instance, for the
construction of states which are invariant under the action of a group (see Chapter
4). Let us prove the following Lemma:

Lemma 3 (Reduced density matrix (isometry)) If the partial isometry V :
CD ⊗ Cd → CD is defined as in Eq. 1.10, then the n–particle reduced density
matrix can be written as:

ρ(n) = trCD
[
(V † ⊗ 1

⊗(n−1)
d ) · · · (V † ⊗ 1d)V

†ΛV (V ⊗ 1d) · · · (V ⊗ 1
⊗(n−1)
d )

] �� ��1.18

where Λ is the fixed point and the partial trace is taken over the first (virtual) sub-
space. 2
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CHAPTER 1. FUNDAMENTALS OF MPS

Proof The proof straightforwardly follows from the definition of V in Eq. 1.10:

(V † ⊗ 1
⊗(n−1)
d ) · · · (V † ⊗ 1d)V

†ΛV (V ⊗ 1d) · · · (V ⊗ 1
⊗(n−1)
d ) =

A†jn · · ·A
†
j1

ΛAi1 · · ·Ain ⊗ |i1 . . . in〉〈j1 . . . jn|

by tracing out the first subspace, we directly obtain Eq. 1.17. �

1.4.3.3 Expectation values

The calculation of expectation values, one of the main and most common tasks in
quantum mechanics, is an almost effortless exercise in the framework of MPS. The
objective is to compute the scalar product 〈T 〉 |ψ〉 = 〈ψ|T |ψ〉 = tr [T |ψ〉〈ψ| ] in the
thermodynamic limit, where the operator T is composed of tensor products of local
operators Ti with interaction length n , i.e. acting non–trivially on n particles:

T =

T (n)︷ ︸︸ ︷
T1 ⊗ · · · ⊗ Tn⊗1rest

Let us calculate the scalar product for n < N <∞ sites, evaluating later the ther-
modynamic limit. As we are considering translational invariant states, the position
of the operator is not important. By following the same reasoning that we used in
this Subsection,

〈T 〉 |ψ(N)〉 = tr
[
T |ψ(N)〉〈ψ(N)|

]
=
∑

i1,...,iN
j1,...,jN

tr
[
(Ai1 ⊗ Āj1) · · · (Ain ⊗ Ājn)EN−n

1

]
〈j1 . . . jn|T (n) |i1 . . . in〉

= tr
[
ET1 · · ·ETnEN−n1

]
where

ET =
d∑

i,j=1

(T )jiAi ⊗ Āj
�� ��1.19

As T is hermitian and the scalar product 〈T 〉 |ψ(N)〉 is real as a consequence, one can

also write the expression in terms of ĒX =
∑d

i,j=1(X)ijĀi ⊗ Aj. We are interested
in the thermodynamic limit so, by using Eq. 1.16, we obtain

lim
N→∞

〈T 〉 |ψ(N)〉 = 〈Λ|ET1 · · ·ETn |1〉
�� ��1.20

This is the analytical structure of the expectation value of a local operator con-
stituted by the tensor product of n operators in the thermodynamic limit. This
calculation is generally very efficient, since the multiplication of matrices is efficient
too. Furthermore, the support of the operators is usually small (i.e. n is small) and
the Ti are often equal, which notably simplifies the calculations.
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1.4. FINITELY CORRELATED STATES

Here, the fact that the MPS is in the canonical form was used, so the right
eigenvector is |1〉, but this is of course not necessary and the calculations can be
made exactly in the same way by calculating the corresponding right eigenvector
|λR〉 and right eigenvector 〈λL| . However, some issues must be taken into account
if we do not work in the canonical form. For instance, if the maximum eigenvalue
of the transfer matrix is not normalized to 1, then it is necessary to divide the RHS
by 〈ψ|ψ〉 in Eq. 1.20.

1.4.3.4 Two–point correlation functions

This Subsubsection consists essentially of the proof of one of the main properties of
the MPS: exponential clustering. This means that the two–point correlation function
of MPS either has an infinite range or decays exponentially. This is the reason why
MPS are not a good Ansatz for very entangled systems, such as critical systems
near the transition point. In that case, other more suitable Ansätze, such as the
Multiscale Entanglement Renormalization Ansatz (MERA) [Vid04, Vid07], are often
used. Let us prove the following Theorem:

Theorem 12 (Exponential clustering) Let us consider a TI–MPS |ψ〉 on an

infinite chain and the operators T
(1)
i and T

(2)
i+∆ sited in positions i and i+ ∆. Then,

the two-point correlation function C∆( |ψ〉) = 〈T (1)
i T

(2)
i+∆〉 |ψ〉−〈T

(1)
i 〉 |ψ〉〈T

(2)
i+∆〉 |ψ〉

decays exponentially on approaching the thermodynamic limit. 2

Proof We start working on a finite system for N particles, evaluating afterwards
the thermodynamic limit, and studying finally the asymptotic behaviour ∆ � 1.
By using the techniques developed in Subsubsection 1.4.3.3 for the calculation of
expectation values, one can straightforwardly obtain:

C∆,N( |ψ〉) = tr
[
ET (1)E∆−1

1
ET (2)EN−∆−1

1

]
− tr

[
ET (1)EN−1

1

]
tr
[
ET (2)EN−1

1

]
where we have used the cyclic properties of the trace to place ET (1) in the first site.

By using Eq. 1.15, i.e. E1 =
∑D2

i=1 λi |λRi 〉〈λLi | , with 1 = λ1 > λ2 ≥ · · · ≥ λD2 , we
take the thermodynamic limit:

lim
N→∞

C∆,N |ψ〉 = lim
N→∞

〈λL1 |ET (1)E∆−1
1

ET (2) |λR1 〉 − 〈λL1 |ET (1) |λR1 〉〈λL1 |ET (2) |λR1 〉

+O(λN−∆−1
2 )

=
D2∑
i=1

λ∆−1
i 〈λL1 |ET (1) |λRi 〉〈λLi |ET (2) |λR1 〉 − 〈λL1 |ET (1) |λR1 〉〈λL1 |ET (2) |λR1 〉

=
D2∑
i=2

λ∆−1
i 〈λL1 |ET (1) |λRi 〉〈λLi |ET (2) |λR1 〉
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We are interested in analysing the asymptotic behaviour of the correlation function,
so we take the approximation ∆� 1:

C∆( |ψ〉) ∆�1−−→ λ∆−1
2 〈λL1 |ET (1) |λR2 〉〈λL2 |ET (2) |λR1 〉

As λ2 < 1, it means that, asymptotically, C∆( |ψ〉) decays exponentially, property
known as exponential clustering. �

For the sake of clarity in the notation, we have slightly simplified the proof by
assuming that there is no periodic decomposition, i.e. there is only one eigenvalue
with maximum module. Otherwise, the analysis must be performed over each pure
component.

Product states, which are the simplest Ansatz to approximate states due to their
lack of entanglement, produce quite accurate results for some numerical calculations.
This is because the great majority of the many–body states which are relevant in
Nature (such as ground states of Hamiltonians) are low-entangled. However, they
do have non–trivial correlations. This fits perfectly to the properties of MPS: on
the one hand, exponential clustering provides them short-range correlations; on the
other hand, they keep a quite simple local structure which facilitates calculations.
This makes them an advantageous Ansatz to approximate one–dimensional states
[Has06, VC06].
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Il libro della natura è scritto
in lingua matematica.

Galileo Galilei (1564-1642)

2
Injectivity and quantum Wielandt’s

inequality

2.1 Introduction

There is a deep relationship between MPS and quantum channels, as we already
pointed out in Chapter 1. This Chapter is essentially dedicated to exploiting such
a relationship, especially by means of a mathematical property, called injectivity,
which leads to relevant consequences in the physical properties of both the quantum
channels, discussed in this Chapter, and the states, shown in Chapter 3.

Every quantum operation can be encoded in a quantum channel, where there
is an input state transformed by the channel into an output state. An essential
question is to study the properties of such an output state after a large number
of applications of the quantum channel. In general, after the application of the
channel, a certain decoherence of the initial state emerges, i.e. part of the infor-
mation about the input state is missing and, even knowing in detail both the final
state and the quantum channel, a complete information about the input state is
unrecoverable. One can already glimpse in this point that the loss of information
after a reiterative implementation of the quantum operation is deeply related to the
fixed–point properties of the channel, especially to the number of fixed points. For
instance, if a quantum channel has only one fixed point, then a total decoherence
of the input state is produced, since the final state is totally independent of the
initial one. On the other extreme is the ideal channel, T (ρ) = ρ, El Dorado for the
quantum communication, for which no loss of information is produced.
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CHAPTER 2. INJECTIVITY

The question above has a long history in classical channels, since this kind of
long–term behaviour was already a subject of intensive research in the framework
of Markov chains and discrete dynamical systems. It is directly connected to the
celebrated Wielandt’s inequality [Wie50], which establishes an upper bound for the
number of times that a classical channel must be applied until all information about
the original state is completely lost.

The results shown in this Chapter are essentially extracted from [SPGWC10],
and it is structured as follows:

• In the first two Sections, we provide a physical definition of the concept of
injectivity, since this definition is straightforwardly generalizable to higher di-
mensions. We simultaneously show the consequences for the associated quan-
tum channel when described by the Kraus operators of an MPS with such a
property. We later define in Section 2.3 strong irreducibility, a property ap-
parently different from injectivity but, as we will prove, actually equivalent.
The advantage of the description based on strong irreducibility lies in the fact
that it is a local characterization of the injectivity, i.e. stemming from the
eigenvalues of the transfer matrix.

• In Section 2.4, we make a brief introduction to classical channels. We put
forward as well a relevant result in this field, known as Wielandt’s inequality
[Wie50]. This inequality provides a bound for the number of times that a
classical channel must be applied on any initial state to ensure that there is
a non–trivial probability to reach any possible state of the classical system.
The most impressive feature of this result is, however, that the bound does
not depend on the entries of the classical channel, but only on a quadratic
polynomial of the the matrix dimension.

• Finally, we prove in Section 2.5 an extension of this result for quantum chan-
nels, providing an upper bound for the number of times that it must be applied
until we get a total decoherence of the initial quantum state. Similarly, the
bound depends only on the physical and virtual dimensions of the quantum
channel. This result allows us to prove a dichotomy theorem on the zero-error
capacity of quantum channels, as well as other results in condensed matter
(see Section 9.2).

2.2 Injectivity

In this Subsection, we define a property of the MPS called injectivity from a physical
point of view (we will see in the following sections that there are other equivalent
definitions), since it is clear and straightforwardly generalizable to higher dimen-
sions. Injectivity has a natural physical interpretation, as well as several relevant
physical consequences which are described in detail in Chapter 3. We also prove
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Figure 2.1: Injectivity. A Matrix Product State is injective with injectivity length
i(A) if for the MPS–OBC constructed for i(A) sites, different boundary conditions
(linearly independent), represented by the cones in the figure, give rise to different
states (linearly independent), and this does not happen for i(A)− 1 spins.

that this property is equivalent to the fact that the associated quantum channel
eventually reaches full Kraus rank. This is convenient for showing that injectivity is
independent of the representation used for both the MPS and the quantum channel.

In this Chapter, we make intensive use of several mathematical techniques de-
veloped in the fields of completely positive maps and matrix analysis, especially
stochastic matrices. As this could be difficult for a reader with a background in
condensed matter, we will try to keep this Chapter as self–contained as possible.
Nevertheless, the effort to understand the proofs is quite fruitful, since both the
techniques and the obtained results have relevant implications in condensed mat-
ter in general, and in the theory of tensor networks in particular, as shown in the
following chapters.

Let us start by defining injectivity from a physical point of view:

Definition 8 (Injectivity for MPS) Let { |α〉 ∈ CD} be an orthonormal basis
and {Ai ∈ MD}di=1 the Kraus operators defining an MPS. Let us also consider the
D2 states for N particles defined as

|ψ(N)
αβ 〉 =

d∑
i1,...,iN=1

〈α|Ai1 · · ·AiN |β〉 |i1 . . . iN〉
�� ��2.1

Then, we say that the MPS is injective (with injectivity length smaller than or
equal to N) if there exists a finite N such that the vector space spanned by the

vectors in Eq. 2.1 has dimension D2, i.e. if dim span
[
{ |ψ(N)

αβ 〉}
]

= D2 (Fig. 2.1). 2

We already pointed out in Subsection 1.4.3 that rank [ρ](N) ≤ D2,∀N . Hence, by

Definition 8, an MPS is injective iff there is an N such that rank [ρ](N) = D2, i.e.
the maximum rank is reached. In general in any MPS, the properties of the bulk
are completely determined by the behaviour at the boundary1, which is related to
the existance an area law (see [PGVWC07]), i.e. that the entanglement between a

1This is a condensed matter example of the celebrated Holographic principle [Bou02]. This
principle was originally proposed by Gerard ’t Hooft and it states, in few words, that the description
of a volume of space cabe be thought of as encoded on the boundary of the region.
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compact block and the rest of the chain depends on the length of the interaction
surface and not on the volume of the region. In injective MPS, this relationship
between the properties of the bulk and at the bounday are especially relevant.

We already put forward the concept of injectivity length in Definition 8, but let
us define it clearly:

Definition 9 (Injectivity length) An MPS defined by the Kraus operators {Ai ∈
MD}di=1 has injectivity length N , if N is the minimal number of sites for which

rank [ρ](N) = D2. 2

Let us now prove a Lemma which connects this property to the injectivity of a
linear map. This is obviously the feature which names the property.

Lemma 4 (Injectivity of ΓN(X)) An MPS defined by the Kraus operators {Ai ∈
MD}di=1 is injective iff the linear map ΓN :MD → (Cd)⊗N defined by

ΓN(X) =
d∑

i1,...,iN=1

tr [Ai1 · · ·AiNX] |i1 . . . iN〉
�� ��2.2

is injective. 2

Proof The proof follows from the decomposition X =
∑D

α,β=1Xαβ |α〉〈β| , which
transforms ΓN into

ΓN(X) =
D∑

α,β=1

Xβα |ψ(N)
αβ 〉

where |ψ(N)
αβ 〉 is given in Eq. 2.1. This map is injective iff the vectors |ψ(N)

αβ 〉 are
linearly independent which, by Definition 8, proves the Lemma. �

Let us now show that, once injectivity is reached, this property does not vanish
by adding additional particles, i.e. if an MPS is injective for N particles, then it
also is for N + 1 particles.

Lemma 5 (Persistence of injectivity) If ΓN is injective, then ΓN+1 is also in-
jective. 2

Proof The proof can be found in Section 2.5. �

Lemma 4 is important, since it allows us to connect injectivity to another relevant
property of quantum channels: having eventually full Kraus rank. We prove below
that this is equivalent to injectivity. Let us first start by introducing some notation.

We define SN(A) ⊆ MD as the linear space spanned by all possible products

of exactly N Kraus operators, Ak1Ak2 . . . AkN , and denote by A
(N)
k the elements of

SN(A). There is a one-to-one correspondence between a quantum channel E and
its Choi–Jamio lkowski matrix τ defined in Lemma 2. It is readily verified that
rank

[
τ(EN)

]
= dim

[
SN(A)

]
.

Let us now define when a quantum channel has eventually full Kraus rank. Note
that the Kraus rank was already defined in Theorem 6.
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Definition 10 (Eventually full Kraus rank) A quantum channel E is said to
have eventually full Kraus rank if there exists some N ∈ N such that SN(A) =
MD, i.e. if rank

[
τ(EN)

]
= D2. We denote by i(A) the minimum N for which that

condition is satisfied. Obviously, if E fulfills this property, then SN(A) = MD for
all N ≥ i(A). 2

The last part of this Chapter consists in proving that a quantum channel is injective
if and only if it eventually has full Kraus rank, and hence that the injectivity length
is equal to i(A). This equivalence leads to a characterization of injectivity and
injectivity length by means of the calculation of the rank of the Jamio lkowski iso-
morphism which corresponds to a composition of channels, which is more convenient
for several applications.

Lemma 6 (Equivalence between injectivity and eventual full Kraus rank)
Let us consider a quantum channel E generated by the Kraus operators {Ai ∈
MD}di=1. Then, this quantum channel is injective with injectivity length N iff this
has eventually full Kraus rank. Moreover, i(A) = N . 2

Proof We have to prove that ΓN is injective iff SN(A) =MD:

⇒

Let us prove this by contradiction by assuming that there exists X0 6= 0 such
that X0 /∈ SN(A) and the scalar products tr [Ai1 · · ·AiNX0] = 0 for all i1, . . . , iN .
However, this means that ΓN(X0) = 0 and, as X0 6= 0, then the mapping ΓN is not
injective. This directly proves that i(A) ≤ N .

⇐

Let us also prove this by contradiction and assume that there exists X0 6= 0 such
that ΓN(X0) = 0. This means that tr [Ai1 · · ·AiNX0] = 0 for all i1, . . . , iN , but this is
none other than the Hilbert–Schmidt scalar product between Ai1 · · ·AiN and X†0, and
this means that this is orthogonal to all components in SN(A), so dim

[
SN(A)

]
< D2.

Therefore, i(A) ≥ N which, together with the inequality proven above, concludes
the Theorem. �

This Theorem proves that injectivity is equivalent to the fact that the quantum
channel eventually reaches full Kraus rank. This connection between the physical
interpretation of injectivity and a property of the Kraus rank is very powerful, since
the latter is a more convenient approach for proving the results which we will show
in the following sections.

Let us remark that both injectivity and full Kraus rank are properties which
require gathering spins to be checked. However, it would be relevant for many
applications a local characterization of these properties, and this is what we provide
in the following Section.
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2.3 Strong irreducibility

In this Section, we define the idea of strong irreducibility of a quantum channel
(or MPS). This connects directly to the properties of pure finitely correlated states
discussed in Subsection 1.4.2, as well as to the canonical form. We will prove here
some properties of the MPS, such as that two injective MPS in the thermodynamic
limit are either proportional or orthogonal, and the interpretation of the fixed point
which appears in the definition of the reduced density operator given in Eq. 1.17. In
Section 2.5, we show the equivalence between strong irreducibility and an eventually
full Kraus rank, and hence, with injectivity.

Let us start by defining when a quantum channel is strongly irreducible:

Definition 11 (Strong irreducibility) Let E(X) =
∑d

i=1A
†
iXAi be a completely

positive trace preserving map. Then, we say that this quantum channel is strongly
irreducible if the two following conditions are fulfilled:

1. E has a unique maximum eigenvalue λ, with |λ| = 1.

2. The corresponding eigenvector, Λ, is a strictly positive operator, i.e. Λ > 0. 2

This definition implies the convergence:

lim
N→∞

EN = E∞
�� ��2.3

where E∞(X) := Λ tr [X]. Note that, as already stated in Section 1.4 , the general-
ized Frobenius Theorem proven in [EHK78, Theorem 2.5] (see footnote of Lemma
1) ensures that a trace–preserving complete positive map (TPCPM) always has an
eigenvalue λ = 1 with eigenvector ρ ≥ 0.

For strongly irreducible channels, it was already known [FNW92, Lemma 5.2]
that there exists an upper bound for i(A) related to the second eigenvalue λ2 of E ,
which is essentially i(A) . O(exp 1

λ2
).

Strong irreducibility is obviously equivalent to a unique block in the canonical
form of the MPS, as one can deduce from the proof of Theorem 4 where, in addition,
also the periodic components are removed (since there is only one eigenvalue with
modulus 1). Therefore, the MPS associated with a strongly irreducible quantum
channel is a pure finitely correlated state in the thermodynamic limit. These MPS
are weakly dense, as shown in Theorem 9.

It is also remarkable that strong irreducibility is a local property, i.e. it is a
characteristic of the tensor which can be tested without gathering many sites, as
would happen when testing injectivity, or verifying whether a quantum channel
eventually reaches full Kraus rank. However, we will prove in Subsection 2.5.1
that the three characteristics are equivalent, so this will provide us with a local
characterization for injectivity which is, as pointed above, a many–particle property.

Let us now prove a couple of very interesting properties of TI–MPS associated to
a strongly irreducible quantum channel. The first one is related to the orthogonality
of these states in the thermodynamic limit:
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Theorem 13 (Orthogonality of infinite MPS) Let {Ai ∈ MD}di=1 and {Bi ∈
MD}di=1 be two sets of Kraus operators of two strongly irreducible quantum channels

and let us assume that they are in the canonical form. If |ψ(N)
A 〉 and |ψ(N)

B 〉 are the
TI–MPS for N particles, then one has that

lim
N→∞

〈ψ(N)
B |ψ

(N)
A 〉 =

{
eiNθ if Ai = eiθXBiX

† and XX† = 1

0 otherwise

�� ��2.4

with exponentially small corrections in N for finite cases. 2

Proof This theorem is a non–trivial consequence of the generalized Frobenius theo-
rem and we provide here a proof based on the proof of [PGWS+08, Lemma 1]. First,

let us recall that ‖ |ψ(N)
A 〉‖ = ‖ |ψ(N)

B 〉‖ = 1 up to exponentially small corrections in
N . By adopting the same reasoning followed in calculation of the reduced density
matrix from the Kraus operators in Subsection 1.4.3, one can straightforwardly show
that

〈ψ(N)
B |ψ

(N)
A 〉 = tr

[
ẼN
]

where Ẽ =
∑

iAi ⊗ B̄i. In addition, by following the same argumentation exposed
in calculation of expectation values in Subsection 1.4.3, one can easily see that the
spectrum of Ẽ is the same as that of the mapping Ẽ(X) =

∑
iAiXB

†
i . Therefore,

the goal is to prove that |λk| < 1 for all eigenvalues of Ẽ. Note that one cannot
adjust the eigenvalues of the mapping, since we are assuming that both states are
in the canonical form and that there are no additional freedoms.

Let us consider the eigenvalue equation given by

d∑
i=1

AiXB
†
i = λX

then, denoting by ΛB the fixed point E(ΛB) =
∑

iB
†
iΛBBi = ΛB, we get

|λ||tr
[
XΛBX

†] | = ∣∣∣∑
i

tr
[
AiXB

†
iΛBX

†
] ∣∣∣

≤
∣∣∣∑

i

tr
[
XB†iΛBBiX

†
] ∣∣∣ 12 ∣∣∣∑

i

tr
[
A†iXΛBX

†Ai

] ∣∣∣ 12 = |tr
[
XΛBX

†] |
where we have used the eigenvalue equation in the first equality; the Cauchy–Schwarz
inequality for the Hilbert–Schmidt scalar product with weight ΛB in the inequality;
and the relations

∑
iAiA

†
i = 1 and

∑
iB
†
iΛBBi = ΛB, coming from the canonical

form, in the last equality.
If |λ| = 1, then the Cauchy–Schwarz inequality turns into an equality, which

means that the vectors are parallel, so αΛ
1
2
BX

†Ai = Λ
1
2
BBiX

†. By multiplying the
expression by the hermitian conjugate, taking traces and using again the gauge
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condition for Ai and the fixed point condition for Bi, one straightforwardly shows
that |α| = 1, so α = e−iθ.

As the Kraus operators describe strongly irreducible quantum channels, ΛB is
invertible, so

e−iθX†Ai = BiX
† ⇒

d∑
i=1

BiX
†XB†i = X†X

Therefore, X†X is a fixed point corresponding to the eigenvalue of modulus 1, but
strong irreducibility implies that 1 is the only fixed point. Consequently, X†X = 1,
which means that X is unitary, and hence Ai = eiθXBiX

†. This means that |ψ(N)
A 〉

and |ψ(N)
B 〉 are equal up to a global phase.

If |λ| < 1, then the scalar product is exponentially suppressed with the length of
the chain, which concludes the proof. �

This Theorem has the following Lemma as a corollary:

Lemma 7 (Quasi-orthogonality of general MPS) Let us now consider a TI–

MPS of the form |ψ(N)〉 =
∑m

r=1 µr |ψ
(N)
r 〉 with all |ψ(N)

r 〉 being different TI–MPS
associated to strongly irreducible quantum channels. Then, for all n, there is a
constant c > 0 such that the reduced density matrix of n sites, ρ(n), is in trace
distance exp[−c(N − n)] close to

⊕
r |µr|2ρ

(n)
r , where ρ

(n)
r are the reduced density

matrices for n particles of |ψ(N)
r 〉. 2

Proof This Lemma straightforwardly follows from Theorem 13. We only need to
construct |ψ(N)〉〈ψ(N)| , trace out the complementary region and use the fact that

N is very large and that each |ψ(N)
r 〉 corresponds to a different TI–MPS. Then,

Theorem 13 ensures the orthogonality of |ψ(N)
r 〉 and the Lemma follows. �

Let us now point out the physical interpretation of the fixed point of the complete
positive map in terms of the eigenvalues of the reduce density matrix:

Theorem 14 (Physical interpretation of Λ) Let |ψ(N)〉 be a TI–MPS associ-
ated to a strongly irreducible quantum channel and let us assume that this is in the
canonical form. If ρ(n) is the reduced density matrix for a block of n particles in the
thermodynamic limit, then

spec lim
n→∞

ρ(n) = spec Λ⊗ Λ
�� ��2.5

i.e. Λ is related to the eigenvalues of ρ(n). 2

Proof Let us start from Eq. 1.17 and use the eigenvector decomposition Λ =∑D
α=1 Λα |α〉〈α| , then

ρ(n) =
∑
αβ

Λα |ψ(N)
αβ 〉〈ψ

(N)
αβ |
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Let us compute the scalar product 〈ψ(N)
αβ |ψ

(N)
γδ 〉

〈ψ(N)
αβ |ψ

(N)
γδ 〉 =

d∑
i1,...,in=1

〈α| Āi1 · · · Āin |β〉〈γ|Ai1 · · ·Ain |δ〉

=
d∑

i1,...,in=1

tr
[
(Ai1 ⊗ Āi1) · · · (Ain ⊗ Āin) |δ β〉〈γ α|

]
= tr [En

1
|δ β〉〈γ α| ] n�1−−→ tr [ |1〉〈Λ| |δ β〉〈γ α| ]

= Λβδγαδδβ

Therefore, the states |ψ(N)
αβ 〉 are orthogonal, but not orthonormal. So by replacing

the norms, one obtains

ρ(n) =
∑
αβ

ΛαΛβ |ψ̃(N)
αβ 〉〈ψ̃

(N)
αβ |

where |ψ̃(N)
αβ 〉 = 1√

〈ψ(N)
αβ |ψ

(N)
αβ 〉
|ψ(N)
αβ 〉 are normalized and the Theorem follows. �

2.4 Classical channels and Wielandt’s inequality

In this Section, we explain the concept of classical channels as a mathematical
representation of a Markov process [Sen06]. We also show the natural description
of these classical channels in terms of stochastic matrices [HJ91] and use this to
enunciate a very beautiful theorem, which provides an upper bound for the number
of times that a classical channel must be applied to have a non–trivial probability
of being in any possible classical state of the system with a non–zero probability.
This result, known as Wielandt’s inequality [Wie50], has the special feature that
the bound does not depend on the specific characteristics of the channel, but only
on its dimension.

Let us start with a brief explanation about classical channels (a nice extension
can be found in [NC00, Chapter 8]). The aim is to obtain the mathematical frame-
work which describes the evolution of classical systems provided with a Markovian
approximation, i.e. the evolution is memoryless, so only depends on the last step.

Let us consider a classical system with χ different states {ωi ∈ Ω}χi=1 and a
classical probability pi of being in ωi. Therefore, the information about the state can
be summarized in a χ-dimensional vector of probabilities p such that

∑χ
i=1 pi = 1.

Once the classical system is defined, let us consider the evolution of such a system
assuming a Markovian approximation. The evolution, as explained for quantum
channels in Subsection 1.4.1, is modelled by a linear map due to the causality.
Therefore, we want to describe the process as:

p2 = Mp1

�� ��2.6
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The matrix M is an evolution operator, which obviously must fulfil several con-
ditions in order to be called classical channel. The entry Mij of this matrix is the
probability of the state to end in state ωi, provided that the system was initially in
state ωj. Therefore, the entries must be positive reals smaller than or equal to 1,
0 ≤Mij ≤ 1. Furthermore, p2 is also a probability vector and the entries must add
up to 1, which means that each column of M must also add up to 1. These matrices
are called (left) stochastic matrices and there are very powerful mathematical
techniques developed for them.

Let us now introduce a couple of definitions. The first one describes when a
classical channel is irreducible (see [HJ91, Definition 6.2.21]) and the second one,
defines the notion of primitivity (see [HJ91, Definition 8.5.0]).

Definition 12 (Irreducible classical channel) Let us consider a classical chan-
nel M ∈ Md, d > 1, then we say that this is reducible if there are a permutation
matrix P ∈Md and an integer 1 ≤ r ≤ d− 1 such that

P MP † =

(
A B
0 C

)
where B ∈ Mr, D ∈ Mn−r and C ∈ Mr,n−r. Otherwise, the classical channel is
said to be irreducible. 2

We would like to highlight the apparent similarity between this Definition and the
uniqueness of the block in the canonical form defined in Section 1.2. Furthermore,
we also proved in Section 2.3 that this uniqueness of the block was equivalent to the
quantum channel’s strong irreducibility. This is the reason why we chose this name
for the quantum case.

Let us now define primitivity, a notion firstly introduced by Frobenius in 1912:

Definition 13 (Primitive classical channel) Let us consider a classical channel
M ∈ Md, then we say that this is primitive if it is irreducible and has only one
eigenvalue of maximum modulus. 2

This property is also deeply connected to strong irreducibility for quantum channels.
However, the connection with the asymptotic behaviour of the system is more inter-
esting after applying the classical channel many times. The state after applying the
channel k times is given by pk+1 = Mk p1, so the relevant features are the powers
of the stochastic matrices. The following Theorem provides the connection between
such powers and primitivity:

Theorem 15 (Primitivity implies that Mk > 0) Let M ∈ Md be a classical
channel (M ≥ 0), then M is primitive iff there exists a finite integer k ≥ 1 such that
Mk > 0. The minimum power k fulfilling this condition is called classical index
of primitivity p(M). 2

Proof See the proof in [HJ91, Theorem 8.5.2]. �
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The existence of an integer k such that Mk > 0 has a very interesting physical
meaning. If the matrix is strictly positive, it means that there is a non–trivial
probability pi > 0 of finding the system in every possible state ωi, independently of
the initial state, i.e. of the initial conditions. Therefore, primitivity is a property
which is tightly related to ergodicity.

To conclude this summary about classical channels, let us enunciate the cele-
brated Perron–Frobenius theorem:

Theorem 16 (Perron–Frobenius theorem) Let M ∈ Md be a primitive classi-
cal channel, then the following statements hold:

• There is a positive eigenvalue of M, q > 0, called Perron root or Perron–
Frobenius eigenvalue, such that the rest of the eigenvalues λi are in modulus
smaller than q, i.e. |λi| < q, ∀i. This means that the spectral radius ρ(M) = q.

• The eigenspace associated to the eigenvalue q is one–dimensional, with right
eigenvector π.

• The components of π are strictly positive.

• The Perron–Frobenius eigenvalue fulfils the inequality

min
i

∑
j

Mij ≤ q ≤ max
i

∑
j

Mij

The eigenvector π is called stochastic eigenvector or Frobenius eigenvector.2

Let us connect this with the previous discussion. We can always choose a prim-
itive channel to have a nondegenerate maximal eigenvalue of modulus 1. Therefore,

lim
k→∞

(Mk)ij = πj

which means that the long–term probability of being in a state ωj is independent of
the initial state. But this is nothing but the Ergodic Theorem [Pet89, Chapter 2].

Now that the main characteristics and properties of classical channels are de-
scribed, let us answer the question proposed in the introduction of this Section: is
there any bound, independent of the specific entries of the primitive channel, for the
k defined in Theorem 15, i.e. for the minimum k, such that Mk > 0? The answer
was given by the celebrated result by H. Wielandt [Wie50], which provides a sharp
upper bound for the number of times that the classical channel has to be applied.

Theorem 17 (Wielandt’s inequality for stochastic matrices) If M ∈ Md is
a stochastic matrix (classical channel) such that M ≥ 0, then M is primitive iff
Md2−2d+2 > 0. 2

Proof A nice proof of this Theorem can be found in [HJ91, Theorem 8.5.9]. �
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Wielandt proved that this result is sharp, by providing an example which requires
exactly this number of steps to be positive. The classical channel that he proposed
was

M =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 1 0 0 · · · 0


If d = dimM, then Mk > 0 only when k ≥ d2 − 2d + 2. Notwithstanding, one can
correctly argue that this matrix is not stochastic, and this is because this was con-
structed as the adjacent matrix of a graph. However, the matrix can be normalized
column by column, resulting in no change of the bound.

Wielandt’s inequality has a multitude of applications in classical systems, espe-
cially through the connections with graph theory [Ram05]. Furthermore, by testing
whether the inequality Md2−2d+1 > 0 holds, one obtains a simple method to check
primitivity in a classical channel.

2.5 Quantum Wielandt’s inequality

In this Section, we are interested in finding an equivalent result to the classical
Wielandt’s inequality shown in Section 2.4 for quantum channels. The question
is not only mathematically natural, due to the parallelisms between classical and
quantum channels that we exposed previously, but also physically relevant, due to
the many results on MPS and quantum channels which depend on the existence of
such an inequality.

We have structured this Section in the following way: we first introduce some
notation and the extension of the concept of primitivity to quantum channels; then,
we prove the equivalence among injectivity, eventually full Kraus rank, strong irre-
ducibility and primitivity; we make use of this in order to prove a quantum version
of Wielandt’s inequality; finally, we prove a dichotomy theorem for the zero–error
capacity of quantum channels, which is a very nice application of the quantum
Wielandt’s inequality. For other results see Chapter 9, especially Section 9.2.

Let us first introduce some additional notation before defining primitivity. We de-
fine Hn(A,ϕ) := Sn(A) |ϕ〉 ⊆ CD as the space spanned by vectors Ak1Ak2 . . . Akn |ϕ〉,
where |ϕ〉 ∈ CD. That is, rank [En( |ϕ〉〈ϕ| )] = dim

[
Hn(A,ϕ)

]
.

Definition 14 (Primitive quantum channel) A quantum channel E is called
primitive if there exists some n ∈ N such that for all 0 6= |ϕ〉 ∈ CD, Hn(A,ϕ) = CD;
in other words, if for every input density operator ρ, the output En(ρ) obtained after
n applications of the channel has full rank. We denote by q(E) the minimum n for
which that condition is fulfilled, and we call it (quantum) index of primitivity.2
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2.5. QUANTUM WIELANDT’S INEQUALITY

This is the natural extension of classical primitivity, since we are defining the exis-
tence of an n ∈ N such that, after the n-fold application of the quantum channel,
every positive semidefinite operator is mapped onto a strictly positive operator.

Note that, if E is primitive, then Em is also primitive for every m ∈ N, so we
have Hn(A,ϕ) = CD for all n ≥ q(E).

2.5.1 Primitivity, eventually full Kraus rank and strong ir-
reducibility are equivalent

In this Subsection, we prove the equivalence among primitivity, eventually full Kraus
rank and strong irreducibility. This opens a lot of possibilities, since it means that
all the characterizations shown in this Section are equivalent, and equivalent to
injectivity by means of Lemma 6. This is the reason why we will refer to all these
properties as injectivity in the rest of this work.

Let us start with the goal of this Subsection. We work here with quantum
channels with any of the following properties:

(a) The quantum channel is primitive;

(b) The quantum channel has eventually full Kraus rank;

(c) The quantum channel is strongly irreducible.

Our first simple observation is that, if a quantum channel E eventually has full Kraus
rank, then this implies that E is primitive, or stated quantitatively:

Lemma 8 (Full Kraus rank implies primitivity) Let us consider a quantum
channel E generated by the Kraus operators {Ai ∈MD}di=1 which eventually reaches
full Kraus rank. Then, E is primitive, and q(E) ≤ i(A), where q(E) is the quantum
index of primitivity and i(A) is the injectivity length. 2

Proof Take any n ≥ i(A). Then, by the definition of i(A), the Choi–Jamio lkowski
matrix τ(En) has full rank. The channel can be written for any normalized vector
|ϕ〉 ∈ C as En( |ϕ〉〈ϕ| ) = tr1[τ(En) · ( |ϕ̄〉〈ϕ̄| ⊗1)] [BL07, Section 5.3], or equivalently

En( |ϕ〉〈ϕ| ) = (〈ϕ̄| ⊗ 1)τ(En)( |ϕ̄〉 ⊗ 1)

which also has full rank. �

Before continuing the analysis of the relationships among the three properties
above in the quantum context, let us connect them to the classical notion of primi-
tivity. Given a stochastic matrix M = (mij), let us consider the map E defined by
the Kraus operators Ai,j =

√
mj,i |i〉〈j| . E has the property that for an operator ρ

with entries ρi,j = δi,jpi ≥ 0, ρ′ := E(ρ) is diagonal with ρ′i,j = δi,jp
′
i, with p′ = Mp.

Thus, E implements the stochastic map M, i.e. the quantum channel reduces to
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the classical channel when applied to diagonal density operators. Note that d is
the number of positive entries of the stochastic matrix in the classical case, so the
general quantum bound applied to a classical channel is worse than the classical
one.

Let us consider a stochastic map (classical channel) M, assume that this is prim-
itive and denote by p(M) its classical index of primitivity. Then,

Lemma 9 (Equivalence for classical channels) Let us consider a primitive
stochastic map M and construct its associated quantum channel E with Kraus oper-
ators A defined as above. Then, E is also primitive and the equality q(E) = p(M) =
i(A) holds. 2

Proof It is clear that p(M) ≤ q(E) because mi,j = 0 ⇒ Ai,j = 0 and we proved
in Lemma 8 that q(E) ≤ i(A). In order to show that i(A) ≤ p(M), we define
Ãi,j =

√
mj,iAi,j, where Ai,j are the Kraus operators of the associated quantum

channel, and n = p(M)− 1, and take

D∑
k1,...,kn=1

Ãi,k1Ãk1,k2 · · · Ãkn,j |i〉〈j| = (Ap(M))i,j |i〉〈j| 6= 0.

Thus, |i〉〈j| ∈ Sp(M)(A) for all i, j. �

We note that q(E) is different from i(A) in the general case. To see that, let us
consider an example with d = 3, D = 2, and take as Kraus operators σα/

√
3, where

α = x, y, z labels the three Pauli matrices. Here q(E) = 1 < i(A) = 2.

However, the following proposition shows that i(A) is finite whenever q(E) is. In
fact, all three definitions above are equivalent.

Theorem 18 (Equivalence for quantum channels) Given a quantum channel
E, the following statements are equivalent:

(a) E is primitive;

(b) E has eventually full Kraus rank;

(c) E is strongly irreducible. 2

Proof We denote by Λ ≥ 0 an eigenoperator of E corresponding to the eigenvalue
λ = 1.

(b) ⇒ (a)

This implication is given by Lemma 8.
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(a) ⇒ (c)

We prove it by contradiction. Let us assume that E is not strongly irreducible.
Then, we must have at least one of the following cases: (i) Λ is not full–rank; (ii)
there exists another eigenoperator, Λ′, corresponding to λ = 1; (iii) there is another
eigenvalue, λ′, with |λ′| = 1.

Since for all n ∈ N, En(Λ) = Λ, (i) automatically implies that E is not primitive.
Besides, if we have (ii), choosing ε−1 = max[spec(Λ−1/2Λ′Λ−1/2)] we have that Λ̃ =
Λ − εΛ′ ≥ 0 is not full–rank and thus we are back in (i). Moreover, it is proven
in [FNW92, Proposition 3.3] that, if (i) and (ii) do not hold, the other possible
eigenvalues of modulus 1 are the p-th roots of unity for N 3 p ≤ D2. Therefore, we
have (ii) for Ep, and thus Ep cannot be primitive.

(c) ⇒ (b)

This implication can be deduced from [FNW92, Lemma 5.2], but we include a
proof here for completeness. We prove it by contradiction. Let us assume that E is
(i) strongly irreducible, but (ii) never gets full Kraus rank. If we have (i), then Λ is

full–rank and Eq. 2.3 is fulfilled. Because of (ii), for all n ∈ N and A
(n)
k ∈ Sn(A),

there exists some Bn 6= 0 such that tr
[
A

(n)
k Bn

]
= 0, ∀k. Thus,

∣∣tr [ΛB†nBn

]∣∣ =

∣∣∣∣∣ ∑
k1,...,kn

|tr [Ak1 · · ·AknBn] |2 − tr
[
ΛB†nBn

]∣∣∣∣∣
=
∣∣∣tr [Ω(En ⊗ 1)(B̃nΩB̃†n)

]
− tr

[
Ω(E∞ ⊗ 1)(B̃nΩB̃†n)

]∣∣∣
≤ cn‖Ω‖∞tr

[
B̃nΩB̃†n

]
= Dcntr

[
B†nBn

]
where B̃n = Bn ⊗ 1 and limn cn = 0. If Λ were full rank, then for all X ≥ 0 one
would have:

tr [ΛX] ≥ 1

‖Λ−1‖∞
tr [X]

where ‖ · ‖∞ is the operator norm, and we obtain a contradiction. �

As a consequence of Theorem 18 , we obtain that primitivity of a quantum
channel can be decided by observing its spectral properties. In fact, this is the
precise quantum analogue of the classical result that a stochastic matrix is primitive
iff it has a unique eigenvalue of maximum modulus and a positive definite fixed point
(cf. [HJ91]).

2.5.2 Quantum Wielandt’s inequality

In this Subsection, the quantum extension of Wielandt’s inequality is finally proven.
In order to reach this inequality, which involves bounds for q(E) and i(A), we require
some preliminary lemmas:
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Lemma 10 (Bound to obtain a non–zero trace) Let E be a primitive quantum
channel on MD with d Kraus operators {Ai}. Then, there is a A(n) ∈ Sn(A) with
n ≤ D2 − d+ 1 such that tr

[
A(n)

]
6= 0. 2

Proof Let us denote by Tn(A) the span of all Sm(A) with m ≤ n. We just have
to show that

(*) for any n ∈ N, if dimTn(A) < D2, then dimTn+1(A) > dimTn(A).

Since dimT1(A) = d, we obtain by iteration that TD2−d+1 =MD. This implies that
a linear combination of the elements of Sn(A) with various n ≤ D2 − d + 1 must
be equal to the identity and thus, at least one of the elements must have non–zero
trace.

In order to prove (*), we note that Tn(A) ⊆ Tn+1(A) by definition. If they would
be equal, then Tm(A) = Tn(A) for all m > n. Thus, dimTn(A) = D2 since the map
E would not be primitive otherwise. �

Lemma 11 (Bound for Kraus with non–zero eigenvalue) Let E be a primi-
tive quantum channel such that A1 |ϕ〉 = µ |ϕ〉, with µ 6= 0 and 〈ϕ|ϕ〉 = 1. Then,

(a) HD−1(A,ϕ) = CD.

(b) If A1 is not invertible, then for all |ψ〉 ∈ CD, |ϕ〉〈ψ| ∈ SD2−D+1(A); 2

Proof Let us analyse both cases:

(a)

We define Kn(A,ϕ) as the span of all Hm(A,ϕ) with m ≤ n. If dimKn(A,ϕ) <
D, then dimKn+1(A,ϕ) > dimKn(A,ϕ), since otherwise the map would not be
primitive. Thus, KD−1(A,ϕ) = CD. That is, for all |φ〉 ∈ CD, there exist matrices
A(n) ∈ Sn(A), n ≤ D − 1, such that (with A(0) ∝ 1)

|φ〉 =
D−1∑
n=0

A(n) |ϕ〉 =
D−1∑
n=0

A(n)A
D−kn
1

µD−kn
|ϕ〉

and thus, |φ〉 ∈ HD−1(A,ϕ).

(b)

We write A1 in the Jordan canonical form and divide it into two blocks. The
first one, of size D̃ × D̃, consists of all Jordan blocks corresponding to non–zero
eigenvalues, whereas the second one contains all those corresponding to zero eigen-
values. We denote by P the projector onto the subspace where the first block is
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supported and by r ≤ D − D̃ the size of the largest Jordan block corresponding to
a zero eigenvalue. We have for every power r that:

A1P = PA1, Ar1 = Ar1P.
�� ��2.7

We define Rn(A) = PSn(A) and show that RDD̃(A) = MD̃×D. For all n ∈ N,
dimRn+1(A) ≥ dimRn(A). The reason is that for any linearly independent set of

matrices A
(n)
k ∈ Rn(A), A1A

(n)
k ∈ Rn+1(A) are also linearly independent, given that

A1 is invertible on its range. By following the reasoning of [PGVWC07, Appendix
A] we get that, if dimRn+1(A) = dimRn(A) =: D′, then dimRm(A) = D′ for all
m > n, which is incompatible with E being primitive unless D′ = D̃D. Thus, for all
|ψ〉 ∈ CD, there exists A ∈ SD̃D with |ϕ〉〈ψ| = PA = Ar1PA/µ

r = Ar1A/µ
r = A′ ∈

SD̃D+r. By using that D̃ ≤ D − r and that r ≥ 1 (since A1 is supposed not to be

invertible) we get D̃D + r ≤ D2 −D + 1, which concludes the proof. �

We have now the necessary tools to prove our main result.

Theorem 19 (Quantum Wielandt’s inequality) Let E be a primitive quantum
channel on MD with d Kraus operators. Then q(E) ≤ i(A) and

1. if the span of Kraus operators S1(A) contains an invertible element, then
i(A) ≤ D2 − d+ 1,

2. in general i(A) ≤ (D2 − d+ 1)D2,

3. if the span of Kraus operators S1(A) contains a non–invertible element with
at least one non–zero eigenvalue, then i(A) ≤ D2. 2

Proof The inequality q(E) ≤ i(A) was already shown in Lemma 8, so let us prove
the bounds.

1. If there is an invertible element, then it follows from [PGVWC07, Appendix
A, Proposition 2] that dimSn+1(A) > dimSn(A) until the full matrix space
MD is spanned and thus i(A) ≤ D2 − d+ 1.

2. Let us denote by {A(n)
k } the Kraus operators of En. According to Lemma

10, there is n ≤ D2 − d + 1 such that one of them, say A
(n)
1 , has non–zero

trace, and hence there exists |ϕ〉 6= 0 such that A
(n)
1 |ϕ〉 = µ |ϕ〉 with µ 6= 0.

If A
(n)
1 is invertible, then 2. is implied by 1., so we assume that it is not

invertible. According to Lemma 11(b), for all |ψ〉 and |χ〉 ∈ CD, we have
|ϕ〉〈ψ| ∈ SD2−D+1(A(n)); and according to Lemma 11(a), with D−1 additional
steps, any |χ〉 ∈ CD can be generated, so |χ〉〈ψ| ∈ SD2(A(n)) = SnD2(A). This
implies that SnD2(A) =MD, from which the general bound follows.
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3. The argument which proves 3. is completely analogous. The main difference
is that, in order to guarantee the existence of a Kraus operator with non–zero
eigenvalue, we have to apply Lemma 10 for the general case 2. and to take the
n–th power of the quantum channel for some n ≤ D2 − d+ 1. �

We do not know whether, or in which cases, our bounds are sharp. A simple
lower bound to i(A) comes from the examples, showing that the classical Wielandt’s
inequality is sharp. In these cases q(E) = i(A) = D2 − 2D + 2. An upper bound
that goes beyond this value is given by the next example.

Example 5 Let us consider the completely positive map described by the following
Kraus operators Ai ∈ MD: A0 =

∑D−1
i=0 |i + 1〉〈i| and A1 = |1〉〈D − 1| , with

|D〉 = |0〉. In this case, i(A) = D2 −D, which is larger than the bound appearing
in Wielandt’s classical inequality whenever D > 2.

Let us prove this bound. Consider the case D > 2, since D = 2 is readily
verifiable by inspection. Then A2

1 = 0 and A1A
k
0A1 = A1δk,D−2. Therefore,

SN(A) = span{AN0 , Ak0A1A
l
0}

where k, l = 0, . . . , D − 1 fulfil the additional constraint that

k + l + 1 + n(D − 1) +mD = N
�� ��2.8

for some n,m ∈ N0. The additional constraint comes from the fact that A1 can
stem from A1A

D−2
0 A1 or A1A

D−2
0 A1A

D−2
0 A1 etc. which is a monomial of degree

1 + n(D − 1). The fact that AmD0 = 1 is taken care of by the additional factor
mD. Now assume that N = D(D − 1) − 1. Let us upper bound the number
of linearly independent operators in SN(A). Clearly, for every chosen n and k,
we get that l and m are fixed by the additional constraint. For n = D − 1, the
range of k is restricted to k = 0, . . . , D − 3 by Eq. 2.8. So we have at most
(D−2)+(D−1)D+1 = D2−1 independent elements which cannot span the entire
matrix algebra. Thus, i(A) ≥ D2 − D (if the map is primitive). That this bound
is sharp, and the map actually primitive, is seen by noting that, for N = D2 −D,
the constraint in Eq. 2.8 allows us to freely choose k and l, by adjusting n and m.
However, then Ak0A1A

l
0 runs through all matrix units which span the entire matrix

algebra. 2

We also note that, for small dimension D = 2, 3, there is always an element in
S1(A) which has a non–zero eigenvalue. In other words, in these cases the first bound
in Theorem 19 never applies in the absence of any of the other bounds. The fact
that S1(A) has this property for D = 2, 3 stems from the classification of nilpotent
subspaces [Fas97].

Let us assume that S1(A) would be a nilpotent subspace within the space of
D × D matrices. Then, for D = 2, its dimension would have to be 1, so it could
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not arise from the Kraus operators of a quantum channel. Similarly, for D = 3
there are (up to similarity transformations) two types of nilpotent subspaces [Fas97]
with d > 1: one of dimension d = 3, the space of upper-triangular matrices, whose
structure does not allow the trace-preserving property, and one of dimension d = 2
which only leads to quantum channels having a (in modulus) degenerate largest
eigenvalue. Hence, if S1(A) is generated by the Kraus operators of a primitive
quantum channel, then it cannot be nilpotent if D = 2, 3.

It is remarkable the fact that the injective TI–MPS with polynomial upper bound
for the injectivity length are a set of measure zero, so if any random state is picked
up from the set of injective TI–MPS, this state is going to be generic (see Definition
27), i.e. it reaches injectivity after gathering the minimal possible number of spins.

2.5.3 An application: zero-error capacity

Let us now point up in this Subsection an interesting application of the quantum
Wielandt’s inequality: a dichotomy theorem for the zero–error capacity of a quantum
channel. The zero–error capacity C0 of a noisy classical channel was already defined
by Shannon in [Sha56] as follows:

Definition 15 (Zero–error capacity) The zero–error capacity C0 of a noisy
classical channel is the maximal real number such that there exists a sequence of
codes of increasing block length fulfilling that the rate of transmission approaches
C0 and the probability of error after decoding is zero. 2

Note the difference with the usual definition of capacity [NC00], where the prob-
ability of error approaches zero, instead of being zero.

This concept becomes important in situations where no error can be tolerated
or when a fixed finite number of uses of the channel is available and it constitutes
a central topic in information theory [KO98]. The definition can be straightfor-
wardly translated to the case of quantum channels [MdA05], where a number of
interesting results appear: the computation of this is QMA–hard [BS07] and it can
be superactivated [CCH09] (see also [DS08, Dua09]).

We will show here a dichotomy behaviour for the power of a quantum channel
with full–rank fixed point (e.g., a unital quantum channel) as a consequence of our
quantum Wielandt’s inequality. If we think of the power En as a channel describing
the input–output relation after n units in time/space, then the subsequent result
shows that there is a critical time/length n = q(E) such that a successful trans-
mission through En implies the possibility of a successful transmission to arbitrary
m ≥ n. By the quantum Wielandt’s inequality, this critical value can be taken
(D2 − d + 1)D2 and is therefore universal. It depends only on D and not on the
channel itself.
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Theorem 20 (Dichotomous behaviour of the zero–error capacity) If E is a
quantum channel with a full–rank fixed point, and we call C0(E) the 0–error classical
capacity of E, then either2 C0(En) ≥ 1 for all n or C0(Eq(E)) = 0. 2

Proof We split the problem into two cases:

(a)

Let us assume that the channel has two (or more) different fixed points. By
following [Lin99], the set of fixed points of a quantum channel which has a
full–rank fixed point is of the form V [

⊕
i(ρi ⊗Mmi)]V

† where V is some
unitary, the ρi’s are density matrices with full–rank, andMmi is a full matrix
algebra of dimension mi. Consequently, if the direct sum is non–trivial, we
can encode a classical bit in the corresponding projectors. If the direct sum is
trivial, then the space of matrices is non–trivial, i.e. there is an mi ≥ 2, and
we can encode one qubit in it. In either case C0(En) ≥ 1 independent of n.

Similar statements hold if the channel has only one fixed point (which is, by
assumption, full–rank) but another eigenvalue µ of magnitude one: since µ is
a root of unity, i.e. there is an integer p ≤ D2 with µp = 1, we have that Ep
has several fixed points. So we can again safely encode a bit and C0(En) ≥ 1
independent of n.

(b)

If the channel has just one fixed point and no other eigenvalue of magnitude
one, then it is primitive by Proposition 18. So Eq(E) has the property that all
output states are full–rank. This implies that C0(En) = 0 for all n ≥ q(E)
[CCH09]. �

2In fact, one can consider here even the one–shot zero–error capacity, that is, the one obtained
with a single use of the channel.
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Our job in life is to help
people realize how rare and
valuable each one of us re-
ally is, that each of us has
something that no one else
has, something inside that is
unique to all time.

Fred Rogers (1928-2003)

3
Parent Hamiltonians

3.1 Introduction

In the previous chapters, we have focused on quantum states, especially on describing
the construction of MPS and discussing their properties. However, condensed matter
also concerns Hamiltonians, since they contain all information about the interactions
among particles in the system. This Chapter revolves around the concept of parent
Hamiltonian: a local TI Hamiltonian which is constructed from the MPS and has
this as a ground state. Therefore, in the tensor network framework we observe
the precisely opposite direction to the one usually followed in condensed matter:
one starts with the state and then finds the Hamiltonian (showing certain relevant
properties) which has it as a ground state, and not the opposite.

One of our main objectives in this Chapter, and a central topic in the rest of the
Thesis, is to show that the characteristics of such a Hamiltonian can be determined
by adjusting the local structure of the tensor, i.e. the parent Hamiltonian’s features
are encoded in the Kraus operators. In particular, connecting it to the results
proven in previous chapters, we show that injectivity is the necessary and sufficient
condition for the uniqueness of the ground state of the parent Hamiltonian and the
key for the existence of a non–trivial spectral gap above it.

The relevance of such features is striking in condensed–matter–based implemen-
tations of quantum computers. The two–level system { |0〉, |1〉} is the simplest
model of quantum computer —where one may encode and process quantum infor-
mation. Roughly speaking, the ground states of many–body systems play the role
of |0〉–state and the first excited state the role of |1〉, while the quantum processing
consists of excitations and desexitations of the system at low temperatures. The
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uniqueness of the ground state allows the process to avoid phase errors in the de-
sexcitation due to the indetermination of the ground state; and the existence of a
spectral gap protects against environmental perturbations, i.e. thermal fluctuations
which could generate flip errors |0〉 ↔ |1〉.

This Chapter is essentially structured as follows:

• We provide in Section 3.2 the two definitions of parent Hamiltonian which
can be found in the literature, discussing in which cases they are equivalent.
We also show that parent Hamiltonians are frustration–free, a property which
allows the local computation of the ground state energy. The problems associ-
ated with the idea of frustration–freeness in condensed matter, together with
a property called strong frustration–freeness, are discussed.

• In Sections 3.3 and 3.4, we prove that injectivity is the necessary and suffi-
cient condition for uniqueness, and the existence of a spectral gap in the sense
pointed out above. As shown in Chapter 2, one can locally determine injectiv-
ity by means of its equivalence to strong irreducibility. Therefore, it becomes
the first relevant example of a global feature which can be locally encoded in
the tensors, complemented in the following Chapter with the characterization
of symmetries.

• Finally, in the last Section, we also provide the definition of kinsfolk Hamil-
tonian, which is a broader family of Hamiltonians which have the MPS as
an eigenstate, and not necessarily as the ground state. Therefore, every par-
ent Hamiltonian is a kinsfolk Hamiltonian. These Hamiltonians are relevant in
Chapter 8, where a systematic method to construct SU(2)–invariant two–body
kinsfolk Hamiltonians is provided, together with a list of the most relevant
ones.

3.2 Definition of Parent Hamiltonian

In this Section, we define the concept of parent Hamiltonian, as well as two properties
of Hamiltonians called frustration–freeness and strong frustration–freeness, features
that every parent Hamiltonian shows in particular. In condensed matter, geometrical
frustration is a phenomenon which emerges when the geometrical properties of a
crystal lattice or the existence of conflicting interactions forces forbid simultaneous
local minimization of the ground state energy. This carries often as a consequence a
degeneracy of the ground state and a high entanglement. The study of geometrically
frustrated systems started with the investigations on the antiferromagnetic Ising
model on a triangular lattice by H. Wannier in 1950 [Wan50], but the concept was
not defined until 1977 by G. Toulouse [Tou77, VT77].

Let us denote the support of the reduced density matrix ρ(n) as Sn = supp ρ(n).
Now, we can provide the first definition of parent Hamiltonian:

58



3.2. DEFINITION OF PARENT HAMILTONIAN

Definition 16 (Parent Hamiltonian 1) Let us consider a TI–MPS |ψ(N)〉 and
its reduced density matrix for n < N particles, ρ(n). Let us assume that { |vi〉}ri=1,
r ≥ 1, is an orthonormal basis for ker ρ(n). By taking any positive linear combination
of projectors, one can construct the following local interactions:

h(a) =
r∑
i=1

ai |vi〉〈vi|
�� ��3.1

with ai > 0. Hence, kerh = Sn. Then, if τ is the translation operator, we call the
following operator a parent Hamiltonian:

H(N) =
N∑
i=1

τi(h)⊗ 1rest

�� ��3.2

where N is the number of spins contained in the chain and n, the number of particles
in the support of h, is called the interaction length of H. 2

This construction is consistent with the original definition proposed in [AKLT88],
where the authors put forward the AKLT state and its parent Hamitonian. Nev-
ertheless, there is an alternative definition based on the posterior developments on
finitely correlated states in [FNW92]:

Definition 17 (Parent Hamiltonian 2) Let us consider a TI–MPS |ψ(N)〉 gen-
erated by the set of Kraus operators {Ai ∈MD}di=1 and let us construct the vectorial
space Gn = 〈Γn(X)〉X , i.e. the vectorial space spanned by the support of the Γn(X)
(see Eq. 2.2)

Gn = { |ψ(n)〉X =
∑
i1,...,in

tr [XAi1 · · ·Ain ] |i1 . . . in〉|∀X ∈MD}
�� ��3.3

Let us consider any positive operator h ≥ 0, such that supp h = G⊥n , the orthogonal
subspace. A parent Hamiltonian is then constructed as in Eq. 3.2. 2

Both definitions are equivalent if the state is injective, since the support of ρ(n)

coincides with the support of Γn(X). Let us explicitly show that in the following
Lemma:

Lemma 12 (Equivalence between definitions) In general, Sn ⊆ Gn. The equal-
ity holds when the state reaches injectivity for at most n− 1 sites. 2

Proof Let us consider a sufficiently large N , and rewrite the state as |ψ(N)〉 =∑
a,b |ψ

(n)
ab 〉 ⊗ |ψ

(N−n)
ba 〉. Therefore, the reduced density matrix is

ρ(n) =
∑
ab

|ψ(n)
ab 〉〈ψ

(n)
a′b′ | tr

[
|ψ(N−n)
ba 〉〈ψ(N−n)

b′a′ |
]

︸ ︷︷ ︸
αaba′b′
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We can now prove ⊆ by rewriting any element from Gn as:∑
ab

∑
i1,...,in

Xab〈b|Ai1 · · ·Ain |a〉 |i1 . . . in〉 =
∑
ab

Xab |ψ(n)
ba 〉

which proves that the support of ρ(n) is contained in Gn. Let us now assume injectiv-
ity, or in other words, that the D2 vectors |ψ(N−n)

ab 〉 are linearly independent. Then,
the Gram–Schmidt decomposition theorem ensures that there exists an invertible
matrix Y such that

|ψ̃(N−n)
kl 〉 =

∑
ab

(Y −1)kl,ab |ψ(N−n)
ab 〉

〈ψ̃(N−n)
kl |ψ̃N−nab 〉 = δkaδlb

Therefore,

|ψ(N)〉〈ψ(N)| =
∑
ab
a′b′

|ψ(n)
b′a′〉〈ψ

(n)
ba | ⊗

∑
kl
k′l′

Ya′b′,k′l′ |ψ̃(N−n)
k′l′ 〉〈ψ̃(N−n)

kl | (Ȳ )ab,kl

∑
kl
k′l′

∑
ab
a′b′

Ya′b′,k′l′ |ψ(n)
b′a′〉〈ψ

(n)
ba | (Ȳ )ab,kl ⊗ |ψ̃(N−n)

k′l′ 〉〈ψ̃(N−n)
kl |

By defining |ψ̃(n)
kl 〉 =

∑
ab Yab,kl |ψ

(n)
ba 〉, then

ρ(n) =
∑
kl
k′l′

|ψ̃(n)
k′l′〉〈ψ̃

(n)
kl | δkk′δll′ =

∑
kl

|ψ̃(n)
kl 〉〈ψ̃

(n)
kl |

Therefore, suppρ(n) = 〈{ |ψ̃(n)
kl 〉}〉 = Gn. If the state is not injective, then the last

equality is not true because Y is not invertible. �

As a consequence, one must specify which definition of parent Hamiltonian is being
considered in each particular problem if the states are not injective.

Note that, due to the method used to construct the Hamiltonian, it is clear that
hi ⊗ 1rest |ψ(N)〉 = 0. As both hi ≥ 0 and H ≥ 0, this means that H |ψ(n)〉 = 0
and that |ψ(n)〉 is a ground state. Therefore, this very simple method allows us to
construct a parent Hamiltonian which has the MPS as a ground state.

The Hamiltonian is obviously not unique, since there is a freedom of choice in
its coefficients (provided that they are positive) or, in other words, both definitions
establish constraints on the support of the Hamiltonian, but they do not specify the
vector in this vector space. This provides some leeway for finding Hamiltonians with
a specific structure, such as those which are invariant under some group, as shown
in Chapter 4, or those with two–body interaction, as discussed in Chapter 8.

We pointed out above that every term of H annihilates the state, i.e. it is the
ground state not only of H, but also of each hi ⊗ 1rest. The following definition
arises from this:
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Definition 18 (Frustration–free Hamiltonian) Let us consider a TI local (not
necessarily parent) Hamiltonian on a ring of N d–dimensional spins with the struc-
ture H =

∑N
i=1 τi(h)⊗1rest, with τ the translation operator, h has interaction length

n and sites N + 1 and 1 are identified. Then, we say that H is frustration–free
with respect to its ground state |ψ0〉, if the latter minimizes the energy locally, i.e.
if

〈ψ0|H |ψ0〉 = inf
ψ
〈ψ|H |ψ〉 = N inf

ψ
〈ψ|h⊗ 1rest |ψ〉

�� ��3.4

2

The following Lemma relates this Definition with the characteristics of the parent
Hamiltonian described above.

Lemma 13 (Properties of frustration–free Hamiltonians) A TI local Hamil-
tonian H(N) =

∑N
i=1 τi(h) ⊗ 1rest is frustration–free with respect to its ground state

|ψ〉 iff h⊗ 1rest |ψ〉 = 0 with h ≥ 0. 2

Proof We must prove that h⊗ 1rest |ψ〉 = 0 with h ≥ 0 ⇔ kerh ⊆ suppρ(n).

⇒
By simple calculations

(h⊗ 1rest) |ψ〉 = 0⇒ trkerh [(h⊗ 1rest) |ψ〉〈ψ| (h⊗ 1rest)] = 0

⇒ (h⊗ 1rest)ρ
(n)(h⊗ 1rest) = 0

h≥0
=⇒ supp ρ(n) ⊇ kerh

which proves the implication.

⇐
This is trivial by definition. �

Some contradictions between the idea of frustration–freeness in condensed matter
and the definition derived from Eq. 3.4 could appear, due to the explicit dependence
of Definition 18 on the number of particles N . Let us illustrate the idea with the
following example:

Example 6 Let us consider the antiferromagnetic spin–1
2

Ising model described by

the Hamiltonian H = −J
∑N

i=1 σiσi+1, with J < 0 and the sites N + 1 identified
with site 1.

If N is even, the Hamiltonian is called Néel antiferromagnet, since its energy
is minimized by a state in which the spins are anti–aligned, so the spins live in
a bipartite lattice, and this is known as Néel order. Therefore, in this case, the
Hamiltonian is frustration–free in the sense given by Eq. 3.4. The ground state is
obviously 2–fold degenerate and the translational invariant linear combination (in
the sense of Definition 2) has an MPS representation given by the Kraus operators
{σ+, σ−}.
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In case of an odd N , a kink produced by two contiguous aligned spins appears in
the ground state, generating a 2N–fold degeneracy in the ground state. The state is
frustrated in this case, but it still shows a Néel order1. This simple example shows
that frustration actually depends on the number of particles. 2

Let us now consider a stronger version of the frustration–freeness condition.

Definition 19 (Strongly frustration–free Hamiltonian) We say that a Hamil-
tonian H(N) =

∑N
i=1 τi(h)⊗ 1rest is strongly frustration–free if it is frustration–

free for all N ≥ N0. 2

It is straightforward to see that every parent Hamiltonian is strongly frustration–free,
but not every frustration–free Hamiltonian is strongly frustration–free, as shown in
the Example above. A lot of effort was put into relating ground states of frustration–
free Hamiltonians to MPS: it is proven in [Has06] that all gapped Hamiltonians
can be approximated by frustration–free Hamiltonians by increasing the interaction
length to the order of O(logN), while in [VC06] it was shown that they can be faith-
fully approximated by MPS. However, one can wonder which kind of Hamiltonian
has exactly a size–independent MPS representation as ground state. This question
remains unsolved, even though we provide an advance in the question in Section ??
by showing a dichotomous behaviour in the bond dimension of the ground state of
any strongly frustration–free Hamiltonian: either its ground state is an MPS with
bond dimension D independent of the number of particles N , or D ≥ O(N

1
5 ).

3.3 Uniqueness of the ground state

In this Section, we set up a very successful idea which will turn out to be our modus
operandi in the rest of this Thesis: the codification of the physical properties of
the couple state–Hamiltonian in the structure of the local tensors, i.e. the Kraus
operators. The case shown in this Section is probably the most surprising one, since
we relate injectivity to the necessary and sufficient condition for uniqueness in the
ground state of the parent Hamiltonian. Therefore, by analysing the spectrum of
the transfer matrix E of the MPS (let us recall the equivalence between injectivity
and strong irreducibility), one can predict whether it is possible or not to construct
a parent Hamiltonian with such an MPS as a unique ground state.

Furthermore, as shown in the next Section, injectivity also implies the existence
of a gap over the ground state, as well as the exponential decay of the correlation
functions, what we called exponential clustering in Theorem 12.

Let us explicitly expose this in the following two theorems. The first one shows
that injectivity is a sufficient condition and is proven in [PGVWC07, Theorem 10].

1Defining the order parameter for the Néel order as
∑

i(−1)iσi, it is still non–vanishing for the
ground states above.
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Theorem 21 (Injectivity ⇒ uniqueness for TI–MPS) Let us consider a TI–
MPS |ψ(N)〉 generated by the Kraus operators {Ai ∈MD}di=1 and let us assume that
this state has injectivity length L0 ≤ N

2
. Then, this state is the unique ground state

of a parent Hamiltonian H(N) with interaction length n ≥ L0 + 1. 2

Proof Let us prove this by contradiction by assuming that there is another ground
state |φ〉 of the Hamiltonian H(N). Then, |φ〉 ∈ GN , i.e. the state can be written
as |φ〉 =

∑
i1,...,iN

tr [XAi1 · · ·AiN ] |i1 . . . iN〉. By using translational invariance, one
can choose the first position in any spin, so |φ〉 may also be written as:

|φ〉 =
∑
i1,...iN

tr
[
Ai1 · · ·AiL0

Y AiL0+1
· · ·AiN

]
|i1 · · · iN〉

As N ≥ 2L0, by means of injectivity in the products AiL0+1
· · ·AiN , it follows that

XAi1 · · ·AiL0
= Ai1 · · ·AiL0

Y for every i1, . . . , iL0 . But by using again the fact
that the system has full Kraus rank for L0 sites, one can always find coefficients
ai1...iL0

such that
∑

i1,...,iL0
ai1...iL0

Ai1 · · ·AiL0
= 1, so this means that X = Y and X

commutes with every matrix (since they can be generated by linear combinations
of the products Ai1 · · ·AiL0

). Therefore, X ∝ 1 and |φ〉 ∝ |ψ〉, which proves the
Theorem. �

Obviously, there is an equivalent theorem for MPS–OBC (see [PGVWC07, Theo-
rem 9]) but, as we stated in the first Chapter, we focus on TI–MPS in this work. We
are exploiting here the equivalence between injectivity and the fact that the quan-
tum channel reaches full Kraus rank when the system size reaches the injectivity
length, as proven in Theorem 18.

The reason why in the Theorem it is required that n ≥ L0 + 1, while it does not
seem so evident in the proof, is in Lemma 12. While n < L0 + 1, there might be
states which are in the ground space of H, but not in GN .

Let us now prove that injectivity is also a necessary condition. The absence of
injectivity can be due to the existence of more than one block in the canonical form,
or to the the existence of a periodic decomposition of the TI–MPS (see Theorem
11). We will prove that, in any of these cases, there exists no local frustration–free
Hamiltonian which has the MPS as a unique ground state.

Let us assume for the moment that the absence of injectivity is due to the exis-
tence of b ≥ 2 blocks in the canonical form, labelled by A1

i , . . . , A
b
i with dimensions

D1 ≥ · · · ≥ Db and each of them injective in the corresponding subspace. We denote
by L0 the injectivity length, which is the maximum of the injectivity lengths of the
blocks and, as shown in Subsection 2.5.2, L0 ≤ (D2

1 − d+ 1)D2
1.

We can clearly write |ψ(N)〉 =
∑b

j=1 |ψ
(N)
j 〉, where

|ψ(N)
j 〉 = λNj

∑
i1,...,iN

tr
[
Aji1 · · ·A

j
iN

]
|i1 . . . iN〉
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where λj is the eigenvalue which corresponds to the j-block, as shown in Eq. 1.6.
We require a previous Lemma, proven in [PGVWC07, Proposition 4], to prove

the main theorem:

Lemma 14 (Direct sum of subspaces) If n ≥ 3(b − 1)(L0 + 1), then the sum⊕b
j=1 G

(j)
n is direct. 2

Proof We start by grouping spins in 3(b − 1) blocks, each of them of, at least,
L0 + 1 spins. Let us consider the case b = 2 and prove it by induction. We assume,
on the contrary, that the sum is not direct (i.e. there is a common vector to both
subspaces), so there exist two non–zero matrices X, Y such that∑

i1,i2,i3

tr
[
A1
i1
XA1

i2
A1
i3

]
|i1i2i3〉 =

∑
i1,i2,i3

tr
[
A2
i1
Y A2

i2
A2
i3

]
|i1i2i3〉

Let us now consider an arbitrary matrix Z, then there exist complex numbers µii1 ,
ρii2 such that Z =

∑
i,i1,i2

µii1ρ
i
i2
A1
i1
XA1

i2
, where we have used injectivity together

with the polar decomposition given in [PGVWC07, Proposition 3]2. Denoting by
W =

∑
i,i1,i2

µii1ρ
i
i2
A2
i1
Y A2

i2
, we have that

∑
i3

tr
[
ZA1

i3

]
|i3〉 =

∑
i3

tr
[
WA2

i3

]
|i3〉,

which implies that GA1

L0+1 ⊆ GA
2

L0+1. By hypothesis, size (A1) ≥ size (A2), but this

is compatible with the inclusion if size (A1) = size (A2) and GA1

L0+1 = GA2

L0+1. If we
take now the same local Hamiltonian, by hypothesis of injectivity in each block,
both |ψA1〉 and |ψA2〉 must be its only ground state, which contradicts the initial
hypothesis. Let us now introduce the induction step, starting with

∑b+1
j=1 |wj〉 = 0,

where
GAj3b(L0+1) 3 |wj〉 =

∑
i1,...,i3b

tr
[
Aji1W

jAji2 · · ·A
j
i3b

]
|i1 . . . i3b〉

Our goal is to prove that W j = 0 for every j. Let us prove it by contradiction by
assuming that there exists a j such that W j 6= 0, and denoting by |w̃〉 the states

|w̃j〉 =

(
1[1,2] ⊗ hGAb+1

[3]

⊗ 1[4,...,3b]

)
|wj〉. Then,

∑b
j=1 |w̃j〉 = 0, and by induction

hypothesis, |w̃j〉 = 0. Now,

|w̃j〉 =
∑

i1,...,i3b

tr
[
Aji1W

jAji2X
j
i3
Aji4 · · ·A

j
i3b

]
|i1 . . . i3b〉

where there is a i3 such that Xj
i3
6= 0 because of injectivity in each block. By

employing again injectivity together with [PGVWC07, Proposition 3], there exist
complex numbers such that 1 =

∑
i,i1,i2

µii1ρ
i
i2
Aji1W

jAji2 . Therefore, after multiplying
everything by the left with 〈i′1i′2i′3| ⊗ 1rest,∑

i4,...,i3b

tr
[
Xj
i3
Aji4 · · ·A

j
i3b

]
|i4 . . . i3b〉 = 0

2This proposition states that, given a matrix X 6= 0 and a matrix Y , there always exist matrices
Ri and Si such that Y =

∑
iRiXSi.
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3.3. UNIQUENESS OF THE GROUND STATE

for every i3. But, due to the injectivity in each block, this means that Xj
i3

= 0,
which is the desired contradiction. �

Finally, we can prove that, in the absence of injectivity, every parent Hamiltonian
containing this state as a ground state has a degenerate ground space, i.e. injectivity
is also a necessary condition for uniqueness.

Theorem 22 (Uniqueness ⇒ injectivity) Let us consider an MPS |ψ(N)〉 on an
N–particle ring whose canonical form is composed by b different blocks, as described
above. Let us assume that N ≥ 3(b − 1)(L0 + 1) + n and H ≥ 0 is a frustration–
free n–local TI–Hamiltonian with |ψ(N)〉 as a ground state, i.e. H |ψ(N)〉 = 0, then

|ψ(N)
j 〉, the state generated by the j–th block, is also a ground state for every j. 2

Proof Let us denote by h the local term of the Hamiltonian H. Then, it is clear
that 0 = (h ⊗ 1rest) |ψ(N)〉 =

∑b
j=1(h ⊗ 1rest) |ψ(N)

j 〉. Since (h ⊗ 1rest) |ψ(N)
j 〉 ∈

(Cd)⊗L⊗G(j)
N−n, one can conclude by means of Lemma 14 that (h⊗1rest) |ψ(N)

j 〉 = 0,
for every j. �

This Theorem proves that there is a degeneration of the ground space in the absence
of injectivity. However, it is possible to prove [PGVWC07, Theorem 12] that there

always exists a parent Hamiltonian whose ground space is kerH = span
[
|ψ(N)
j 〉

]
.

The proof for states which admit periodic decomposition can be avoided by the
following reasoning. Let us assume a finite N , then, as proven in Theorem 11, the
period p must be a factor of N , since otherwise the state |ψ(N)〉 = 0. Therefore, by
coupling p sites together, the periodic decomposition is removed and we are back in
the case of multiple blocks in the canonical form.

It was proven in Theorem 21 that, if the injectivity length is L0, then the unique-
ness of the parent Hamiltonian’s ground state is ensured when the interaction length
n > L0. However, we will now show a theorem which ensures that, in some cases,
the uniqueness already holds for n = L0.

Theorem 23 (Intersection property) Let us call Gn = supp ρ(n), where ρ(n) is
the reduced density matrix for n ≥ L0 particles of the TI–MPS |ψ(N)〉, which has
injectivity length L0. If the intersection condition

GL0+1 = GL0 ⊗ Cd ∩ Cd ⊗ GL0

�� ��3.5

holds, then the state |ψ(N)〉 is the only ground state of the parent Hamiltonian H =∑N
i=1 τi(h

(L0) ⊗ 1rest), where h(L0) has support on L0 particles. 2

Proof The proof can be found in [FNW92, Lemma 5.5 and Theorem 5.8]. �

There are many important examples which fulfil Property 3.5. The most relevant
one is the AKLT state [AKLT88], whose injectivity length is L0 = 2, but it is the
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only ground state of a parent Hamiltonian with interaction length n = 2. The
generalization of this state for larger spins was proposed in [FNW92, Section 7.3],
and it is discussed in detail in Chapter 4 and, along with other new examples, in
Chapter 8. It is possible to prove that these states share the properties of AKLT and
that they are the only ground states of parent Hamiltonians with nearest–neighbour
interactions.

3.4 Gap

In Section 3.3, the equivalence between injectivity and uniqueness has been estab-
lished, but the system could still be gapless, i.e. the energy gap between the ground
state and the first excited state could be infinitesimally small. However, we show
in this Section an argument proven in [FNW92] which ensures the existence of a
non–trivial gap above the ground state for parent Hamiltonians constructed from
injective states.

Let us prove a useful Lemma to define the gap in terms of H and its square.

Lemma 15 (Gap of a general Hamiltonian) Let us consider a Hamiltonian H
with a one–dimensional ground space and ground state energy 0. Then, the energy
gap ε0 above the ground space is the largest γ such that

H2 ≥ γH
�� ��3.6

Therefore, if we call χ = {γ | H2 − γH ≥ 0}, then ε0 = supχ. 2

Proof Let us write the Hamiltonian in the eigenbasis as H =
∑

i λi |φi〉〈φi| , with
0 = λ0 < λ1 ≤ · · · , where the first strict inequality is due to the uniqueness of the
ground state. Let us assume, for the sake of simplicity, that λ1 > 0 is the energy of
the first excited state, then

H2 − γH =
∑
i

(λ2
i − γλi) |φi〉〈φi|

We are searching the larger γ which makes all these coefficients positive, so So one
must analyse

λ2
i − γλi ≥ 0⇒ γ ≤ λi, i ≥ 1⇒ γ = λ1 = ε0

which proves the Lemma. �

The following Lemma is also useful:

Lemma 16 (Frustration–free Hamiltonians as two–body projectors) To
study the existence of a gap in an n–local frustration–free Hamiltonian, it is enough
to study the case of nearest–neighbour interaction H̃ =

∑
i τi(P ), where P is a

projector on the kernel of h̃ =
∑p

j=0 τj(h), being p any integer such that p ≥ n. 2
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3.5. KINSFOLK HAMILTONIAN

Proof See [PGVWC07, Subsection 4.2] for the argumentation. �

We are now in the position to enunciate the main Theorem:

Theorem 24 (Injectivity ⇒ Gap) Let us consider the parent Hamiltonian H
corresponding to an injective TI–MPS |ψ(N)〉 such that H |ψ(N)〉 = 0. Then, the
gap ε0 over the ground state is lower bounded by

ε0 ≥ 1−O(|λ2|)
�� ��3.7

where |λ2| < 1 is the modulus of the second eigenvalue of E. 2

Proof This Theorem is proven in [FNW92, Theorem 6.4]. �

The second eigenvalue is always smaller than 1, so the gap is always positive.
In both [FNW92, Theorem 6.4] and [PGVWC07, Section 4.2], the Theorem is

enunciated in a slightly more general way than here. Both consider the possibility
that the injectivity length is larger than 1, which takes us to the necessity of blocking
several spins to ensure uniqueness, as pointed out in Theorem 22. If it is necessary
to block p sites, then Eq. 3.7 is corrected by replacing |λ2| ↪→ |λ2|p.

3.5 Kinsfolk Hamiltonian

In this Section, we have focused on finding local Hamiltonians which have an MPS as
a unique ground state. The importance of finding Hamiltonians which have a unique
ground state in condensed matter and quantum information was already pointed up
in the Introduction and previous chapters. However, it is also mathematically and
physically relevant to procure Hamiltonians in which other eigenstates are known.
We define in this Section a generalization of the concept of parent Hamiltonian
which is extensively used in Chapter 8.

Definition 20 (Kinsfolk Hamiltonian) Let us consider an n–particle–supported
TI–Hamiltonian H(N) =

∑N
i=1 τi(h

(n)⊗1rest) and an MPS |ψ(N)〉. We say that H(N)

is a kinsfolk Hamiltonian of |ψ(N)〉 if the latter is an eigenstate of H(N). 2

Obviously, every parent Hamiltonian is a kinsfolk Hamiltonian, for which |ψ(N)〉
is particularly the ground state of H(N). The opposite, however, is not true.

Finding kinsfolk Hamiltonians is not as trivial as finding parent Hamiltonians
with the VBS picture, so it is necessary to find new techniques to construct them.
It is possible to prove (see Section 8.2) that for every kinsfolk Hamiltonian it holds
that

tr
[
ρ(n)h(n) 2

]
− tr2

[
ρ(n)h(n)

]
= 0

�� ��3.8

where ρ(n) is the reduced density matrix for n particles of the MPS |ψ(N)〉.
We provide in Section 8.2 some examples of kinsfolk Hamiltonians computed

using Eq. 3.8, together with a detailed discussion of the proof that the MPS in
question is an excited state.
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C’est véritablement utile,
puisque c’est joli.

Antoine de Saint–Exupéry
(1900-1944)

4
Symmetries

4.1 Introduction

As we already showed through previous chapters, Matrix Product States (MPS) en-
capsulate many of the physical properties of quantum spin chains. Their importance
stems from the fact that with a simple tensor, A, one can fully describe relevant
states of N spins, which, in principle, would require to deal with an exponential
number of parameters when written in a basis of the many–body Hilbert space
H⊗N . Thus, all the physical properties of such states are contained in A. Therefore,
it is important to obtain methods to extract the physical properties directly from
such a tensor, without having to resort to an explicit basis decomposition in H⊗N .

An important physical property of a TI state, |ψ〉, is the symmetry group under
which it is invariant. That is, the group G such that

u⊗Ng |ψ〉 = eiθg |ψ〉
�� ��4.1

where g ∈ G and ug is a unitary representation of the group on H. We will show
in this Section that this symmetry group is uniquely determined by the symmetry
group of A (with a tensor product representation). Roughly speaking this means
that by studying the symmetries of A we can obtain those for the whole state |ψ〉.
This result allows us, for example, to shed a new light on string order [PGWS+08],
a key concept in strongly correlated states in many–body quantum systems.

The results shown in this Chapter are essentially extracted from [SWPGC09],
and it is structured as follows:

• In Section 4.2, the question about the implementation of symmetries in MPS
is introduced. We firstly solve the problem for discrete symmetries, extending
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afterwards the result to any compact connected Lie group. The proof provided
in this Section is general, improving on the one appeared in [PGWS+08], which
applied only for injective states.

• In Section 4.3, we provide a general method to construct the Kraus operators
by means of Clebsch–Gordan coefficients once the way the symmetry acts on
physical and virtual indices is specified. Finally, we focus on the relevant case
of the SU(2) symmetry, generalizing the results shown in [FNW92].

• We prove in the last Section that, when the chosen representations for the
construction in the previous point are irreducible representations of a compact
connected Lie group, then the state is injective. A counter–example for the
converse statement is also provided, i.e. there are injective states which are
invariant under reducible representations of the group.

4.2 Definition and characterization

In this Section we analyze the implications of a given local symmetry for an MPS.
First, we show that the local symmetry transfers to the Kraus operators, generalizing
the findings of [FNW92, PGWS+08]. In a second step we show that the symmetry
in the Kraus operators imposes that they are essentially uniquely defined in terms of
Clebsch–Gordan coefficients. Finally, for the special case of SU(2) one can simplify
even further and analyse the qualitative differences between integer and semi–integer
spins.

Firstly, let us remark that we focus in this Chapter on symmetries of states
instead of Hamiltonians. There is, however, a close connection between both ap-
proaches. On the one hand, it is clear that the unique ground state of a symmetric
Hamiltonian has to keep the symmetry. On the other hand, we have the following
Lemma:

Lemma 17 (Symmetric parent Hamiltonians) If an MPS |ψ〉 is invariant un-
der a representation of a group, one can choose its parent Hamiltonian H invariant
under the same representation. 2

Proof To see this, it is enough to notice that the symmetry in the state given
by Eq. 4.1 implies the invariance of ker ρ(k) under the same symmetry. Hence,
the projector onto ker ρ(k) yields an invariant h, so the parent Hamiltonian is also
invariant. Moreover, in case of several invariant subspaces under the symmetry
in ker ρ(k), a positive linear combination of projectors onto each of such subspaces
produces the most general family of parent Hamiltonians which are invariant under
this representation of the symmetry. �

It was proven in [PGWS+08] that the Kraus operators which describe any injective
state, symmetric under a group G, fulfil the condition

∑
i u

g
ijAi = UgAjU

†
g , where

70



4.2. DEFINITION AND CHARACTERIZATION

u and U are representations of G. We provide in this Section a generalization in
which injectivity is not required and which can be found in [SWPGC09].

The N appearing in the proof must be sufficiently large to reach full Kraus rank
in every block of the canonical form after collecting N

5
spins.

We start by proving the case of discrete symmetries, extending the proof to
continuous groups below.

Theorem 25 (Discrete symmetries) Let {Ai}di=1 be the Kraus operators, in the
canonical form, which describe a TI–MPS |ψ(N)〉 locally invariant under a single
unitary u, i.e. u⊗N |ψ(N)〉 = eiθ |ψ(N)〉. Then, the symmetry in the physical level
can be replaced by a local transformation in the virtual level. This means that there
exists a unitary U — which can be taken block diagonal with the same block structure
as the A’s in the MPS, and composed with a permutation matrix among blocks, i.e.
U = P (⊕bVb) — such that∑

j

ujiAj = WUAiU
† for i = 1, . . . , d

�� ��4.2

with W = ⊕beiθb1b. 2

Proof We follow here the same reasoning as in the proof of Lemma 14. We collect
the spins in five different blocks, each one of them with full Kraus rank in the
corresponding subspace. Applying u⊗N gives us the same MPS (we incorporate the
global phase into the new matrices) with different matrices, which we call B, but
with the same block diagonal form, and also (after gathering) with full Kraus rank.
We now require the following Lemma, which is proven below.

Lemma 18 (Expansion of the same MPS) For each block in the A’s, for in-
stance the one given by matrices A1

i , there is a block in the B’s, given by matrices
B1
i , which expands the same MPS. 2

Since both matrices are representations in the canonical form of the same in-
jective MPS, by Theorem 5 1, they must be related by a unitary and a phase:
V1A

1
iV
†

1 = eiθ1B1
i , which concludes the proof of the Theorem. �

Proof (Lemma 18) Let us prove now the Lemma. By using that the state has
full Kraus rank and summing with appropriate coefficients, it is possible to show
that there exists a block diagonal D ×D matrix X 6= 0 such that

tr
[
A1
i2
· · ·A1

i5

]
= tr [XBi2 · · ·Bi5 ] , ∀i2, . . . , i5

1Theorem 5 is general, but here we are restricted to injective blocks, so [PGVWC07, Theorem
3.11] would be enough. The conditions for this Theorem that the canonical form in the OBC must
be unique can be dropped by [LLPG+08, Equation 3]
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Since X 6= 0, there exists one block, let us say X1, different from 0. Then,
summing with appropriate coefficients again we get that there exists a matrix Y 6= 0
such that

tr
[
Y A1

i3
A1
i4
A1
i5

]
= tr

[
X1B

1
i3
B1
i4
B1
i5

]
, ∀i3, i4, i5

We can now argue as in Lemma 5 to conclude the proof. �

If we have now a symmetry given by a compact connected Lie group G, that is,
(4.1) holds for any g ∈ G and a representation g 7→ ug, we obtain the following:

Theorem 26 (Continuous symmetries) The map g 7→ Pg, where P is the for-
mer permutation matrix, is a representation of G, and actually the trivial one. The
maps g 7→ eiθ

b
g and g 7→ V b

g are also representations of G. 2

Proof Let us start with the map g 7→ Pg for g = g2g1. From Eq. 4.2 we get:

Wg2g1Ug2g1AhU
†
g2g1

=
∑
j

ug2g1jh Aj =∑
jk

ug2jku
g1
khAj = Wg2Wg1,Pg2

Ug2Ug1AhU
†
g1
U †g2

�� ��4.3

where Wg1,Pg2
is the same unitary as Wg1 but with the blocks permuted according to

permutation Pg2 . Since Pg′Wg = Wg,Pg′
Pg′ and Wg commutes with all other terms

appearing in Eq. 4.3, we can multiply successively and use the full Kraus rank (with
L0 the required block size), to get, for all n ≥ L0 and all X block–diagonal,

W n
g2g1

Ug2g1XU
†
g2g1

= (Wg2Wg1,Pg2
)nUg2Ug1XU

†
g1
U †g2 .

�� ��4.4

By taking X = 1b for each block b, we get that Pg2Pg1 must be Pg2g1 . But since we
are assuming that the group G is connected, this in turn implies that Pg = 1 for all
g. With this in hand, we can split Eq. 4.4 into blocks to get

einθ
b
g2g1V b

g2g1
XV b †

g2g1
= ein(θbg1+θbg2 )V b

g2
V b
g1
XV b †

g1
V b †
g2

�� ��4.5

for each b, each n ≥ L0 and each matrix X. By taking X = 1 we obtain

einθ
b
g2g1 = ein(θbg1+θbg2 )

In particular, when n = L0, we get that L0(θbg2g1) = L0(θbg1 + θbg2) + 2k0π, and when
n = L0 + 1, that (L0 + 1)(θbg2g1) = (L0 + 1)(θbg1 + θbg2) + 2k1π. By gathering both
results, the L0 can be removed and we obtain θbg2g1 = θbg1 + θbg2 + 2(k1 − k0)π.

Finally, to show that g 7→ V b
g is a representation, it is enough to notice that

Eq. 4.5 implies that V b †
g1
V b †
g2
V b
g2g1

commutes with every matrix. �

A trivial consequence of these theorems is the fact that having an irreducible
representation Ug in the virtual level implies that the MPS has to be injective. We
give an alternative proof of this fact in Section 4.4 without having to rely on the
MPS canonical form. We also analyse there when the converse implication holds.
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Figure 4.1: Symmetry conditions on Kraus operators. The unitary ug applied
on the physical level is reflected in the virtual bonds as pair of unitaries Ug.

4.3 Uniqueness of the construction method

Once the Theorem which provides the condition that the Kraus operators must fulfil
in order to generate invariant MPS has been established, the next step is to provide
a method for explicitly constructing such Kraus operators, showing that they always
can be constructed by means of Clebsch–Gordan coefficients. To do that, it is more
convenient to work with the isometry V defined in Eq. 1.10. From the definition, it
is clear that the condition

∑
i u

g
ijAi = UgAjU

†
g leads to

V (Ug ⊗ ug) = UgV ∀g
�� ��4.6

where u is an irrep, U is in general a rerep, and V fulfils V V † = 1D and V †V = P .
Notice that we have removed the dependence on the phase because it can always
be absorbed into the physical representation by defining a new irrep wg ↪→ eiθgug.
Besides, this phase is trivial for non–abelian groups like SU(N), since there are no
non–trivial one–dimensional representations for such groups. Let us remark that
solving Eq. 4.6 is equivalent to solving the system (Ug ⊗ ug)V † = V †Ug, and the
latter is traditionally the most common approach to write the problem [FNW92].

Let us write Ug as a direct sum of irreps, i.e.
⊕

j∈X̃ v
j
g = W †UgW . It always

can be performed by a unitary rotation W , but due to the gauge freedom in the
Kraus operators, this W does not change the MPS and we can assume wlog that
we are already in the correct basis. Therefore, the tensor product2 (Ug ⊗ ug) =⊕

j∈X̃ (vjg ⊗ ug).
Given a compact group G, the tensor product of two irreducible representations

(irreps) is reducible, and the Clebsch–Gordan Theorem ensures that it can always
be decomposed as a direct sum:

Cj (vjg ⊗ ug) =
⊕
i∈Xj

wj,ig Cj
�� ��4.7

2Note that we interchange the direct sum and the tensor product. It depends on our choice
for the basis of the tensor product, and in the worst case, it would be necessary to add first a flip
operator F interchanging u and U , i.e. (Ug ⊗ ug) = F (ug ⊗ Ug)F †. Note that this F cannot be
absorbed in the gauge freedom, so it has to be taken into account in calculations.
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where Cj is a unitary matrix whose entries are called Clebsch–Gordan coeffi-
cients and Xj is the set of irreps in the decomposition of (vjg ⊗ ug). Collecting
everything together,

(Ug ⊗ ug) =

⊕
j∈X̃

C†j

 ⊕
k∈∪iX̃j

wj,ig

⊕
j∈X̃

Cj

 = C†

( ⊕
k,m∈T

wk,mg

)
C

�� ��4.8

where T =
⋃
iXi. For the sake of clarity of the notation, lets us assume that

all equivalent irreps (let us recall that two unitary representations ug and vg are
equivalent if they are related by a unitary matrix ug = wvgw

†, for all g) are
gathered together in an increasing dimension in both Eq. 4.8 and the decomposition
of U . Therefore, the index k runs over different irreps, while the index m is runs
over the equivalent representations. From Schur’s lemma one can easily check that
Eq. 4.6 has a non–trivial solution if X ⊆ T . Let us denote by Pi,j the set of

projectors which give P †i,j

(⊕
k,m∈T w

j,i
g

)
Pi,j = wi,j, with P †k,lPi,j = δi,kδj,l1 and∑

i,j PijP
†
i,j = 1dD. Additionally, let us also call φ

(k,k′)
m,n = P †k,mCPk′,n. Obviously, the

Schur’s lemma ensures that φ
(k,k′)
m,n ∝ δk,k′1.

Then, the solutions for Eq. 4.6 may be parametrized as follows:

V =
⊕
k∈X

Mk ⊗ 1dk

�� ��4.9

where the direct sum is taken over the different irreps in X and Mk ∈ Mlk,rk is
an isometry for the k–th irrep with a number of rows lk and columns rk equal to
the degeneracy of the irrep in X and T , respectively. If there is an irrep such that
wg ∈ X but wg 6∈ T , then M is the zero matrix.

From this we can now conclude that the only non–trivial family of solutions for
Eq. 4.6 is given by Eq. 4.9. The following Theorem shows the same in a more
compact form:

Theorem 27 (Piecewise construction (MPS)) Let us consider a group G and
two representations ug (irrep) and Ug =

⊕
i U

Di
g (each UDi

g is also an irrep). Then,
the structure of all possible maps V fulfilling (Ug ⊗ ug)V = V Ug is

V =


α11V

D1
D1

α12V
D2
D1

· · · α1nV
Dn
D1

α21V
D1
D2

α22V
D2
D2

· · · α2nV
Dn
D2

...
...

. . .
...

αn1V
D1
Dn

αn2V
D2
Dn

· · · αnnV
Dn
Dn

 �� ��4.10

where V
Dj
Di

is a solution to (UDi
g ⊗ ug)V

Dj
Di

= V
Dj
Di
UDi
g . 2
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4.3.1 The case of SU(2)

Let us apply the results of the previous section to the case in which G = SU(2).
Our construction is a natural generalization of the one used in [FNW92, SZV10].

We consider from now on irreducible representations ug of the symmetry on the
physical spin. Nevertheless, a substantial part of the results can be straightforwardly
extended to the reducible case. Hence, we are interested in analysing the restrictions
that SU(2) imposes on the general solution given by Theorem 27 to the equation

(U ⊗ J)V = V U
�� ��4.11

where, with some abuse of notation, J is the SU(2) irrep corresponding to spin J
and U = (i1⊕. . .⊕in⊕s1⊕. . .⊕sm) is a virtual representation composed of n integer
irreps and m semi–integer irreps. Note that in the Clebsch–Gordan decomposition
of SU(2) all representations appear with multiplicity 1. Therefore, there is only one
term in the sum in Eq. ??. At this point one should distinguish the cases of integer
or semi–integer J . If J is integer, zero is the only solution to (ij ⊗ J)Ω = Ωsk and
(sk ⊗ J)Ω = Ωij for all j, k, and we get in Eq. 4.10 a block diagonal structure:

V =



α1
1V

i1
i1
· · · αn1V

in
i1

0 · · · 0
...

. . .
...

...
. . .

...
α1
nV

i1
in
· · · αnnV

in
in

0 · · · 0
0 · · · 0 αn+1

n+1V
s1
s1
· · · αn+m

n+1 V
sm
s1

...
. . .

...
...

. . .
...

0 · · · 0 αn+1
n+mV

s1
sm · · · αn+m

n+mV
sm
sm


The paradigmatic example in this case is the AKLT state [AKLT88], which cor-

responds to the case of J = 1, U = 1/2 in Eq. 4.11. In [FNW92, Section 7.3],
the authors generalized the AKLT model to arbitrary integer J and irreducible U .
We will call the resulting MPS FNW states. It is shown in [FNW92, Proposi-
tion 7.6] how, for U = J

2
, FNW states are unique ground states of frustration–free

nearest–neighbor interactions. An alternative construction focused on the restric-
tions imposed by the SU(2) symmetry on the density matrix instead of the Kraus
operators can be found in [DMDNS98].

If J is semi–integer, zero is the only solution to (sj⊗J)Ω = Ωsk and (ik⊗J)Ω =
Ωij for all j, k, and we get in Eq. 4.10 an off–diagonal structure:

V =



0 · · · 0 αn+1
1 V s1

i1
· · · αn+m

1 V sm
i1

...
. . .

...
...

. . .
...

0 · · · 0 αn+1
n V s1

in
· · · αn+m

n V sm
in

α1
n+1V

i1
s1
· · · αnn+1V

in
s1

0 · · · 0
...

. . .
...

...
. . .

...
α1
n+mV

i1
sm · · · αnn+mV

in
sm 0 · · · 0


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It is clear that the virtual representations must be reducible now, which is very
much related to the Lieb–Schultz–Mattis theorem, as we will show in Chapter 9. The
paradigmatic example in this case is the Majumdar–Ghosh model [MG69], already
introduced in Examples 2 and 4, which corresponds to J = 1

2
and U = 1

2
⊕ 0. A

generalization of this model for the case of arbitrary J and U = F ⊕ 0, was recently
proposed in [KM08].

In general, it is possible to find a set of representations which fits into any model
with SU(2) (or U(1)) symmetry, for instance [KSZ93, RSDMD98, RG08, Kum02,
TS10].

4.4 Irreducibility implies injectivity

In this Section, we give a direct proof of the fact that an irreducible representation in
the virtual level of a symmetric MPS implies that the MPS is injective. We also see
that the reverse inclusion is not true in general, but it holds under some conditions
on the Kraus operators.

We have to recall that, given a set K = {A1, . . . , Ad} of Kraus operators defining
an MPS, we can define an associated quantum channel E as defined in Subsection
1.4.1, E(X) =

∑d
i=1A

†
iXAi. The symmetry in the MPS transfers then to the co-

variance of the channel, that is, E(U †gXUg) = U †gE(X)Ug for all X. We already
proved in Section 2.2, that if E is trace–preserving and has 1 as its unique fixed point,
then the MPS is injective. Moreover, it is trivial to see that if E is the ideal channel
(E(X) = X for all X), then the MPS is a product state. Therefore, the desired
result that irrep implies injectivity is a consequence of the following Theorem:

Theorem 28 (Irreducibility ⇒ injectivity) Let us take a completely positive
trace–preserving map E : MD → MD that is covariant for an irrep of a com-
pact connected Lie group G. Then, either E is the ideal channel, or the identity is
its unique fixed point. 2

Proof Let us consider a fixed point Λ of E . Then U †gΛUg is also a fixed point
because of the covariance. Therefore, integrating under the Haar measure and using
Schur’s lemma, 1 is also a fixed point. A similar argument shows that E is also
trace–preserving.

Now we can apply Lüders’ theorem 8 , which ensures that the set of fixed points
P of E coincides with the commutant K′ of the set of Kraus operators of E . This
is trivially a C∗–subalgebra of MD. Moreover, we know by the classification of the
C∗–subalgebras in MD that there exists a unitary V ∈ MD such that V PV † =
⊕i(Mni ⊗ 1n′i

) = A.

The equivalent representation Vg = V UgV
† is also an irrep and fulfils that

VgAV †g = A. This means that the block structure of A remains invariant under
the action of Vg by conjugation. Now we use that

VgAV †g ⊆ A ⇔ [J,A] ⊆ A for all J generators .
�� ��4.12
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This implies that J has the same block structure as A. If there is more than one
block, the representation is reducible. If A = Mn⊗1n′ , then we use again Eq. 4.12:
The Schmidt decomposition allows us to take J =

∑
iAi ⊗ Bi where the Bi’s form

a basis of Mn′ , with B1 = 1. Then, Eq. 4.12 gives that
∑

i[Ai,Mn] ⊗ Bi = C ⊗ 1,
which implies that Ai is proportional to 1 for all i ≥ 2. This gives J = 1⊗X+Y ⊗1
and hence Vg = V g

1 ⊗V
g

2 , which is reducible unless A = 1 or A = MN (which implies
that E is the ideal channel). �

Although the implication in the opposite direction could also seem true, it is not,
as shown by the following example.

Example 7 Let us consider the family of SU(2) symmetric MPS of spin 1 with a
reducible virtual representation 1

2
⊕ 3

2
given by the following maps (see Section 4.3).

Ṽ =


eiα11 cos θ1V

1
2
1
2

eiα12 sin θ2V
3
2
1
2

eiα21 sin θ1V
1
2
3
2

eiα22 cos θ2V
3
2
3
2


It is not difficult to check that the MPS is injective except for particular directions
in space, such as those for which the isometry breaks into blocks, i.e. θi = nπ

2
. 2

Although the equivalence is not true in general, we can still give a sufficient
condition which applies, for instance, to the AKLT and other FNW states. Let us
recall from Theorems 25 and 26 that an injective symmetric MPS verifies∑

i

ugijAi = eiθgUgAjU
†
g

�� ��4.13

where in addition one may require that
∑

iAiA
†
i = 1.

Lemma 19 (Particular case where injectivity ⇒ irreducibility) If ug is ir-

reducible and {A†iAj}i,j spans the whole space of matrices, then the virtual represen-
tation Ug of Eq. 4.13 is also irreducible. 2

Proof From (4.13) one gets∑
i1,i2

ūgi1j1u
g
i2j2
A†i1Ai2 = UgA

†
j1
Aj2U

†
g .

Integrating now with respect to the Haar Measure, the LHS is simplified by the
irreducibility of ug and the orthogonality relations. The result is δj1j2

∑
iA
†
iAi =

δj1j21. This means that
∫
G
UgXU

†
g ∝ 1, ∀X ∈MD, since we can span the complete

space of matrices. But this implies that Ug is an irrep by means of the inverse of
Schur’s lemma. �
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If people don’t believe that
mathematics are simple, it’s
just because they don’t real-
ize how complicated life is.

John von Neumann
(1903-1957)

5
Multi–dimensional systems:

Projected Entangled Pair States

5.1 Introduction

Projected Entangled Pair States emerge as the natural generalization of Matrix
Product States to higher dimensions: where the latter are generated by matrices,
i.e. a tensor with two legs in the virtual level, the former are constructed by means
of multi–dimensional tensors [VC04a, PGVCW08].

In the construction, the tensors are placed forming a lattice with links (max-
imally entangled states) connecting sites. Distances among vertices are irrelevant
for our purposes, with only the topological structure being of interest for us, i.e.
the coordination number of each site, and with which other sites it is connected.
Regardless, there exists a richness in the assortment of possible structures which
makes these states in high dimensions even more fascinating and a never–ending
source of unforeseen behaviours with often unpredictable consequences [Aue98].

Contrary to what happens for Matrix Product States, we cannot take advantage
of a connection with completely positive maps, which leaves us with a much more
complicated problem, but without a powerful mathematical artillery. This problem
can sometimes be dodged by considering regular lattices susceptible of being trans-
formed into one–dimensional problems where the results shown in previous chapters
might be applied.

The representability of a state as a Projected Entangled Pair State involves a
sharp reduction of the complexity of the multi–dimensional many–body problem,
since these states, as in the case of the Matrix Product States, fulfil an area law.
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CHAPTER 5. FUNDAMENTALS OF PEPS

This means that the entanglement between any region and the environment, i.e. the
rest of the system, is proportional to the area of the boundary, and not to the bulk
of the region.

The results shown in this Chapter, especially in Section 5.3, are published in
[PGSGG+10]. The organization of this Chapter is essentially the same as in Chap-
ter 1, which allows us to make the differences between both systems more illustrative.

• In Section 5.2, we start by explicitly constructing the Projected Entangled
Pair States’ expression in a general framework [PGVCW08], i.e. without as-
suming a regular lattice or translational invariance. We focus afterwards on
the three topologically non–equivalent two–dimensional regular lattices, since
they might be eventually transformed into a one–dimensional problem.

• As already shown for Matrix Product States, there exists a freedom in the
choice of the tensor representation [PGSGG+10]. We prove in Section 5.3
that, for regular injective lattices, this freedom is reduced to the multiplication
by invertible matrices in the virtual level. This is precisely the key for the
existence of a canonical form for Projected Entangled Pair States.

5.2 Constructing Projected Entangled Pair States

Projected Entangled Pair States (PEPS) are the natural extension of Matrix Product
States beyond the one–dimensional case. Although we follow in this Section the very
general construction proposed in [PGVCW08], we focus afterwards on some regular
lattices and translational invariant states. However, in principle, the great majority
of the results shown in the following chapters are extendable to arbitrary dimensions,
provided that the lattice can be generalized (essentially, the square lattice).

Let us consider a quantum state |ψ〉 corresponding to a many–body system
with its particles distributed in the vertex of a certain (arbitrary) lattice. Then, we
proceed as in the case of MPS [VC04a]:

1. We assign to the physical spin sitting at vertex ν as many virtual spins (local
Hilbert spaces) as the coordination number eν of the vertex ν, each of them
with dimension D. In principle, they can have different dimensions and depend
simultaneously on the vertex, but we can always take D as the maximum of
these dimensions and call it bond dimension, as in MPS.

2. We assign an unnormalized maximally entangled state |Ω〉 =
∑D

α=1 |α, α〉 to
each bond. This is what we call here the virtual substructure of the PEPS.

3. We apply a map in each vertex ν,

Aν : H(D)
1 ⊗ · · · ⊗ H(D)

eν → H
(dν)

�� ��5.1
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which maps the virtual spins to the physical one. By writing the map in a
basis,

A(ν) =
dν∑
i=1

D∑
j1,...,jeν

(A
[ν]
i )j1...jeν |i〉〈j1 . . . jeν |

�� ��5.2

where eν is the number of edges at vertex ν or its coordination number,
as pointed out above. For the sake of simplicity in the notation, we consider
that dν = d, but it can be written in general without difficulty.

4. Finally, we have to contract the tensor network. As this process is not as
simple as in MPS, where it is translated into products of matrices, we will
stress that the virtual substructure is contracted by means of a contracting
operator C, which takes care of the lattice structure. This contraction can be
performed with a vector in the boundaries, which leads to OBC, or with the
other edges forming a torus (see Fig. 5.1), leading to PBC.

Therefore, we can now enunciate the following definitions.

Definition 21 (PEPS–OBC) Let us consider a lattice with N sites, in each of
which a d–dimensional physical spin, and a virtual substructure with bond dimension
D are sited. If the open boundary conditions are given by the vector |φBC〉1, any
Projected Entangled Pair State with Open Boundary Conditions (PEPS–
OBC) has the structure:

|ψ〉 =
d∑

i1,...,iN

C |φBC〉
[
{A[ν]

iν
}ν
]
|i1, . . . , iN〉

�� ��5.3

where C implicitly depends on the lattice structure. 2

The definition for periodic boundary conditions straightforwardly follows,

Definition 22 (PEPS–PBC) Let us consider a lattice with N sites, in each of
which a d–dimensional physical spin, and a virtual substructure with bond dimension
D are sited, as shown in Fig. 5.1. Then, any Projected Entangled Pair State
with Periodic Boundary Conditions (PEPS–PBC) has the structure:

|ψ〉 =
d∑

i1,...,iN

C
[
{A[ν]

iν
}ν
]
|i1, . . . , iN〉

�� ��5.4

where C implicitly depends on the lattice structure. 2

1The boundary conditions are normally encoded in tensor which is contracted with all the open
bonds of the lattice. However, as in the one–dimensional case, the tensor can be decomposed into
a linear combination of vectors, which justifies our notation.
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CHAPTER 5. FUNDAMENTALS OF PEPS

Figure 5.1: PEPS-PBC. A Projected Entangled Pair State with periodic bound-
ary conditions on a square lattice is nothing but a tensor network with a toroidal
topology.

5.2.1 Regular 2D lattices

In this Subsection, we focus on the regular 2D lattices, which are the simplest and,
therefore, the most interesting ones (a significant number of materials in Nature
correspond to these crystallographic structures). Additionally, the generalization to
regular lattices in higher dimensions is often simple, like in the case of the cubic
lattice.

It is well–known that there are five regular lattices in 2D [AM76, Chapter 1],
known as Bravais lattices. These lattices are: oblique, rectangular, square, centered
rectangular (triangular) and hexagonal (honeycomb). However, the PEPS construc-
tion is not based on distances between vertices or angles between bonds, but only
on the coordination number of each vertex, as shown in Fig. 5.2. This means that
the first three lattices are topologically equivalent, so the problem is reduced to the
three following structures:

1. Square lattice, with coordination number 4. (See Fig. 5.2a)

2. Hexagonal lattice, with coordination number 3. (See Fig. 5.2b)

3. Triangular lattice, with coordination number 6. (See Fig. 5.2c)

We are particularly interested in the first case, the square lattice. Let us consider
an N ×M square lattice on a torus (PBC) and a PEPS–PBC defined there. Then,
Eq. 5.4 is transformed into:

|ψ(N,M)〉 =
∑

i1,1,...,iN,M

C
[
{A[j,k]

ij,k
}j,k
]
|i1,1 . . . iN,M〉

It is clear that, if the tensors {A[j,k]
ij,k
} do not depend on the position [i, j], then the

state is translational invariant (in the sense of Definition 2, which is the definition
that we assume in this Chapter). The converse is also true, as in MPS. For any
translational invariant PEPS, there is always a representation (possibly with larger
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(a) (b)

(c)

Figure 5.2: Regular 2D lattices. (a) Square lattice. (b) Hexagonal or honeycomb
lattice. (c) Triangular lattice.

bond dimension, as in MPS) with site–independent tensors A
[j,k]
i = Ai. This was

proven in [PGVCW08, Appendix] and it is summarized in the following Theorem:

Theorem 29 (Site–independent representation of TI–PEPS) Let |ψ(N,M)〉
be a translational invariant PEPS, in the sense of Definition 2, defined on an
N × M square lattice by the site–dependent tensors {A[j,k]

ij,k
}. Then, there exists

a site–independent representation {Bij,k} of this state with, in general, larger bond
dimension. 2

Proof The proof is similar to the proof of Theorem 3. Let us write the tensor in
a basis

A
[j,k]
i =

D∑
u,d,l,r=1

(A
[j,k]
i )udlr |l〉〈r| h ⊗ |u〉〈d| v

where h (or v) indicate that we are alluding to the Hilbert spaces in the horizontal
(or vertical) bonds. The horizontal contraction of two tensors leads to

A
[j,k]
ijk

—A
[j+1,k]
ij+1k

=
D∑

u1,d1,l1
u2,d2,r2

a

(A
[j,k]
ijk

)u1d1l1a(A
[j+1,k]
ij+1k

)u2d2ar2( |l1〉〈r2| h ⊗ |u1, u2〉〈d1, d2| v)
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By using this notation, let us define the new site–independent tensors :

Bi =
( 1

NM

) 1
NM ∑

u,d,l,r
j,k

(A
[j,k]
ijk

)udlr |j, k, l〉〈j, k + 1, r| h ⊗ |k, j, u〉〈k, j + 1, d| v
�� ��5.5

It is trivial to see that the state can be written in terms of these tensors

|ψ(N,M)〉 =
∑

i11,...,iNM

C
[
{Bij,k}j,k

]
|i11 . . . iNM〉

which proves the Theorem. �

Let us remark that one can do exactly the same in the triangular lattice, by
adding a couple of extra virtual bonds.

The hexagonal lattice is slightly different, because the unit cell contains two
(non–equivalent) sites so, in general, the translational invariance refers to the unit
cell and not to the vertex itself. However, proving the existence of TI (for the unit
cell) representation in the hexagonal lattice is trivial, since we only have to couple
both of the sites which compose the unit cell to obtain the square lattice and then
apply Theorem 29.

5.3 A canonical form for PEPS

This is undoubtedly the main section of this Chapter, since we provide here a sort of
generalization for PEPS in a square lattice of the fruitful canonical form constructed
for MPS in Theorem 4. We prove in this Section that, for injective states, two PEPS
on a square lattice are equal iff they are related by invertible matrices in the virtual
bond (see Fig. 5.3). Although the result for PEPS is not as strong as for MPS,
due to the absence of a connection with completely positive maps, this allows us to
prove, for instance, the results shown in Chapter 7.

5.3.1 Canonical form for MPS: improvement

Let us start by proving Theorem 5, i.e. the gauge freedom for MPS. It is shown in
[PGVWC07, Theorem 7] that two injective representations of the same MPS must
be related by an invertible matrix X as Ai = XBiX

−1. This holds if the number of
sites satisfies N ≥ 2L0 + D4, where L0 is the injectivity length and D is the bond
dimension of the MPS. Since we are interested in applying this to a column of a
PEPS (see the argument in Theorem 31 below), the exponential dependence on D
would be critical. Therefore, in this Subsection, we modify the proof of [PGVWC07,
Theorem 6] to make N depend only on L0. In particular, we obtain that the result
holds when N ≥ 4L0 + 1, as stated in Theorem 5.
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5.3. A CANONICAL FORM FOR PEPS

Theorem 30 (Gauge freedom for TI–MPS) Let

|ψ(N)
A 〉 =

d∑
i1,...,iN=1

tr [Ai1 · · ·AiN ] |i1 . . . iN〉

and

|ψ(N)
B 〉 =

d∑
i1,...,iN=1

tr [Bi1 · · ·BiN ] |i1 . . . iN〉

be two injective TI–MPS representations with bond dimension D, and injectivity
length L0. If |ψ(N)

A 〉 = |ψ(N)
B 〉 and N ≥ 4L0 + 1, then there exists an invertible

matrix R such that Ai = RBiR
−1, for all i. 2

Proof We can obtain an OBC representation by observing that

|ψ(N)
A 〉 =

d∑
i1,...,iN=1

a
[1]
i1

(Ai2 ⊗ 1) · · · (AiN−1
⊗ 1)a

[N ]
iN
|i1 . . . iN〉

where a
[1]
i is the vector that contains all the rows of Ai and a

[N ]
i is the vector that

contains all the columns in Ai. By doing the same with the B’s

|ψ(N)
B 〉 =

d∑
i1,...,iN=1

b
[1]
i1

(Bi2 ⊗ 1) · · · (BiN−1
⊗ 1)b

[N ]
iN
|i1 . . . iN〉

we obtain an OBC canonical representation (with C–matrices for the A’s and D–
matrices for the B’s). By means of Theorem 2, we obtain Yj, Zj, Rj and Sj with
YjZj = 1, RjSj = 1 such that:

C
[1]
i = a

[1]
i Z1, C

[N ]
i = YN−1a

[N ]
i

C
[m]
i = Ym−1(Ai ⊗ 1)Zm for 1 < m < N

D
[1]
i = b

[1]
i S1, D

[N ]
i = RN−1b

[N ]
i

D
[m]
i = Rm−1(Bi ⊗ 1)Sm for 1 < m < N

Additionally, by using [HJ91, Theorem 3.1.1’], we get that any two OBC canoni-
cal representations are related by unitary matrices, i.e. there exist V1, . . . , VN−1 such
that:

C
[1]
i V

†
1 = D

[1]
i , VN−1C

[N ]
i = D

[N ]
i

Vj−1C
[j]
i V

†
j = D

[j]
i for 1 < j < N

By using injectivity now, we know that Ys, Zs, Rs, Ss are invertible for L0 ≤ s ≤
N − L0 and so are the matrices Wk ∈MD2 defined as:
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Wk = SL0+kVL0+kYL0+k k = 0, . . . , 2L0 + 1

It is easy to verify that

Wk(Ai ⊗ 1)W−1
k+1 = (Bi ⊗ 1) for 0 ≤ k ≤ 2L0,

for all i. In fact, by grouping and denoting AIl = Ai1 · · ·Ail , we have that

Wm(AIn−m ⊗ 1)W−1
n = BIn−m ⊗ 1

�� ��5.6

for every 0 ≤ m < n ≤ 2L0 + 1 and every multi–index In−m. Then, for adequate
values of m and n, we obtain

W−1
k+1Wk(AI2L0−k

⊗ 1)W−1
2L0
W2L0+1 = AI2L0−k

⊗ 1

for every 0 ≤ k ≤ L0.
As we are in an injective region for every k, the matrix could be taken as the

identity and then we get that

T ≡ W−1
k+1Wk = W−1

2L0+1W2L0

�� ��5.7

for every 0 ≤ k ≤ L0.
Therefore, T (X⊗1)T−1 = (X⊗1) for every X. Let us make use of the following

Lemma, which is a consequence of [HJ91, Theorem 4.4.14].

Lemma 20 (Property of linear systems) If B,C ∈ Mn, the space of solutions
of the matrix equation

W (C ⊗ 1) = (B ⊗ 1)W

is S ⊗Mn, where S is the space of solutions of the equation XC = BX. 2

It is easy to deduce from this Lemma that T = 1⊗ T̃ , so that

W−1
L0
W0 = W−1

L0
WL0−1W

−1
L0−1 · · ·W0 = (1⊗ T̃ )L0

from where we obtain
W−1
L0

= (1⊗ T̃L0)W−1
0

and, in the same way,
W−1
L0+1 = (1⊗ T̃L0+1)W−1

0

By replacing these results in Eq. 5.6:

(BIL0
⊗ 1) = W0(AIL0

⊗ 1)W−1
L0

= W0(AIL0
⊗ T̃L0)W−1

0

(BIL0+1
⊗ 1) = W0(AIL0+1

⊗ 1)W−1
L0+1 = W0(AIL0+1

⊗ T̃L0+1)W−1
0
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Figure 5.3: Canonical form in square lattice. Representation of the relationship
which the tensors defining two TI–PEPS on a square lattice must fulfil in order to
represent the same state.

By using the fact that BIL0
and BIL0+1

are injective, we can sum with appropriate

coefficients to obtain 1 on the LHS. Then, we get that T̃L0 = 1 = T̃L0+1, which
gives T̃ = 1, and hence, Bi ⊗ 1 = W0(Ai ⊗ 1)W−1

0 for all i.
By means of Theorem 4 and Lemma 6, we can assume w.l.o.g. that

∑
iAiA

†
i = 1

and that
∑

iB
†
iΛBi = Λ for a full–rank diagonal matrix Λ. The proof follows

straightforwardly, as in [PGVWC07, Theorem 7]. �

This Theorem gives the proof of Theorem 5, that we left unproven, due to the fact
that injectivity was not defined at that moment.

5.3.2 Canonical form for PEPS

In this Subsection, we show that Theorem 30 holds in any spatial dimension: two in-
jective representations of the same TI–PEPS are related by the trivial gauge freedom
in the bonds, as shown in Fig. 5.3. In this Section, we make use of the extension to
higher dimensions of the concept of injectivity defined in Chapter 2. Check Section
6.2 in general, and particularly Definition 23 for further details.

We prove the result in 2D by using the result in 1D proven in Theorem 30. This
argumentation can be generalized to higher spatial dimensions by induction. We
initially consider a square lattice, but we show at the end of the Section how to
extend the result to other regular lattices.

We need to prove several previous lemmas before proving the main result. The
first one advances a result that should appear in Section 6.2, but that we require
here in this proof.

Lemma 21 (Injectivity remains) If a region of size H × K of a TI–PEPS is
injective, then a region of size (H + 1)×K (and H × (K + 1)) is also injective. 2

Proof Let us start by claiming the following: If a region with size H × K is
injective, then a region with size 1 × K is also injective when one of the sides of
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(a)

(b)

Figure 5.4: Representation of the argument used to prove Lemma 21.

the square (for instance, the upper one), and the physical indices are considered
as inputs (see Fig. 5.4a). To see this, we take an injective region S of dimension
H ×K and split it into two subregions S1, S2, as in Fig. 5.4b with T = H − 1. For
simplicity, in the rest of the proof we gather the indices u1, u2, u3 and d1, d2, d3

which appear in Fig. 5.4, calling them u and d, respectively. We also gather all the
physical indices of region S1 into the index iS1 , and all the physical indices of region
S2 into the index jS2 .

By using the injectivity of the region S, there exists {αiS1 ,jS2 ,u0,d0}iS1 ,jS2 for any
u0, d0 such that ∑

c,iS1 ,jS2

αiS1 ,jS2 ,u0,d0(A
[S1]
iS1

)u,c(A
[S2]
jS2

)c,d = δu,u0δd,d0

By taking u = u0, we get∑
c,iS1 ,jS2

αiS1 ,jS2 ,u0,d0(A
[S1]
iS1

)u0,c(A
[S2]
jS2

)c,d = δd,d0

which proves the claim.
Now, if we take a new region S of size (H + 1)×K and divide it into two parts
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Figure 5.5: Dimensional reduction. Reduction from the 2D case to the 1D
problem. This allows us to apply the results shown in Chapters 1 to 4.

S1, S2, as in Fig. 5.4b, with T = H then, by applying the claim above, there exists
{βjS2 ,c,d0}jS2 ,c for any d0, such that∑

jS2 ,c

βjS2 ,c,d0(A
[S2]
jS2

)c,d = δd,d0

By using the injectivity of a region of dimensionH×K, there exists {αiS1 ,jS2 ,u0,c0,d0}iS1
such that ∑

iS1

αiS1 ,jS2 ,u0,c0,d0(A
[S1]
iS1

)u,c = βjS2 ,c0,d0δu,u0δc,c0

Gathering both equalities, we find∑
c,c0,iS1 ,jS2

αiS1 ,jS2 ,u0,c0,d0(A
[S1]
iS1

)u,c(A
[S2]
jS2

)c,d =
∑

c,c0,jS2

βjS2 ,c0,d0δu,u0δc,c0(A
[S2]
jS2

)c,d

=
∑
c0jS2

βjS2 ,c0,d0δu,u0(A
[S2]
jS2

)c0,d

= δu,u0δd,d0

Therefore, S is an injective region and the Lemma is proven. �

This allows us to reduce the 2D case with size L×N to the 1D case by grouping
all the tensors from a column. The 1D case (Theorem 30) ensures that there is
a global invertible matrix Y which verifies the equality in Fig. 5.5, provided that
L ≥ 4L0 + 1 (hence, it can be taken L ≥ 5L0). Y acts on a column of virtual
systems, so it maps Y : (CD)⊗L → (CD)⊗L. The next step is to show that:

Lemma 22 (Y maps tensor states to product states) Y maps product vectors
into product vectors, i.e. Y

⊗L
i=1 |xi〉 =

⊗L
j=1 |yj〉. 2

Proof In order to prove the Lemma, we prove that Y
⊗

i |xi〉 is a vector with the
following property:
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(*) It is a product in any bipartition R − S, for compact regions (of consecutive
sites) R and S with a size larger than or equal to L

5
(note that this condition

comes from the fact that L ≥ 4L0 + 1).

Any vector with property (*) is obviously a product vector, which implies the
result of the Lemma. We prove this by contradiction.

Let us take a product ⊗i |xi〉 and assume that this product is mapped by Y
into a vector with Schmidt decomposition Y (

⊗
i |xi〉) =

∑
r βr |vrwr〉 in a parti-

tion R − S for compact regions of consecutive sites and size larger than or equal
to L

5
. Due to the properties of the Schmidt decomposition, the vectors { |vr〉 ∈

(CD)⊗R} and { |wr〉 ∈ (CD)⊗S} are orthonormal. For the same bipartition, we de-
note

⊗
i〈xi|Y −1 =

∑
r αr〈v′rw′r| , which could be a product. Let us now gather N

5

columns and sandwich both sides of the equality shown in Fig. 5.5 with the product
state

⊗
i |xi〉.

The goal is now to analyse the Schmidt rank between the two physical R × N
5

and S × N
5

regions in both the right and left part of the equality in Fig. 5.5, in

order to find a contradiction in the initial hypothesis. The RHS clearly gives D2N
5

by using injectivity as in Subsubsection 1.4.3.1. The Kraus operators (the state is

now an MPS) have bond dimension D
N
5

|ψ〉 =
∑
i1,...,iL

tr
[
A

[1]
i1
· · ·A[L]

iL

]
|i1 . . . iL〉

=
∑
i1,...,iL

∑
α,β

〈α|A[1]
i1
· · ·A[R]

iR
|β〉〈β|A[R+1]

iR+1
· · ·A[L]

iL
|α〉 |i1 . . . iL〉

=
∑
α,β

|ψαβ〉 ⊗ |ψ̃αβ〉

as both regions are injective, the Schmidt rank is indeed D2N
5 .

Let us focus now on the LHS. By performing the changes of bases |r〉 7→ |vr〉
and |r〉 7→ |wr〉 (and the same for the primes) to tensors A[R×N

5
] and A[S×N

5
] in the

LHS, new tensors A′ and A′′ are obtained. We get from them that

|ψ〉 =
∑
abcd

αaβc[
∑
i

(A′i)abcd |i〉][
∑
j

(A′′j )adcb |j〉]

By means of injectivity, we know that the set {
∑

i(A
′
i)abcd |i〉}abcd is linearly

independent (and the same for A′′). This means that the Schmidt rank of the LHS

is, at least, 2D2N
5 , which is the desired contradiction. �

The following three lemmas specify the form of Y . The first one uses Lemma 22
to prove the tensor structure of Y .

Lemma 23 (Tensor structure of Y ) If Y is invertible and maps products to
products, then it presents a tensor structure, i.e. it is of the form Pπ(Y1 ⊗ · · · ⊗ YL)
where Pπ implements a permutation π among the Hilbert spaces. 2
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Proof We reason in the bipartite case for the sake of simplicity, since the argument
can be straightforwardly generalized to the general case by induction. Let Y :
CD ⊗ CD −→ CD ⊗ CD be an invertible matrix which maps products to products
and let { |i, j〉}Di,j=1 be the product basis. Then, we can denote Y |i, 1〉 = |αi, βi〉.
If we take i0 6= i1 ∈ {1, ..., D}, then Y ( |i0, 1〉 + |i1, 1〉) = |αi0 , βi0〉 + |αi1 , βi1〉 is a
product because the initial state is a product state. Then, at least one of the vectors
indexed by i0 must be proportional to its counterpart indexed by i1:

(I) either |αi0〉 ∝ |αi1〉 and |βi0〉 6∝ |βi1〉,

(II) or |αi0〉 6∝ |αi1〉 and |βi0〉 ∝ |βi1〉.

The case where both are proportional is discarded, since Y is invertible and it cannot
map two orthogonal vectors to the same vector. However, let us prove that we are
always in the same case:

1. If D = 2, then (I) and (II) are equal, so there is only one case.

2. Otherwise, if D > 2, then we can always take three different i0, i1, i2 ∈
{1, ..., D} such that |αi0〉 6∝ |αi1〉 and |βi1〉 6∝ |βi2〉. Therefore, we reach
a contradiction from the fact that Y ( |i0, 1〉+ |i2, 1〉) is a product.

The same argumentation can be carried out for the second tensor. Therefore, we
can assume w.l.o.g. that

Y |i, 1〉 = |αi, β1〉

which means that the second subspace does not depend on the first one and

Y |1, j〉 = |α1, βj〉

In the other case, we just permute the indices by means of the swap operator Pπ.
Let us consider Y |i, j〉 = |ai,j, bi,j〉. Now, due to the fact that:

Y ( |i, j〉+ |i, 1〉) = |ai,j, bi,j〉+ |αi, β1〉

is a product, we obtain that αi ∝ ai,j or β1 ∝ bi,j. However, the second case is
only possible if j = 1, because of the invertibility of Y , so ai,j ∝ αi. A similar
argumentation on the second tensor gives Y |i, j〉 = ci,j |αi, βj〉. By making now

Y (
∑d

i,j=1 |ij〉) =
∑D

i,j=1 ci,j |αi, βj〉, and by using the fact that the Schmidt rank of
the resulting vector must be 1, we conclude that matrix (ci,j)i,j has rank 1 and,
therefore, is of the form ci,j = risj, giving Y |i, j〉 = |riαi, sjβj〉, which is the desired
result. �

Let us now show that Pπ is the trivial permutation:
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Figure 5.6: Proof of Lemma 24. The upper squares correspond to B[R×N
5

], A[R×N
5

]

and the lower ones to B[S×N
5

], A[S×N
5

]. The cones represent vectors multiplying the
legs of the tensor. In the virtual space, these vectors are |0〉, while the vectors in
the leg corresponding to the physical space are |x〉 and |α〉 respectively.

Lemma 24 (Pπ is the trivial permutation) The permutation operator Pπ which
appears in Lemma 23 is trivial, i.e. Pπ = 1. 2

Proof Let us prove the Lemma by contradiction and assume that Pπ is not the
identity. By taking a R − S bipartition (with sizes larger than or equal to L

5
) such

that Pπ maps one Hilbert space of R into one of S. We block again N
5

columns to
get two injective regions with sizes R × N

5
and S × N

5
, respectively. Let us denote

by R1 and S1 the subregions which stay within the regions, and by R2, S2 the ones
that are mapped to the other side. Then, we can decompose Y as in Fig. 5.6.

Let us consider now Fig. 5.6. We contract all virtual indices (except the pair in
the second row) with |0〉 and the physical indices with |α〉 and |x〉, where the latter

is chosen in such a way that A[S×N
5

] |x〉 = |0〉 |0〉 |0〉 |0〉 |0〉. Since the dimensions

corresponding to the five virtual systems arising in the decomposition of A[S×N
5

]

are different, |0〉 can be taken as any fixed vector in each one of these systems

(the same occurs for A[R×N
5

]). Let V be the linear space spanned in the remaining
two virtual indices under the variation of |α〉. It is clear that, in the LHS of Fig.
5.6, dimV = dim (supp(YR2)), whereas dimV = 1 in the RHS, which leads to a
contradiction unless R2 and S2 are empty. �

By using both the injectivity and the translational invariance of the RHS term
in Fig. 5.5, we observe that:

Lemma 25 (Y is translational invariant) From Lemma 23 and 24, we know
that Y =

⊗
k Yk. Moreover, Yi = Y1 for all i. 2

Proof The proof follows straightforwardly from the translational invariance. �

Let us now study the orthogonal direction. Then, we can prove the following
Lemma:
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Figure 5.7: Proof of Lemma 26 (a). Under the conditions of Theorem 31, rows
of K spins are related by invertible matrices as in the figure as long as K ≥ N

5
. The

analogue property holds for columns of H spins as long as H ≥ L
5
.

Lemma 26 (Orthogonal direction) Let K be any length for which one gets in-
jectivity in the orthogonal direction, then we obtain the structure shown in Fig. 5.7.
The case where vertical is interchanged with horizontal is equivalent. 2

Proof We redefine now Ai as
∑

abcd(Ai)abcd(Y
−1

1 ⊗1) |ab〉〈cd| (Y1⊗1), i.e. we incor-
porate Y1 and Y −1

1 into tensor A. Then, we block N
5

columns together and sandwich

them with |n〉⊗L and 〈m| ⊗L in Fig. 5.5. By defining Ã(mn) as∑
bd

(Ã
(mn)
i )bd |b〉〈d| =

∑
bd

〈m|A[1×N
5

]

i |n〉 |b〉〈d|

and doing the analogue for B̃(mn), we have two injective representations of the same
MPS (with bond dimension D

N
5 ). By means of the results for the 1D case shown

in Theorem 30, we obtain invertible matrices Znm acting on (CD)⊗
N
5 such that

Z−1
mnÃ

(mn)
i Zmn = B̃

(mn)
i for all i.

The next step is to show that Zmn does not depend on m and n. We sand-
wich Fig. 5.5 with 〈m′| ⊗L2 〈m| ⊗L2 and |n′〉⊗L2 |n〉⊗L2 , getting Fig. 5.8. By sum-
ming with appropriate coefficients in order to obtain Kronecker deltas, we get that
〈l|ZmnZ−1

m′n′ |k〉〈r|Z−1
mnZm′n′ |s〉 = δklδrs, so Zmn = Z is indeed independent of m

and n. By reasoning as above, but in the opposite direction, one can prove that
Z = Z ′⊗

N
5 . �

We proceed now to the proof of the main Theorem:

Theorem 31 (Canonical form for TI–PEPS) Let |ψ(L,N)
A 〉 and |ψ(L,N)

B 〉 be two
PEPS in an L×N square lattice, defined by tensors Ai =

∑
abcd(Ai)abcd |ab〉〈cd| and

Bi =
∑

abcd(Bi)abcd |ab〉〈cd| , with the property that for a region of size smaller than
L
5
× N

5
both PEPS are injective. Then, the states are equal |ψ(L,N)

A 〉 = |ψ(L,N)
B 〉 iff

there exist invertible matrices Y, Z such that Ai = (Y −1 ⊗ Z−1)Bi(Y ⊗ Z) for all i
(Fig. 5.3). Moreover, Y and Z are unique. 2
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Figure 5.8: Proof of Lemma 26 (b). All squares in the figure correspond to the

gathered tensor A[L
2
×N

5
]. The cones in the boundary represent tensor products of L

2

local vectors in the virtual space.

Figure 5.9: Regions of Theorem 31. Representation of the injectivity regions for
the proof of Theorem 31.

Proof Uniqueness is a straightforward consequence of injectivity. Let us now prove
the existence part.

Let us consider a H × K injective region, for instance H = L
5
, K = N

5
. From

Lemma 21, the larger regions in Fig. 5.9 are also injective. If we replace Fig. 5.7,
first in each subregion (not the center), and then in the whole region, we get the
desired result by using injectivity in the four subregions. �

5.3.2.1 Hexagonal lattice

As we said in the introduction of this Section, we can generalize Theorem 31 to the
honeycomb lattice. However, we need to prove first the following Lemma.

Lemma 27 (Splitting tensors) Let A ∈ Md1,d2, B ∈ Md2,d1, C ∈ Md1,d′2
and

D ∈ Md′2,d1
, and let us assume that rank (AB) = d2. Then, if AB = CD, there

exist matrices W and U such that A = CW and B = UD, with UW = 1d2. 2
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Figure 5.10: Canonical form for hexagonal lattices. These are the relationships
which the tensors defining two TI–PEPS on a honeycomb lattice must fulfil in order
to represent the same state.

Proof It is straightforward to see that:

d2 = rank (AB) ≤ min (rank (A), rank (B)) ≤ min(d1, d2)

This proves that d1 ≥ d2 and that rank (A) = rank (B) = d2, so they are both full
rank. By using now that AB = CD, we get that d2 ≤ min (rank (C), rank (D)) ≤
min(d1, d

′
2), which implies that d2 ≤ d′2. Since B is full–rank and min(d1, d2) =

d2, there exists a matrix that we can call B−1 ∈ Md1,d2 such that BB−1 = 1d2 .
Therefore, A = C(DB−1) and we can symbolize W = DB−1 ∈ Md′2,d2

. Similarly,
B = A−1CD and we can denote U = A−1C ∈ Md2,d′2

. Since UW = A−1CDB−1 =
A−1ABB−1 = 1d2 , the lemma follows. Note that the case d′2 > d2 is nothing but
padding the matrix with zeros, since rank (WU) = d2. This turns relevant below,
when the Lemma is applied to the honeycomb lattice, because this case is discarded
by injectivity. �

We can now prove the theorem for the honeycomb lattice. Let us remark that
the unit cell of this lattice contains two sites and that the lattice associated to the
unit cells is a square lattice. Translational invariance is not site by site, but unit
cell by unit cell.

Theorem 32 (The hexagonal lattice) Let |ψ〉 and |ψ′〉 be two PEPS defined in
an hexagonal lattice and such, that the square lattice constituted by the unit cells
fulfils the conditions of Theorem 31. Then, |ψ〉 = |ψ′〉 iff the conditions shown in
Fig. 5.10 hold. 2

Proof Let us apply Theorem 31 to the square lattice formed by the unit cell.
Then, we obtain the equality shown in Fig. 5.11. Lemma 27 completes the proof
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Figure 5.11: Hexagonal lattice→ square lattice. The possibility of transforming
the honeycomb lattice into a square lattice by blocking tensors enables us to apply
the result to equivalent TI–PEPS representations for the square lattice.

of the Theorem, but we have to previously invoke injectivity in order to discard
the case d′2 > d2. As we already mentioned in the proof of the Lemma, this case
is nothing but padding the tensor with zeros, which increases the bond dimension.
This subspace is not going to be expanded, so injectivity is not possible. Thus, in
our case d′2 = d2 and U = W−1. �

5.3.2.2 Triangular lattice

The generalization to the triangular lattice is slightly more complicated than the
hexagonal one, since we cannot gather different sites to construct the square lattice.
However, we can apply a singular value decomposition (SVD) to the tensor in order
to transform the triangular lattice into a square lattice (Fig. 5.12) composed of two
sublattices:

T iα1α2α3α4α5α6
= T iα1α2α3

α4α5α6

=
D3∑

β,γ=1

Aiα1α2α3
β Dβ

γB
′γ
α4α5α6

�� ��5.8

where Dβ
γ = dβδ

β
γ is a diagonal matrix D ∈ MD3 , and Aiα1α2α3β

and Bβα4α5α6 =∑
γ DβγB

′γ
α4α5α6

. Note that the notation is not related with covariance. Rather, it
is a resource to stress which indices are collected together. Then, the associated
square lattice of the triangular lattice is an AB–lattice where sublattice A has the
physical spin of the original triangular lattice, while sublattice B has physical spin
0, i.e. a one–dimensional Hilbert space, as shown in Fig. 5.13.

Theorem 33 (The triangular lattice) Let |ψ〉 and |ψ′〉 be two injective PEPS
defined in a triangular lattice and such, that the associated square lattice fulfils the
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Figure 5.12: SVD. Singular value decomposition (SVD) of the triangular lattice
which transforms it into an AB square lattice.

Figure 5.13: Triangular lattice→ square lattice. The possibility of transforming
the triangular lattice into a square lattice with an AB–substructure by performing
an SVD on the tensors enables us to apply the result for the square lattice with only
slight modifications.
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Figure 5.14: Canonical form in triangular lattice. Relationship which the
tensors defining two TI–PEPS on a triangular lattice must fulfil in order to represent
the same state.

conditions of Theorem 31. Then, |ψ〉 = |ψ′〉 iff the conditions shown in Fig. 5.14
hold. 2

Proof We just have to generalize the results shown in this Section to an AB–square
lattice. As Theorem 30 holds also for this case, because one of the sites has spin 0
(d = 1), then Lemmas 21 to 24 hold as well. However, Lemma 25 is no longer true,
since the translational invariance is partially broken, and we have two invertible
matrices YA and YB corresponding to the A–tensors and B–tensors respectively. We
can work as in Lemma 26, except the last step, where we cannot apply translational
invariance either, so we obtain again a couple of matrices ZA and a ZB. However, by
grouping until reaching injectivity, one can straightforwardly prove that ZA = ZB.
This proves the relationship shown in Fig. 5.14. �
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Sólo el que ensaya lo absurdo
es capaz de conquistar lo im-
posible.

Miguel de Unamuno
(1864-1936)

6
Injectivity and parent
Hamiltonians in PEPS

6.1 Introduction

In this Chapter, we study the generalization to higher dimensions of the very fruitful
concept of injectivity proposed in Chapter 2 as well as the construction method for
parent Hamiltonians proposed in Chapter 3.

Injectivity was defined in Chapter 2 as a property which relates different bound-
ary conditions of a MPS–OBC to linearly independent states. In this Chapter, we
were able to prove the equivalence of this property with a local characterization
based on the eigenvalues and eigenvectors of the transfer matrix called strong ir-
reducibility. Even though the idea of injectivity is straightforwardly generalizable
to higher dimensions, unfortunately there is no equivalent extension for strong irre-
ducibility. The reason lies on the fact that the two–dimensional lattice can no longer
be understood as a trivial coupling of quantum channels.

Afterwards, we explain the extension to higher dimensions of the technique to
construct parent Hamiltonians, connecting it subsequently with injectivity, as done
in Chapter 3. In the case of MPS, injectivity turned out to be a relevant property,
since it is a necessary and sufficient condition for the uniqueness of the parent
Hamiltonian’s ground state, as well as for the existence of a gap above it. In the
case of PEPS, injectivity is only a sufficient condition for the uniqueness of the
parent Hamiltonian’s ground state and does not imply any gap above it, as shown
in Section 6.3. However, the fact of being a sufficient condition for uniqueness
is already relevant, and as it was already advanced in Section 5.3, a very useful
property for simplifying proofs.
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The organization of this Chapter is essentially the same as in Chapters 2 and
3, which allows us to better illustrate the differences between one–dimensional and
higher–dimensional systems:

• In Section 6.2, we extend the physical one–dimensional definition of injectivity,
and show some of its properties as well. Nevertheless, the non–existence of a
property equivalent to strong irreducibility in Matrix Product States, which
locally determines from the tensor when an injective state will arise out of it,
notably complicates the proof of results as strong as the ones in Chapter 2.

• We extend in Section 6.3 the definition of parent Hamiltonian to higher di-
mensions and show that injectivity is, in the case of Projected Entangled
Pair States, a sufficient but not necessary condition for uniqueness of the
parent Hamiltonian’s ground state [PGVCW08]. Furthermore, it does not im-
ply the existence of a spectral gap either. In order to show that, we make
use of Projected Entangled Pair States coming from classical spin models
[VWPGC06], which provide counter–examples for both the necessity of injec-
tivity for uniqueness, and injective examples with a unique but gapless ground
state [PGVCW08].

6.2 Injectivity

We discuss in this Section the generalization to PEPS of the useful concept of
injectivity shown in Chapter 2. Let us start by extending Definition 8 to the case
of PEPS.

Definition 23 (Injectivity for PEPS) Let us consider a PEPS |ψ〉 defined by
the tensor (Ai)a ∈ (Cd ⊗ (CD)⊗eν ) (eν is the coordination number of the vertex and
D the bond dimension, as defined in Section 5.2), and a region R containing |R|
sites and eR bonds connecting R to the rest of the lattice (along the boundary ∂R).
Let us consider the DeR vectors |φ∂Rα 〉 composing a basis of (CD)⊗eR which define
DeR states by

|ψα〉 =
d∑

i1,...,i|R|=1

C |φ∂Rα 〉 [{(Ai)a}a] |i1, . . . , i|R|〉
�� ��6.1

Then, we say that the PEPS is injective, as shown in Fig. 6.1, if there exists a
finite region R, such that the vector space spanned by the vectors in Eq. 6.1 has
dimension DeR , i.e. if dim span [{ |ψα〉}] = DeR . 2

In general, the properties of the bulk are determined by the behaviour in the
boundary ∂R, which is a remarkable property of PEPS and the reason why they
fulfil an area law. This relationship is even stronger for injective PEPS.

It is clear that we can also connect this definition to the injectivity of a certain
linear map, by following the same construction as in Section 2.2.
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Figure 6.1: Injectivity (PEPS). A Projected Entangled Pair State is injective in
a region R if, for the PEPS–OBC constructed in R, different (linearly independent)
boundary conditions, represented by the frame in the figure, give rise to different
(linearly independent) states.

Lemma 28 (Injectivity of ΓR(X)) A PEPS |ψ〉 defined by tensor (Ai)a ∈ (Cd⊗
(CD)⊗eR) (where eR is the coordination number of the vertex and D the bond dimen-
sion) is injective in a region R iff the linear map ΓR : (CD)⊗eR → (Cd)⊗|R| defined
by

ΓR(X) =
d∑

i1,...,i|R|=1

C [{(Ai)aX}a] |i1, . . . , i|R|〉
�� ��6.2

is injective, where X is a tensor which represents the boundary conditions coupled
to the free bonds in the boundary ∂R. 2

Proof The proof is a straightforward generalization of Lemma 4, which does not
assume any lattice structure or translational invariance. �

Let us now enunciate a generalization of Lemma 21:

Lemma 29 (The union of injective regions is injective) If R and S are two
disjoint injective regions, then R ∪ S (assumed connected) is also injective. 2

Proof The proof of this Lemma can originally be found in [PGVCW08, Lemma
1]. �

Let us stress again that this Lemma is notably general, since it does not assume any
lattice structure or translational invariance.

Let us denote by GR = span [ΓR(X)] the subspace of the vector space generated
by ΓR, as in the case of MPS. Obviously, the vector space SR = supp[ρ(R)], where
ρ(R) is the reduced density matrix in region R, is a subspace SR ⊆ GR, where the
equality holds if the PEPS is injective in the region R.

We now enunciate a result which extends Theorem 23 to higher dimensions:
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Theorem 34 (Intersection property for PEPS) Let R1, R2 and R3 be three
disjoint regions and let us denote the Hilbert space corresponding to a region R by
HR = Cd|R|. Then,

1. GR1∪R2∪R3 ⊆ (GR1∪R2 ⊗HR3) ∩ (HR1 ⊗ GR2∪R3).

2. If R1 and R3 are not connected and both R2 and R3 are injective, then the
equality GR1∪R2∪R3 = (GR1∪R2 ⊗HR3) ∩ (HR1 ⊗ GR2∪R3) holds.

3. If all three regions are injective, then GR1∪R2∪R3 = (GR1∪R2 ⊗ HR3) ∩ (HR1 ⊗
GR2∪R3) ∩ (GR1∪R3 ⊗HR2). 2

Proof The proof of this Theorem can be found in [PGVCW08, Lemma 2]. �

Unfortunately, no necessary and sufficient local characterization which ensures the
injectivity for PEPS just by analysing the tensor, such as strong irreducibility for
MPS, is known. Furthermore, we cannot take advantage of connections with com-
pletely positive maps, and all the associated mathematical machinery, since the
coupling of tensors generating the two–dimensional lattice can no longer be consid-
ered a trivial coupling of quantum channels. This has as a consequence that proofs
with PEPS are much more difficult and less fruitful.

However, we can make a clever use of the results for MPS in the framework
of PEPS in some specific cases, such as the square lattice. Section 5.3 is a very
good example of this idea. It would be very interesting to obtain a generalization
of the Wielandt–type result to higher dimensions, understood as an upper bound,
independent of the tensors, for the size of a region in which the injectivity of the
PEPS is ensured. However, this is a very complex problem in an arbitrary lattice.

6.3 Parent Hamiltonian

We start by exposing a general definition of parent Hamiltonian in the context of
higher–dimensional tensor networks, generalizing the results shown in Chapter 3
for MPS. After that, we try to relate the injectivity to the uniqueness of the parent
Hamiltonian’s ground state and to the existence of a gap above it, following the out-
line of Chapter 3. However, we show here that injectivity in the context of PEPS is
not such a strong condition as in the one–dimensional framework. Injectivity turns
out to be a sufficient condition for the uniqueness of the ground state [PGVCW08,
Theorem 3], but it is not actually necessary [PGVCW08, Section VI.B]. Further-
more, it is possible to construct injective PEPS whose parent Hamiltonian is gapless
[PGVCW08, Section VI.A], so injectivity does not imply the existence of a spectral
gap either.
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6.3.1 Definition of parent Hamiltonian

In this Subsection, we provide a generalization for PEPS of the definition of parent
Hamiltonian. In Section 3.2, we gave two definitions of parent Hamiltonian, which
turn out to be equivalent when the MPS is injective, and we proceed similarly here.

Let us consider a PEPS |ψ〉 (assumed TI, but a general definition is also possible)
and a region R of the lattice. Let us denote the reduced density operator by ρ(R) =
trRC [ |ψ〉〈ψ| ] and its support by SR, i.e. SR = supp[ρ(R)]. Then, we can provide the
generalization of Definition 16:

Definition 24 (Parent Hamiltonian 1 (PEPS)) Let us consider a positive op-
erator h ≥ 0 such that supp[h] = ker[ρ(R)]. Then, if τν is the translation operator
by a lattice vector ν, we call

H =
∑
ν

τν(h⊗ 1rest)
�� ��6.3

parent Hamiltonian of |ψ〉. Obviously, H ≥ 0 and 〈ψ|H |ψ〉 =
∑

ν tr
[
hρ(R)

]
= 0,

so |ψ〉 is a ground state of H. 2

Let us now extend Definition 17 to PEPS. This is straightforwardly generalizable
by replacing Γn ↪→ ΓR.

Definition 25 (Parent Hamiltonian 2 (PEPS)) Let us denote now the image
space of ΓR(X) by GR = 〈ΓR(X)〉X , with ΓR defined in Eq. 6.2. Let us consider a
positive operator h ≥ 0 with support on the orthogonal subspace G⊥R . Then, we call
the TI Hamiltonian constructed as in Eq. 6.3 parent Hamiltonian. 2

As in the one–dimensional case, SR ⊆ GR, and they are equal iff the state is in-
jective in R. Therefore, both definitions of parent Hamiltonians are again equivalent
only in this case.

The parent Hamiltonian is obviously not uniquely defined, the only existing
constraint is the support, so there are internal degrees of freedom. For instance, if
h is a local term fulfilling the conditions above, then h̃ = h + hQh also defines a
parent Hamiltonian for every Q ≥ 0. However, in specialized literature it is common
to specifically designate it as the case which corresponds to the sum of projectors
with the same weight.

The parent Hamiltonian is also frustration–free, in the sense of Definition
18, since the energy is also locally minimized, and has the properties shown in
Lemma 13. In fact, one can also extend the definition of strongly frustration–
free Hamiltonians to higher dimensions. Then, the parent Hamiltonians associated
to PEPS are evidently also strongly frustration–free.
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6.3.2 Uniqueness of the ground state

The aim of this Subsection is to prove that every injective PEPS |ψ〉 is the only
ground state of the parent Hamiltonian with structure given by Eq. 6.3.

Let us assume that the lattice can be covered by disjoint injective regions and
gather the spins in each region in such a way that we form a super–lattice where
every site is injective. Let us now construct a Hamiltonian on the super–lattice with
the structure given in Eq. 6.3, by taking kerh(i,j) = GRi∪Rj , where i, j denote the
sites in the super–lattice (i.e. the injective regions in the lattice).

Let us enunciate the Theorem which ensures the uniqueness of the ground state
[PGVCW08, Theorem 3]:

Theorem 35 (Injectivity ⇒ Uniqueness (PEPS)) For every injective PEPS
|ψ〉 on an arbitrary lattice, there is a local frustration–free parent Hamiltonian H,
given by Eq. 6.3, such that the |ψ〉 is the unique ground state of H. 2

Proof This proof was originally published in [PGVCW08, Theorem 3]. Slightly
abusing the notation, let us denote the space GR⊗HR⊥ by GR. Then, the goal is to
prove that, when the state is injective,⋂

i,j

GRi∪Rj = G∪kRk
�� ��6.4

The LHS is nothing but the ground level of H (because this is local and frustration–
free, so the ground state subspace coincides with the intersection of the local ground
state subspaces). The RHS is the one–dimensional subspace generated by the PEPS.
If they are equal, then |ψ〉 is the only ground state of H.

⊇
This inclusion follows from point 1. of Theorem 34. The subspace generated by

the PEPS is always, by construction, in the ground subspace of its parent Hamilto-
nian.

⊆
Let us prove this inclusion by induction. Therefore, we start by proving a general

inclusion that we can use in the induction step. Let us consider a set of disjoint
injective regions {Ti}Ni=0 and denote T =

⋃N
i=0 Ti. Let us assume that every region

in the subset {Ti}Ni=1 is connected to another injective region S. Then,

( N⋂
i=1

GTi∪S
)
∩ GT ⊆

N⋂
i=1

(
GT0∪Ti ∩ GTi∪S

)
=

N⋂
i=1

GT0∪Ti∪S

where the first inclusion uses the fact that GT ⊆ GT0∪Ti (which can be easily proven
from point 1 of Theorem 34), and the equality comes from point 2 of Theorem 34.
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By using again the fact that GT ⊆ G∪i∈ITi , for any subset I ⊆ {0, . . . , N} and point
3 of Theorem 34, one can obtain that

( N⋂
i=1

GTi∪S
)
∩ GT ⊆ GT∩S

The proof of the inclusion can be obtained by using this result in an inductive
process over the regions. �

This Theorem proves that injectivity of PEPS is a sufficient condition for the unique-
ness of the parent Hamiltonian’s ground state. Subsequently, we will see that injec-
tivity is, however, not a necessary condition for that.

6.3.2.1 PEPS from classical spin models

Let us now recall the construction in [VWPGC06] of PEPS coming from classical
spin models with nearest–neighbour interactions. We consider classical spins with
d possible configurations and temperature β = 1

kBT
.

Let us consider a classical two–body interacting Hamiltonian for N particles
H(x1, . . . , xN) =

∑
(i,j) h(xi, xj), with xi = 1, . . . , d and its corresponding partition

function Z =
∑
x exp[−βH(x)]. Then, we construct the associated PEPS as

|ψH,β〉 =
1√
Z

∑
x

e−
β
2
H(x) |x〉

�� ��6.5

where x = x1, . . . , xN and the superposition coefficients are nothing but the Boltz-
mann weights.

Theorem 36 (Properties of PEPS coming from classical systems)
These states have the following properties:

1. The expectation values and correlations of state 6.5 with respect to operators
diagonal in the basis |x〉 are the same as those of the classical state, so the
PEPS reproduces the correlation functions of the classical thermal states.

2. State 6.5 has a PEPS representation with bond dimension D = d.

3. State 6.5 is the ground state of a local quantum Hamiltonian.

4. The block entropy asymptotically obeys a strict area law. 2

Proof Let us prove these properties:

105



CHAPTER 6. INJECTIVITY AND PARENT HAMILTONIANS IN PEPS

1.

This is a direct consequence of the construction given by Eq. 6.5. If we consider
only diagonal operators D(i), the correlation function or expectation values are given
by

〈ψH,β|D(i)D(j) |ψH,β〉 =
1

Z

∑
x

D(i)
x D

(j)
x e−

1
β
H(x)

= 〈(D(i) − 〈D(i)〉)(D(j) − 〈D(j)〉)〉

which is the classical correlation function.

2.

Let us construct the tensors explicitly. By applying an SVD, one obtains the
vectors |φixi〉 verifying:

e−
β
2
h(xi,xj) =

∑
k

〈φixi |k〉〈k|φ
j
xj
〉

Then, the tensors defining the PEPS are:

(Aixi)α1...αχ =
∏
e

〈φexi |αe〉 αe = 1, . . . , d
�� ��6.6

where |φexi〉 may be different for each lattice site i, and the product is taken over all
edges connected with this site (see the explicit construction for the 2D Ising model
in the example below). Therefore, these are the tensors describing state 6.5.

3. and 4.

Both are consequences of point 2., i.e. of the PEPS structure of the state. The
existence of such a structure implies that there exists an upper bound for the block
entropy between a region R and the rest of the lattice, given by O(eR logD), where
eR is the number of outgoing bonds which connect R to the lattice. Moreover, there
is always a parent Hamiltonian for this PEPS, as shown in Subsection 6.3.1. �

Example 8 (2D Ising model) Let us consider the classical 2D Ising model on
a square lattice, whose Hamiltonian is given by H = −

∑
(i,j) xixj, with xi = ±1.

Then,

|φ1〉 =

√sinh β
2√

cosh β
2

 |φ−1〉 =

−√sinh β
2√

cosh β
2


and from here one can easily construct the tensors which define the PEPS. 2
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(a) (b)

Figure 6.2: Lattice–dependent injectivity. A PEPS derived from a classical
model in a square lattice is not injective, but (a) if some defects on the lattice bonds
are allowed, or (b) if the square lattice has a substructure, then it can be injective.

In the case of PEPS coming from classical models, injectivity does not depend
on the type of interaction, but only on the lattice geometry (see Fig. 6.2), which
coincides with the interaction pattern of the classical model. Let us enunciate this
statement properly [PGVCW08, Section VI.A]:

Theorem 37 (Conditions for injectivity) A PEPS |ψ〉 coming from a classical
spin system is injective iff there exists a finite subregion of the lattice, such that
every spin in the boundary of the region has at most one outgoing bond. 2

Proof Let us consider a region R of the lattice and let eR be the number of outgoing
bonds E in the boundary ∂R ⊆ R, which connect R with the rest of the lattice.
Then, we have to study the injectivity of the operator ΓR : (CD)⊗er → (Cd)⊗|R| (so
we see ΓR now as a matrix). Then, the matrix elements are (see [MVC09])

〈x|ΓR |ᾱ〉 = C(x) 〈x̄|F |ᾱ〉
�� ��6.7

The bar means here that the vectors are at the boundary, i.e. they are a basis of the
tensor product of the Hilbert spaces corresponding to the spins in the boundary ∂R
(the information about the boundary is summarized in the operator F ). Function
C(x) is the result of the contraction of the bounds e 6∈ E. We have two cases:

eR = |∂R|

Vectors x̄ and ᾱ have the same dimension and F =
⊗

e∈E φ
e, where φe is an

invertible matrix constructed from the 〈φe| defined in the proof of point 2. of Eq.
6.5 via 〈xi| 7→ 〈φexi| . Therefore, F is invertible and hence, ΓR is injective. Let us
remark that this is true if, for each x̄ ∈ ∂R, there is at least one configuration x
such that C(x) = 0.

eR > |∂R|

In this case, F is rectangular and non–invertible. Hence, ΓR cannot be injective.�
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From this proof, one can easily see that we cannot have injectivity for the square
lattice, but one can have it for the hexagonal lattice. However, the 2D square lattice
can also lead to injectivity in case of defects or a substructure (see Fig. 6.2).

These models allow us to prove that, although injectivity is a sufficient condition
for uniqueness of the parent Hamiltonian’s ground state, this is not necessary. This
is shown with a particular case in [PGVCW08, Section VI.B]. In this paper, the steps
of the proof of Theorem 35 are followed, but without actually using injectivity.

6.3.3 Gap

In Section 3.4 we proved that injectivity is the necessary and sufficient condition for
the existence of a one–dimensional gapped parent Hamiltonian. In this Subsection,
we show that, although injectivity is still a very powerful condition to ensure unique-
ness, it is not sufficient to ensure the existence of a gap over the ground state of
the parent Hamiltonian. We use the PEPS constructed from classical spin systems
described in Subsection 6.3.2 to show a counter–example to that.

Let us consider the 2D classical isotropic Ising model on the honeycomb lattice.
On the one hand, we have that the hexagonal structure ensures injectivity, as shown
in Theorem 37, which at the same time ensures the existence of a parent Hamiltonian
which has this state as a unique ground state. On the other hand, the hexagonal Ising
model is critical for the inverse temperature β = 1

2
ln(2 +

√
3) [PF84, KS50]. This

means that the correlation functions decay polynomially, which implies, by means
of Theorem 36, that the correlation functions of the PEPS also decay polynomially.
However, this means that the parent Hamiltonian is gapless as well [HK06, NS07].

Therefore, injectivity is not a sufficiently strong condition to ensure the existence
of a non–trivial uniform (independent of system size) gap over the ground state.
The question is now how one can guarantee the existence of such a gap without
making use of a tensorial (local) characterization, such as injectivity. The question
is relevant, since the detection of either criticality or the existence of a spectral gap
is an important problem both in condensed matter and quantum information. Let
us enunciate a computable sufficient condition for the existence of a uniform gap,
whose proof is based on the one–dimensional case (see [FNW92]) and can be found
in [PGVCW08, Proposition 4].

Lemma 30 (Sufficient condition for a gap (PEPS)) Let us denote the parent
Hamiltonian of an injective TI–PEPS in a square lattice by H =

∑
(i,j) τ(i,j)(h⊗1rest).

Hereafter, hij stands for τ(i,j)(h ⊗ 1rest). Since H is local, there exists a small I ⊂
{1, . . . ,M} × {1, . . . , N} such that hhij ≥ 0 whenever (i, j) 6∈ I. If∑

(i,j)∈I

hhij + hijh > −
1

|I|+ 1

(
h+

∑
(i,j)∈I

hij

) �� ��6.8

then, there exists an ε > 0 such that H2 > εH and hence, there is a uniform
(independent of the system size) spectral gap over the ground state of H. 2
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The mathematical sciences
particularly exhibit order,
symmetry, and limitation;
and these are the greatest
forms of the beautiful.

Aristotle (384 BC-322 BC)

7
Symmetries in PEPS

7.1 Introduction

In this Chapter, we extend the results obtained in Chapter 4 to the case of PEPS, as
a consequence of the canonical form shown in Section 5.3. The reasons which justify
the study of symmetric states are extensively explained in the one–dimensional case,
so it would be redundant to repeat them here.

However, let us introduce an additional justification for this. String order is
an order parameter widely employed in the detection and understanding of quan-
tum phase transitions, which we will study in depth in Section 9.3. However, as
pointed out in [AR07a], there could exist some limitations in its employability, and
its application might not go beyond one–dimensional systems. In [PGWS+08], it
has been shown with the aid of MPS that the existence of a string order parameter
is intimately related to the existence of a symmetry (see Section 9.3), which allows
us to design an appropriate 2D extension: the existence of a local symmetry when
we consider increasing sizes of the system. A trivial sufficient condition for this to
hold in PEPS is proposed there (see Fig. 7.1) and further analysed in [SPV10] in
the more general context of tensor network states.

The organization of this Chapter is similar to Chapter 4, which allows us, as
usual, to remark the differences more illustratively:

• In Section 7.2, we make use of the results shown in Section 5.3 to provide
the necessary and sufficient conditions that an injective tensor must fulfil in
order to generate a symmetric state [PGSGG+10]. The result is firstly proven
for continuous groups, focusing afterwards on spatial symmetries: reflection
symmetry, π

2
–rotations and π–rotations. In Chapter 9, these results are ap-
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Figure 7.1: Symmetries in a square lattice. Graphical representation of the
equation fulfilled by a PEPS if it is invariant under a representation ug of a group G.
Then, the symmetry is inherited by the virtual indices, which transform according
to two representations of G, called Yg and Zg, up to a phase eiθg .

plied in order to generalize the concept of string order to higher dimensions,
prove a generalization of the Oshikawa–Yamanaka–Affleck Theorem, and a re-
lationship between the existence of Wilson loops (a topological property of the
quantum state) with the absence of injectivity.

• In Section 7.3, we transform the tensor into a matrix and apply the results
shown in Section 4.3 to the uniqueness of the symmetric–MPS construction,
in order to extend the result to PEPS.

7.2 Characterization of symmetric states

The aim of this Section is to prove the necessary and sufficient conditions for an
injective PEPS to be invariant under a symmetry group [PGSGG+10, Theorems
13–16], i.e. the extension of the results proven in Chapter 4 to injective PEPS. We
focus on the case of the square lattice, but this can be generalised to other regular
lattices by an argumentation similar to the one shown in Section 5.3, since this is a
straightforward consequence of the canonical form.

We prove first the Theorem for continuous groups, focusing later on the spatial
discrete symmetries: reflection symmetry, π

2
–rotations and π–rotations.

Theorem 38 (Local symmetry) If a PEPS defined on an L × N lattice has a
symmetry u, i.e. u⊗NL |ψA〉 = eiθ

′ |ψA〉, and is injective in regions of size L
5
× N

5
,

then the tensors defining the PEPS satisfy the relation shown in Fig. 7.1 with
eiθNL = eiθ

′
. Moreover, if ug is a representation of a group G, then Yg, Zg and eiθg

are also representations of G. 2

Proof Notice that, when acting with u and e−iθ on the tensor A which defines the
PEPS (see Fig 7.1), we get a new tensor B that is also injective in regions of size
L
5
× N

5
and such that |ψA〉 = |ψB〉. Theorem 31 then gives the result. In order to
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Figure 7.2: Reflection symmetry. This figure represents the condition which
must be fulfilled by a PEPS in order to generate a state invariant under reflections
(in this case with respect to the horizontal plane).

prove that the invertible matrices Yg and Zg are representations of G, we only need
to follow the arguments used in Theorem 26. �

With exactly the same reasoning, we can characterize the spatial symmetries,
i.e. the symmetries corresponding to the point group of the square lattice: reflection,
π
2
–rotations and π–rotations:

Theorem 39 (Reflection symmetry) Let us consider an L×N PEPS with the
property that it is injective for a region of size smaller than L

5
× N

5
. If this TI–

PEPS is invariant under a reflection with respect to a horizontal axis, then there
exist invertible matrices Y and Z such that the tensors defining the PEPS verify
Fig. 7.2. 2

Moreover, it is easy to see that Y and Z must satisfy Y T = Y , Z2 = 1. The
characterization of the reflection with respect to the vertical axis follows straight-
forwardly by interchanging the roles of the horizontal/vertical directions.

Theorem 40 (Spatial π
2
–rotation symmetry) If an L×N PEPS with the prop-

erty that it is injective for a region of size smaller than L
5
×N

5
is generated by a tensor

with a spatial π
2
–rotation invariance, then there exist invertible matrices Y and Z

such that the tensors Ai defining the PEPS verify Fig. 7.4a. 2

In this case, one can see that Y and Z must satisfy the additional constraints
(Y Z)T = Y Z, (ZY )T = ZY .

Finally, we characterize the PEPS which are symmetric respect to a π–rotation.

Theorem 41 (Spatial π–rotation symmetry) Let us consider an L×N PEPS
with the property that it is injective for a region of size smaller than L

5
× N

5
and gen-

erated by a tensor invariant under a π–rotation, then there exist invertible matrices
Y and Z such that the tensors defining the PEPS verify Fig. 7.4d. 2

Now the constraints are ZT = Z and Y T = Y .
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(a) (b)

Figure 7.3: Rotational symmetry. This figure represents the condition which
must be fulfilled by a PEPS in order to generate a state invariant under (a) π

2
–

rotations (in this case a clockwise rotation) and (b) π–rotations.

7.3 Uniqueness of the construction method

In this Section, we show that constraints similar to the ones shown for MPS deter-
mine the construction of invariant injective PEPS, so the entries of the tensor are
essentially Clebsch–Gordan coefficients. In fact, the proof is just an application of
the results proven in Section 4.3.

Let us enunciate the Theorem which ensures the uniqueness of the construction
of the PEPS which fulfil the equation shown in Fig. 7.1.

Theorem 42 (Piecewise construction (PEPS)) Let us consider a finite or com-
pact group G and three representations of this group: ug (d–dimensional and irrep),
Zg ∈MD1 and Yg ∈MD2. Then, all the solutions of the equality shown in Fig. 7.1
have the structure of Eq. 4.10. 2

Proof The first step is to transform the tensor into a Kraus operator, but this can
be done by gathering the orthogonal legs together, so the equation shown in Fig.
7.1 transforms into:

d∑
j=1

u
(g)
ij Aj = eiθg(Yg ⊗ Zg)Ai(Y −1

g ⊗ Z−1
g )

Y and Z, however, can be considered w.l.o.g. unitary representations, since the
group is compact or finite. Obviously, Ai ∈ MD1D2 . Therefore, by applying the
Clebsch–Gordan decomposition theorem, there is a global unitary W such that

Ug = W (Yg ⊗ Zg)W † =
⊕
r

UDr
g

with UDr
g being Dr–dimensional irreps of G. We assume that any additional labels

which could be required to determine the representation are included, but we do
not write them explicitly, for the sake of clarity in the notation. The transforma-
tion of the Kraus operators into the isometry is performed by means of Eq. ??.
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(a) (b)

(c) (d)

Figure 7.4: Transformation into an MPS. This figure illustrates how to deal with
the construction of invariant PEPS by transforming the tensor into s set of Kraus
operators. Thus, the techniques and results shown in Chapter 4 are available by
taking into account that the virtual representation is now always a tensor product
of representations. (a) Physical unitary acting on the tensor, (b) the symmetry
is inherited by the virtual spins, (c) the virtual legs can be gathered, and (d) the
unitaries of the virtual spins of the PEPS can be understood as a tensor product
representation in an invariant a MPS.

Therefore, we can now apply Theorem 27. This construction is unique, and all the
transformations are invertible, so the Theorem follows. �

We have seen in the previous three Chapters that, although MPS and PEPS share a
common framework and some properties, their physical behaviour differs remarkably,
with the higher–dimensional case presenting much more richness. However, when
we restrict ourselves to the set of invariant states (for sufficiently complex groups),
the similarities become more relevant, as we attempted to show in this Chapter.
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Les vieillards aiment à don-
ner de bons préceptes, pour
se consoler de n’être plus en
état de donner de mauvais
exemples.

François de la
Rochefoucauld (1613-1680)

8
Quasi–solvable 1D Hamiltonians

8.1 Introduction

Due to their inherent complexity, many–body system Hamiltonians are, in general,
not spectrally solvable. The ability to provide quasi–solvable examples is paramount
in condensed matter. For instance, as already explained in the Introduction, the
publication by I. Affleck et al. of their model [AKLT88] was an important support
for the Haldane hypothesis, which had been received with incredulity by part of the
scientific community at that moment.

However, among the uncountable possible quasi–solvable Hamiltonians, only a
few contain physical relevance. Of particular interest are two–body Hamiltonians ;
that is, Hamiltonians consisting only of interactions with, at most, two non–trivial
(different from the identity) local operators. And within those, the ones which are
invariant under a large symmetry group, such as SU(2), especially deserve our at-
tention, since this kind of interactions is the one which naturally appears in spin sys-
tems. Two prominent examples are the already mentioned AKLT state [AKLT88],
and the Majumdar–Ghosh state [MG69], which have two–body parent Hamiltoni-
ans with SU(2) symmetry. They have served as toy models to understand certain
physical behaviours in real physical systems, such as the existence of a Haldane gap
in spin chains with integer spin [Hal83a, Hal83b], or the phenomenon of dimeriza-
tion [MG69], respectively. In spite of the key role played by these states in the
understanding of the physical properties of spin chains, there are very few other
examples of TI–MPS with SU(2) symmetry and a two–body parent Hamiltonian
[FNW92, KM08].
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The organization of this Chapter is as follows:

• In Section 8.2, we concentrate on MPS that are eigenstates (not necessarily
ground states) of a kinsfolk Hamiltonian showing SU(2) symmetry and con-
taining only two–body interactions. We find other families of Hamiltonians
with those features, beyond the well–known AKLT and Majumdar–Ghosh.
Furthermore, we provide the first examples of MPS that correspond to excited
states of SU(2)–invariant Hamiltonians. There is a new example of a state with
spin 1, which is never the ground state of any frustration–free SU(2)–invariant
two–body Hamiltonian. In order to perform a systematic search of all those
MPS we developed a simple technique, easily generalizable to other groups or
interactions. The results shown in this Section are taken from [SWPGC09].

• In Section 8.3, we introduce a real–space exact renormalization group method
to find exactly–solvable quantum spin chains and their ground states. This
method allows us to provide a complete list of exact solutions within SU(2)–
symmetric quantum spin chains with S ≤ 4 and nearest–neighbour interac-
tions, as well as new examples with S = 5. We obtain two classes of solutions:
In the first class the renormalization group converges toward a fixed point
and the ground state of the Hamiltonian is an MPS. The other class does not
present any renormalization fixed point and the ground state is a partially
ferromagnetic state. The results shown in this Section arise from [TS10].

8.2 SU(2) two–body kinsfolk Hamiltonians

We have seen in Section 3.2 a method, called parent Hamiltonian, to construct local
Hamiltonians with Matrix Product States (MPS) as ground states. In Section 3.5,
we proposed the definition of kinsfolk Hamiltonian as a generalization of the parent
Hamiltonian (see Definition 20), and we proposed a method to compute this class of
Hamiltonians by means of Eq. 3.8, which we left unproven. In this Section, we first
prove that this method is the most general one for finding Hamiltonians with a given
MPS as a local eigenstate, i.e. as eigenstate of each local term in the Hamiltonian.

In Chapter 4, we provide the necessary and sufficient conditions for an MPS to
be invariant under a given group, so in this Section we make use of these results
in order to construct examples with SU(2) invariance, a symmetry of particular
relevance in spin systems.

Then, we show examples (including the AKLT and Majumdar–Ghosh states)
of MPS which are excited eigenstates of local two–body SU(2)–symmetric TI–
Hamiltonians. In fact, we analyse the subfamilies of kinsfolk Hamiltonians which
have the state as a ground state, providing a numerical proof of the existence of
subfamilies for which the state is excited. This is proven by constructing states
with less energy. Finally, we present a detailed list of kinsfolk Hamiltonians for the
smallest spin values.
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8.2.1 Completeness of the method

The aim of this Subsection is to provide a proof of the completeness of the method
for computing kinsfolk Hamiltonians proposed in Section 3.5. Therefore, let us prove
the following Theorem:

Theorem 43 (Local structure of kinsfolk Hamiltonians) Let |ψ〉 be an MPS,
local eigenstate of its kinsfolk Hamiltonian H =

∑
i τi(h⊗1rest) in the sense of Defi-

nition 20. Then, the structure of the local term is h =
∑

Pµ∈C⊥ αµPµ+λ1, where C⊥
is a set of projectors onto the kernel of the reduced density matrix ρ =

∑
Pν∈C bνPν

and αµ, λ ∈ R. 2

Proof Let us call h the local Hamiltonian. By the hypothesis of local eigenstate,

hρ = λρ
�� ��8.1

for certain λ ∈ R. This is equivalent to [ρ, h] = 0 and hence one can find a set of
projectors P = {Pµ, µ = 1, . . . , r |

∑
ν Pν = 1} such that we can decompose both ρ

and h by means of them, i.e. h =
∑

ν aνPν and ρ =
∑

Pµ∈C bµPµ, where C represents
the set of projectors which describe the support of ρ. By using Eq. 8.1 together
with this decomposition, we obtain that aν = λ for all ν ∈ C and hence:

h =
∑
Pµ∈C⊥

aµPµ + λ
∑
Pν∈C

Pν =
∑
Pµ∈C⊥

(aµ − λ)Pµ + λ1

Then, the translational invariant kinsfolk Hamiltonian is H =
∑

i τi(h⊗1rest), where
τ is the translation operator, which proves the Theorem. �

One may wonder about the reason why the condition of being local eigenstate is
imposed. It is for practical purposes, since we can capture with this method all pos-
sible frustration–free Hamiltonians, it keeps a manageable local structure (we work
with h and not with H), and it allows us to go further than parent Hamiltonians,
entering into the world of frustrated Hamiltonians and excited states. This Theo-
rem shows that, given an MPS |ψ〉, looking for all possible parent Hamiltonians of
interaction length n is equivalent to looking for all possible solutions to the equation

hρ(n) = λρ(n)
�� ��8.2

with λ = tr
[
hρ(n)

]
. The next Lemma gives yet another equivalent formulation,

which is the one we will use below, which finally proves the statement about Eq.
3.8.

Lemma 31 (Proof of the completeness of Eq. 3.8) Given a hermitian matrix
h and a density matrix ρ, hρ = λρ iff

tr
[
h2ρ
]
− tr [hρ]2 = 0

�� ��8.3

2
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Proof Let us prove both implications:

⇒
This implication is clear, since one only needs to substitute the equality hρ = λρ

in Eq. 8.3 and to check that the equality holds.

⇐
Let us denote 〈h〉 = tr [hρ]1. By assumption,

tr
[
(h− 〈h〉)2ρ

]
= tr

[
h2ρ
]
− tr [hρ]2 = 0

So ρ
1
2 (h−〈h〉)2ρ

1
2 = 0, since it is a positive operator with trace 0. This implies that

(h− 〈h〉)ρ = 0 and hence hρ = λρ. �

With this at hand, we can systematically search for MPS which are excited local
eigenstates of SU(2)–invariant Hamiltonians with two–body interactions. We will
proceed as follows: we start with a given SU(2)–symmetric MPS |ψ〉 and fix the
interaction length n; then, we look for possible solutions to Eq. 8.3 of the form

h =
∑
i<j≤n

2J∑
α=1

a
(α)
ij (Si · Sj)α + a01

�� ��8.4

where Si are the generators of SU(2) in the representation of spin J , sitting at
site i. To ensure SU(2) symmetry and two–body interactions in the Hamiltonian.
Note that the Hamiltonian written in Eq. 8.4 is the most general local two–body
Hamiltonian which is invariant under the group SU(2).

Finally, in order to guarantee that the MPS |ψ〉 is an excited state, we find
another SU(2)–symmetric MPS with less energy which acts as a witness. In the
next section, we illustrate this procedure by starting with |ψ〉 being either the AKLT,
the Majumdar–Ghosh state, or generalizations thereof. Throughout this work we
consider spin chains in the thermodynamic limit N → ∞. Let us summarize the
idea in the following table:

Local GS =⇒ global GS (FF)

↗ global ES 7−→ Find state with less energy

Local ES ↪→ easy to check

↘ global GS 7−→ Hard calculation
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8.2.2 Examples of SU(2) two–body Hamiltonians

In this Subsection, we make use of the results provided in the previous Subsection
to construct kinsfolk Hamiltonians and illustrate the method which allows us to
test that the states are sometimes excited. The Subsection is split into several
Subsubsections. The first two correspond to the well–known AKLT and Majumdar–
Ghosh states, which are used to illustrate the method. The third one is a new
example of state which is always an excited state of the kinsfolk Hamiltonian. We
finally provide a detailed list of kinsfolk Hamiltonians corresponding to the lowest
spins.

8.2.2.1 Models with spin 1

Let us consider the AKLT state [AKLT88] as a first example. Its Kraus operators
are A−1 = −

√
2σ−, A0 = σz, A1 =

√
2σ+.

In the case when the number of spins is n = 2, the only solution to Eq. 8.3 is
the AKLT Hamiltonian. In case n = 3, the solutions are given by

h = (−3v1 + v2 + 3v3)(S1 · S2) + v3(S1 · S2)2 +
1

2
(−3v1 + v2)(S1 · S3)

− 1

2
(−3v1 + v2)(S1 · S3)2 + v2(S2 · S3) + v1(S2 · S3)2

where the eigenvalue corresponding to the AKLT state is 7v1− 3v2− 2v3. The total
translational invariant Hamiltonian is then

H =
∑
i

(−3v1 + 2v2 + 3v3)(Si · Si+1) + (v1 + v3)(Si · Si+1)2

+
1

2
(−3v1 + v2)(Si · Si+2)− 1

2
(−3v1 + v2)(Si · Si+2)2

which contains the usual AKLT model. It is not difficult to check that there is a
region in the parameter space where the AKLT state is still the ground state of this
Hamiltonian. For instance, while h ≥ 0, it is ensured that the state is the ground
state. However, let us remark that the Hamiltonian in this case is not the parent
Hamiltonian proper since, as we are imposing a two–body structure and perhaps
supp[h] ⊂ ker ρ, so the results on uniqueness are not necessarily true.

To find regions where it is an excited eigenstate we will use the SU(2)–
symmetric MPS associated to the virtual representation 3

2
⊕ 1

2
as a witness (see

Chapter 4 to check how to perform the construction). The result is plotted in Fig.
8.1, where one sees the existence of points in this family of spin–1 Hamiltonians for
which the AKLT state is excited.

Note that it is possible to perform a change of variables in the total Hamiltonian,
for instance a → 1

2
(−3v1 + v2) and b → v1 + v3, such that it depends only on

two parameters. However, the number of parameters that the local Hamiltonian h
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Figure 8.1: Kinsfolk Hamiltonian of AKLT. Space of parameters of the local
Hamiltonian h for the AKLT state and n = 3. The orange volume represents the
points where the state is the local (and hence the global) ground state. The green
volume represents points corresponding to excited states detected with the witness
3
2
⊕ 1

2
.

depends on cannot be reduced, which means that there are non–physical parameters
in it. In Fig. 8.2, we have represented the problem above (n = 3 and AKLT state)
in terms of the physical parameters. The positive axis b corresponds there to the
usual AKLT Hamiltonian.

Concerning FNW states [FNW92], that is, integer spin J and virtual irrep j,
we have performed an exhaustive search whose main results are gathered in Table
8.1. The study has been carried out by increasing n and studying the number of
parameters which the family of Hamiltonians depends on (notice that the case of
interaction length n contains the case of interaction length n−1). We have increased
n until the number of parameters stops growing. In all the cases considered in
the Table, a saturation occurs when n > 3, i.e. considering more than 3 particles
apparently does not add new Hamiltonians.

Let us also introduce a new state with spin 1, which is never the ground state
of any frustration–free SU(2)–invariant two–body Hamiltonian. The state has both
physical and virtual spin 1, and it is described by the Kraus operators

A1 =
1√
2

0 1 0
0 0 1
0 0 0

 A0 =
1√
2

1 0 0
0 0 0
0 0 −1


A−1 =

1√
2

 0 0 0
−1 0 0
0 −1 0


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Figure 8.2: Kinsfolk Hamiltonian of AKLT (2D). Space of physical parameters
of the Hamiltonian H corresponding to n = 3 and the AKLT state. The dots
(orange) represent where the state is the local (and hence the global) ground state.
The surface (green) represents points corresponding to excited states detected by
means of the witness 3

2
⊕ 1

2
. The blank wedges correspond to cases which cannot be

detected by the method.

The translational invariant Hamiltonian which has this state as an eigenstate is:

H =
∑
i

(Si · Si+1)2 − (Si · Si+2)− (Si · Si+2)2

This state is injective and a local excited state. The fact that this state is an excited
state of the total Hamiltonian can be verified as above by means of the witness 1⊕0.

HHH
HHHJ

j 1
2

1 3
2

2 5
2

3 7
2

1 2 1 � � � � �
2 — 5 3 � � � �
3 — — 4 2 2 1 �

Table 8.1: Table of results for FNW states with physical spin J and virtual spin
j. The numbers in the table are the number of parameters the obtained families
of Hamiltonians depend on. The � represent the cases for which no solution was
found.
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8.2.2.2 Model with spin 1
2

Let us consider now the Majumdar–Ghosh state as an example with semi–integer
spin. The Kraus operators are now:

A− 1
2

=

0 1√
2

0

0 0 −1
0 0 0

 A 1
2

=

0 0 0
1 0 0
0 1√

2
0


As in the previous case, we do not find any solution for n = 2 and only the
Majumdar–Ghosh Hamiltonian for cases n = 3 and n = 4. For n = 5, the so-
lutions to Eq. 8.3 are given by:

h = (v1 − v2 + v4)(S1 · S2) + (v1 − v2 + v4)(S1 · S3) + v3(S1 · S4)

+v3(S1 · S5) + v4(S2 · S3) + (−v1 + v2 + v3)(S2 · S4) + v3(S2 · S5)

+v2(S3 · S4) + v1(S3 · S5) + v1(S4 · S5)

and the energy associated to the state is −3
4
(v1 + v4). The total Hamiltonian H =∑

i τi(h) is given by:

H =
∑
i

2(v1 + v4)(Si · Si+1) + (v1 + v3 + v4)(Si · Si+2)

+ 2v3(Si · Si+3) + v3(Si · Si+4)
�� ��8.5

As in the AKLT case, by means of a change of variables a→ v3 and b→ v1 + v4,
the number of physical parameters in the total Hamiltonian is 2, compared with the
four parameters the local Hamiltonian depends on. The Majumdar–Ghosh state is
an excited local eigenstate for a region in the space of parameters, which in this case
is detected by the witness 1

2
⊕1⊕0, as shown in Fig. 8.3. The usual Majumdar-Ghosh

Hamiltonian1 corresponds to the positive axis b.

8.2.2.3 Model with spin 3
2

Let us consider as a final example the SU(2)–symmetric MPS corresponding to spin
3
2

and virtual representation 3
2
⊕ 0. For n = 3, the solutions to Eq. 8.3 are given by:

h = v3(S1 · S2) + v2(S1 · S2)2 + v1(S1 · S2)3

+(2v1 − v2 + v3)(S1 · S3) + (4v1 − v2)(S1 · S3)2 + v1(S1 · S3)3

+v3(S2 · S3) + v2(S2 · S3)2 + v1(S2 · S3)3

1The family of Hamiltonians constructed in [Kum02] is quite remarkable. In this paper, the
ground state of the Hamiltonian which corresponds to b = 2a is calculated, and fits our results
perfectly.
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Figure 8.3: Kinsfolk Hamiltonian of Majumdar–Ghosh. Space of physical
parameters of the total Hamiltonian for n = 5 associated to the Majumdar–Ghosh
state. The dots (orange) represent where the state is the local (and hence the global)
ground state. The surface (green) represents points corresponding to excited states
detected by means of the witness 1

2
⊕ 1⊕ 0.

and the energy associated to the MPS is in this case −15
64

(165v1− 60v2 + 16v3). The
total Hamiltonian now reads:

H =
∑
i

2v3(Si · Si+1) + 2v2(Si · Si+1)2 + 2v1(Si · Si+1)3

+(2v1 − v2 + v3)(Si · Si+2) + (4v1 − v2)(Si · Si+2)2 + v1(Si · Si+2)3

It is remarkable that in this case there are no spurious parameters in the local
Hamiltonian h. Considering the family of states whose virtual representation is
3
2
⊕ 1 ⊕ 0 as a witness, it is possible to prove that there is a region in the space of

parameters of the Hamiltonian for which the MPS is an excited eigenstate, as shown
in Fig. 8.4.

8.2.2.4 List of kinsfolk Hamiltonians

The following lists SU(2)–invariant two–body Hamiltonians for which the MPS with
physical spin J (irrep) and virtual spin j is an exact eigenstate with energy ε.

Spin J = 1
2

• j = 1
2
⊕ 0, ε = −3

4
v1:

H =
∑
i

2v1(Si · Si+1) + (v1 + v2)(Si · Si+2)

+2v2(Si · Si+3) + v2(Si · Si+4)
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Figure 8.4: Kinsfolk Hamiltonian of the spin–3
2

model. Space of parameters of
the spin–3

2
model. The dots (orange) are obtained numerically and they represent

values of the parameters where the MPS state is the ground state. The volume
(green) represents points corresponding to excited states detected with the witness
3
2
⊕ 1⊕ 0.

• No solutions found (with n ≤ 6) for j = 1
2
⊕ 1, 3

2
⊕ 1, 3

2
⊕ 2, 5

2
⊕ 2.

Spin J = 1

• j = 1
2
, ε = −2v1 − 3v2:

H =
∑
i

(3v1 + 2v2)(Si · Si+1) + v1(Si · Si+1)2

+
1

2
v2(Si · Si+2)− 1

2
v2(Si · Si+2)2

• j = 1, ε = 1:

H =
∑
i

(Si · Si+1)2 − (Si · Si+2)− (Si · Si+2)2

• No solutions found (with n ≤ 4) for j = 3
2
, 2, 5

2
, 3.

Spin J = 3
2

• j = 3
2
⊕ 0, ε = −15

64
(165v1 − 60v2 + 16v3):
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H =
∑
i

2v3(Si · Si+1) + 2v2(Si · Si+1)2

+2v1(Si · Si+1)3 + (2v1 − v2 + v3)(Si · Si+2)

+(4v1 − v2)(Si · Si+2)2 + v1(Si · Si+2)3

• j = 1
2
⊕ 1, ε = −495

64
:

H =
∑
i

243

16
(Si · Si+1) +

29

4
(Si · Si+1)2 + (Si · Si+1)3

• No solutions found (with n ≤ 4) for j = 3
2
⊕ 1,5

2
⊕ 1, 1

2
⊕ 2, 3

2
⊕ 2.

Spin J = 2

• j = 1, ε = (−6986v1 + 778v2 − 62v3 + 1260v4 − 90v5):

H =
∑
i

(2400v1 − 63v2 + 24v3 − 792v4 + 63v5)(Si · Si+1)

+(133v1 − 14v2 + 2v3 − 133v4 + 14v5)(Si · Si+1)2

+(v2 + v5)(Si · Si+1)3 + (v1 + v4)(Si · Si+1)4

+(
1729

2
v1 − 91v2 +

13

2
v3)(Si · Si+2)

+(
5719

36
v1 −

301

18
v2 +

43

36
v3)(Si · Si+2)2

+(−665

18
v1 +

35

9
v2 −

5

16
v3)(Si · Si+2)3

+(−133

12
v1 +

7

6
v2 −

1

12
v3)(Si · Si+2)4

• j = 3
2
, ε = 0:

H =
∑
i

(580v1 − 80v2 + 10v3 − 330v4 + 30v5)(Si · Si+1)

+(91v1 − 11v22v3 − 91v411v5)(Si · Si+1)2

+(v2 + v5)(Si · Si+1)3 + (v1 + v4)(Si · Si+1)4

+
1

6
(2275v1 − 275v2 + 25v3)(Si · Si+2)

+
1

36
(455v1 − 55v2 + 5v3)(Si · Si+2)2

+
1

18
(−455v1 + 55v2 − 5v3)(Si · Si+2)3

+
1

36
(−91v1 + 11v2 − v3)(Si · Si+2)4
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• No solutions found (with n ≤ 4) for j = 2, 5
2
.

Spin J = 3

Solutions (mostly cumbersome ones) were found for j = 3
2

(n = 3) (FNW state),
j = 2 (n = 2) and j = 5

2
(n = 2).

8.3 Exact renormalization construction

The purpose of this Section is to investigate a real–space renormalization group and
its applications in a systematic search for exactly solvable quantum spin chains. The
present approach complements the parent Hamiltonian method shown in Section 8.2,
such that one can start from the Hamiltonians and search for exactly solvable ones.
We first briefly review the basics of real–space renormalization and its extension
to systems with SU(2) symmetry. The presence of symmetry allows us to design
a simple exact renormalization scheme. By using this method, we study quantum
spin chains with SU(2) symmetry and nearest–neighbour interactions. For S ≤ 4,
we provide complete solutions for the models which are frustration–free for two
neighbouring spins. Moreover, we provide new examples of S = 5 which were
not previously known. We discuss these exact solutions by dividing them into two
different classes, whose ground states are MPS and partially ferromagnetic states,
respectively.

8.3.1 Real–space exact renormalization process

Let us consider a chain with N local d-dimensional Hilbert spaces H, that we can
assume as local spins. We denote by |M〉 ∈ H an orthonormal basis in H. And let
us also consider a translational invariant local Hamiltonian H =

∑
i τi(h

(L) ⊗ 1rest),
where τi is the translation operator, containing local interaction terms acting on L
contiguous sites. We can assume w.l.o.g. positive semidefinite interactions h ≥ 0,
since they can always be achieved by shifting their energy level.

Let us now briefly explain the real–space renormalization process. We start by
coupling the first two spins, whose Hilbert spaceH⊗H is mapped into a Hilbert space
H2, which has in general a dimension D2 < d2. The criterion followed to perform this
reduction H⊗H → H2 is to conserve only the low–energy states of the Hamiltonian.
In general, the method works by finding mappingsA[i] : Hi−1⊗H → Hi which iterate
this process. We continue this renormalization procedure until reaching the end of
the chain and getting an orthonormal basis { |χ〉}DNχ=1 of the Hilbert space HN .

Let us show the real–space renormalization process from the (i − 1)-th spin to
the i-th spin, which can be written in a basis as [ÖR95]

|β[i]〉 =
∑
α,M

A
[M ]
α,β |α[i− 1]〉 ⊗ |M [i]〉

�� ��8.6
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where the input state |α[i−1]〉 ∈ Hi−1, the output state |β[i]〉 ∈ Hi, and the Kraus
operators A[Mi] are Di−1×Di matrices satisfying gauge condition

∑
M A[M ]A[M ]† = 1.

Here, we define D0 = 1 so that the Kraus operator A[M1] for the first spin can be
viewed as a row vector.

Eq. 8.6 shows that the real–space renormalization results in an orthonormal
basis |χ〉 with a matrix product form (Fig. 8.5a)

|χ〉 =
∑

M1...MN

(A[M1]A[M2] · · ·A[MN ])χ |M1M2 . . .MN〉
�� ��8.7

χ = 1, . . . , D with D = maxiDi called the bond dimension of the matrix product,
as explained in Chapter 1.

In the Density Matrix Renormalization Group (DMRG) algorithm, these MPS
are used variationally to find the best approximation for the low energy sector of
1D systems.

In this Section, we are interested in special models, such that the states |χ〉
exactly span the ground state subspace in the thermodynamic limit. The specifica-
tion concerning the thermodynamic limit comes from the fact that, otherwise, every
N–site state can be written by means of a matrix product Ansatz (given in Eq. 8.7)

by taking D > db
N
2 c. However, we seek models for which an exact renormalization

can be performed for arbitrarily long chains. In other words, the ground states of
these models can be solved rigorously through real–space renormalization, and the
truncation induced by the Kraus operators does no harm.

Practically, since hi ≥ 0, this search can be accomplished if the Kraus operators
for each spin can be adjusted step by step in the renormalization group to fulfil

tr [ρχi hi] = 0, ∀i = 1, . . . , N and ∀χ = 1, . . . , DN

�� ��8.8

where ρχi = trinv[ |χ〉〈χ| ] is the reduced density matrix for L spins. The above
condition leads to H |χ〉 = 0, which means that the vectors |χ〉 are the ground
states of H, because H ≥ 0. Such Hamiltonians are called frustration–free Hamil-
tonians because their ground states locally minimize energy (see Definition 18).
For instance, it is well–known that the ferromagnetic Heisenberg chain is a typical
frustration–free model in which all the spins tend to align in parallel to gain energy.
Recently, the frustration–free Hamiltonians have been reformulated as quantum k–
SAT problems and attract considerable interests in quantum information community
[Bra06, MFG+10, dBOOE10, LMSS10, LLM+10].

For generic models, this renormalization procedure will terminate after blocking
a number of spins due to intrinsic frustrations. To find the exactly quasi–solvable
model, the first possibility is that the renormalization group reaches a fixed point.
Then, the ground state of the Hamiltonian in PBC can be written as a translational
invariant MPS (see Fig. 8.5)

|ψ〉 =
∑

M1,...,MN

tr
[
A[M1]A[M2] · · ·A[MN ]

]
|M1M2 . . .MN〉
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(a) (b)

Figure 8.5: Real–space renormalization. (a) The real–space renormalization
group yields MPS. (b) In PBC, the TI–MPS are constructed from the fixed–point
Kraus operators.

where the Kraus operators A[M ] are the converged D × D matrices at the fixed
point. We discuss these fixed–point MPS solutions in Subsubsection 8.3.2.2. An-
other possibility is that, for some models, the number of states dimHk we should
keep increases when gathering more spins. Even though there is no renormalization
fixed point, we find that it is still possible to obtain the ground states exactly if
dimHk increases in a controllable way. We illustrate this point in Subsubsection
8.3.2.3, when discussing partially ferromagnetic states.

8.3.2 Quantum spin chains with SU(2) symmetry

In this Subsection, we adapt the real–space exact renormalization method to SU(2)–
symmetric quantum spin chains with nearest–neighbour interactions. Therefore, let
us start by explaining some details about SU(2)–symmetric Hamiltonians. The
most general SU(2)–symmetric spin–S TI–Hamiltonian with nearest–neighbour in-
teractions can be expressed as

H =
∑
i

2S∑
n=1

an(Si · Si+1)n + a01.
�� ��8.9

which is a particular case of the Hamiltonian shown in Eq. 8.4. The study of these
SU(2)–symmetric models has a long history in condensed matter physics. It was
already known that some of these models can be solved by the Bethe Ansatz method
and such models are fully classified by solutions of Yang–Baxter equations [Ken92].

We want to identify the frustration–free models in Eq. 8.9 and find their ground
states through real-space exact renormalization. However, it is convenient to use
projectors instead of spin operators, so we use the transformation

(Si · Si+1)n =
2S∑

ST=0

[
1

2
ST (ST + 1)− S(S + 1)]nPST (i, i+ 1)
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where PST is a projector onto the total spin–ST states of the two spins. By shifting
the local energy levels, we can always rewrite Hamiltonian 8.9 as a sum of projectors

H =
∑
i

∑
ST∈K

JSTPST (i, i+ 1)
�� ��8.10

with coupling constants JST > 0, and K ⊆ [0, 2S] is a set specifying the choice of
projector(s) as local interactions. Since the local interactions in Eq. 8.10 are a sum
of projectors, we have H ≥ 0.

Let us remark that, as the physical representation is irreducible and we restrict
ourselves to nearest–neighbour interactions, the exact value of JST is not important,
as long as the Hamiltonian is frustration–free.

From Hamiltonian 8.10, it is still not clear how to properly choose, if possible,
the set K that makes the Hamiltonian frustration–free. However, as we restrict
ourselves to frustration–free models with two neighbouring spins, we can provide a
complete list by taking advantage of the renormalization group.

8.3.2.1 Exact renormalization with SU(2) symmetry

In this Subsubsection, we explain how to make use of the SU(2) symmetry in the
exact renormalization scheme. This particularizes the real–space renormalization in
Eq. 8.6 such that both the input and output states form representations of the sym-
metry group, which ensures that the symmetry is preserved in each renormalization
step. The method shown here is a three–step process.

Eq. 8.6 can be promoted to an SU(2)–adapted basis [DMDNS98, SPV10]

|jbtbmb〉 =
∑
jatama

∑
M

A
[S,M ]
jatama,jbtbmb

|jatama〉 |SM〉
�� ��8.11

where the j’s denote the SU(2) representations (total–spin quantum number), the
t’s make the degenerate states within the same j distinguishable, and the m’s are
the magnetic quantum numbers associated with j.

The first step of the process consists in splitting the Kraus operators into two
terms by means of the Wigner–Eckart Theorem (see Fig. 8.6a) as

A
[S,M ]
jatama,jbtbmb

= Tjata,jbtb〈jama, SM |jbmb〉
�� ��8.12

where the indices jata, jbtb keep track of the representations of the input and output
states. The first term is a real matrix T denoting the weights of different input
states in each output state. We call this matrix weight matrix. Let us remark
that the weight matrix does not depend on the magnetic quantum numbers. The
second term is the Clebsch–Gordan coefficient 〈jama, SM |jbmb〉, corresponding to
the representation fusion ja⊗S ↪→ jb. To ensure that the output states always form
an orthonormal basis, the weight matrix must fulfil the triangle inequality

Tjata,jbtb = 0 unless |ja − S| ≤ jb ≤ ja + S
�� ��8.13
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and ∑
jata

Tjata,jbtbTjata,jbt′b = δtb,t′b

�� ��8.14

for every jb. The first constraint is related to SU(2) fusion rules. The second
constraint means that the columns of Tjata,jbtb corresponding to the same jb but
different tb, are orthonormal vectors, which guarantees the isometry condition for
the Kraus operators, i.e.

∑
M A[S,M ]A[S,M ]† = 1.

The advantage of this representation for Kraus operators is that it allows us
to design an elegant way to perform the exact renormalization group, which is
the second step of the method. Let us consider two neighbouring spins (see Fig.
8.6b). The renormalization process consists of two sequential representation fusions
ja ⊗ S ↪→ jb and jb ⊗ S ↪→ jc. As a result, we obtain the orthonormal basis

|jctcmc〉 =
∑
M1M2

∑
jatama

∑
jbtbmb

Tjata,jbtb〈jama, SM1|jbmb〉〈jbmb, SM2|jcmc〉

×T ′jbtb,jctc |jatama〉 |M1M2〉
�� ��8.15

where the weight matrices T and T ′ for these two spins can be different in general.
Alternately, the renormalization process in Eq. 8.15 can be first done by fusion
of the two physical spins to their coupled representations S ⊗ S ↪→ ST and then
ja ⊗ ST ↪→ jc. In the latter fusion sequence, we obtain the same basis

|jctcmc〉 =
∑
jatama

∑
STMT

RST
jata,jctc

〈jama, STMT |jcmc〉

× |jatama〉 |STMT 〉
�� ��8.16

where |STMT 〉 is the coupled basis of two physical spins. The two different fusion
channels are unitarily related by the recoupling F–symbol (see Fig. 8.6c) defined
by F jaSjb

SST jc
= 〈jb(jaS), S; jcmc|ja, ST (SS); jcmc〉. By using Wigner’s 6–j symbol, this

F–symbol can be expressed as [BS94]:

F jaSjb
SST jc

= (−1)ja+jc
√

(2jb + 1)(2ST + 1)

{
ja S jb
S jc ST

}
By substituting this in Eq. 8.15 and comparing with Eq. 8.16, we obtain:

RST
jata,jctc

=
∑
jbtb

Tjata,jbtbF
jaSjb
SST jc

T ′jbtb,jctc
�� ��8.17

According to Eq. 8.16, the output states |jctcmc〉 only keep the local ground states
of the Hamiltonian 8.10 if

RST
jata,jctc

= 0
�� ��8.18

holds for all ja, ta and ST ∈ K. This equation relates the weight matrices of two
spins in Eq. 8.17 and plays an important role in our exact renormalization group
method.
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(a)

(b)

(c)

Figure 8.6: Real space renormalization with SU(2). (a) An isometry A[S,M ] is
decomposed as a matrix T and a fusion of angular momenta. (b) The renormaliza-
tion of two spins can be done in two successive steps. (c) The same input and output
states with different intermediate fusion channels for two spins can be related by
the F -symbol.
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The third step of our method is to use Eq. 8.18 to carry out the renormalization
group process for the whole spin chain. Hereafter we use T [i] to denote the weight
matrix at site i. Let us start the renormalization from the first two spins. By taking
the first physical spin S as the input representation, we have the initial condition
T

[1]
j1

= 1 with j1 = S. According to Eq. 8.17 and Eq. 8.18, we obtain T
[2]
j1,j2

= 1. The
output representation j2 ∈ K̄, where K̄ is the orthogonal complement of K. This
simple test verifies that the output states are the zero–energy local ground states of
the projector Hamiltonian 8.10.

The renormalization group follows naturally as T [2] → T [3] → · · · under renor-
malization condition 8.18 and constraints 8.13 and 8.14. Let us describe how to deal
with these requirements simultaneously. Let us suppose we already know the weight
matrix T [i−1], so the goal is to calculate T [i]. After taking the square of Eq. 8.18
and summing over ja, ta and ST ∈ K, we obtain:∑

j′bt
′
b

∑
jbtb

T
[i]

j′bt
′
b,jctc
M[i]jc

j′bt
′
b,jbtb

T
[i]
jbtb,jctc

= 0

where the positive semidefinite real hermitian matrix M[i]jc is given by:

M[i]jc
j′bt
′
b,jbtb

=
∑
ST∈K

∑
jata

T
[i−1]

jata,j′bt
′
b
F
jaSj′b
SST jc

F jaSjb
SST jc

T
[i−1]
jata,jbtb

For every possible jc from jb ⊗ S, we calculate the kernel of M[i]jc , which gives
us the weight matrix T [i]. If M[i]jc does not have kernel vectors which satisfy Eq.
8.13, the corresponding output representation jc must be discarded. If the kernel
of M[i]jc has dimension larger than 1, the index tc is used to tag the orthonormal
kernel vectors for such jc. Thus, the kernel vectors ofM[i]jc constitute the columns
of T [i] and the column indices jc, tc of T

[i]
jbtb,jctc

denote the output representations.

One can straightforwardly show that the resulting weight matrix T [i] satisfies the
renormalization condition 8.18 and the orthonormal constraint 8.14, since M[i]jc is
positive semidefinite and hermitian.

8.3.2.2 A fixed point: Matrix Product States

In this Subsubsection, we discuss models which have a renormalization fixed point
and therefore, MPS as ground states.

Let us first recall the known results on the MPS solutions for Hamiltonian 8.10.
The best–known models belong to the AKLT family [AKLT88], which are defined
by K = {S + 1, S + 2, . . . , 2S} with integer spin S. The MPS of spin–S AKLT
models have a Valence Bond Solid (VBS) picture with irreducible virtual spin–S

2

representation.

The other family of models also has integer spin and the Hamiltonians are defined
by K = {2, 4, . . . , 2S} [TZX08, TZX+09], which we call SO(2S + 1)–symmetric
family. For the S = 2 model of this family, the MPS have irreducible virtual spin–3

2
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representations [TZX08], which is equivalent to the SO(5)–symmetric MPS in a two–
leg electronic ladder [SZH98]. For S ≥ 3 cases, the properties of the corresponding
MPS are less clear, even though their explicit wave functions were found.

Now we turn to our results obtained by means of the exact renormalization
group. For Hamiltonian 8.10, we check2 all possible K and then provide a complete
list of fixed point MPS solutions for S ≤ 4, and a new solution for S = 5. All these
solutions are integer–spin models3, which are summarized in Table 8.2. For S ≤ 4,
we conclude that there is no solution other than the above two families. For S = 5,
we find a new model, whose Hamiltonian is given by K = {3, 7, 8, 9, 10} and the
ground state has a VBS picture with irreducible virtual spin–3 representations. For
the SO(2S+1) family with S ≥ 3, the exact renormalization group provides us with
a more comprehensible physical picture, which can be viewed as generalized VBS
with reducible virtual spin representations. In Table 8.2, we also listed the minimum
number of necessary blocked spins to reach the fixed–point representations. Since
all these MPS are injective, this length scale is actually the injectivity length i(A)
[SPGWC10] (see Definition 9).

Let us explain these results with an explicit example in the SO(2S + 1) family:
the spin–3 model with K = {2, 4, 6}. Through the exact renormalization group, we
can observe that the output states reach the fixed–point representation 0⊕0⊕1⊕2⊕
3⊕3⊕3⊕4⊕5⊕6 after blocking 6 spins. To obtain the MPS, we do not really need
to calculate the fixed–point Kraus operators by the renormalization group. The
fixed–point representation allows us to construct this MPS directly [SWPGC09].
For the present example, the fixed–point representation gives an important hint
that the MPS has a VBS picture (see Fig. 8.7a) with SU(2) reducible virtual spin
representation 0 ⊕ 3, which is quite different from the traditional VBS states with
irreducible virtual spin representations, like the AKLT states [AKLT88] or their
extensions [FNW92].

With a chain beyond the injectivity length i(A) = 6, the tensor product of
two 0 ⊕ 3 representations at the two boundaries yields the observed fixed–point
representation in the renormalization group. For OBC, in the thermodynamic limit,
the unpaired representations 0 ⊕ 3 at the two edges are asymptotically free and
become well–defined edge states. For PBC, all virtual spin representations are
contracted into SU(2) singlets with neighbouring sites and therefore the MPS is a

2In practice, one can rule out some models to simplify the calculation. For example, the element
2S is always included in K, otherwise the model has (at least) a fully polarized ferromagnetic ground
state. We also use the sets K′ for AKLT models and SO(2S+1) models. Since these known models
have unique ground states, there is no need to check the sets K satisfying K ⊂ K′ or K ⊃ K′.

3For semi–integer spin chains, it is not possible to have a translationally invariant MPS as a
unique ground state. According to the Lieb–Schultz–Mattis theorem, SU(2)–symmetric spin chains
with semi–integer spins are critical if the ground state is unique. On the contrary, a fixed point
MPS should have an energy gap and exponentially decaying correlations. However, the possibility
of the MPS solution with breaking translation in symmetry cannot be ruled out. Although these
models are within the scope of exact renormalization method, we do not obtain any such solution
for S ≤ 7

2 .
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(a)

(b)

Figure 8.7: Results of the technique. (a) The fixed-point type MPS solutions
have a VBS picture. The fixed–point representations come from the tensor product
of two–edge states. (b) The partially ferromagnetic states have a magnetization
plateau.

Spin Set K Virtual spin i(A)

1 {2} 1/2 2
2 {3, 4} 1 2
2 {2, 4} 3/2 4
3 {4, 5, 6} 3/2 2
3 {2, 4, 6} 0⊕ 3 6
4 {5, 6, 7, 8} 2 2
4 {2, 4, 6, 8} 2⊕ 5 8
5 {6, 7, 8, 9, 10} 5/2 2
5 {2, 4, 6, 8, 10} 5/2⊕ 9/2⊕ 15/2 10
5 {3, 7, 8, 9, 10} 3 4

Table 8.2: Models with SU(2)–invariance, nearest–neighbour interactions and ma-
trix product ground states.

global spin singlet.

The renormalization group analysis has also been carried out for other models
in the SO(2S + 1) family. From Table 8.2, one can see that, for S ≥ 3, their matrix
product ground states have reducible virtual spin representations, which directly
correspond to the edge states in an open chain. This provides a more complete
understanding of these systems. For all MPS in Table 8.2, we present their explicit
Kraus operators below.

Let us make a remark about these exactly solvable models. All their fixed point
MPS ground states have exponentially decaying correlations and there is an energy
gap above the ground states, since they are injective. However, the different virtual
spin representations (edge states) show that these MPS belong to different quantum
phases of matter. Therefore, once a new Hamiltonian H = (1 − x)H1 + xH2 is
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constructed from two solvable models H1 and H2 in Table 8.2 with the same spin
S, at least one quantum phase transition is expected to occur when tuning x from
0 to 1. Since both MPS ground states for H1 and H2 preserve SU(2) symmetry, the
local order parameter description breaks down and unconventional quantum phase
transitions may emerge. Very recently, this idea has been exploited to study the
possibility of a topological quantum phase transition in an S = 2 chain [ZZXL11,
ZJWZ10].

Let us explicitly present the Kraus operators needed for the definition of the
MPS in Table 8.2. As we mentioned, the Kraus operators with SU(2) symmetry
are parametrized by Eq. 8.12, which requires both the set V containing the SU(2)
virtual spin representations and the weight matrix T .

For irreducible virtual spin representations, the set V contains a single repre-
sentation ja and therefore T = 1. In this case, the Kraus operators are simply the
Clebsch–Gordan coefficients

A
[S,M ]
jama,jamb

= 〈jama, SM |jamb〉

For reducible virtual spin representations, the set V has multiple SU(2) repre-
sentations and the weight matrix T is necessary. The Kraus operators are given
by

A
[S,M ]
jama,jbmb

= Tja,jb〈jama, SM |jbmb〉

where the index t is suppressed because no degeneracy occurs in V for our models.
We use a convention to define matrix T such that the row and the column indices
ja, jb are arranged in an incremental order. For instance, the S = 3 model with
K = {2, 4, 6} has virtual representation 0⊕ 3 and

T =

(
T0,0 T0,3

T3,0 T3,3

)
=

(
0 −1√

7

1
√

6
7

)
For the S = 4 model with K = {2, 4, 6, 8}, we have virtual representation 2⊕ 5 and

T =

 1
3

√
7
2

1
3

√
5
2

−1
3

√
11
2

1
3

√
13
2


For the S = 5 model withK = {2, 4, 6, 8, 10}, we have virtual representation 5

2
⊕9

2
⊕15

2

and

T =


1
11

√
21
2

−3√
22

−1
11

√
21
2

−
√

15
22

√
3
26

−
√

85
286

2
√

7
11

2
√

17
143

1
11

√
969
13


It is straightforward to show that these solutions satisfy Eq. 8.13, Eq. 8.14 and Eq.
8.18.
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8.3.2.3 Partially ferromagnetic states

In this Subsubsection, we discuss another class of models which do not have an
exact renormalization fixed point but can still be solved exactly. The ground states
of these models are partially ferromagnetic states.

This family includes both semi–integer–spin models and integer–spin models.
The Hamiltonian is defined by K = {0, 1, . . . 2S − 4, 2S} and the physical spin
S ≥ 5

2
. Their ground states are partially ferromagnetic states with a magnetization

plateau 〈Szi 〉 = S − 1. We have also found a physical picture (see Fig. 8.7b) for
these states with partial magnetization: we prepare a spin–1 AKLT–type VBS state
with virtual spin 1

2
and a spin–(S − 1) maximally–polarized ferromagnetic state. In

each site, we recover the physical spin–S Hilbert space by (S − 1)⊗ 1 ↪→ S, which
is achieved by applying local projections.

Let us consider a typical example — the spin–5
2

model with K = {0, 1, 5}. For a
block of L0 spins, the AKLT part contributes representations 0⊕1 and the polarized
ferromagnetic part contributes representation 3L0

2
. Thus, the total spin of the L0–

spin block is given by the tensor product of representations from these two parts

(0⊕ 1)⊗ 3L0

2
= (

3L0

2
− 1)⊕ 3L0

2
⊕ 3L0

2
⊕ (

3L0

2
+ 1)

�� ��8.19

For two spins (L0 = 2), the allowed representations are 2⊕ 3⊕ 3⊕ 4 and cannot
reach K = {0, 1, 5}, which means that the partially ferromagnetic state is the zero–
energy ground state of the projector Hamiltonian. In the exact renormalization
process, we found that the four output representations in Eq. (8.19) are the only
output representations for L0 ≥ 6. By adding one additional spin, the total spin
of the four representations is increased by 3

2
. These observations actually strongly

suggest the partially ferromagnetic picture of the ground state.
One may ask why this class starts with S = 5

2
rather than S = 2. The reason

is the following: for spin–2 model K = {0, 4}, the renormalization group shows
that the number of output representations does not saturate, which means that the
partially ferromagnetic state is not the only ground state of the Hamiltonian.

Compared to the fixed–point MPS solutions in Subsubsection 8.3.2.2, the par-
tially ferromagnetic states have a long range order and thus break the SU(2) sym-
metry. According to Goldstone’s theorem, we expect gapless spin wave excitations
above the ground state, which is quite different from the fixed–point MPS with an
energy gap and exponentially decaying spin correlations.
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9
MPS and PEPS as a laboratory

for Condensed Matter

9.1 Introduction

After reading the first two Chapters, one may wonder why no one has already em-
ployed the results obtained for tensor networks to advance in the mathematical
foundations of quantum magnetism with spin systems. This question was already
advanced in the Introduction and, after three decades of employing Matrix Product
States and Projected Entangled Pair States as a source of examples and counter-
examples to support some hypotheses and discard others, the mathematical machin-
ery is already sufficiently developed as to allow an attempt on providing a positive
answer to this question. This is the aim we pursue in this Chapter.

The Chapter is essentially a collection of applications in condensed matter of the
previously shown results:

• In Section 9.2, we prove a dichotomy theorem for frustration–free Hamiltoni-
ans. This is an application of quantum Wielandt’s inequality (see Chapter 2)
which was firstly proposed in [PGVWC07] and finally proven in [SPGWC10],
and where it is shown that the ground state of a local strongly frustration–free
Hamiltonian is either a Matrix Product State of bounded bond dimension, or
the bond dimension grows faster than N

1
5 , N being the length of the chain.
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• In Section 9.3, we define string order in spin systems and provide its complete
characterization in the framework of tensor networks. We find under which
conditions the string order appears, for which kind of perturbations it is robust,
or when it can be used to detect phase transitions. In addition, we propose
a generalization of the string order parameter for higher dimensions keeping
the desirable features of one–dimensional systems. The results shown in this
Section are published in [PGWS+08].

• Kitaev’s toric code [Kit03] is undoubtedly in the grounds of topological quan-
tum computation. Despite of its simplicity, it shows very nontrivial features.
One of these properties is the invariance of the state when a string of σX
operators is applied along a line, which, as we will see in this Section, can
be understood as a kind of Wilson loop. We prove in Section 9.4 that no
state invariant under a Wilson loop can be injective, establishing a connection
between injectivity and topological properties [PGSGG+10].

• The Lieb–Schultz–Mattis Theorem can be considered a macroscopic reflex of
the quantum properties associated with Fermi–Dirac or Bose–Einstein statis-
tics. We provide a tensor network–based proof of such Theorem and even its
most important generalization: the Oshikawa–Yamanaka–Affleck Theorem. In
the latter case, we provide a two–dimensional generalization of the Theorem
[PGSGG+10]. As the proofs are restricted to a special class of states, they can-
not be considered general proofs. However, they present several advantages:
their simplicity allows us to get a great control over the conditions of the The-
orem; they permit searching for counter–examples to conjectures; they allow
for extensions to higher dimensions and the generalization to other symmetry
groups; etc.

• Sections 9.6 and 9.7 are probably the best examples of the use of tensor net-
works as a laboratory for condensed matter. In the first case, we show the
relationship between the fractionalization of a state’s magnetization and the
entanglement between two disjoint regions of such a state: the more fractional
the magnetization, the larger the expected entanglement. In the second case,
we firstly improve the bound provided in [VC06] for the approximation of a
general state by a Matrix Product State. Then, we use this to provide a lower
bound for the block entropy of a long–range interacting Hamiltonian’s ground
state. Both results are work in progress at the moment of publishing this
Thesis [PGSC+], so we cannot provide specific examples that illustrate the
statement.
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9.2 Frustration–free Hamiltonians and MPS

Matrix Product States have proven to be a useful family of quantum states for
explaining the low–energy sectors of locally–interacting one–dimensional systems.
They constitute a suitable variational Ansatz to compute, for instance, ground state
energies to high accuracy [VMC08] which can be explained by the fact that MPS ap-
proximate ground states of local one–dimensional Hamiltonians well [VC06, Has07a].
Similarly, as shown, they are used to understand effects on one–dimensional systems
on analytic grounds, such as string orders [PGWS+08], symmetries [SWPGC09],
renormalization flows [VCL+05] or sequential interactions [SSV+05, LLPG+08].

As already explained in Chapter 3, associated to each translational invariant
MPS |ψA〉 there is a parent Hamiltonian HA which is frustration–free and has |ψA〉
as ground state. Let us start by recalling the concept of frustration–free Hamiltonian
explained in Definition 18. Consider a local translational invariant Hamiltonian in a
spin chain H =

∑
i τ

i(h⊗1rest) where h denotes the local interaction term and τ the
translation operator. Then, the Hamiltonian is called frustration free if its ground
state |ψ0〉 minimizes the energy locally, that is, if Eq. 3.4 is fulfilled. We assume
w.l.o.g. that Eq. 3.4 is equal to 0. Such Hamiltonians include classical Hamiltonians,
where the terms commute, as well as all parent Hamiltonians appearing in the Matrix
Product State Theory [AKLT88, FNW92, SWPGC09, TS10, SCPG10].

The corresponding local interaction term h above is constructed as the projector
onto the orthogonal complement of the image of

X ∈MD×D 7→
∑
i1,...,iL

tr [XAi1 · · ·AiL ] |i1 · · · iL〉

as already shown in Definition 17 for some sufficiently large interaction range L.
Note that the map in Eq. 2.2 is injective for sufficiently large L iff the map EA(X) =∑

iAiXA
†
i is primitive1, as was proven in Section 2.2, and that injectivity holds for

all L ≥ i(A), where i(A) is the injectivity length which appears in Definition 9.
It was proven in Theorems 21 and 22 that injectivity is a necessary and sufficient

condition for the uniqueness of the ground state of a frustration–free Hamiltonian,
and this provides another application for the quantum Wielandt’s inequalities shown
in Theorem 19 for i(A). We know from Theorems 22 and 24 that, if the interaction
range L of the parent Hamiltonian HA satisfies L > i(A), then |ψA〉 is the unique
ground state of HA with a spectral gap above it (Theorem 24).

Hence, the quantum Wielandt’s inequality provides a bound for the interaction
length required to get a good parent Hamiltonian for an MPS. Indeed, the existence
of such an inequality was already conjectured in the context of MPS [PGVWC07,
Conjectures 1 and 2], and some results obtained so far about MPS do directly depend
on the validity of that conjecture. In particular, a dichotomy results for ground states
of frustration–free Hamiltonians (sketched in [PGVWC07] and for which we give a

1EA may be assumed to be trace–preserving w.l.o.g. [PGVWC07].
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complete proof below), and the characterization of global symmetries in arbitrary
MPS given in [SWPGC09] and described in Section 4.2.

One might conjecture that the ground state of every frustration–free Hamiltonian
(with non–degenerate ground state) is an MPS. In fact, the quantum Wielandt’s
inequality allows us to get a dichotomy theorem in this direction:

Theorem 44 (Dichotomy of frustration–free Hamiltonians’ GS) Let us take
a local term h with interaction length L and assume that HN =

∑N
i=1 τ

i(h ⊗ 1rest)
is strongly frustration–free and has a unique ground state for every N . Its ground
state can be represented as an MPS with matrix size D ×D, where D is:

(i) either independent of N ,

(ii) or D > Ω(N
1
5 ) for all prime numbers N . 2

Proof Let us recall from Theorem 4 that each MPS with D < N and prime N
can be mapped into a canonical decomposition where all matrices are block diagonal
Ai = ⊕bj=1A

j
i and each block satisfies injectivity.

Moreover, Theorem 22 states that if b ≥ 2, L0 = maxj i(A
j) and L is the

interaction length of any frustration–free translational invariant Hamiltonian H on
N spins, having |ψA〉 as ground state; the condition N ≥ 3(b− 1)(L0 + 1) +L given
by Lemma 14 implies that |ψAj〉 is also a ground state of H for all j.

Since the quantum Wielandt’s inequality allows us to bound L0 ≤ O(D4) and

trivially b ≤ D, we get that either (ii), i.e. D ≥ Ω(N
1
5 ), or b = 1 and ker(h) 3∑

i1,··· ,iL tr [XAi1 · · ·AiL ] |i1 · · · iL〉 where X ∈ SN−L(A). Since, by the quantum
Wielandt’s inequality, we have again that N −L ≥ i(A), we get for h that ker(h) ⊇
{
∑

i1,··· ,iL tr [XAi1 · · ·AiL ] |i1 · · · iL〉 : X ∈ MD}. This trivially implies that |ψA〉 is
also a ground state for HN ′ when N ′ > N and therefore the only ground state, so
we obtain (i). �

Regarding the restriction to prime N note that, by the Prime Number Theorem,
the number of primes less than or equal to a given N is asymptotically N

logN
. There-

fore, in (ii) there are many lengths for which there is no MPS representation of the
ground state with small matrices.

9.3 String order

Order parameters play a crucial role in describing the different phases of matter.
However, there exist some phases which, despite displaying very intriguing features,
are not amenable to a description by a local order parameter. In some cases it
is nevertheless possible to introduce more sophisticated quantities that are able to
characterize those phases. A paradigmatic example is given by the string order pa-
rameter (SOP), which reveals the appearance of a hidden order (so–called string
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order, SO) in certain spin systems [dNR89, DBA06, AR07a, KFSS00, TMYT01].
This quantity can be expressed as an expectation value of a non–local operator, and
the appearance of SO is signalled by a non–vanishing SOP value in the thermo-
dynamic limit. Despite the importance of SOP, we still do not have a systematic
characterization of its properties. It is not clear under which conditions SO appears
in a one–dimensional system, with respect to which kind of small perturbations re-
specting the gap it is robust [AR07b], or when it can be used to detect a quantum
phase transition. Apart from that, it seems that the SO loses some of its desirable
properties beyond strictly one–dimensional systems [KFSS00, TMYT01, AR07b].

In this Section, we clarify all those questions for finitely correlated states [FNW92],
i.e. MPS on infinite chains (see Subsection 1.4.2). The relevance of these states relies
on the fact that every quantum state of a finite system has an exact MPS represen-
tation [PGVWC07, Vid03], and that ground states of one–dimensional short–range
interactions can be efficiently approximated — with bond dimension D ∝ polyN
within this class [VC06, Has07b]. In this framework, we will show that the appear-
ance of SO is intimately related to the existence of symmetries, which explains how
it can be used to detect quantum phase transitions.

We propose another parameter, which better recognizes the appearance of string
order, since it does not have some of the shortcomings of the SOP. We also provide a
natural generalization of SO to higher–dimensional lattices (that we call membrane
order), which retains all the desired properties. Finally, we give several examples
displaying a large variety of phenomena.

9.3.1 Definition of string order in spin chains

We mostly consider infinite chains of identical spin–S particles in a translational
invariant state |ψ〉. Then, we can define the string order as follows.

Definition 26 (String order) We say that the state |ψ〉 has string order if there
exist a local unitary u 6= 1 and local operators x and y (which can be taken hermi-
tian), such that

lim
L→∞

|SL(x, y, u, |ψ〉)| > 0
�� ��9.1

SL(x, y, u, |ψ〉) ≡ 〈ψ|x⊗ u⊗(L−2) ⊗ y ⊗ 1rest |ψ〉
�� ��9.2

2

Later on, we introduce alternative quantities which extend this Definition.
Let us consider a TI–MPS |ψ(N)〉 for N particles generated by the Kraus oper-

ators {Ai ∈MD}di=1. As usual,

|ψ(N)〉 =
S∑

i1...iN=−S

tr [Ai1 · · ·AiN ] |i1 . . . iN〉
�� ��9.3
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We use the notation |ψ∞〉 for the thermodynamic limit, with the convention that
the limit N → ∞ is to be taken after the computation of expectation values. In
this limit, the states are known as finitely correlated states (FCS) — the subject of
our studies. As shown in Subsection 1.4.2, most of the properties of these states are
encoded in a linear map defined as

E(X) =
S∑

i=−S

AiXA
†
i

�� ��9.4

The matrices Ai can always be chosen in the canonical form (see Theorem 4), so
that

E(1) = 1, E∗(Λ) = Λ
�� ��9.5

where E∗ denotes the dual channel (see Definition 5), a map which is obtained by
interchanging Ai ↔ A†i in Eq. 9.4, Λ ≥ 0 and tr [Λ] = 1. Thus, E and E∗ are unital
(trace–preserving) completely positive maps, i.e. quantum channels, each possessing
an eigenvalue equal to 1.

A FCS is pure (in the sense of Definition 6) iff Λ > 0 and E has only one
eigenvalue of modulus 1. Then, we have the following Lemma:

Lemma 32 (Restriction to pure FCS) A general FCS has SO iff one of its pure
components has it. 2

Proof The proof is trivial, since there is a unique decomposition of mixed FCS
into pure ones. �

We will restrict ourselves to pure FCS from now onwards. Note that all of them are
unique ground states of gapped finite–range interactions.

9.3.2 String order and FCS

For any unitary u, the SOP given by Eq. 9.2 of a FCS is most easily expressed by
introducing a map

Eu(X) ≡
∑
i,i′

〈i′|u |i〉AiXA†i′ =
∑
j

eiθj ÃjXÃ
†
j

�� ��9.6

where Ãj =
∑

i〈j̃|i〉Ai, and u =
∑

j e
iθj |j̃〉〈j̃| . Then,

SL(x, y, u, |ψ∞〉) = tr
[
ΛExEL−2

u Ey(1)
] �� ��9.7

where Ex,y are defined analogously to Eu in Eq. 9.6.
The following Lemma studies the spectral radius σ of Eu, which is crucial for Eq.

9.7 due to the limit L→∞.
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Lemma 33 (Spectral radius of Eu) σ(Eu) ≤ 1, with equality iff there exists a
unitary V and θ ∈ [0, 2π) such that

V †Ãj = ei(θ−θj)ÃjV
†.

�� ��9.8

Eu has at most one eigenvalue of modulus 1. 2

Proof We will proceed as in the proof of Theorem 13 in order to show that σ(Eu) ≤
1. Let us consider an eigenvector V of Eu, with eigenvalue λ, i.e. Eu(V ) = λV . By
multiplying from the right by ΛV † and by taking the absolute value of the trace, we
obtain:

|λ|tr
[
V ΛV †

]
=
∣∣tr [Eu(V ) ΛV †

]∣∣ =

∣∣∣∣∣∑
j

eiθjtr
[
ÃjV Ã

†
jΛV

†
]∣∣∣∣∣

≤

[∑
j

tr
[
V Ã†jΛÃjV

†
]] 1

2
[∑

j

tr
[
Ã†jV ΛV †Ãj

]] 1
2

= tr
[
V ΛV †

]
�� ��9.9

where we have used the Cauchy–Schwarz inequality given in Eq. 9.22 together with
Eq. 9.5. Since Λ > 0, tr

[
V ΛV †

]
> 0 and thus |λ| ≤ 1 as stated. Let us now show

the implication ⇐ , if the condition given by Eq. 9.8 is fulfilled, one can readily see
that eiθ is an eigenvalue of Eu by using Eq. 9.6, and thus σ(Eu) = 1.

To show the reverse implication ⇒ , if |λ| = 1, then the inequality in Eq. 9.9

has to become an equality, and thus αeiθjΛ
1
2V †Ãj = Λ

1
2 ÃjV

†. By multiplying by
the adjoint expression, taking traces, summing in j, and using again Eq. 9.5 one
obtains that |α| = 1, i.e. α = e−iθ. Since Λ is invertible we obtain Eq. 9.8. This
also implies that

E(V †V ) = V †
∑
j

ÃjÃj†V = V †V,
�� ��9.10

where we have used Eq. 9.5. Since 1 is the only fixed point of E , we get V †V = 1.
Moreover, suppose that Eu has two eigenvectors, V and V ′ with eigenvalues eiθ

and eiθ
′
, respectively. Then, by using Eq. 9.9, we have

E(V †V ′) =
∑
j

ÃjV
†V ′Ã†j = ei(θ

′−θ)V †V ′

such that the same argument gives V = V ′ and θ = θ′. �

Now we can specify the conditions required for SO. First, σ(Eu) = 1 since, oth-
erwise, SL will decay exponentially with L. By using Lemma 33, we know that the
eigenvalue λ of magnitude 1 is not degenerate, so let us denote by V and Y the corre-
sponding right and left eigenvectors, i.e. Eu(V ) = λV , E∗u(Y ) = λY , where E∗u is again
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the dual channel. We have limL→∞ SL(x, y, u, |ψ∞〉) = tr
[
Y †Ey(1)

]
tr [ΛEx(V )].

Writing E∗u(Y )V = λY V and by means of Eq. 9.8, we arrive at the conclusion that
Y = ΛV †. Thus, the conditions for the SOP not to vanish are:

(i) σ(Eu) = 1;

(ii) tr
[
ΛV †Ey(1)

]
, tr [ΛEx(V )] 6= 0

We may wonder whether the condition σ(Eu) = 1 is sufficient to have SO, i.e. if
there are always two operators x and y such that the other conditions are fulfilled.
In order to answer this question, we notice that tr

[
ΛV †Ey(1)

]∗
= tr [ΛEz(V )], where

z = ũy† and ũ =
∑

j e
i(θj−θ) |j̃〉〈j̃| . Thus, we can always choose y = x†ũ so that

Condition (ii) above is simplified to tr [ΛEx(V )] 6= 0. It is clear that it suffices that

tr
[
V ΛAiA

†
j

]
6= 0 for some i, j, since we can then simply choose x = |i〉〈j| . We

conclude that:

Theorem 45 (Necessary and sufficient conditions for SO) For a pure FCS
there exists SO iff there exist a unitary ũ 6= 1, V , and i, j such that

Eũ(V ) = V, tr
[
V ΛAiA

†
j

]
6= 0.

�� ��9.11

2

Now, we show that the second condition can be dropped in two situations.

Case 1

When x and y in Eq. 9.2 are products of observables acting on D2 spins. The
reason is that the set

SD ≡ span
[
Ai1 · · ·AiDA

†
jD
· · ·A†j1

]
spans the set of D ×D matrices, so that there is always a linear combination X of
these matrices for which tr [V ΛX] 6= 0. To see that this set is complete, note first
that Sm−1 ⊆ Sm since∑

im

Ai1 · · ·AimA
†
jm
· · ·A†j1 = Ai1 . . . Aim−1A

†
jm−1
· · ·A†j1

This inclusion must be strict unless m > D2 since Sm−1 = Sm implies Sm = Sm+1,
and for a sufficiently large L, the set {Ai1 · · ·AiL} must span the entire space of
matrices, i.e. it reaches full Kraus rank (see Section 2.2).

Case 2

There exists a continuous group of unitaries V fulfilling the first condition, i.e.
we can parametrize V = eiφ·vecH . Thus, as Λ > 0, we can always choose a sufficiently
small φ such that tr [V Λ] 6= 0 and this suffices, since we have Eq. 9.5. The necessary
and sufficient conditions to obtain invariant MPS are given in Subsection 4.2.
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The first case can be discarded when considering local observables. Therefore, the
existence of a symmetry groups is essentially the necessary and sufficient condition
for the emergence of string order in a pure FCS. Nonetheless, this is only sufficient
in a quantum state or even in a general FCS. To see this, one only has to consider a
FCS with two pure components: one with a symmetry and hence string order and
the other without them. The combination has string order but is not invariant.

9.3.3 Alternative definition and generalizations

In this Subsection, we provide an alternative definition of the string order parameters
based on the results on MPS shown above. We illustrate the idea with a couple of
relevant examples: the AKLT state and the cluster state.

We employ the results shown in Chapter 7 to suggest a natural generalization of
the concept of string order to higher dimensions, what we call membrane order. This
generalization keeps the most relevant features of the one–dimensional definition.
The idea is also illustrated with several examples.

9.3.3.1 Alternative definitions

One can understand the importance of the SOP in detecting quantum phase transi-
tion in terms of its relationship to local symmetries. If we have a Hamiltonian with
a certain local symmetry and its ground state is unique, then there may exist SO. If
we change the parameters of the Hamiltonian but keep the symmetry until the gap
closes, then the ground state will be degenerate and the symmetry may be broken2.

Thus, the SO may disappear at that point, indicating the presence of a phase
transition. Note that, due to the possible choices of the operators x and y in the
definition 9.2, it may happen that the SOP for a particular choice vanishes even if
there still is a symmetry. In order to avoid this, one may look at the quantity

RL(u) ≡ 〈ψ(L)|u⊗L |ψ(L)〉
�� ��9.12

where |ψ(L)〉 is the ground state of the Hamiltonian acting on L sites with periodic
boundary conditions, which is indeed directly related to the existence of a symmetry.
In fact, R∞(u) = limLRL(u) can only vanish if the gap is closed, and thus it is ideally
suited to study the presence of transitions. Note also that it can be straightforwardly
determined from numerical algorithms based on MPS [VPC04].

Example 9 It is instructive to revise the appearance of SO in the ground state
of the AKLT model [AKLT88]. For that state, we have S = 1, A0 = 1√

3
σz and

A1,−1 =
√

2
3
σ± where the sigmas denote Pauli matrices. We find Λ = 1, and

2If one perturbs the Hamiltonian without keeping the symmetry, it is clear from our picture
that the SO will vanish, even if the gap does not close. This explains the fragility of the SO (cf.
[AR07a])
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by taking u = eiπSz we obtain V = σz, and we can take x = y = Sz, so that
SL(x, y, u, |ψ〉∞) = −4

9
[dNR89]. Note that the AKLT state has SU(2) symmetry

so, obviously, RL(u) = 1, for all L. 2

Example 10 Let us analyse the cluster state. The Kraus operators describing the
state [PGVWC07] are:

A0 =
1√
2

(
1 1
0 0

)
A1 =

1√
2

(
0 0
1 −1

)
This has the symmetry induced by u = −σx. We have V = σy, and one can readily

see that tr
[
V ΛAiA

†
j

]
= 0. Thus, there is no SO. However, if we take two particles,

we can choose x = σz ⊗ σy and y = σy ⊗ σz, so that the SOP is 1. In general, we
have RL(u) = 1 as expected. 2

9.3.3.2 Membrane order

The existence of a local symmetry allowed us to introduce the quantity RL defined
in Eq. 9.12. This quantity seems to be an appropriate definition of SO in one–
dimensional systems, so we will now extend it to two dimensions. In this case, there
is more freedom in the choice of locations for the local unitaries u. First we can
let these unitaries act on the whole lattice. If the state remains invariant (or the
respective RL does not vanish) we will say that we have membrane order (MO).
We can also allocate the unitaries as a string of operators, in which case we will
strictly talk about SO3 — or they can be distributed in even more sophisticated
configurations, such as a band of operators (BO). Note that the so defined MO
shares all the desired properties for the SO in one dimension, and thus provides
a natural generalization to higher dimensions. In particular, it should not exhibit
spontaneous breakdown when switching couplings on in the second dimension as
pointed out in [AR07a] for the SO.

To gain more insight, we consider Projected Entangled Pair States (PEPS),
defined in Section 5.2, where Kraus operators are replaced by tensors Bk whose
coordination number depends on the geometry of the lattice. For these states, local
symmetries can arise in a similar way as in the one–dimensional case, as shown in Sec-
tion 7.2. We interpret each tensor as an operator B =

∑
s |s〉〈φs| : (HD)⊗4 → HS,

where HS (HD) is the Hilbert space corresponding to the physical (virtual) spins.
As shown in Chapter 7, the PEPS on a square lattice exhibits a local symmetry if
there exist unitaries Vk and U 6= 1 with

UB = BV1 ⊗ · · · ⊗ V4

�� ��9.13

such that, when contracting the indices of B to create the state |ψ〉, the V ’s cancel
each other. Thus, we will have 〈ψ|U⊗N |ψ〉 = |ψ〉 and, therefore, MO. Note that

3In this case one can obtain again the equivalence with the classical definition of string order.
In order to see this, it is enough to invoke the injectivity condition presented in Definition 23.
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we have the possibility of having different V ’s, in contrast to what happens in one
dimension. This structure also allows us to understand the (dis-)appearance of SO
or BO. However, in the 2D case, the connection between the existence of a local
symmetry and Eq. 9.13 is less straight, but was already solved in Chapter 7 for the
case of injective PEPS. Let us now illustrate this point with some examples:

Example 11 Let us come back to the AKLT state but in two dimensions [AKLT88].
In this case S = 2, |φs〉 = (σy⊗σy⊗1⊗1) |φ̄s〉, and |φs〉 is an orthonormal basis of
the symmetric subspace of (C2)⊗4. U and V correspond to a 5– and 2–dimensional
representation of SU(2), respectively, and thus this fulfils the condition of MO. One
can prove that there is no SO even for a simple ladder formed by two chains. 2

Example 12 Let us consider the cluster state [RB01, VC04a]. Here, S = 1
2

and
|φ− 1

2
〉 = | + +00〉, |φ 1

2
〉 = | − −11〉 with |±〉 = |0〉 ± |1〉. One can take U = σx,

Vu = Vr = σx and Vd = Vl = σz. But one can also take U = σz, three of the V ’s
equal to 1 and decide either Vu = σz, Vr = σz, Vd = σx or Vl = σx. As a consequence,
there is MO. One can readily show that there is no SO. However, there is still a BO,
in the sense that this state is an eigenstate of the operator obtained by applying
unitaries to three consecutive lines (σz to the first and the third and σx to the one
in the middle). 2

Example 13 Let us consider Kitaev’s toric code [Kit03], which we will study with
further details in Section 9.4. This is a state which has spin S = 1

2
and alternative

tensors in the A and B sublattices. In this case, we have alternating projectors B =
|0〉〈φ+φ+| uldr + |1〉〈φ−φ−| uldr and B′ = |0〉〈φ+φ+| urld + |1〉〈φ−φ−| urld, respectively.
One can take U = σx, Vl = Vr = σz and Vu = Vd = 1. Since there is no unitary to
be cancelled in the up and down positions, it has SO (and also MO). 2

9.4 Wilson loops

It is well known that decoherence makes quantum information fragile when we try
to implement it in a laboratory. Topological quantum information was developed as
an attempt to avoid this handicap. Its topological properties make the system (or
the encoded information) insensitive to continuous deformations, resistant to local
perturbations, and allow for quantum error–correction schemes which, all in all,
makes topological quantum computation a good candidate for quantum information
encoding and operations.

The very simplest model to implement topological quantum information is the
Kitaev’s well–known toric code [Kit03], already introduced in Example 13. This con-
sists of a two–dimensional square lattice with qubits at its edges and a Hamiltonian
which introduces two constraints.

147



CHAPTER 9. A LABORATORY FOR CONDENSED MATTER

Plaquette Even parity (in the computational basis):∏
i∈2

Zi |ψ〉 = |ψ〉, ∀2

Vertex Spin flip invariance: ∏
i∈+

Xi |ψ〉 = |ψ〉, ∀+

The ground state is unique in the sphere, but four–fold degenerate in the torus.
It has been observed in [VWPGC06] that the equal superposition of the four

logical states of the toric code |ψ〉 has a PEPS representation with bond dimension
2. Since the logical X in the first (respectively second) logical qubit is implemented
by a non–contractible cut of σX operators along the vertical (respectively horizontal)
direction [Kit03], |ψ〉 remains invariant under these two Wilson loops (see Fig. 9.1).

We see in this Section how the existence of this kind of Wilson loops implies
again that the PEPS cannot be injective.

Theorem 46 (Wilson loops ⇒ no injectivity) Let |ψA〉 be a PEPS in a L×N
square lattice with local Hilbert space dimension d such that there exists a u ∈ U(d)
with the properties:

(i) u⊗L ⊗ 1rest |ψA〉 = |ψA〉 for a loop in the vertical direction.

(ii) u⊗N ⊗ 1rest |ψA〉 = |ψA〉 for a loop in the horizontal direction.

(iii) u⊗ 1rest |ψA〉 6= |ψA〉 for u acting on a single site.

Then |ψA〉 cannot be injective for any region of size smaller than or equal to L
5
× N

5
.2

Proof We assume injectivity for a region of size L
5
× N

5
, (i) and (ii), and will show

that (iii) does not hold. By applying (i) to all columns, together with Theorem 38,
we obtain that there exist unique Y and Z, such that Fig. 7.1 holds. By applying
now (i) to N

5
columns together with injectivity, we obtain that Y = 1, and by

applying (ii) to L
5

rows together with injectivity we obtain that Z = 1. Therefore,
u⊗ 1rest |ψA〉 = |ψA〉 for u acting on a single site. �

9.5 Lieb–Schultz–Mattis–type theorems

It is well known that particles with semi–integer spin, such as electrons, have
fermionic statistics and their wave function acquires a minus sign under the in-
terchange of identical particles. In general, this is a quantum behaviour which is
hardly visible in the macroscopic world. However, in low dimensions, where the wave
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(a)

(b)

Figure 9.1: Wilson loops. These are the Wilson loops which keep the PEPS
associated to the toric code invariant.
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functions are quite localized, the zero–point fluctuations are large and, consequently,
the interference effects due to statistics become important [Aue98].

In this Section, we firstly show that low–dimensional SU(2)–invariant Hamilto-
nians present qualitatively different spectra when the spin is integer (bosonic statis-
tic) than when it is semi–integer (fermionic). This qualitatively different behaviour
was proposed by Haldane [Hal83a, Hal83b, CH05] and proven for one–dimensional
spin–1

2
systems by E.H. Lieb, T.D. Schultz, and D.C. Mattis in 1961 [LSM61] and

generalized to larger semi–integer spins by I. Affleck and E.H. Lieb in [AL86]. This
Theorem has recently been extended and generalized. For instance, it was extended
to two–dimensional systems [Has04, NS07] and, still for the one–dimensional case,
generalizations relaxing the condition on SU(2) symmetry [OYA97].

These theorems require a difficult machinery when attempting to prove them
in complete generality. However, we will show in this Section that they can be
easily proven in the framework of MPS and PEPS, by using the properties shown
in Chapters 1–7. As the proofs are restricted to a special class of states, these are
not general. However, they present several advantages that we already pointed out
in the Introduction 9.1, and that will be studied in detail in Subsubsection 9.5.1.1.

9.5.1 Lieb–Schultz–Mattis theorem

The one–dimensional spin–1
2

Heisenberg Hamiltonian with antiferromagnetic inter-
actions is exactly solvable by the Bethe Ansatz. This presents a power–law decay in
the correlation functions and is gapless, i.e. there are local excitations with arbitrar-
ily low energy. One could expect the same behaviour for larger values of the spin,
independently of whether they are integer or semi–integer. However, F.D.M. Hal-
dane argued [Hal83a, Hal83b, CH05], by means of quantum field theory techniques,
that one should expect a different behaviour when the spin is integer: exponential
decay in the correlation functions and a non–trivial gap above the ground state (of-
ten called Haldane gap). Let us remark that the existence of a gap in the spectrum
and exponential clustering in the correlation functions is quite surprising in a model
with continuous symmetry [LM66]. Let us now enunciate the Theorem strictly:

Theorem 47 (1D Lieb–Schultz–Mattis) Let us consider a one–dimensional semi–
integer antiferromagnetic translational invariant and SU(2)–invariant Hamiltonian
describing a spin chain with (even) length L and periodic boundary conditions. Then,
the gap above the (unique) ground state εL is upper bounded by

εL ≤ C
1

L

where C is a constant independent of L, as shown in Fig. 9.2. This implies either
gapless excitations or ground level spontaneously broken translational symmetry in
the thermodynamic limit L→∞. 2
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Figure 9.2: Lieb–Schultz–Mattis Theorem. Behaviour of the spectral gap over
the ground state in the thermodynamic limit for a semi–integer spin SU(2)–invariant
Hamiltonian, by the Lieb–Schultz–Mattis Theorem. It predicts that the gap vanishes
proportionally to 1

L
(or faster) in the thermodynamic limit.

Proof This Theorem was firstly proven for spin 1
2

in [LSM61] and later extended
to larger semi–integer spins in [AL86], but there is a simpler proof for the Heisenberg
Hamiltonian in [Aue98]. �

The proof of this Theorem fails for integer spins, which leads to the existence of the
Haldane phase without breaking the translational symmetry and the Haldane gap
above the ground state.

The opposite behaviours, in precisely the thermodynamic limit, of integer and
semi–integer spins results in a macroscopic manifestation of quantum properties.
This is not, however, just a mathematical artefact, because this behaviour is sup-
ported by many experiments performed since the Haldane hypothesis was proposed.

The extension of this Theorem to higher dimensions was obtained by M. Hastings
in [Has04], and rewritten afterwards in [NS07]. The difficulty in obtaining the
generalization consists in the following:

(a) If the correlation functions are short–ranged, the ground state can be well–
described by short–range resonating valence bond states. This leads to a similar
construction for the excited state which appears in the original one–dimensional
proof.

(b) If the correlation functions are long–ranged, the excited state constructed as
above does not correspond to the low–energy sector. In lieu of this state, there
exist low–energy spin wave excitations.

Therefore, in the higher–dimensional case, there exist two different means of obtain-
ing the lowest–energy excitation, significantly complicating the construction.
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9.5.1.1 Lieb–Schultz–Mattis in the tensor network framework

As shown above, the Lieb–Schultz–Mattis Theorem states that, for semi–integer
spins, an SU(2)–invariant one–dimensional Hamiltonian cannot have a uniform (sys-
tem size–independent) energy gap above a unique ground state. That is, the sym-
metry imposes strong restrictions on the possible behaviours of a system. In this
Subsubsection, we want to go a step further and analyse which implications one
can obtain from having a single symmetric state in a semi–integer spin chain. By
restricting our attention to the class of MPS, we will show:

Theorem 48 (Lieb–Schultz–Mattis with MPS) Any SU(2)–invariant MPS

in the sense of Eq. 4.1, i.e. u⊗Ng |ψ〉 = eiθg |ψ〉, with u
(d)
g an irrep and even physical

dimension d (semi–integer spin) cannot be injective. In particular, by Theorem
22, this implies that it cannot be the unique ground state of any frustration–free
Hamiltonian. 2

Proof Let us assume that the MPS is injective and prove the Theorem by contra-
diction. Theorems 25 and 26 guarantee that∑

j

ugjkAj = UgAkU
†
g

�� ��9.14

We consider u = eiJz with (Jz)j,k = δj,k
(
k− d+1

2

)
, k = 1, . . . , d. Then, Eq. 9.14 gives

ei ϕkAk = UAkU
†

�� ��9.15

for a unitary U and half–integer ϕk. We finish by proving that if N is odd,
tr [Ak1 · · ·AkN ] = 0, and hence, by Lemma 5, the MPS cannot be injective for any
N . From Eq. 9.15, we get tr [Ak1 · · ·AkN ] = 0, unless

∑N
i=1 ϕki = 0. However, the

latter is impossible for odd N , because in this case the LHS is integer, whereas the
RHS is half–integer. �

From the proof, one may get the impression that only U(1) symmetry is re-
quired, and this is indeed the case if the generator of such symmetry has eigenvalues
−m

2
, . . . , m

2
, as above. However, the next example shows that this is not true for

all U(1) representations, which in turn shows that a larger symmetry like SU(2) is
required for the Lieb–Schultz–Mattis Theorem.

Example 14 Let us consider a local symmetry G represented by uβ = eiβH , for a
hermitian matrix H. Let us choose the physical dimension d = D2 − D, which is
always even, and the set of Kraus operators K = {A(i,j) = |i〉〈j| , i 6= j}. We select
α1, . . . , αD ∈ R such that αi−αj 6= 0 if i 6= j and H with the diagonal form given by
H =

∑
i 6=j(αi − αj) |(i, j)〉〈(i, j)| (which in addition has only non–zero eigenvalues).

With Uβ = eiβΩ, where Ω = diag[α1 . . . αD], it is clear that

eiβ(αi−αj)A(i,j) = UβA(i,j)U
†
β

152



9.5. LIEB–SCHULTZ–MATTIS–TYPE THEOREMS

so the MPS generated by means of the Kraus operators K has the local symmetry G.
Moreover, the MPS is trivially injective when D ≥ 3. We can prove this by choosing
arbitrary k and k′. Since D ≥ 3, we can always find an l such that k′ 6= l 6= k, and
then |k〉〈k′| = |k〉〈l| |l〉〈k′| = A(k,l)A(l,k′). 2

Let us remark that this counter–example is applicable to spin ≥ 5
2
. Indeed, one

can prove Theorem 48 for U(1) and spin 1
2
, which is the content of the following

Lemma. For the lowest values of the physical spin, the case of spin 3
2

remains an
open question.

Lemma 34 (Lieb–Schultz–Mattis for U(1) and spin 1
2
) Let |ψ〉 be an MPS

with physical dimension d = 2 and U(1)–invariant, then |ψ〉 cannot be injective. 2

Proof Let us show this by contradiction. By choosing a basis where the physical
unitary u is diagonal, the condition on the Kraus operators becomes

eiλnφAn = eiHφAne
−iHφ

where H is the hermitian generator of the symmetry. Let us expand the expression
for infinitesimal angles

[H,An] = λnAn

which is the equation of eigenvalues for the operator L(•) = [H, •]. This can be
transformed into an ordinary eigenvalue equation for the matrix operator L = H ⊗
1 − 1 ⊗ H̄, where the bar indicates complex conjugation. The diagonalization can
be easily performed by taking the spectral decomposition of H =

∑
i µiPi, where Pi

are orthogonal projectors. It straightforwardly follows that the eigenvalues of L are
λij = µi − µj and the corresponding eigenoperators fulfil Aij = PiAijPj.

Let us focus now on the case d = 2. Then, we have that A1 = P1A1Pα and
A2 = PβA2Pγ for some α, β, γ. If β = 1, P1X = X for all X ∈ span [Ai1 · · ·Ain ], and
the MPS cannot be injective. The same happens if α = γ. So let us assume that
β 6= 1 and γ 6= α. Now, if α = 1, we have A1 = P1A1P1, A2 = (1 − P1)A2(1 − P1)
and the MPS is block diagonal and hence non–injective. The same happens if
β = γ. So α 6= 1 and β 6= γ, and this gives A2

1 = 0 = A2
2, which implies that

span [Ai1 · · ·Ain ] = span [A1A2A1A2 · · · , A2A1A2A1 · · · ] has dimension smaller than
or equal to 2. �

We have proven the Lieb–Schultz–Mattis Theorem for one–dimensional systems,
but the proof is equivalent for higher–dimensional cases whenever Theorem 38 holds,
i.e. when there exists a local description of the invariant PEPS. We will see in the fol-
lowing Subsection a higher–dimensional generalization of the Oshikawa–Yamanaka–
Affleck Theorem, which has the Lieb–Schultz–Mattis Theorem as a particular case.

The approach by means of local tensors has some advantages and one main
disadvantage, which is that the proof is not general. The advantages are:
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1. A simpler proof which allows a greater control over the conditions of the The-
orem and permits slightly changing them in order to determine which ones are
really necessary.

2. It allows for an easy proof of counter–examples.

3. Although the proof is less general, since we are restricting ourselves to a small
(but very relevant) subclass of states, this transforms the enunciation of the
Theorem from symmetric Hamiltonians to symmetric states. This leads to a
generalization of the Theorem since, for a symmetric Hamiltonian, there is
always a unitary combination of ground states such that it keeps the symme-
try (in particular, if the ground state is unique, then the state itself has the
symmetry). However, the symmetry of the ground state can be larger than the
symmetry of the Hamiltonian (phenomenon known as emergent symmetries in
condensed matter).

4. The Theorem can be proven for any dimension with essentially the same proof,
by using the results from Chapter 2.

9.5.2 2D Oshikawa–Yamanaka–Affleck theorem

By investigating the conditions which a weaker symmetry such as U(1) can impose
on the ground state, a very natural extension of the Lieb–Schultz–Mattis theorem
emerges from the relaxation of the restrictions on the local symmetry. This was pro-
posed by M. Oshikawa, M. Yamanaka and I. Affleck in the seminal paper [OYA97].
They observe that the original Lieb–Schultz–Mattis Theorem holds when a magnetic
field hJz is added except when J −m ∈ Z, where J is the physical spin and m is
the magnetization per particle. Therefore, a massive phase without spontaneously
broken translational symmetry is only possible when this relation holds.

Let us enunciate the Theorem explicitly:

Theorem 49 (1D Oshikawa–Yamanaka–Affleck) Let H be a U(1)-invariant
(with generator Jz corresponding to the third component of an irrep of SU(2)) one–
dimensional Hamiltonian on a spin chain with physical spin J and L particles. Then,
the gap above the ground state is upper bounded by C 1

L
if J −m 6∈ Z. 2

Proof This Theorem was firstly proven in [OYA97]. The proof is very close to the
original proof of the Lieb–Schultz–Mattis Theorem. �

This Theorem was originally used to predict the existence of magnetization plateaus
when tuning the magnetic field h for the magnetization values in which J −m ∈ Z
holds. Moreover, the possibility of translational symmetry breaking is exploited to
forecast that this magnetization could be fractional, in a way similar to fractional
quantization of the charge in the quantum Hall effect. The idea is that, if the ground
state is p–fold degenerate, then the relationship p(J−m) ∈ Z must hold for a gap to
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exist above the ground state manifold. It is stated in [OYA97] that the result can be
generalized to Hamiltonians with spatial structures, i.e. which present translational
invariance with a certain period.

9.5.2.1 2D Oshikawa–Yamanaka–Affleck in tensor network framework

In [SWPGC09], it was shown how the original Lieb–Schultz–Mattis Theorem can
be understood at the level of states, an idea which has already been explained in
Subsubsection 9.5.1.1. More precisely, we showed that no SU(2)–invariant MPS
with semi–integer spin can be injective. In this Subsubsection, we give a 2D version
of the Oshikawa–Yamanaka–Affleck Theorem, by showing that a U(1)–symmetric
PEPS for which J −m is not an integer cannot be injective.

As was stated above, Oshikawa et al. [OYA97] proved the theorem by allowing for
a breaking of the translational symmetry. The proof given here for larger dimensions
is for strictly translational invariant states (eigenstates of the translation operator
with eigenvalue +1), since we still do not have enough control over the periodic
components in PEPS. However, in Section 9.6, we provide the complete proof for
MPS, where we have full control.

Let us start with a PEPS |ψA〉 of spin–J particles with a U(1) symmetry in the
z direction, that is

u⊗Ng |ψA〉 = eiθg |ψA〉

with ug = eigJz . Since g 7→ eiθg is clearly a representation, there exists θ such that
θg = Ngθ. We will show that:

Lemma 35 (Physical meaning of θ) Let |ψ(N)〉 ∈ (Cd)⊗N be an N–particle state,
such that u⊗Ng |ψ(N)〉 = eNg·θ |ψ(N)〉, where ug = exp(ig · J) is a representation of

a compact Lie group with generators Jα. Then θα = 1
N
〈ψ(N)|

∑
k J

(k)
α |ψ〉. In the

particular case of U(1), θ coincides with the magnetization per particle, m. 2

Proof To see this, it is enough to use the fact that the group is a compact Lie
group to expand both sides of the expression u⊗Ng |ψ(N)〉 = eiNg·θ |ψ(N)〉 around the

identity: from the LHS we get u⊗Ng |ψ(N)〉 ' (1+ ig ·
∑

k J
(k)) |ψ(N)〉, while the RHS

gives eiNg·θ |ψ(N)〉 ' (1 + iNg ·θ) |ψ(N)〉. Computing the overlap with |ψ(N)〉 we get
θ = 〈ψ(N)|

∑
j J

(j) |ψ(N)〉, the desired result. �

Let us remark that, in the case of SU(2) or larger groups for which the magnetization
per particle is zero, m = 0, because of the rotational symmetry, the fact that no
phase can appear in the symmetry condition is immediately apparent.

Now we can prove the Oshikawa–Yamanaka–Affleck Theorem for PEPS, as pre-
viously announced:

Theorem 50 (Oshikawa–Yamanaka–Affleck for PEPS) Let |ψA〉 be a PEPS
in a L × N square lattice which is injective in regions of size L

5
× N

5
. If |ψA〉 is
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invariant under a representation of U(1) with the usual generator of spin J given

by J
(J)
z , then the magnetization per particle m fulfils that (J − m) is an integer.

Obviously, if the state has full SU(2) symmetry, then m = 0 and the usual Lieb–
Schultz–Mattis Theorem emerges for PEPS. 2

Proof Let us choose R ≥ L
5

and S ≥ N
5

, and consider the PEPS–PBC associated

to the region R×S, |ψ(R×S)
A 〉. By means of injectivity, it is clear that |ψ(R×S)

A 〉 6= 0.

By applying eigJ
(J)
z to all spins, and by using Theorem 38, there must exist a

choice of indices k1, . . . , kRS ∈ {−J,−J + 1, . . . , J − 1, J} such that k1 + · · ·+ kRS =
SRθ.

We apply the same argument for regions of size R × (S + 1), (R + 1) × S, (R +
1)× (S + 1), getting indices k′, k′′ and k′′′ respectively. Therefore,

θ = (R + 1)(S + 1)θ − (R + 1)Sθ −R(S + 1)θ +RSθ

=
RS∑
r=1

kr +

(R+1)S∑
r=1

k′r +

R(S+1)∑
r=1

k′′r +

(R+1)(S+1)∑
r=1

k′′′r

The RHS has the same character as J , that is, it is integer if J is integer and semi–
integer otherwise. Therefore, θ − J ∈ Z. Since θ is the magnetization per particle
by Lemma 35, the Theorem follows. �

As in the Lieb–Schultz–Mattis case shown in Subsubsection 9.5.1.1, there are also
several advantages and mainly one disadvantage in this approach. The disadvantage
is again working in a framework which is not completely general, but restricted to
a subset of states.

The advantages are essentially the same, but adding a very relevant one: there
is no general higher–dimensional proof of this Theorem, so the result shown here is
non–trivial.

Moreover, this construction allows us to better understand the physical meaning
of the plateaus in one–dimensional systems. When J −m ∈ Z, the state is injective
and by the properties shown in Section 3.4, this ensures the existence of a gap.
If we introduce a U(1) symmetry–preserving magnetic term, then we ensure that
the magnetization per particle remains unchanged for a non–trivial interval of the
magnetic field (at least, while the energy introduced by the magnetic field is smaller
than the the spectral gap divided by the total number of particles, ε > ‖hJz‖).

Example 15 Let us consider a very simple case: the Majumdar–Ghosh Hamilto-
nian given by

H =
∑
i

2

3
(2Si · Si+1 + Si · Si+2) +

1

2
1

where S are the three Pauli matrices. The MPS description of the ground states
was already explained in Examples 2 and 4. In the thermodynamic limit, this
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Figure 9.3: Oshikawa–Yamanaka–Affleck Theorem. The Oshikawa–
Yamanaka–Affleck Theorem predicts the existence of plateaus with a magnetization
fulfilling p(J−m) ∈ Z. This example has been numerically obtained for 12 particles
and the Majumdar–Ghosh Hamiltonian.

Hamiltonian has a two–fold degenerate ground state which breaks the translation
invariance in the sense of Definition 2. This Hamiltonian has a gap above the ground
state manifold, as proven in [AKLT88, Theorem 5.3].

Therefore, if we add a magnetic term hSz to the Hamiltonian, then a plateau
around h = 0 should appear, as shown in Fig. 9.3. Although this example does not
present a plateau with fractional magnetization, it is a very simple way of illustrating
the reason why plateaus emerge. 2

9.6 Fractional magnetization vs. entanglement

Fractionalization of quantum numbers has attracted a lot of attention in the last
years, since it has shown to be connected to most of the fundamental concepts in con-
densed matter physics, as conductivity, topological order, degeneracy or criticality
[JR76, SSH80, FT81, TSG82, Lau83]. In this Section, we will relate fractionalization
to entanglement, strengthening in this way the already close connections between
quantum information ideas and strongly correlated systems.

Most of these connections have been made in the MPS framework [PGWS+08,
SWPGC09, SPGWC10], which can then be justified by the fact that MPS faithfully
approximate ground states of local one–dimensional Hamiltonians [VC06, Has07a].
This last result has opened the avenue of a new way of thinking. If MPS are essen-
tially all one–dimensional quantum states and they have such a simple expression,
one should be able to understand in this language all one–dimensional quantum
effects, as it is already the case for string orders [PGWS+08], renormalization flows
[Whi92, Whi93] or sequential interactions [LLPG+08]. The results which appear in
this Section will be available in [PGSC+].
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9.6.1 Inverse Oshikawa–Yamanaka–Affleck theorem

In this Subsection, we will first prove the Oshikawa–Yamanaka–Affleck Theorem in
one–dimensional systems allowing for translational symmetry breaking. We show
that only magnetizations fulfilling J − m = q

p
are allowed, and that some kind of

periodicity is necessary in order to get such fractional magnetizations, which implies
an inverse version of the Oshikawa–Yamanaka–Affleck Theorem.

Let us start by proving that, given a period p, only blocks which are multiples
of p are permitted. We assume that we have a TI–MPS |ψ(N)〉 with spin J and a
U(1) symmetry in the z–direction with generator Jz, i.e. this fulfils u⊗Ng |ψ(N)〉 =

eigNm |ψ(N)〉 with ug = exp(igJz). Then, we have the following Lemma:

Lemma 36 (Blocks of period multiple of p are permitted) Let m be any ra-
tional number and p ∈ N such that there exist two spin–J states with sizes pN and
p(N + 1), N being a given integer, and showing both of them magnetization per
particle m. Then, p(J −m) ∈ Z holds. 2

Proof The proof is a one–dimensional version of the proof of Theorem 50. By
expanding equation u⊗Ng |ψ(N)〉 = eigNm |ψ(N)〉 in the canonical basis, we get∑

k1,...,kpN

ck1...kpN e
ig

∑
j kj |k1 . . . kpN〉 =

∑
k1,...,kpN

eigpNmck1···kpN |k1 . . . kpN〉.

Since it is a basis and the state is not zero, there exist k1, . . . , kpN ∈ {−J,−J +
1, . . . , J − 1, J} such that the condition

∑
j kj = Npm holds. By the same reason,

there exist k′1, . . . , k
′
pN+p ∈ {−J,−J+1, . . . , J−1, J} such that

∑
j k
′
j = (Np+p)m.

Subtracting them, we get that mp =
∑pN+p

j=1 k′j −
∑pN

j=1 kj which has the same
character (integer or semi–integer) as pJ , as summarized in the table below. �

J integer =⇒ mp integer � pJ integer

↗ p even =⇒ mp integer � pJ integer

J semi–integer

↘ p odd =⇒ mp semi–integer � pJ semi–integer

With this at hand, if we consider a spin–J MPS |ψ〉 with a U(1) symmetry
generated by the canonical generator of spin Jz, we have the following Theorem:
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Theorem 51 (Oshikawa–Yamanaka–Affleck with broken TI) Let |ψ(N)〉 be
a TI–MPS, and p the smallest integer such that, after blocking p spins together,
the MPS representation has a block–diagonal structure with injective blocks. Let us
assume that |ψ(N)〉 is U(1)–invariant in the sense defined above. Then, the magne-
tization per particle fulfils

p(J −m) = q
�� ��9.16

q being an integer such that 0 ≤ q ≤ 2pJ . 2

Proof We call Ak1...kp the Kraus operators after blocking p sites. By means of
Theorem 26, the U(1)–invariance is translated into∑

j1,...,jp

(u⊗pg )j1...jp,k1...kpAj1...jp = eigθUgAk1...kpU
†
g

where θ = pm, as proven in Lemma 35. By using the structure of the generators,
(Jz)ik = δik(k − d+1

2
) ≡ φk, with d = 2J + 1 the physical dimension, we obtain

Ak1...kp = eig(θ−
∑p
j=1 φkj )UgAk1...kpU

†
g

�� ��9.17

Therefore, the coefficients of the state are

tr
[
Ak1...kpAkp+1...k2p · · ·Ak(N−p)+1...kN

]
=

eig(
Nθ
p
−
∑N
j=1 φij )tr

[
Ak1...kpAkp+1...k2p · · ·Ak(N−p)+1...kN

]
By using that θ = mp, in order to have a non–trivial state, we need the fact that
there exists at least one combination of k1, . . . , kN for which the trace in the LHS of
the previous equality is non–zero, so it is necessary to have solutions for the equation
Nm −

∑N
j=1 φij = 0 (note that any other 2πn case is discarded, since the RHS is

rational, while the LHS is irrational). As we are assuming that the symmetry is
independent of N , then there particularly exist solutions for N and N + p, so by
subtracting them, we get

pm−

p(r+1)∑
j=1

φj −
pr∑
j

φj

 ∈ Z

Notice that the quantity between brackets has the same character as pJ , i.e. it is
integer (semi–integer) if pJ is integer (semi–integer). Therefore, p(J −m) ∈ Z. �

Let us now prove a reciprocal Theorem, which ensures that periodicity is neces-
sary to have fractional magnetization:

Theorem 52 (Inverse Oshikawa–Yamanaka–Affleck) Let us assume that J −
m = q

p
, with gcd(p, q) = 1 for all large enough N in a U(1)–invariant TI–MPS.

Then, the MPS has only p̃–periodic blocks, with p̃ a multiple of p. Moreover, states
belonging to blocks of different periods are different. 2
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Proof By the characterization of the symmetries in Theorem 26, every block is
an injective U(1)–invariant TI–MPS. By means of Lemma 35, all of them have the
same magnetization. Moreover, from Lemma 36 follows that only blocks of period
multiple of p are permitted. Additionally, a direct consequence of Theorem 13 is
that states belonging to blocks of different periods are different. �

9.6.2 Fractional magnetization vs. entanglement

In this Subsection, we show the main result of this Section: a non–trivial relationship
between magnetization and entanglement. In fact, the objective is to show that,
in the framework of MPS, one can easily prove that large fractionalization in the
magnetization of a given state requires large entanglement among the parts of the
state (block entropy).

Let us summarize the idea in the following Theorem:

Theorem 53 (Fractional magnetization ⇒ large entanglement) Let |ψA〉 be
a spin J , U(1)–invariant TI–MPS (in the sense of Definition 2 ) with magnetization
per particle verifying J −m = q

p
(with gcd(p, q) = 1). Then, there exists a multiple

of p, denoted by p̃, such that the entropy of the reduced density matrix for any region
of size L = kp̃, ∀k verifies

S(ρ(L)) ≥ log(p)
�� ��9.18

up to an exponentially small correction in N−L (N is the length of the chain, which
can be taken in the thermodynamic limit). 2

Proof Let |ψ(N)
A 〉 be a U(1)–invariant TI–MPS with physical spin J and magneti-

zation per particle m. Then, by means of Theorem 52, there is a multiple of p, called
p̃, such that all the blocks of |ψ(N)

A 〉 have period p̃. Let us consider a length L = kp̃.
Then, by Lemma 7, the reduced density matrix of size L verifies ρ(L) =

⊕n
i=1 λiρi,

up to a correction O(e−c(N−L)), where the reduced density matrices {ρi} correspond
to blocks giving rise to different states (repeated blocks are reflected in the λi).

Now, we only need to apply Lemma 7, together with Theorem 11, to show that
S(ρi) ≥ log p, for all i, and hence, that S(ρ(L)) ≥ log(p) up to an exponentially small
correction in (N − L). �

Let us illustrate the idea with an example:

Example 16 Let us take J = 1
2

and a p–particle state |µ〉 = | ↑↑ · · · ↑↓ · · · ↓〉.
Then, by means of Eq. 9.16, q is the number of down spins. Let us construct the TI
state |ψ〉 =

∑q
k=1 τ

k( |µ〉⊗n). Defining the Kraus operators A↓, A↑ ∈Mq as follows

A↓ =

p∑
i=1

|i〉〈i+ 1| A↑ =

q∑
i=p+1

|i〉〈i+ 1|
�� ��9.19

the generated TI–MPS is U(1)–invariant and fulfils Eq. 9.16. Thus, we can construct
states with arbitrarily fractional magnetization by tuning the values of p and q. 2
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A relevant question emerges: how should we understand this Theorem? If we
go to a laboratory with a spin system which we previously know has a degenerate
ground state and try to measure the magnetization or any other ground state prop-
erty, we will never measure it in the translational invariant state, since a spontaneous
symmetry breaking process would emerge and the probability of obtaining such state
is zero. Therefore, the manner in which this Theorem has to be understood is that,
if we measure a very fractional magnetization in a translational invariant state, then
we can ensure that this state has long–range entanglement.

9.7 Long–range Hamiltonians vs entanglement

Locality, a property of quantum many–body systems arising from local interactions,
has attracted a lot of attention in the last years motivated by a quantum information
perspective. A great effort has been devoted to understanding the complexity that
these systems can generate by showing, on the one hand, that such systems are
simple enough to obey an area law [ECP10], but, on the other hand, that they still
keep enough complexity to make their study intractable [GI09, AGIK09, KSV02].

Quantum information and, in particular, the concept of entanglement, has pro-
duced a considerable impact in the understanding of strongly correlated quantum
systems, shedding new light in the behaviour of quantum phase transitions, topo-
logical order, or renormalization. Many of these contributions have been made by
means of Matrix Product States and Projected Entangled Pair States, which have
proven to be the exact family of quantum states needed to explain low energy sec-
tors of locally interacting quantum systems, as already discussed in the previous
chapters.

In this Section, we provide two interesting results: a sharply improved upper
bound for the approximation of states by means of MPS, and a physical application
of such result which illustrates the physical intuition that, if there are long–range
forces which cannot be faithfully approximated by short–range ones, then long–range
entanglement between disjoint regions of the system should exist.

The first result is an improvement of the upper bound for the distance in the trace
norm provided by F. Verstraete et al. in [VC06, Lemma 3] between a general state
(represented by an MPS with very large bound dimension) and a low–dimensional
MPS. The result of that work is given for two–body reduced density matrices, and
a straightforward generalization for L–body reduced density matrices leads to an
exponential bound dL, with d being the dimension of the local physical degrees of
freedom, and L the interaction length of the Hamiltonian. As we are interested
in long–range interactions, this exponential dependence is critical and must be im-
proved. We provide here a linear–dependent bound on L, which is additionally
independent from the physical dimension d. This last feature could turn out to be
relevant for the study of bosonic systems.

In Subsection 9.7.3, we provide a fascinating application of the previous result.
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We prove a theorem which makes use of the MPS formalism to illustrate that, if
we have a long–range interacting Hamiltonian which cannot be faithfully approxi-
mated by a short–range interacting Hamiltonian, then the ground state of the former
presents long–range entanglement between separate regions of the system. This The-
orem is a perfect exemplification of the power of the MPS as a laboratory where one
can play in order to obtain results in condensed matter.

The results shown in this Section are work in progress, so they are still unpub-
lished, but they will be available in [PGSC+].

9.7.1 Bounding distances between MPS

The objective in this Subsection is to improve the bound obtained in [VC06, Lemma
3] for the approximation of general states by means of MPS. In this pioneering
work, the authors find an upper bound for the minimum distance between the 2–
site reduced density matrix of an arbitrary state and that of an MPS of a given bond
dimension. However, if one tries to straightforwardly extend this result to blocks
of L particles, an exponential term dL appears, making it useless for our purposes.
We provide here a bound which depends linearly on L and does not depend on the
physical dimension d, which significantly improves the previous result.

Let Ai ∈MD be the Kraus operators defining an MPS |ψ〉 in the thermodynamic
limit, such that

∑d
i=1AiA

†
i = 1 and

∑d
i=1A

†
iΛAi = Λ. Then, the normalized reduced

density matrix for L particles ρ
(L)
A (Λ) is written as in Eq. 1.17 by

ρ
(L)
A (Λ) =

∑
i1,...,iL
j1,...,jL

tr
[
A†jL · · ·A

†
i1

ΛAj1 · · ·AjL
]
|i1 . . . iL〉〈j1 . . . jL|

Our goal is to compute an upper bound for the norm ‖ρ(L)
A (Λ)− ρ(L)

Ã
(Λ̃)‖2, which is

the normalized density matrix resulting from projecting the Kraus operators (and
the fixed point) into a subspace of dimension D̃ ≤ D, i.e.. Ãi = PAiP and Λ̃ =
PΛP . To simplify the notation, as the reduced density matrix is later on for L
particles, we will refer to this simply as ρA instead of ρ

(L)
A .

In order to do this, let us prove some previous lemmas. Let us call E the com-
pletely positive map associated to the Kraus operators Ai and Ẽ the one associated
to Ã.

Lemma 37 (Bound for tr
[
ẼL(Λ)

]
) ‖ẼL(Λ)− Λ‖1 ≤ 2Lδ, where δ = ‖Λ− Λ̃‖1.

In particular, tr
[
ẼL(Λ)

]
≥ 1− 2Lδ. 2

Proof By means of the definition of δ, we get that ‖Λ − E(PΛP )‖1 ≤ δ, because
E is contractible for the 1–norm. The map P ·P is also contractible for the 1–norm,
so

‖Λ− PE(PΛP )P‖1 ≤ ‖Λ− PΛP‖1 + ‖PΛP − PE(PΛP )P‖1 ≤ 2δ
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This means that ‖Λ − Ẽ(Λ)‖1 ≤ 2δ. However, Ẽ is also contractible respect to the
1–norm, so

‖Λ− Ẽ2(Λ)‖1 ≤ ‖Λ− Ẽ(Λ)‖1 + ‖Ẽ(Λ)− Ẽ2(Λ)‖1 ≤ 4δ

The result can be obtained by induction. �

From now on, we denote the normalized density matrix by ρ, while σ is reserved for
its unnormalized counterpart, i.e. ρ = σ

tr[σ]
.

Lemma 38 (Distance for unnormalized rdm) The distance may be bounded by
‖ρA(Λ)−ρÃ(Λ)‖2 ≤ ‖σA,P (Λ̃)−σÃ(Λ̃)‖2 +(2L+3)δ, where the unnormalized density

matrix σÃ(Λ) = tr
[
ẼL(Λ)

]
ρÃ(Λ) is generated by Ãi and

σA,P (Λ̃) =
∑
i1,...,iL
j1,...,jL

tr
[
PA†jL · · ·A

†
i1

Λ̃Aj1 · · ·AjLP
]
|i1 · · · iL〉〈j1 · · · jL|

is a positive operator. 2

Proof By using the triangle inequality and the fact that ‖ · ‖1 ≤ ‖ · ‖2,

‖ρA(Λ)− ρÃ(Λ)‖2 ≤ ‖ρA(Λ)− σA(Λ̃)‖1+

‖σA(Λ̃)− σA,P (Λ̃)‖1 + ‖σA,P (Λ̃)− σÃ(Λ̃)‖2 + ‖σÃ(Λ̃)− ρÃ(Λ̃)‖1

The first term can be calculated exactly

‖ρA(Λ)− σA(Λ̃)‖1 =
∑
i1,...,iL

tr
[
A†iL · · ·A

†
i1

(Λ− Λ̃)Ai1 · · ·AiL
]

= δ
�� ��9.20

The first equality occurs since the operator is positive and the 1–norm can be
replaced by a trace, while the second one takes place because the map is trace–
preserving. The second term can be bounded in a similar way, since it is also a
positive operator

‖σA(Λ)− σA,P (Λ̃)‖1 = tr

[
P⊥

∑
i1,...,iL

A†iL · · ·A
†
i1

Λ̃Ai1 · · ·AiLP⊥
]

≤ δ + tr

[
P⊥

∑
i2,...,iL

A†iL · · ·A
†
i2

ΛAi2 · · ·AiL

]

This is because ‖Λ − E(Λ̃)‖1 = ‖E(Λ − Λ̃)‖1 = δ, where it is used that E is trace–
preserving and E(Λ) = Λ. Therefore, ‖σA(Λ)− σA,P (Λ̃)‖1 ≤ δ + tr

[
P⊥Λ

]
= 2δ.

Finally, the last term can be bounded by using Lemma 37 because

‖σÃ(Λ̃)− ρÃ(Λ̃)‖1 = −1 + tr
[
ẼL(Λ)

]
≤ 2δL

We obtain the result by collecting all the bounds above. �
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Let us remark that one can easily write

‖σA,P (Λ̃)− σÃ(Λ̃)‖2
2 ≤

[(
tr
[
Q(E†)L(Λ̃⊗ Λ̃)ELQ

]
− tr

[
Q(F†)L(Λ̃⊗ Λ̃)FLQ

] )
+
(

tr
[
Q(Ẽ†)L(Λ̃⊗ Λ̃)ẼLQ

]
− tr

[
Q(F†)L(Λ̃⊗ Λ̃)FLQ

] )] �� ��9.21

where Q = P ⊗ P , E =
∑

iAi ⊗ Āi, and F = (1⊗ P )E(1⊗ P ).

We have now all the necessary tools to prove the main Theorem which provides
the bound for the norm.

Theorem 54 (Upper bound for the distance) The distance is upper bounded

by ‖ρA(Λ) − ρÃ(Λ)‖2 ≤ 2tr
[
Λ̃1/2

]√
Lδ1/4 + (2L + 3)δ. To obtain an upper–bound

for the 1–norm, on only has to multiply the RHS by D̃. 2

Proof In order to prove this Theorem, let us start by bounding the term µ =∣∣∣tr [Q(E†)L(Λ̃⊗ Λ̃)ELQ
]
− tr

[
Q(F†)L(Λ̃⊗ Λ̃)FLQ

] ∣∣∣. This can be done by adding

and subtracting terms such that they differ by one projector, i.e.

µ ≤
∑
r

∣∣∣tr [FLQ(F†)r(1⊗ P⊥)(E†)L−r(Λ̃⊗ Λ̃)
] ∣∣∣

+
∑
s

∣∣∣tr [Es(1⊗ P⊥)FL−sQ(E†)L(Λ̃⊗ Λ̃)
] ∣∣∣ =

∑
r

µr +
∑
s

νs

Let us bound the first family of terms

µr =
∣∣∣tr [FLQ(F†)r(1⊗ P⊥)(E†)L−r(Λ̃⊗ Λ̃)

] ∣∣∣
By applying the Cauchy–Schwarz inequality∣∣∣∣∣tr

[∑
i

AiBi

]∣∣∣∣∣ ≤ tr

[∑
i

A†iAi

] 1
2

tr

[∑
i

BiB
†
i

] 1
2 �� ��9.22

which can be found in [Bha97], and by writing it down explicitly one obtains

µr =
∣∣∣tr[ ∑

k1,...,kL
i1,...,ir

j1,...,jL−r

(√
Λ̃Ak1 · · ·AkLPA

†
i1
· · ·A†irA

†
j1
· · ·A†jL−rΛ̃

1/4 ⊗ Λ̃1/4
)

×
(

Λ̃1/4 ⊗ Λ̃1/4Ãk1 · · · ÃkLÃ
†
i1
· · · Ã†irP

⊥A†j1 · · ·A
†
jL−r

√
Λ̃
)∗ ]∣∣∣
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≤ tr
[ ∑

k1,...,kL
i1,...,ir

j1,...,jL−r

Λ̃1/4AjL−r · · ·Aj1Air · · ·Ai1PA
†
kL
· · ·A†k1Λ̃·

· Ak1 · · ·AkLPA
†
i1
· · ·A†irA

†
j1
· · ·A†jL−rΛ̃

1/4 ⊗ Λ̃1/2
] 1

2×

× tr
[ ∑

k1,...,kL
i1,...,ir

j1,...,jL−r

Λ̃1/2 ⊗ Λ̃1/4Ãk1 · · · ÃkLÃ
†
i1
· · · Ã†irP

⊥A†j1 · · ·A
†
jL−r

Λ̃

AjL−r · · ·Aj1P⊥Ãir · · · Ãi1Ã
†
kL
· · · Ã†k1Λ̃

1/4
] 1

2
.

The first term is equal to

tr
[
Λ̃1/2

]1/2

tr
[
PEL(Λ̃)P ẼL(Λ̃1/2)

]1/2

≤ tr
[
Λ̃1/2

]
The second term is equal to

tr
[
Λ̃1/2

]1/2

tr
[
Ẽr
(
P⊥EL−r(Λ̃)P⊥

)
ẼL(Λ̃1/2)

]1/2

≤ δ1/2tr
[
Λ̃1/2

]
where we have used that Λ̃ ≤ Λ and therefore tr

[
P⊥EL−r(Λ̃)P⊥

]
≤ δ and that both

E and Ẽ are contractible for the trace norm. Therefore, µr ≤ tr
[
Λ̃1/2

]2√
δ. The

result for νs is exactly the same. Therefore, it follows that µ ≤ 2Ltr
[
Λ̃1/2

]2√
δ.

The other term can be calculated in the same way, but by replacing E→ F and
F→ Ẽ, and it gives exactly the same estimate. �

Let us remark that the physical dimension does not appear in the bound shown
in Theorem 54. Moreover, the dependence on L is linear, instead of exponential,
which will turn out to be very relevant in Subsection 9.7.3. We must remark that
Theorem 54 provides an upper bound for Schatten’s 2–norm, instead of the 1–
norm (cf. [VC06, Lemma 3]). Obviously, the result for the 1–norm is stronger,
but these norms are related by the rank of the operator, that is, in the first term
of the inequality in the Theorem 54 one must add a D̃2 factor. However, for the
applications which we consider in the next Subsection, the 2–norm is adequate.

9.7.2 Generic Matrix Product States

We require an additional result about the injectivity length of a random MPS which,
together with the bound obtained in the previous Subsection, allows us to prove the
relationship between entanglement and long–range interacting Hamiltonians in the
following Subsection. Let us start by defining what a generic MPS is:
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Definition 27 (Generic MPS) We call an MPS generic when it is injective, and
reaches injectivity in the minimum possible number of steps, i.e. b2 logD

log d
c+ 1, where

bxc denotes the integer part of x. 2

The goal in this Subsection is to prove a theorem which ensures that almost every
MPS is generic. We provide two proofs, because the first one, even thought it is
simpler, requires a background on algebraic geometry, while the second one is based
on quantum expanders.

Theorem 55 (Generic interaction length) Every MPS (with the exception of
a zero–measure set) reaches injectivity in the minimal possible region, i.e. it is
generic. 2

Proof Since the set of MPS failing this property is clearly a (projective) algebraic
manifold in CD ⊗CD ⊗Cd, standard algebraic geometry [Mum95] guarantees that,
either this set is the complete set of MPS or it has a measure zero. It is therefore
enough to find a single example of an MPS reaching injectivity as fast as possi-
ble. This fact has been numerically verified by computing the injectivity length of
randomly chosen MPS with several bond dimensions. �

We next provide a result, based on quantum expanders which is slightly less
general than Theorem 55. It is proven in [Has07c] that, for all d ≥ 4, there exists
an hermitian trace–preserving completely positive map

E(X) =
d∑
i=1

A†iXAi

where Ai ∈ MD, such that the second largest eigenvalue in absolute value fulfils

that |λ2| ≤
(

2
√
d−1
d

)(
1 +O

(
log(D)D

−2
15

))
. By taking the MPS |ψ〉 generated by

the matrices Ai and considering the map

Γn(X) =
∑
i1···in

tr [XAi1 · · ·Ain ] |i1 . . . in〉

we want to show the following modification of Theorem 55:

Theorem 56 (Generic interaction length with QE) Assuming D sufficiently
large, Γn is an injective map for4:

n ≥
[

8 log(D)

log(d)

]
+ 1

with d > 16. 2

This Theorem is a consequence of the following Lemma:

4In fact, 8 can be made arbitrarily close to 4 by enlarging d
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Lemma 39 (Bound for the second eigenvalue)

sup
tr[X†X]=1

∣∣∣∣Γn(X)†Γn(X)− 1

D
tr
[
X†X

]∣∣∣∣ ≤ D|λ2|n 2

Proof Let us assume MD with the usual Hilbert–Schmidt structure, it is easy to
see that the LHS is equal to ∥∥∥∥Γ∗nΓn −

1

D
1

∥∥∥∥
op

for the usual operator norm on the Hilbert space MD.
Let us denote as usual E =

∑
iAi ⊗ Āi and write the expression in coordinates:

Γ∗nΓn −
1

D
1 =

∑
abcd

(
〈cd|En |ab〉 − 1

D
δabδcd

)
|bd〉〈ac|

where we have just identified MD = CD ⊗ CD, and used to the canonical (matrix)
basis |ij〉 there.

As ‖·‖op ≤ ‖·‖2 ≤
√
m‖·‖op holds for every operator on anm–dimensional Hilbert

space, ‖ · ‖2 being the Hilbert–Schmidt norm, by using the fact that the Hilbert–
Schmidt norm is invariant under arbitrary rearrangements of the coordinates, we
get that:∥∥∥∥Γ∗nΓn −

1

D
1

∥∥∥∥
op

≤ D

∥∥∥∥∥∑
abcd

(
〈cd|En |ab〉 − 1

D
δabδcd

)
|ab〉〈cd|

∥∥∥∥∥
op

=

D‖En − 1

D
|1〉〈1| ‖op = D‖En − E∞‖op = D‖En − E∞‖op = D|λ2|n

where, in the last step, the hermiticity of E has been used, and |1〉 denotes the
unnormalized vector

∑D
i=1 |ii〉. Now we are in a position to prove the following

Theorem: �

Proof (Theorem 56) Γn must be injective as long as

|λ2|n <
1

D2

�� ��9.23

Otherwise, by taking a (normalized) X such that Γn(X) = 0, we would get a
contradiction to Lemma 39. By using the upper bound for |λ2| that we know from

[Has07c], |λ2| ≤
(

2
√
d−1
d

)(
1 +O

(
log(D)D

−2
15

))
, it suffices to take n such that:(

2
√
d− 1

d

)n (
1 +O

(
log(D)D

−2
15

))n
<

1

D2
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By taking logarithms,

2 log(D) + n log

[(
2
√
d− 1

d

)(
1 +O

(
log(D)D

−2
15

))]
< 0

which is equivalent to

n >
2 log(D)

log
[(

d
2
√
d−1

)]
− log

(
1 +O

(
log(D)D

−2
15

))
It is clear that, by taking D sufficiently large, we can upper–bound the RHS by: 2 log(D)

log
(

d
2
√
d−1

)
+ 1

which means that:

2 log(D)

log
(

d
2
√
d−1

) =
4 log(D)

2 log(d)− log(4)− log(d− 1)

≤ 4K log(D)

log(d)

as long as 1
K
≤ 1− 2

log d
, which finishes the proof of the Theorem. �

9.7.3 Long–range Hamiltonians vs entanglement

We show in this Subsection a relationship between the interaction length of a spin
Hamiltonian and the entanglement of its ground state, by using the result shown in
Theorem 54, which provides an upper–bound for the distance between any state and
an MPS of a given bond dimension. The theorem which we prove here states that,
if an MPS has small Rényi entropy (a measure of the entanglement in the state),
then one cannot find a long–interacting parent Hamiltonian for such state. Let us
enunciate it formally.

Theorem 57 (Large–range interaction ⇒ large entanglement) Let |ψA〉 be
a TI–MPS such that, for α = 1

6
, the Rényi entropy of order α [R6́1] can be upper–

bounded by

Sα(ρRA) ≤ 4

5
log ε+

1

10
(L log d− logL)− log

d

4

�� ��9.24

where ρRA is the reduced density matrix for a sufficiently large region R. Then,
there exists another TI–MPS |ψÃ〉, with bond dimension D̃, showing the following
properties:

(i) |ψÃ〉 is the unique ground state of a (gapped frustration–free) Hamiltonian with
interaction length L,
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(ii) ‖ρLA − ρLÃ‖1 ≤ ε.

Note that, up to constants, the bound on the Renyi entropy is of the form L+log ε.2

Proof Let us call λi to the (ordered from the larger to the smaller modulus)
eigenvalues of ρRA (which, by Lemma 14, can be taken as close as wanted to Λ ⊗
Λ). It is not difficult to see that if we call µi to the ordered elements of Λ, then∑∞

i=D̃+1 µi ≤
∑∞

i=D̃+1 λi =: δ. By Theorem 54, there exist an MPS with bond

dimension D̃ ≤ d(L−1)/2 such that

‖ρLA − ρLÃ‖1 ≤2
√

2dL/2
√
Lδ1/4 + (2L+ 3)δ

≤4
√

2dL/2
√
Lδ1/4 =: ε′

since the first term in the sum is clearly larger than the second. Moreover, by
using Theorem 55, we can assume that the MPS has already reached injectivity in
L − 1 sites (otherwise, there is other arbitrarily close to it which does it) and it
is, therefore, the unique ground state of a (frustration–free gapped) Hamiltonian
with interaction length L [PGVWC07]. It only remains to show that ε′ ≤ ε, or
equivalently, that δ ≤ ε4

210d2L
√
L

. In [VC06, Lemma 2], it is shown that:

log(δ) ≤ 1− α
α

(
Sα(ρRA)− log

D̃

1− α

)
By using this together with the fact that D̃ ≥ d

(L−2)
2 , it is enough to show that:

Sα(ρRA) ≤ 4α

1− α
log ε+

log d

2

(
1− 4α

1− α

)
L−

− α

(1− α)
(10 +

1

2
logL)− log(1− α)− log d

=
4

5
log ε+

1

10
(L log d− logL)− log

5

6
− log

d

4

where in the last step we have just replaced α = 1
6
. This is true by the hypothesis

on Sα(ρRA). �

The Theorem illustrates the physical intuition which states that, if we have a
long–range interaction which cannot be faithfully approximated by other short–
range interactions, then this should lead to the existence of entanglement among
separate regions of the system.

This Section, and especially this very last Subsection, is work in progress, so it
could suffer several modifications in its final version. For instance, we could require
the existence of a gap of the eigenvalues of the completely positive map in order for
this Theorem to be applicable. Thus, we want to give a glimpse of the forthcoming
work.
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We have come to the end of a long journey that has taken us from the local descrip-
tion of one–dimensional quantum states to relevant applications of tensor networks
in condensed matter. In this Thesis we have given an overview of the state of the
art in the theoretical aspects of tensor networks, especially Matrix Product States
and Projected Entangled Pair States.

We have striven to present the new results in a self–contained framework, albeit
the space constraints made us skip the proof of some theorems. This is motivated
by the observation, while working on the topic, of the lack of literature providing a
panoramic view on tensor networks. In fact, the interested reader must dive into a
pile of articles with totally different —sometimes overtly incompatible— notations,
even when they are written by the same authors (the choice of the gauge condition
could be an example of this). They must also face up to the challenge of distinguish-
ing between different concepts with the same name, as shown in examples like parent
Hamiltonian or translation invariance; or conversely, identical concepts named in
several different manners, as happens with the transfer matrix, which is nothing but
the matrix representation of the dual channel in quantum information. Last but not
least, they must swim in an ocean of vague ideas extracted from condensed matter
without a clear and strict definition which is consistent among different works, for
which a paradigmatic example is the notion of frustration freeness.

The inconsistencies listed above are a handicap for the communication between
the quantum information and condensed matter communities working on tensor net-
works, even though they are interested in intimately related questions. For instance,
the seminal work [FNW92], with a high content of algebra and analysis, is hardly
understandable by someone without a certain sophisticated mathematical training.
This has as a consequence that the lion’s share of the research effort performed by
the tensor network community is dedicated to numerical calculations, putting aside
any attempt at answering mathematical questions in condensed matter.

Therefore, our overarching ambition in this Thesis has been to collect the most
up–to–date fundamental results which make the theory of complete positive maps
accessible to the condensed matter community. We additionally attempted to be
consistent with the notation inasmuch as possible —as a counterexample, the in-
jectivity length was denoted by i(A) in the definition, but replaced by L0 when we
found it essential for the sake of clarity in the notation— which we hope helps the
reader to come into the topic with the least possible effort.
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The Thesis may be split into two blocks, the first one —the longest— being
devoted to the study of the mathematical properties of tensor networks. One may
distinguish there a subsequent subdivision into a first part dedicated to Matrix
Product States (MPS) and a second one devoted to Projected Entangled Pair States
(PEPS). The former contains new results such as a quantum Wielandt’s inequality
[SPGWC10], the introduction of kinsfolk Hamiltonians, and the characterization
of local symmetries [SWPGC09], among others. The latter includes the proof of
the existence of a canonical form for PEPS, the characterization of symmetries for
injective PEPS [PGSGG+10], and the extension of several concepts in MPS theory
to higher dimensions.

This work, while admittedly abstract and mathematical, has addressed many
questions about condensed matter. Therefore, in the second block, we introduce sev-
eral applications of the theory explained in the first part: in Chapter 8, we focused
on finding novel examples of quasi–solvable Hamiltonians showing special features,
such as two–body interactions and SU(2) invariance [SWPGC09, TS10]. In Chap-
ter 9, we use the theory of tensor networks to allow for a better grasp of the order
parameters for phase transition detection, in particular, string order [PGWS+08]; to
relate local properties of the tensor to some of the topological features of the state
[PGSGG+10]; to generalize the Lieb–Schultz–Mattis Theorem in several different
manners [SWPGC09, PGSGG+10]; to establish a relationship between fractional-
ization of the magnetization per particle of a quantum state and its entanglement
[PGSC+]; and to explain the natural intuition which suggests that Hamiltonians
with long–range interactions should yield a ground state with high entanglement
[PGSC+], improving, in the process, the upper bound obtained in [VC06] for the
distance between any quantum state and an MPS with a given bond dimension.

Our journey through tensor networks has brought us to the cutting edge of this
field, and now that it has come to an end, let us foresee the time to come —or
at least take a chance at it. However, as Niels Bohr once said, prediction is very
difficult, especially about the future, so the following proposals should be understood
as collection of ideas whose solution we would find particularly interesting.

Let us start with a question which was already pointed out in Section 3.2: the
characterization of Hamiltonians which have a ground state with a size–independent
MPS representation. We already emphasized that every MPS is the ground state
of a strongly frustration–free Hamiltonian (a parent Hamiltonian), so it would only
be natural to expect that the converse also holds. Nonetheless, we showed in that
Section what seems to be a counter–example to this statement. However, one could
possibly relax the conditions for strong frustration freeness, for instance, by asking
the system to be frustration–free for an infinite subset of system sizes —with an even
number of particles in our example— instead of for every N larger than or equal
to a given constant N0. A better understanding of this question could enlighten us
as to the reason why MPS represent so many relevant states in Nature with such a
great accuracy [VC06, Has06].
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One of the most relevant outstanding questions is the extension of the tensor
network theory to infinite bond dimensions, which one might call Operator Product
Fields (OPF). The problems arising from this extension are challenging, since the
local tensors are no longer matrices, but operators, and the straightforward con-
struction of states by matrix multiplication turns out to be troublesome. A first
attempt at solving this issue was made in the pioneering paper [CS10], where the
authors replace the Kraus operators with chiral vertex operators of a Conformal
Field Theory. Still, this was just the first step and the main question is now which
properties of the finite bond–dimensional MPS representations are retained by OPF.
One may wonder why this extension is relevant beyond the numerical applications
shown in [CS10]. The straightforward answer is that, in case the properties of the
MPS were preserved, then the results shown in Chapter 9 would be totally general,
which would notably increase the power of the techniques explored in this Thesis.

We already pointed up in this work how injectivity simplifies proofs: when one
tries to extend theorems to non–injective states, the complexity of the proofs in-
creases sharply. We already showed that injective MPS are dense in the set of MPS,
so it is expectable that many of the properties exhibited by the former, would also
be manifested by any MPS. The development of functional analysis– and topology–
based techniques which would allow us to extend proofs to any MPS, as well as
the determination of their applicability —obviously, not every feature is extendible,
merely because there are properties which are exclusive to injective MPS, like the
existence of a parent Hamiltonian which has such MPS as its only ground state—,
would be extremely worthwhile.

If MPS are complex, then PEPS are even more so. Consequently, a relevant issue
we must delve into is the characterization of global features in the local tensors which
define the PEPS, in a way resembling MPS. In this Thesis we already reviewed the
up–to–date advances in this problem, but they are often quite limited: injectivity is
only a sufficient condition for the uniqueness of the ground state and it is not related
to the existence of a spectral gap; the provided characterization of local symmetries
is lattice–dependent and only applies for injective PEPS, etc.

Last but not least, in [VGRC04] Matrix Product Operators were employed in
the study of locally describable quantum states at finite temperature. The obstacle
which must be tackled is, again, how to implement global properties in the local
tensor. Nonetheless, an answer to this question would open a new branch in the
study by means of tensor networks of quantum magnetism at non–zero temperature,
of the theory of phase transitions, or of statistical mechanics.

One can see that a great deal of research work still remains to be done indeed,
on both MPS and PEPS. The questions are undoubtedly very difficult, and perhaps
some of the answers to them even unattainable. In any case, they are undeniably
interesting and the research effort, which will certainly require an intensive collabora-
tive work between the quantum information and the condensed matter communities,
is well worth it.
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Sequential implementation of global quantum operations. Phys. Rev.
Lett., 101(18):180506, Oct 2008.

[LM66] E. H. Lieb and D. C. Mattis. Mathematical Physics in One Dimension.
Perspectives in Physics. Academic Press, Inc., Oct 1966.

[LMSS10] C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi. Ran-
dom quantum satisfiability. Quantum Inf. Comput., 10:0001, Jan
2010.

[LSM61] E. Lieb, T. Schultz, and D. Mattis. Two soluble models of an antifer-
romagnetic chain. Annals of Physics, 16(3):407–466, 1961.

[Maj70] C. K. Majumdar. Antiferromagnetic model with known ground state.
J. Phys. C, 3:911–915, Apr 1970.

[Mat61a] L. F. Mattheiss. Antiferromagnetic linear chain. Phys. Rev.,
123(4):1209–1218, Aug 1961.

[Mat61b] L. F. Mattheiss. Effective exchange integral. Phys. Rev., 123(4):1219–
1225, Aug 1961.

[Mat81] D. C. Mattis. The Theory of Magnetism I: Statics and Dynamics.
Springer-Verlag Berlin Heidelberg, Sep 1981.

[MdA05] R. A. C. Medeiros and F. M. de Assis. Quantum zero–error capacity.
Int. J. Quant. Inf., 3(1):135–139, 2005.

[MFG+10] R. Movassagh, E. Farhi, J. Goldstone, D. Nagaj, T. J. Osborne, and
P. W. Shor. Unfrustrated qudit chains and their ground states. Phys.
Rev. A, 82(1):012318, Jul 2010.

[MG69] C. K. Majumdar and D. K. Ghosh. On next–nearest–neighbor inter-
action in linear chain. I. Journal of Mathematical Physics, 10(8):1388–
1398, 1969.

[Mum95] D. Mumford. Algebraic Geometry I: Complex Projective Varieties,
volume Vol. I. Springer, Feb 1995.

[Mur90] G. J. Murphy. C∗–Algebras and Operator Theory. Academic Press,
Inc., Aug 1990.

[MVC09] V. Murg, F. Verstraete, and J. I. Cirac. Exploring frustrated
spin systems using projected entangled pair states. Phys. Rev. B,
79(19):195119, May 2009.

180



BIBLIOGRAPHY

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge Series on Information and the Natural
Sciences. Cambridge University Press, Oct 2000.

[Noe18] E. Noether. Invariante variationsprobleme. Nachr. D. König.
Gesellsch. D. Wiss. Zu Göttingen, Math-phys., pages 235–257, 1918.

[NS07] B. Nachtergaele and R. Sims. A multi–dimensional Lieb–
Schultz–Mattis theorem. Communications in Mathematical Physics,
276(2):437–472, Dec 2007.
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[VGRC04] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac. Matrix product
density operators: Simulation of finite-temperature and dissipative
systems. Phys. Rev. Lett., 93(20):207204, Nov 2004.

[Vid03] G. Vidal. Efficient classical simulation of slightly entangled quantum
computations. Phys. Rev. Lett., 91(14):147902, Oct 2003.

[Vid04] G. Vidal. Efficient simulation of one–dimensional quantum many–
body systems. Phys. Rev. Lett., 93(4):040502, Jul 2004.

[Vid07] G. Vidal. Entanglement renormalization. Phys. Rev. Lett.,
99(22):220405, Nov 2007.

[VMC08] F. Verstraete, V. Murg, and J. I. Cirac. Matrix product states, pro-
jected entangled pair states, and variational renormalization group
methods for quantum spin systems. Advances in Physics, 57(2):143–
224, 2008.

[VPC04] F. Verstraete, D. Porras, and J. I. Cirac. Density matrix renormaliza-
tion group and periodic boundary conditions: A quantum information
perspective. Phys. Rev. Lett., 93(22):227205, Nov 2004.

184



BIBLIOGRAPHY

[VT77] J. Vannimenus and G. Toulouse. Theory of the frustration effect.
II. Ising spins on a square lattice. Journal of Physics C: Solid State
Physics, 10(18), 1977.

[VWC09] F. Verstraete, M. M. Wolf, and J. I. Cirac. Quantum computation and
quantum–state engineering driven by dissipation. Nat Phys, 5(9):633–
636, 09 2009.

[VWPGC06] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac. Critical-
ity, the area law, and the computational power of projected entangled
pair states. Phys. Rev. Lett., 96(22):220601, Jun 2006.

[Wan50] G. H. Wannier. Antiferromagnetism. the triangular Ising net. Phys.
Rev., 79(2):357–364, Jul 1950.

[Whi92] S. R. White. Density matrix formulation for quantum renormalization
groups. Phys. Rev. Lett., 69(19):2863–2866, Nov 1992.

[Whi93] S. R. White. Density–matrix algorithms for quantum renormalization
groups. Phys. Rev. B, 48(14):10345–10356, Oct 1993.

[Wie50] H. Wielandt. Unzerlegbare, nicht negative Matrizen. Mathematische
Zeitschrift, 52(1):642–648, 12 1950.

[Wol09] M. M. Wolf. Quantum channels: http://www.nbi.dk/ wolf/notes.pdf,
Dec 2009.

[WOVC06] M. M. Wolf, G. Ortiz, F. Verstraete, and J. I. Cirac. Quantum
phase transitions in matrix product systems. Phys. Rev. Lett.,
97(11):110403, Sep 2006.

[ZJWZ10] J. Zang, H.-C. Jiang, Z.-Y. Weng, and S.-C. Zhang. Topological
quantum phase transition in an S = 2 spin chain. Phys. Rev. B,
81(22):224430, Jun 2010.

[ZZXL11] D. Zheng, G.-M. Zhang, T. Xiang, and D.-H. Lee. Continuous quan-
tum phase transition between two topologically distinct valence bond
solid states associated with the same spin value. Phys. Rev. B,
83(1):014409, Jan 2011.

185





Acknowledgment

Firstly, I would like to thank my supervisor J. Ignacio Cirac for the support and sugges-
tions with which he has facilitated the course of my doctoral studies. Among his many
remarkable features, I have profited greatly from two of them: the amazing capacity (ines-
timable for a Ph.D. student) to find out where the important questions are and how they
must be solved; and his invaluable lessons on self–control of my tendency to digress, with
which my future life will always be impregnated.

There are no enough words to express my gratitude to D. Pérez Garćıa and M. M. Wolf
for their infinite patience while explaining me any doubt that I had, and for always finding
time for discussions which have been a never–ending source of inspiration and motivation
in my work. But they are not only two outstanding scientists, but also two wonderful
people who have warmly received me every time that I have visited them and with whom
I will always be in debt.

I would also like to acknowledge the people who have contributed throughout these
years at the MPQ to improving my comprehension of quantum information and condensed
matter. I would like to heartily thank M. Aguado, H. H. Tu and M. C. Bañuls for the
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