
Technische Universität München

Max-Planck-Institut für Quantenoptik

Entanglement Dynamics in
Quantum Information Theory

Toby S. Cubitt
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Abstract

This thesis contributes to the theory of entanglement dynamics, that
is, the behaviour of entanglement in systems that are evolving with time.
Progressively more complex multipartite systems are considered, starting
with low-dimensional tripartite systems, whose entanglement dynamics can
nonetheless display surprising properties, progressing through larger networks
of interacting particles, and finishing with infinitely large lattice models.
Firstly, what is perhaps the most basic question in entanglement dynamics
is considered: what resources are necessary in order to create entanglement
between distant particles? The answer is surprising: sending separable states
between the parties is sufficient; entanglement can be created without it
being carried by a “messenger” particle. The analogous result also holds in
the continuous-time case: two particles interacting indirectly via a common
ancilla particle can be entangled without the ancilla ever itself becoming
entangled.

The latter result appears to discount any notion of entanglement flow.
However, for pure states, this intuitive idea can be recovered, and even
made quantitative. A “bottleneck” inequality is derived that relates the
entanglement rate of the end particles in a tripartite chain to the entanglement
of the middle one. In particular, no entanglement can be created if the middle
particle is not entangled. However, although this result can be applied
to general interaction networks, it does not capture the full entanglement
dynamics of these more complex systems. This is remedied by the derivation
of entanglement rate equations, loosely analogous to the rate equations
describing a chemical reaction. A complete set of rate equations for a system
reflects the full structure of its interaction network, and can be used to prove a
lower bound on the scaling with chain length of the time required to entangle
the ends of a chain.

Finally, in contrast with these more abstract results, the entanglement
and correlation dynamics of a specific spin model is analysed. It is shown
that, even when control over the system is limited to a small number of global,
external, physical parameters, remarkably precise control over the correlations
is still possible. They can be made to propagate in localized wave packets at
a well-defined correlation speed, whilst keeping dispersion to a minimum. By
varying the external parameters during the evolution, the propagation speed
can be adjusted, even to the extent of reducing it to zero. These results are
most conveniently derived in the fermionic Gaussian state formalism, and
this is described in some detail.
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Introduction

In the modern world of computers, telecommunication and the internet, there
can be no doubt that information plays a fundamental role in our daily lives.
Information theory, the theory underpinning these technological developments,
is founded on classical physics. However, the laws of classical physics are only
a crude approximation to the laws of nature; quantum mechanics provides a
more accurate description. Quantum information theory marries these two
fields, building a theory of information on a foundation of quantum mechanics.
Of course, it includes classical information theory as a special case, but it also
includes new concepts that have no classical counterpart. And these facilitate
tasks that would be impossible if restricted to classical information theory.
Currently, the two most compelling applications of quantum information are
in the fields of cryptography and computation. Certain computational tasks,
such as factoring large numbers [Shor, 1997] or simulating quantum systems
[Feynman, 1982], can be carried out exponentially faster using a quantum
computer than using the fastest known algorithm running on a classical
computer. Communication that is provably secure against any eavesdropping
is possible in the quantum world [Gisin et al., 2002], whereas the security
of classical cryptographic protocols relies on the assumption that certain
mathematical problems are computationally intractable. In fact, the security
of the most common public-key crypto-systems relies on the computational
difficulty of precisely those tasks that can be solved efficiently on a quantum
computer! Fortunately, quantum cryptography, which is immune to such
attacks, is technologically far easier to implement than quantum computation.

A leitmotiv running through much of quantum information theory is
the concept of entanglement. Quantum cryptographic protocols can be
constructed based on distribution of entangled states [Ekert, 1991], and a
number of the security proofs for more practical quantum cryptographic
schemes invoke entanglement [Nielsen and Chuang, 2000, Section 12.6]. A
quantum computer running Shor’s factorization algorithm generates a large
amount of entanglement between the different qubits it contains. Indeed,
if an algorithm does not engender the creation of entanglement, it can be
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INTRODUCTION

simulated efficiently on a classical computer, and a quantum computer is of
no benefit [Vidal, 2003].

The concept of entanglement, and indeed the coining of the word itself,
dates back to the origins of quantum mechanics [Schrödinger, 1935, 1936].
But quantum information theory has provided a new perspective on entan-
glement: no longer “spooky” quantum phenomenon [Einstein et al., 1935]
but quantifiable resource. Much like energy or entropy, entanglement can be
exploited in order to carry out information processing tasks, such as quantum
teleportation [Bennett et al., 1993]) or cryptography [Ekert, 1991]. There is
now a vast literature on entanglement theory. Entanglement of bipartite, pure
quantum states is well understood [Nielsen and Chuang, 2000, Section 12.5],
and provides a framework for studies of entanglement in more complex sys-
tems. However, many basic questions remain unanswered. Even the most
basic of all, that of determining whether a given quantum state is entangled
or not, is as yet unsolved in the general case.

The majority of the work in entanglement theory has concentrated on
its static properties; the entanglement properties of fixed quantum states.
The study of the dynamic behaviour of entanglement is inevitably more
difficult; static properties must be understood before any attempt can be
made to understand the behaviour of entanglement in quantum systems that
are evolving in time. Nonetheless, with the tools of modern entanglement
theory, it is now possible to tackle some of these questions. This thesis
contributes to the nascent theory of entanglement dynamics. The questions
considered in successive chapters involve increasingly complex multipartite
systems, starting from low-dimensional tripartite systems and finishing with
infinitely large lattice models. In the following, we give an overview of this
progression.

We start in Chapter 1 with what is perhaps one of the most basic of
entanglement dynamics questions: how can entanglement be created between
two spatially separated particles? The scenario can be phrased in terms of
two parties who, following a long tradition, we will call Alice and Bob. They
each have a particle, and they would like to entangle the two, but the particles
are too far apart to interact directly. Since, by definition, local operations
and classical communication can not create entanglement, and the particles
can not interact directly, it is clearly necessary for Alice and Bob to use
quantum communication. One obvious solution is for Alice to entangle her
particle with a “messenger” particle and send the latter to Bob, who can
then exchange it for his particle. In this way, the messenger particle carries
the entanglement from Alice to Bob. Is it necessary to send an entangled
messenger? Surprisingly, we will show that it is not: Alice and Bob can
generate entanglement by sending only unentangled messenger particles. To
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INTRODUCTION

show this, we start by proving an equivalent result for a system of two particles
interacting with a common ancilla. Starting from a fully separable state,
the particles can be entangled without the ancilla ever becoming entangled.
This continuous-time result immediately implies the existence of a discrete
protocol in which only unentangled messenger particles are sent. We then
give an explicit example of such a protocol, and finally extend this via the
Jamiolkowski isomorphism to an analogous result for quantum channels. (The
results of this chapter are published in Cubitt et al. [2003].)

The continuous-time result of Chapter 1 forces us to abandon any notion
of entanglement flowing through particles. Yet the results rely heavily on
the entanglement properties of mixed states. If the system is restricted to
pure states, the effect is easily shown to be impossible; if the overall system
state is pure and the ancilla is not entangled with the other particles, no
entanglement can be generated. This suggests that, for pure states, an
unentangled ancilla acts as a bottleneck to entanglement flow. In Chapter 2,
we make the concept of entanglement bottlenecks quantitative. Starting with
a three-qubit chain, the simplest tripartite system, we derive a bottleneck
inequality that relates the rate of entanglement generation between the end
qubits to the entanglement of the middle qubit. To generalize this to all
tripartite systems, we face the problem that, whilst the overall state may be
pure, the reduced state of the two end particles will in general be mixed. And
it is not known how to determine whether a mixed state of a general bipartite
system is entangled or not, let alone quantify that entanglement (this has only
been solved in the special case of two qubits). For that reason, we introduce
the entanglement fidelity, a quantity that, whilst not an entanglement measure
in the strict sense, is physically motivated and gives significant insight into
entanglement properties. This allows us to prove a very similar bottleneck
inequality for general tripartite chains, but in terms of the entanglement
fidelity. (Both these bottleneck results can be found in Cubitt et al. [2005].)

The general bottleneck inequality can be applied to a far wider range of
systems than merely tripartite chains. Any multipartite system in which the
particles do not all interact directly with each other can be divided into three
subsystems, such that one subsystem mediates all interactions between the
other too. The bottleneck inequality then implies that the entanglement of
this mediating system limits the rate of entanglement generation between the
other two. Nonetheless, there are a number of reasons why this is not wholly
satisfying. Firstly, as seen from the results of Chapter 1, the argument does
not apply to systems in mixed states. And secondly, the internal structure of
the subsystems (that is, the interactions between particles grouped within
the same subsystem) is ignored.

Chapter 3 addresses these defects, and establishes a quantitative concept

5



INTRODUCTION

of entanglement flow for completely general systems of interacting particles.
The motivation comes from the rate equations that describe complex chemical
reactions. Each step in the reaction mechanism can be described quantitatively
by a differential equation, relating the concentrations of reactants to the rate
at which product compounds are created. The structure of the complete
reaction pathway is therefore captured mathematically by a set of coupled
differential equations. We derive an analogous entanglement rate equation,
relating the derivative of the entanglement fidelity of any subsystem to the
entanglement fidelity one step back along the interaction network. Thus
the complete set of entanglement rate equations for a system captures the
full structure of its interaction network. Moreover, the results apply equally
well to mixed and pure states. (The results on entanglement flow are also
published in Cubitt et al. [2005].)

As a demonstration of the utility of the rate equations, we analyse two
very different protocols for generating entanglement between the ends of a
spin chain, and see that the entanglement fidelities appearing in the rate
equations indeed reflect the different ways in which the two protocols generate
entanglement. We then use the rate equations to prove a universal lower
bound on the time required to entangle the ends of a spin chain or, more
precisely, the scaling of that time with the length of the chain. Subsequent to
this work being published, a tighter bound was proven [Bravyi et al., 2006],
and it remains an interesting topic for future research to determine whether
the inequalities appearing in the rate equations can be improved upon.

In contrast to the general and more abstract results of the other chapters,
Chapter 4 considers a specific, simple spin model: the XY–model, extensively
studied in condensed matter physics. One motivation for studying entan-
glement dynamics in such systems is that they provide a simple physical
model of a quantum repeater [Briegel et al., 1998, Dür et al., 1999a], a device
used to distribute entanglement over long distances. Various aspects of the
correlation dynamics of the XY–model have been analysed before. But, in
contrast to previous work, and motivated by the quantum repeater connection,
we investigate to what extent the correlation dynamics can be controlled and
engineered using only the two simple, physical parameters that appear in
the translationally invariant Hamiltonian. By calculating analytically the
time-evolution of two-point correlation functions, we find that the correla-
tion dynamics takes the form of wave-packets, propagating according to the
dispersion relation given by the system spectrum. This simple wave-packet
description allows us to show that correlations can be made to propagate in
localized packets, at a well-defined correlation velocity. Indeed, the system
parameters allow the correlation velocity to be engineered as desired and, by
changing the parameters as the system evolves, increased and decreased as
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INTRODUCTION

the correlations propagate. By “quenching” the system, correlations can even
be frozen once they have reached a desired location. (These results can be
found in Cubitt and Cirac [2006a,b].)

The XY Hamiltonian studied in Chapter 4 is diagonalized by mapping
it to a fermionic model, a standard result from condensed matter physics
[Lieb et al., 1961]. This fermionic model is quadratic in terms of the creation
and annihilation operators. Were it a bosonic model, it would be most
conveniently analysed in the Gaussian state formalism, as commonly used
in quantum optics. Although it has not been as extensively studied, it is
possible to develop a fermionic Gaussian state formalism. This is carried out
in Appendix A. Although a number of the results are not new and can be
found in the literature (especially those concerning Grassmann algebra and
fermionic coherent states; see Cahill and Glauber [1999], Simons [2001]), we
include them here as they are not widely known, and are needed in order to
develop the fermionic Gaussian state formalism used to derive the results of
Chapter 4. (Cubitt and Cirac [2006b] includes a more concise treatment of
these results.)
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Chapter 1

Distributing Entanglement
Using Separable States

In this chapter, we will consider what is perhaps one of the most basic
questions in the theory of entanglement dynamics: how can entanglement be
created between two spatially-separated particles? More concretely, if Alice
and Bob each possess a particle, what steps are necessary in order to entangle
the two particles if they are too far apart to interact directly?

It is clear they must exchange quantum information. One obvious solution
is for Alice to send half of an entangled pair to Bob. This “messenger” particle
would then carry the entanglement from Alice to Bob. But is it necessary to
send an entangled messenger?

A similar question can be posed in a slightly different scenario. Consider
two particles that do not interact directly with each other, but interact with
the same ancilla particle, so that interactions can be mediated by the ancilla.
How entangled must the mediating particle become in order to transmit
entanglement between the two particles?

In the following, we will give a rather surprising answer to these questions:
entanglement can be created between Alice and Bob by sending a messenger
particle that is not entangled with any other particle. Or, in the continuous
setting, entanglement can be created between two particles interacting with a
common ancilla that remains in a separable state at all times.

Although the result perhaps appears more surprising in the discrete setting,
the continuous setting gives rise to the stronger result. The particle mediating
the interactions must remain unentangled throughout the evolution, whereas
the messenger particle is only required to be unentangled after each step in
the discrete process. Moreover, by rewriting the continuous evolution in terms
of the Trotter decomposition, the continuous result immediately implies the
corresponding discrete result.

9



1.1. PHYSICAL MOTIVATION

Therefore, we will first consider the continuous setting, giving a physical
motivation for the result in Section 1.1, before providing a rigorous proof in
Section 1.2. By considering the entanglement properties of the states produced
during the evolution, we will gain more insight into this counter-intuitive
result, leading in Section 1.3 to an explicit example of a discrete procedure
involving only a single transfer of a messenger particle. Finally, in Section 1.4,
we will consider an analogous result for quantum channels rather than states.

1.1 Physical Motivation

Before giving rigorous proofs of the results in this chapter, it is useful to gain
some physical insight into how this might occur.

B

C

A

Figure 1.1: Particles A and B interact continuously with the same mediating particle C
(blue lines), inducing a virtual interaction between A and B themselves (red line). For
certain initial states, C remains separable from A and B at all times during the evolution
of the system, yet at the end A and B are strongly entangled.

We will model the system by two particles, A and B, both interacting
with the same ancilla particle, C, but not directly with each other (Fig. 1.1).
If we restrict ourselves to pure states, the claimed effect is impossible: to
entangle A and B, C must become entangled with them. This can be seen by
looking at the infinitesimal change of a pure, separable state |a〉 |b〉 |c〉 under
the action of a Hamiltonian of the form HAC⊗1B +1A⊗HBC . The condition
that the ancilla remains separable after an infinitesimal time δt is(

1+ δt(HAC +HBC)
)
|a〉 |b〉 |c〉 =

(
|a〉 |b〉+ δt |ψab〉

)(
|c〉+ δt |ψc〉

)
(1.1)

where |ψab〉 and |ψc〉 are unnormalized states. The state |a〉 |b〉 + δt |ψab〉
is entangled to first order in δt if and only if |ψab〉 has a non-vanishing
component 〈a⊥, b⊥|ψab〉 for some |a⊥〉 , |b⊥〉 orthogonal to |a〉 , |b〉. However,
multiplying the above equation by 〈a⊥| 〈b⊥| and tracing over the ancilla gives
〈a⊥, b⊥|ψab〉 = 0.

10



CHAPTER 1. DISTRIBUTING ENTANGLEMENT

Let us however consider the evolution from a more physical perspective,
which will give insight into how the entanglement of the ancilla is related
to the entanglement that can be transmitted. Physically, the ancilla has a
spectrum of energy levels corresponding to the eigenstates of its Hamiltonian.
Imagine that the interactions with particles A and B couple eigenstates of
the ancilla, and imagine that the interactions are weak, so that transitions
between energy levels are virtual. The most significant processes in the
evolution of the system are then second-order virtual transitions of C from an
energy level back to itself, accompanied by an effective interaction between A
and B. If the ancilla starts in an energy eigenstate, the virtual transition will
leave it in the same eigenstate, not entangled with A or B. It will become
entangled due to less significant higher-order processes, but that entanglement
will be weak. Particles A and B, however, can become strongly entangled
by the effective interaction if it lasts a long time, and we have a situation
close to the the claimed one: A and B can become entangled while the ancilla
remains almost separable.

But assume now that there is noise in the system, which can be modelled by
mixing the quantum states with the maximally mixed state. Mixing a barely
entangled state with an amount of noise proportional to the entanglement
destroys the entanglement ([Braunstein et al., 1999, Vidal and Tarrach, 1999]).
We can therefore add a sufficiently large weight of the maximally mixed state to
remove the weak entanglement with the ancilla due to higher-order processes,
but not so large that it destroys the strong entanglement between A and B
built up by the leading-order processes. Thus, if mixed states are considered,
the desired effect seems to be possible.

1.2 Continuous Case

1.2.1 System and Hamiltonian

In a number of the physical systems used for quantum information processing,
the qubits do not interact directly with each other. Rather, all qubits interact
with a common bosonic mode that is used as a “data bus” to transmit
information between them. For example, in the original ion trap quantum
computation scheme ([Cirac and Zoller, 1995]), internal states of the ions play
the role of the qubits, and the data bus consists of the collective vibrational
modes of the trapped ions. Or, in cavity-QED experiments, atoms interact
via the cavity mode.

Motivated by these, we consider a simplified system in which the bosonic
mode has been truncated to a qutrit C, and only two qubits A and B are

11



1.2. CONTINUOUS CASE

present, each interacting weakly with the ancilla qutrit. The Hamiltonian is
then given by

H = c†c⊗ 1AB +
ε

2

(
c+ c†

)
⊗ (σxA + σxB) , (1.2)

where

c = |0〉〈1|C +
√

2 |1〉〈2|C (1.3)

is the “annihilation” operator in the truncated Hilbert space of the ancilla,
so that

c†c = |1〉〈1|C + 2 |2〉〈2|C , (1.4)

and ε characterizes the strength of the interaction. The interactions couple
energy levels of the ancilla, as described in the previous section, and are weak
if ε is small.

Although we could in principle diagonalize the Hamiltonian and calculate
the evolution operator exactly, this would give little insight into the physics
of the system, and would in any case be of little use. The analysis in the
previous section shows that we must consider mixed states of the system, and
it is not known how to even determine whether such a state is entangled or
not in Hilbert spaces of dimension larger than six. Motivated by the previous
discussion, we are interested in the leading-order evolution (and how much the
true evolution deviates from it), so we turn instead to perturbation theory.

The Hamiltonian operates in four invariant subspaces, given by projecting
on the eigenstates |±〉= (|0〉+ |1〉)/

√
2 of the σx operators:

H = H+
C ⊗ P++

AB +H0
C ⊗

(
P+−
AB + P−+

AB

)
+H−

C ⊗ P−−
AB , (1.5)

where

H0 = c†c, H± = c†c± ε(c+ c†), (1.6)

and the P’s denote projectors on the two-qubit states indicated by their
superscripts. The evolution operator, then, can be written as a direct sum of
operators on these spaces:

U = e−iH
+t ⊕ e−iH

0t ⊕ e−iH
0 ⊕ e−iH

−t. (1.7)

Expanding H± using standard perturbation theory, we have

e−iH
±t = e−iDt +O(ε4t) +O(ε), (1.8)

where

D = diag(−ε2, 1− ε2, 2 + 2ε2) (1.9)

12



CHAPTER 1. DISTRIBUTING ENTANGLEMENT

is the matrix of eigenvalues of H± approximated to leading-order (in fact
accurate to third order since all odd-order terms vanish in this particular case).
The O(ε4t) term arises from higher-order perturbations of the eigenvalues,
the O(ε) term from perturbation of the eigenstates. Note that perturbations
to the eigenvalues of the Hamiltonian are exponentiated in the evolution
operator and accumulate over time, whereas perturbations to the eigenvectors
do not.

From Eq. (1.8), and using Eq. (1.7) for the evolution operator, we can
approximate the evolution operator by

U = Ueff +O(ε4t) +O(ε), (1.10)

where

Ueff = e−iDt ⊕ e−iH0t ⊕ e−iH0t ⊕ e−iDt. (1.11)

How do states evolve under Ueff? If we start the ancilla C in an eigenstate
of Ueff , its state remains unchanged up to a global phase, and can not become
entangled with A and B. If A and B start in a superposition of eigenstates
of Ueff , the |+ +〉 and | − −〉 portions acquire a phase difference relative

to the |+−〉 and | −+〉 portions (e−2iε2t if the ancilla is in the |2〉 state,

eiε
2t otherwise, recalling the expressions for D and H0). Thus the effective

interaction generates a controlled phase gate between qubits A and B, so that
these can become highly entangled for times of order 1/ε2, even though the
ancilla remains separable at all times. In the limit of small ε, the evolution of
the system will be “close” to evolution under Ueff . In the next section, we
give a rigorous analysis of what is meant here by “close”.

1.2.2 Bound on the Approximate Evolution

The true evolution under U deviates from that under Ueff due to the higher-
order terms in Eq. (1.10), and will entangle the ancilla if the system starts in
a pure state. To show that a small amount of noise is sufficient to remove this
entanglement whilst leaving A and B highly entangled, we must bound this
deviation at times t = O(1/ε2) to O(ε). That is, we must bound the deviation
between what we would get if the system evolved under Ueff , and what we do
get when the system evolves under U . Comparing U in Eq. (1.7) with Ueff in
Eq. (1.11), we will therefore need to bound the matrix norm ‖e−iH±t− e−iDt‖.

Define X to be the matrix of eigenvectors of H± approximated to third
order in ε, and recall that D was defined to be the matrix of eigenvalues
approximated to second order (accurate up to third order), so that H±X =

13



1.2. CONTINUOUS CASE

XD +O(ε4). By standard perturbation theory,

D =

−ε2 0 0
0 1− ε2 0
0 0 2 + 2ε2

 (1.12a)

X =

 1 ε+ ε3 ε2/
√

2

−ε 1 (2ε− 3ε3)/
√

2

ε2/
√

2 −
√

2ε+
√

2ε3 1

 . (1.12b)

Using the triangle inequality, we have

‖e−iH±t−e−iDt‖ ≤ ‖e−iH±t−Xe−iDtX−1‖+
∥∥Xe−iDtX−1 − e−iDt

∥∥ . (1.13)

Since both X and D are accurate to third order in ε, the first term will be of
order ε4t, whereas, as eigenvalues are invariant under similarity transforma-
tions and X = 1+O(ε), the second term will be of order ε. Equation (1.13)
therefore separates the deviation into a term that is dominated by perturba-
tions of the eigenvalues, and one that is dominated by perturbations of the
eigenvectors.

To bound the first term of Eq. (1.13), we will use two standard theorems
from linear algebra.

Theorem 1.1 (Matrix Inverse Norm Bound)
For an invertible matrix A,

∥∥A−1
∥∥ =

∥∥(1− (1− A))−1
∥∥ ≤ 1

1− ‖1−X‖
(1.14)

Proof See Golub and van Loan [1996, Section 2.3.4]. �

Theorem 1.2 (Matrix Exponential Integral Identity)
For matrices A and B, the difference of their exponentials can be written

e−iAt − e−iBt =

∫ t

0

ds e−iB(t−s) (A−B) e−iAs. (1.15)

Proof See Golub and van Loan [1996, Section 11.3.2]. �

Applying these to the first term in Eq. (1.13), we can obtain an upper bound.

14



CHAPTER 1. DISTRIBUTING ENTANGLEMENT

Lemma 1.3 (Matrix Norm 1)
For any Hermitian matrices H± and D, an arbitrary matrix X, and any
unitarily invariant norm,∥∥∥e−iH±t −Xe−iDtX−1

∥∥∥ ≤ ‖X‖
(1− ‖1−X‖)2

∥∥H±X −XD
∥∥ t. (1.16)

With H±, D and X given by Eq. (1.6), Eq. (1.12a) and Eq. (1.12b), this
bound is of order ε4t.

Proof Using Theorems 1.1 and 1.2,∥∥∥e−iH±t −Xe−iDtX−1
∥∥∥

≤
∫ t

0

ds
∥∥∥Xe−iD(t−s)X−1

(
H± −XDX−1

)
e−iH

±s
∥∥∥ (1.17a)

≤
∫ t

0

ds ‖X‖
∥∥X−1

∥∥∥∥H± −XDX−1
∥∥ (1.17b)

≤
∥∥X−1

∥∥2 ‖X‖
∥∥H±X −XD

∥∥ t (1.17c)

≤ ‖X‖
(1− ‖1−X‖)2

∥∥H±X −XD
∥∥ t. (1.17d)

Note that we have used the unitary invariance of the norm in Eq. (1.17b).
Since H±X = XD +O(ε4), this bound is of order ε4t, as claimed. �

We also need to bound the second term of Eq. (1.13).

Lemma 1.4 (Matrix Norm 2)
For 3× 3 matrices D and X, with D diagonal,∥∥Xe−iDtX−1 − e−iDt

∥∥
≤ 2 (d2

3 − d2
1) ‖XD −DX‖+ 2 (d3 − d1) ‖XD2 −D2X‖

|∆| (1− ‖1−X‖)2
. (1.18)

With D and X given by Eq. (1.12a) and Eq. (1.12b), this bound is of order ε
independent of t.

Proof We begin by noting that a matrix satisfies its own characteristic
equation, giving an equation for the nth power of the matrix in terms of lower
powers (where n is the dimension of the matrix). By repeated substitution
of this relation, we can reduce the (infinite-order) series expansion for the
matrix exponential to a polynomial of order n− 1.
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1.2. CONTINUOUS CASE

For the 3× 3 matrix D, we have

e−iDt = c2(t)D
2 + c1(t)D + c0(t)1 (1.19)

which, since D is diagonal, we can rewrite ase−id1te−id2t

e−id3t

 =

1 d1 d2
1

1 d2 d2
2

1 d3 d2
3

c0(t)c1(t)
c2(t)

 (1.20)

where di are the entries of D in increasing order. Inverting the Vandermonde
matrix appearing in this relation givesc0(t)c1(t)

c2(t)

 =
1

∆

d2
2d3 − d2

3d2 d2
3d1 − d2

1d3 d2
1d2 − d2

2d1

d2
3 − d2

2 d2
1 − d2

3 d2
2 − d2

1

d2 − d1 d3 − d1 d1 − d2

e−id1te−id2t

e−id3t

 (1.21)

where ∆ = d2
1(d2 − d3) + d2

2(d3 − d1) + d2
3(d1 − d2) is the determinant of the

Vandermonde matrix.
We bound the c1 and c2 by assuming the exponentials sum in phase, giving

sup
t
|c1(t)| ≤

2

|∆|
(
d2

3 − d2
1

)
(1.22a)

sup
t
|c2(t)| ≤

2

|∆|
(d3 − d1) . (1.22b)

(These bounds are tight, since in general there is no reason to assume the di
will be commensurate.)

Finally, using Eqs. (1.19) and (1.22) and Theorem 1.1, we obtain the
following bound on the second term of Eq. (1.13):∥∥Xe−iDtX−1 − e−iDt

∥∥
≤
∥∥X−1

∥∥∥∥Xe−iDt − e−iDtX
∥∥ (1.23a)

=
∥∥X−1

∥∥∥∥X (c2(t)D2 + c1(t)D
)
−
(
c2(t)D

2 + c1(t)D
)
X
∥∥ (1.23b)

≤ 2 (d2
3 − d2

1) ‖XD −DX‖+ 2 (d3 − d1) ‖XD2 −D2X‖
|∆| (1− ‖1−X‖)

. (1.23c)

Since X = 1+O(ε), this is of order ε at all times, as claimed. �

We are now in a position to give a bound on the divergence of the
approximated evolution of a state ρ under Ueff from the exact evolution under
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CHAPTER 1. DISTRIBUTING ENTANGLEMENT

U . We can express the time-evolution of the system as

UρU † = UeffρU
†
eff + κεE, (1.24a)

κ =
1

ε

∥∥UρU † − UeffρU
†
eff

∥∥, (1.24b)

where the operator E is Hermitian and has Tr[E] = 0 to ensure that the
right hand side is a valid density matrix, and we have absorbed its norm into
the factor κ, so that ‖E‖ = 1. (We have included the factor of 1/ε in the
definition of κ for later convenience.)

Now,

∥∥UρU † − UeffρU
†
eff

∥∥
≤
(∥∥U − Ueff

∥∥+
∥∥U † − U †

eff

∥∥+
∥∥U − Ueff

∥∥∥∥U † − U †
eff

∥∥) ‖ρ‖ . (1.25)

Recalling the forms of U and Ueff from Eq. (1.7) and eqrefeq:messenger:Ueff,
and using Eq. (1.13), we have∥∥U − Ueff

∥∥ =
∥∥U † − U †

eff

∥∥ (1.26a)

≤
∥∥e−iH+t − e−iDt

∥∥+
∥∥e−iH−t − e−iDt

∥∥ (1.26b)

≤ 2
(∥∥e−iH±t −Xe−iDtX−1

∥∥+
∥∥Xe−iDtX−1 − e−iDt

∥∥) (1.26c)

= 2Q, (1.26d)

defining, for notational convenience,

Q =
∥∥e−iH±t −Xe−iDtX−1

∥∥+
∥∥Xe−iDtX−1 − e−iDt

∥∥. (1.27)

The norms on the right hand side are already bounded by Lemma 1.3 and
Lemma 1.4, respectively. Using Eq. (1.25) in Eq. (1.24b) defining κ (the error
in approximating evolution of a state under U by evolution under Ueff), we
have

κ ≤ 1

ε

(∥∥U − Ueff

∥∥+
∥∥U † − U †

eff

∥∥+
∥∥U − Ueff

∥∥∥∥U † − U †
eff

∥∥) (1.28a)

=
1

ε

∥∥U − Ueff

∥∥(2 +
∥∥U − Ueff

∥∥) (1.28b)

≤ 4Q

ε

(
1 +Q

)
. (1.28c)
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1.2.3 Analysis of the Exact Evolution

We now consider the exact evolution of the initial state

ρ =
1

(1 + α)2

(
|0〉〈0|A + α

1A

2

)
⊗
(
|0〉〈0|B + α

1B

2

)
⊗ 1C

3
(1.29a)

=
1

(1 + α)2

(
ρ0 + αρa + αρb + α2 1ABC

12

)
, (1.29b)

with

ρ0 = |00〉〈00|AB ⊗
1C

3
, (1.30a)

ρa = |0〉〈0|A ⊗
1BC

6
, (1.30b)

ρb = |0〉〈0|B ⊗
1AC

6
. (1.30c)

Note that ρ is not only completely separable, it also contains no classical
correlations.

We now fix the matrix norm we have been using throughout to be the
trace norm, defined as the sum over the singular values, so that ‖ρ‖Tr = 1
for any density matrix ρ. As it only depends on the singular values, the
trace norm is unitarily invariant, as assumed in Lemma 1.3. Under the exact
evolution, using Eq. (1.24) for the evolution of a state under U in terms of
Ueff and an approximation error, we then have

UρU † =
1

(1 + α)2

(
Ueffρ0U

†
eff + κ0εE0 + α

(
UeffρaU

†
eff + κaεEa

)
+ α

(
UeffρbU

†
eff + κbεEb

)
+ α21

ABC

12

)
.

(1.31)

The ancilla C is in a mixture of eigenstates of H0 (Eq. (1.6)) so, from the
discussion in Section 1.1, we expect it to remain separable under evolution
by Ueff , whereas the qubits A and B may become entangled. Indeed, at time
t = 2π/3ε2, the reduced state of the qubits

TrC

[
UeffρU

†
eff

]
=

1

4

(
|+ +〉− 1 +

√
3i

2

(
|+−〉+ | −+〉

)
+ | − −〉

)
(1.32)

is a pure entangled state.
To proceed, we will need to turn the terms containing E’s in Eq. (1.31) into

valid density operators, which we will do by combining them with parts of the
other terms. As eigenvalues are invariant under unitary transformations, both
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CHAPTER 1. DISTRIBUTING ENTANGLEMENT

Uρ0U
† and Ueffρ0U

†
eff are rank 3, with the same three non-zero eigenvalues

+1
3
. From Lemmas 1.3 and 1.4, κ is of order 1 for times of order 1/ε2. By

the following perturbation theorem on eigenvalues of Hermitian matrices, we
can choose ε small enough that adding κεE0 to Ueffρ0U

†
eff can not change its

range.

Theorem 1.5 (Hermitian Eigenvalue Perturbation)
If A and B are Hermitian, and if λ1 ≤ λ2 ≤ · · · ≤ λn and λ′1 ≤ λ′2 ≤ · · · ≤ λ′n
are the ordered eigenvalues of A and A+B respectively, then |λ′k−λk| ≤ ρ(B)
where ρ(B) is the spectral radius of B.

Proof See Horn and Johnson [1985, Section 6.3]. �

This implies that the range of E0 must be contained in the range of Ueffρ0U
†
eff .

The most negative E0 consistent with Tr[E0] = 0 and ‖E0‖Tr = 1 has two
non-zero eigenvalues ±1

2
. Therefore, the Hermitian operator

ρE0 = Ueffρ0U
†
eff +

2

3
E0 (1.33)

is guaranteed to be positive and has unit trace, i.e. it is a density operator.

By similar arguments, the operators

ρEa/b
= Ueffρa/bUeff +

1

3
Ea/b (1.34)

are also density operators. We can then rewrite Eq. (1.31) describing the
evolution of our initial state as

UρU † =
1

(1 + α)2

((
1− 3

2
κε

)
Ueffρ0U

†
eff + α(1− 3κε)Ueff(ρa + ρb)U

†
eff

+

(
3

2
+ 6α

)
κερE + α21

ABC

12

)
,

(1.35)

where we have incorporated ρE0 , ρEa and ρEb
into a single density operator

ρE.

We must ensure that the ancilla C is separable at all times. As the
terms of Eq. (1.35) involving ρ0, ρa and ρb are already separable in the
C|AB partition, all that is required is to ensure that the term involving ρE is
similarly separable. We make use of the following theorem on the robustness
of entanglement:
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Theorem 1.6 (Entanglement Robustness Bound)
Given a state ρ on an N -partite Hilbert space of total dimension d, the state

1

1 + s

(
ρ+ s

1

d

)
(1.36a)

with

s ≥
(

1 +
d

2

)N−1

− 1 (1.36b)

is completely separable.

Proof See Vidal and Tarrach [1999, Eq. (C8)]. �

This allows us to derive a sufficient condition for the state ρE of Eq. (1.35) to
be made separable in the C|AB partition when it is mixed with the identity.
We have N = 2 and d = 12, so from Theorem 1.6 we require s ≥ 6. From
Eq. (1.35), we have

s =
α2(

3
2

+ 6α
)
κε
. (1.37)

This implies the following result:

Result 1.7 (Ancilla Separability Condition)
The inequality

ε ≤ α2

(1 + 4α)9κ
(1.38)

is a sufficient condition for the time-evolved state UρU † of Eq. (1.35) to be
separable in the C|AB partition.

Finally, we must ensure that the reduced state of the qubits A and
B, namely TrC [UρU †], contains a finite amount of entanglement at time
t = 2π/3ε2. The following theorem relates the entanglement robustness of a
two-qubit state to its entanglement fidelity.

Theorem 1.8 (Entanglement Robustness and Fidelity)
Given a two-qubit entangled state ρ and any other two-qubit state ρs, the state

(1− s)ρ+ sρs (1.39)

is entangled provided
s < 1− 1

2F (ρ)
, (1.40)

where the entanglement fidelity F (ρ) = maxφ 〈φ| ρ |φ〉, with the maximization
taken over all maximally entangled states |φ〉.
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Proof See Verstraete and Verschelde [2003]. �

Define ρAB to be the reduced state of the qubits excluding the term
involving ρE in Eq. (1.35). With ρAB playing the role of ρ and ρE playing that

of ρs in Theorem 1.8, we have s = 3/2+6α
(1+α2)

from Eq. (1.35), and the sufficient
condition for ρAB to be entangled becomes an inequality relating ε and α:(

3
2

+ 6α
)
κε

(1 + α)2
< 1− 1

2F (ρAB)
. (1.41)

If we substitute any lower bound on the entanglement fidelity F in
Eq. (1.41), we obtain a tighter bound on α that is certainly still suffi-
cient. Calculating the fidelity with the particular maximally entangled state
|φ〉= 1

4
(|+ +〉+ i |+−〉+ i | −+〉+ | − −〉), we can bound

F (ρAB) ≥ 1

N

((
1− 3

2
κε
)1 +

√
3

2

2
+ 2α

(
1− 3κε

)1 +
√

3
2

4
+
α2

4

)
, (1.42a)

N = 1− 3

2
κε+ 2(1− 3κε)α+ α2. (1.42b)

Equation (1.41), together with Eq. (1.42), then gives the following result:

Result 1.9 (Qubit Entanglement Condition)
The inequality (

3
2

+ 6α
)
κε

(1 + α)2
< 1− 1

2F
, (1.43)

with

F =
1

N

((
1− 3

2
κε
)1 +

√
3

2

2
+ 2α

(
1− 3κε

)1 +
√

3
2

4
+
α2

4

)
, (1.44a)

N = 1− 3

2
κε+ 2(1− 3κε)α+ α2 (1.44b)

is a sufficient condition for the state TrC [UρU †] of qubits A and B to be
entangled.

1.2.4 Creating Entanglement Without Entangling

Results 1.7 and 1.9, together with the bounds in Lemmas 1.3 and 1.4, give
sufficient conditions for the ancilla to remain separable and the qubits to
become entangled. Thus, if both these conditions can be satisfied, we can
achieve the desired result.

The trace norm involved in these results is inconvenient to calculate, so
we will instead bound it by the Hilbert-Schmidt norm.
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1.2. CONTINUOUS CASE

Lemma 1.10 (Trace and Hilbert-Schmidt Norms)
For any d× d matrix M ,

‖M‖tr ≤
√
d ‖M‖HS (1.45)

where ‖M‖tr and ‖M‖HS denote the trace and Hilbert-Schmidt norms of M ,
which can be expressed in terms of the singular values σi of M :

‖M‖tr =
∑
i

σi (1.46)

‖M‖HS =
∑
i,j

Mij =

√∑
i

σ2
i . (1.47)

Proof Ordering the singular values σ1 ≥ σi ≥ · · · ≥ σd,

‖M‖2
tr =

∑
i,j

σiσj = d
∑
i

σ2
i − (d− 1)

∑
i

σ2
i + 2

∑
i<j

σiσj (1.48a)

= d
∑
i

σ2
i −

∑
i<j

(σi − σj)
2 ≤ d

∑
i

σ2
i (1.48b)

= d ‖M‖2
HS . (1.48c)

�

To summarize, gathering all the results together, and using Lemma 1.10
to bound trace norms by Hilbert-Schmidt norms, we require both that

ε ≤ α2

(1 + 4α)9κ
(1.49a)

κ =
4

ε
(N1 +N2)(1 +N1 +N2) (1.49b)

N1 =

√
3 ‖X‖HS

(1− ‖1−X‖HS)
2

∥∥H±X −XD
∥∥

HS
t (1.49c)

N2 =
2
√

3 (d2
3 − d2

1) ‖XD −DX‖HS + 2
√

3 (d3 − d1) ‖XD2 −D2X‖HS

|∆| (1− ‖1−X‖HS)
2

(1.49d)

∆ = d2
1(d2 − d3) + d2

2(d3 − d1) + d2
3(d1 − d2) (1.49e)

to ensure that the ancilla C remains separable at all times (the factors of
√

3
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arise from Lemma 1.10), and that at the same time

(
3
2

+ 6α
)
κε

(1 + α)2
< 1− 1

2F
(1.50a)

F =
1

N

((
1− 3

2
κε
)1 +

√
3

2

2
+ 2α

(
1− 3κε

)1 +
√

3
2

4
+
α2

4

)
(1.50b)

N = 1− 3

2
κε+ 2(1− 3κε)α+ α2 (1.50c)

to ensure that qubits A and B become strongly entangled by time t = 2π/ε2.
The matrices X and D are given by Eq. (1.12b) and Eq. (1.12a), so the matrix
norms can be calculated explicitly.

We could solve the above inequalities simultaneously. But we are not
particularly interested in calculating the optimum value of ε and α (the
bounds are in any case not tight), only in showing that it is possible to satisfy
both conditions simultaneously for some ε and α. To do this, we can start by
assuming an upper bound on ε, use this to obtain a lower bound on α from
Eq. (1.49a), and verify that these are consistent with Eq. (1.50a).

For example, assuming ε ≤ 10−5 gives α ≥ 1.54× 10−2 from Eq. (1.49a).
Substituting these values in Eq. (1.50a) gives 3.02× 10−2 ≤ 1.99× 10−1, so
these ε and α are clearly consistent with both conditions. This demonstrates
that the sufficient conditions for separability of the ancilla (Result 1.7) and
entanglement of the qubits (Result 1.9) can be satisfied simultaneously, which
implies that it is possible to create entanglement between two particles
interacting via a common ancilla, without ever entangling that ancilla.

This effect forces us to abandon the notion of entanglement flowing from
A to B via C. Instead, we have shown entanglement can “tunnel” through
the particle mediating the interactions. (However, in Chapter 3, we will show
that there is a sense in which the intuitively appealing idea of entanglement
flow can be recovered.)

1.3 Discrete Case

We now turn to the discrete case, in which Alice allows her particle to interact
with a messenger particle without the two becoming entangled, sends that
unentangled messenger to Bob, who allows it to interact with his particle,
thereby entangling his particle with that of Alice (Fig. 1.2).
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BobAlice

b

c

a

(a)

c

ba

BobAlice
(b)

Figure 1.2: Alice and Bob each have a particle they wish to entangle with the other.
(a) Alice interacts a “messenger” particle C with her particle A, sends C to Bob, (b) who
interacts C with his particle B. At the end they share some entanglement. Surprisingly, C
does not have to become entangled with A and B.

1.3.1 Entanglement Properties During the Evolution

As noted in the introduction, the continuous evolution described in the
previous section can be approximated arbitrarily accurately by a sequence of
discrete quantum operations, for example via the Trotter decomposition:

e−it(HAC+HCB) = lim
n→∞

(e−itHAC/ne−itHCB/n)n, (1.51)

and these can be implemented by sending a messenger particle back and
forth between Alice and Bob. As the results of Section 1.2 guarantee that
the state remains at least some distance δ > 0 away from any state in which
the messenger particle C is entangled, it is sufficient to approximate the
evolution to within an accuracy δ, which requires sending the messenger
particle between Alice and Bob a finite (though large) number of times (of
order 1/δ). This leads directly to a discrete scheme, albeit one in which the
messenger particle must bounce back and forth many times.

What are the entanglement properties of the sequence of states produced
during this discretized evolution? Let us assume without loss of generality
that the first operation that changes the entanglement properties of the
tripartite system is one that operates on particles A and C. The system
starts in a completely separable state (Fig. 1.3a), so such an operation can
not entangle A with B. However, we have shown in Section 1.2 that particle
C never becomes entangled with A or B during the evolution. Therefore, A
can not become entangled with either B or C.

Given that A and B do eventually become entangled, the only remaining
possibility is that the operation on A and C entangles A with BC when
the latter is considered as a single system, even though A remains separable
from both B and C individually. Thus the state created by this operation
must have the strange property that it is separable in the C|AB and B|AC
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C

A B

(a)

C

A B

(b)

C

A B

(c)

Figure 1.3: Entanglement properties of the sequence of states produced by the discretized
version of the evolution described in Section 1.2. (a) The system starts in a completely
separable state, so is separable across every bipartite partition. (a)–(b) An operation on
particles A and C entangles A with BC, where BC is temporarily considered as a single
system. (b) The state is no longer separable across the A|BC partition (red line). Note
that the messenger remains unentangled by separability across the C|AB partition (blue
line). (b)–(c) An operation on particles B and C transfers the entanglement created across
the A|BC partition in the previous step to B. (c) Particles A and B are now entangled.
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1.3. DISCRETE CASE

partitions, yet is not separable in the third partition A|BC (Fig. 1.3b).

Do such states exist? For pure states, we can easily demonstrate that
they do not. Separability in the C|AB partition implies it is possible to
write the state as |ψ〉 = |ψAB〉 |c〉. But separability in the B|AC partition
implies separability when tracing over C, thus |ψAB〉 = |a〉 |b〉, and the
overall state must be completely separable: |ψ〉 = |a〉 |b〉 |c〉. This provides
another proof that the messenger particle necessarily becomes entangled when
distributing entanglement between Alice and Bob if the overall state is pure
(see Section 1.1).

However, the overall state of the system described in Section 1.2 is mixed.
Dür et al. [1999b] have shown that the the entanglement properties across
bipartite partitions of mixed, tripartite quantum states are independent; that
is, mixed states with the properties we require do exist. Following their
terminology, we will call such states biseparable.

The final change in entanglement properties during the evolution must
involve an operation on particles B and C, which transfers the entanglement
created across the A|BC partition in the previous step to particle B, without
entangling the messenger C (Fig. 1.3c).

It is worth noting that there are two surprising aspects to this evolution:
firstly, that biseparable mixed states exist at all and, secondly, that we can
create a biseparable state from a separable state using an operation that
acts on only two of the particles. Although we know from the discretization
of the continuous-time result that this entanglement evolution is possible if
the messenger particle is allowed to bounce back and forth many times, in
the next section we give an explicit example of a discrete protocol that only
requires Alice to send the messenger to Bob once.

1.3.2 Explicit Example

We consider an example in which all particles are qubits. In the first step,
Alice and Bob prepare the following completely separable (though classically
correlated) state, where Alice has the messenger particle in her laboratory:

ρabc =
1

6

3∑
k=0

|Ψk,Ψ−k, 0〉〈Ψk,Ψ−k, 0| +
1∑
i=0

1

6
|i, i, 1〉〈i, i, 1| (1.52)

where |Ψk〉 = 1√
2

(
|0〉+ eikπ/2 |1〉

)
. This is manifestly separable as it is a

convex combination of separable pure states, so it can be prepared by local
operations and classical communication.

In the second step, Alice applies a CNOT operation on particles A and C
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with A the control qubit, producing the state

σabc =
1

3
|ΨGHZ〉〈ΨGHZ | +

1∑
i,j,k=0

βijkPijk (1.53)

where |ΨGHZ〉= 1√
2
(|000〉+ |111〉), Pijk = |ijk〉〈ijk|, and all β’s are 0 apart

from β001 = β010 = β101 = β110 = 1
6
. An operation on A and C can not

change the entanglement across the AC|B partition, so B remains separable.
However, the state is symmetric under interchange of particles B and C, so
must also be separable across the C|AB partition, i.e. the messenger particle
has not become entangled.

What about entanglement across the A|BC partition? The state σABC
has precisely the form of the family of states considered in Dür et al. [1999b]
and, by the results described therein, is a biseparable state with entanglement
across the A|BC partition.

In the third step, Alice sends the messenger particle to Bob, who applies
another CNOT operation to it and his particle B, with B the control qubit,
producing the state

τABC =
1

3
|φ+〉〈φ+|AB ⊗ |0〉〈0|C +

2

3
1AB ⊗ |1〉〈1|C , (1.54)

where |φ+〉 = 1√
2
(|00〉+ |11〉) is maximally entangled. This is manifestly still

separable across the C|AB partition, but the state now contains entanglement
between A and B.

Bob can extract this entanglement in a number of ways. Measuring C in
the computational basis, he can extract a maximally entangled state of AB
with probability 1

3
. Alternatively, if a deterministic effect is required, he can

apply a local completely positive map to particles B and C, defined by

EBC(ρ) =
∑
j

E
(k)
BCρE

(k)†
BC (1.55)

with Kraus operators

E
(1)
bc = 1B ⊗ |0〉〈0|C , (1.56a)

E
(2)
bc = |0〉〈0|B ⊗ |1〉〈1|C , (1.56b)

E
(3)
bc = |0〉〈1|B ⊗ |1〉〈1|C . (1.56c)

These satisfy ∑
j

E(k)†E(k) = 1. (1.57)
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so the map is trace-preserving. Throwing away the ancilla leaves the state

ρAB = TrC [EBC(τABC)] =
1

3
|φ+〉〈φ+| + 1

3
|00〉〈00| + 1

3
|10〉〈10| . (1.58)

The partial transpose of this density matrix is negative, so the state must be
(distillable) entangled [Horodecki et al., 1997, Peres, 1996]. Thus Alice and
Bob have entangled their particles by a single exchange of an unentangled
messenger particle; entanglement can be transferred by a particle that does
not carry the entanglement with it. We are forced to abandon the notion
of entanglement being sent through a quantum channel. For example, the
Ekert protocol for quantum cryptography could be implemented by sending
separable states [Ekert, 1991].

1.4 Quantum Channels

As a final result in the same spirit as those presented in the previous sections,
we can use the Jamiolkowski isomorphism [Cirac et al., 2001, Jamio lkowski,
1972] between states and channels (trace-preserving completely positive
maps) to derive an analogous result for quantum channels.

Consider a map E acting on states in the Hilbert space HA. If we act on
one half of an (unnormalized) maximally entangled state in a larger space
HA ⊗HB, we obtain a state

σAB = (E ⊗ I)

(∑
ij

|ii〉〈jj|AB

)
=
∑
ij

E(|i〉〈j|A)⊗ |i〉〈j|B , (1.59)

which is dual to E , in the sense that the original map can be recovered from
it. If

ρB =
∑
kl

ρkl |k〉A2
|l〉B2

(1.60)

is an arbitrary state in HB, then

TrB
[
σAB(1A ⊗ ρTB)

]
=
∑
ij

(
E(|i〉〈j|A) Tr

[∑
kl

|i〉〈j|B ρlk |k〉〈l|B
])

(1.61a)

=
∑
ij

E(ρij |i〉〈j|A) (1.61b)

= E(ρ). (1.61c)

This is the Jamiolkowski isomorphism.
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A separable map on multipartite states is defined to be one whose Kraus
operators are tensor products, e.g. in the bipartite case

E(ρAB) =
∑
k

(A(k) ⊗B(k))ρ(A(k) ⊗B(k))†. (1.62)

The definition is motivated by the fact that these maps can not create entan-
glement when they act on a separable state. The Jamiolkowski isomorphism
can easily be extended to maps acting on multipartite states [Cirac et al.,
2001], with the dual state obtained by acting on each half of a number of
maximally entangled bipartite states (one for each party). A map that is
separable in some partition gives rise to a dual state that is itself separable
across the corresponding partition.

Motivated by the state of Eq. (1.53) created in the second step of the
discrete protocol (Section 1.3), consider the map E1 acting on three qubits A,
B and C, with Kraus operators

A1 = |000〉〈000| + |111〉〈111| ,
A2 = |001〉〈001| , A3 = |010〉〈010| , A4 = |101〉〈101| ,
A5 = |110〉〈110| , A6 = |000〉〈011| , A7 = |111〉〈100| .

(1.63)

Its dual state, defined on a six qubit space, is given by

σA1A2B1B2C1C2 = |ΦGHZ〉〈ΦGHZ |+
1∑

i,j,k=0

βijkPiijjkk+P000101 +P111010, (1.64)

where |ΦGHZ〉 = |000000〉+ |111111〉, Piijjkk = |iijjkk〉〈iijjkk|, and all β’s
are 0 apart from β001 = β010 = β101 = β110 = 1.

Without the last two terms, this state would be equivalent to the three
qubit state of Eq. (1.53), where the three qubits of Eq. (1.53) are identified
with the {|00〉 , |11〉} subspaces of the three pairs of qubits in Eq. (1.64).
Mixing with the separable states of the last two terms can not increase the en-
tanglement of the state across any partition. Thus, like the state of Eq. (1.53),
this dual state is separable in the B1B2|A1A2C1C2 and C1C2|A1A2B1B2 par-
titions. Since the separability properties of the dual state are equivalent to
the separability properties of the map, E1 can not create entanglement across
the B|AC or C|AB partitions, so it clearly can not entangle qubits A and B.

Define a second map E2 with the same Kraus operators Eq. (1.63), which
we label B(k), but with the roles of A and B reversed. Clearly, E2 is separable
across the A|BC and C|AB partitions, thus like E1 can not entangle A and
B. The map defined by the composition of the two, E = E2 ◦ E1, has Kraus
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operators C(k) = A(i)B(j):

C1 = |000〉〈000| + |111〉〈111| ,
C2 = |001〉〈001| , C3 = |000〉〈010| , C4 = |000〉〈011| ,
C5 = |111〉〈100| , C6 = |111〉〈101| , C7 = |110〉〈110| .

(1.65)

Its dual state is given by

τA1A2B1B2C1C2 = |ΦGHZ〉〈ΦGHZ | + P000011 + P000100 + P000101

+ P111010 + P111011 + P111100.
(1.66)

As both E1 and E2 are separable in the C|AB partition, E is also sepa-
rable across that partition. However, the dual state τ is entangled in the
A1A2|B1B2C1C2 and B1B2|A1A2C1C2 partitions, as can easily be verified
using the partial transposition criterion [Horodecki et al., 1997, Peres, 1996].
Thus E is entangling across the A|BC and B|AC partitions, which implies
that it can entangle qubits A and B when it operates on a separable state.
For example, applying E to the product state |+ ++〉 produces

E(|+ + +〉) =
1

4
|ΨGHZ〉〈ΨGHZ | +

1

4
(P000 + P111) +

1

8
(P001 + P110). (1.67)

Performing a local measurement on C in the |+〉, |−〉 basis produces the
following states on the qubits A and B conditioned on the outcome (+ or −)
of the measurement:

1

4
(|00〉± |11〉)(〈00| ± 〈11|) +

3

8
(|00〉〈00| + |11〉〈11|), (1.68)

both of which are entangled. (Again, this can be verified using the partial
transposition criterion.)

Thus we have demonstrated that the composition of two separable maps
can be entangling. More precisely, two non-local maps, each of which can not
create any entanglement between two qubits (or between those qubits and an
ancilla) when acting individually, can entangle those qubits when composed.
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Chapter 2

Entanglement Bottlenecks

When two particles are interacting indirectly via a third, mediating particle, we
might expect the mediating particle to act as a “bottleneck” for entanglement
generation: if the middle particle is only slightly entangled, the rate of
entanglement transfer to the end particles should be slow. Of course, we have
seen in Chapter 1 that this is not the case: entanglement can be created
without entangling the mediating particle at all!

Does this force us to abandon any concept of an “entanglement bottle-
neck”? The results of Chapter 1 relied on the entanglement properties of
mixed states. On the other hand, we showed in Section 1.1 of the same
chapter that the effect is impossible if the overall state of the system is pure.
In the pure-state case, unless the middle particle is entangled, no entangle-
ment can be created between the other two. This suggests that, for pure
states, the entanglement of the mediating particle may indeed limit the rate
of entanglement generation.

In this chapter, we put the concept of an entanglement bottleneck on a
rigorous footing. In Section 2.1, we will derive a quantitative relationship
between the rate of entanglement generation between the end qubits of a three-
qubit chain and the entanglement of the middle qubit. Then, in Section 2.2,
we will derive a corresponding result for the more difficult case of tripartite
systems of arbitrary dimension.

2.1 Three-Qubit Systems

2.1.1 Motivation

The simplest conceivable system with non-trivial entanglement dynamics
consists of two interacting qubits that start (and remain) in a pure state.
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This system was investigated in Dür et al. [2001], leading to an equation for
the entanglement rate:

dE

dt
= 2λ1λ2E

′(λ1) 〈ϕ1, χ1|H |ϕ2, χ2〉 (2.1)

where E is any entanglement measure, |ψ〉AB =
∑

i

√
λi |ϕi〉A |χi〉B is the

Schmidt decomposition of the system state, the prime indicates the derivative
with respect to a Schmidt coefficient, and H is the system Hamiltonian.

What is interesting about this equation is that it separates cleanly into two
independent parts: the first, 2λ1λ2E

′(λ1), is a function of the entanglement of
the system, and the second, 〈ϕ1, χ1|H |ϕ2, χ2〉, is a function of the interaction
Hamiltonian. These provide answers to two kinds of question about the
entanglement dynamics: how does the entanglement rate depend on the
entanglement already in the system? And what is the entangling power of
different Hamiltonians?

In moving to the more complex three-qubit chain, we will concentrate
on the first of these questions. Of course, there are many more ways to
measure entanglement in a tripartite system: entanglement across all three
bipartite partitions, entanglement of any of the bipartite reduced states,
genuine tripartite entanglement. We will be interested specifically in the
relationship between two of them: the entanglement rate of the two end qubits
and the entanglement of the middle one, as this will lead to the concept of
an entanglement bottleneck.

2.1.2 Bottleneck Inequality

Although we will restrict the overall state of our three-qubit system to be a
pure state, the reduced state of any two of the qubits can, and typically will,
be mixed. It is not known in general how to quantify the entanglement of
mixed states. However, in the special case of two qubits, it can be quantified
by the concurrence [Wootters, 1998]. This is an entanglement measure in its
own right, but its significance lies in its equivalence to one of the important,
operationally defined entanglement measures: the entanglement of formation,
which measures how many maximally entangled states are required to create
the given state using only local operations and classical communication.

Definition 2.1 (Concurrence)

C(ρAB) = max{0, µ1 − µ2 − µ3 − µ4} (2.2)

where the µ’s are the square-roots of the eigenvalues of ρABρ̃AB, arranged
in decreasing order: µ1 ≥ µ2 ≥ µ3 ≥ µ4, and the tilde denotes the spin-flip
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operation:
ρ̃AB = Σρ∗ABΣ, Σ = σy ⊗ σy (2.3)

with the complex conjugation taken in the basis in which the Pauli matrix σy

is defined.

Note that for pure states, the concurrence reduces to

C(|ψ〉AB) = λ1λ2 (2.4)

where the λ’s are the state’s Schmidt coefficients.

A B C
HAB HBC

Figure 2.1: A tripartite chain, showing the labels and interaction Hamiltonians referred to
in the main text.

Labelling the qubits A, B and C with B the middle qubit, the interactions
of the three-qubit chain are described by a Hamiltonian of the form H =
HAB + HBC (Fig. 2.1). We write the state of the system in its Schmidt
decomposition with respect to the partition B|AC:

|ψ〉ABC =
2∑
i=1

λi |ϕi〉AC |χi〉B . (2.5)

It is useful to reshape the state vector |ψ〉ABC so that the state is represented
by the 4× 2 matrix

X =
2∑
i=1

λi |ϕi〉〈χi| ≡


...

...
λ1 |ϕ1〉 λ2 |ϕ2〉

...
...

 , (2.6)

whose columns are given by the Schmidt vectors of AC weighted by the
corresponding Schmidt coefficients. The reduced state of AC is then given by
ρAC = XX†.

We can therefore write

ρAC ρ̃AC = XX†ΣX∗XTΣ = X(XTΣX)†(XTΣX)X−1. (2.7)
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Since eigenvalues are invariant under similarity transformations, the concur-
rence of ρAB can be obtained from the eigenvalues of (XTΣX)†(XTΣX) or,
equivalently, from the singular values ςi of the 2 × 2 matrix A = XTΣX:
CAC = ς1 − ς2, with the singular values ordered such that ς1 ≥ ς2 [Audenaert
et al., 2001]. Since TrA†A = ς21 + ς22 and | detA| = ς1ς2, we can also write
this as

CAC =
√

TrA†A− 2| detA|. (2.8)

To calculate the time-derivative of the concurrence, we must therefore calculate
the time-derivatives of TrA†A and | detA|. From the definition of A,

Ȧ = ẊTΣX +XTΣ Ẋ, (2.9)

so that

d(TrA†A)

dt
= Tr[A†Ȧ+ Ȧ†A] = 4 Re

(
Tr
[
Σρ∗Σ ẊX†]) , (2.10)

where we have substituted Eq. (2.9) and used the cyclic property of the trace.
Since A is a 2× 2 matrix, we have

detA =
1

2
Tr[AσyATσy]. (2.11)

(This can easily be verified by writing out the matrices in component form.)
Thus

d(detA)

dt
=

1

2
Tr[ȦσyATσy+AσyȦTσy] = 4 Tr

[
XσyXTΣXσyẊTΣ

]
, (2.12)

again using Eq. (2.9) and cyclically permuting inside the trace.
The two-qubit Hamiltonian HAB has a product decomposition

HAB = k1AB +
∑
i=x,y,z

(siσ
i
A ⊗ 1B + ti1A ⊗ σiB) +

∑
i,j=x,y,z

aij σ
i
A ⊗ σjB (2.13)

in terms of Pauli matrices defined in the |χ1〉 , |χ2〉 basis given by the states
in the Schmidt decomposition of Eq. (2.5), where the coefficients k, si, ti and
aij are real. However, the terms with coefficients k, si and ti are local, and
can not change any entanglement properties of the system, so we will neglect
them from now on. HBC can be similarly decomposed, with real coefficients
cij, so that the non-local part of the overall Hamiltonian is given by

H =
∑

i,j=x,y,z

(aijσ
i
A ⊗ σjB ⊗ 1C + cij1A ⊗ σiB ⊗ σjC). (2.14)
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As X is a reshaped version of the state vector, the Schrödinger equation
describing the evolution of the system state |ψ〉ABC translates into an equation
for the evolution of X. For any Hamiltonian of the form HAC ⊗HB, we have

dX

dt
= −iHACXH

T
B , (2.15)

Since the system Hamiltonian written in the product decomposition of
Eq. (2.14) is a sum of terms of this form, we obtain

Ẋ = −i
∑

i,j=x,y,z

(aijσ
i ⊗ 1+ cij1⊗ σi)Xσj

T
. (2.16)

We can use this in Eq. (2.8) for the concurrence, along with Eq. (2.10) and
Eq. (2.12) for the derivatives of the trace and determinant, to obtain an
expression for its time-derivative:

dC2
AC

dt
= h(H, |ψ〉)λ1λ2. (2.17)

The factor h(H, |ψ〉) depends on both the interactions and the system state,
and is a rather complicated sum over terms involving aij and cij. Define

skij = 〈ϕ̃i| σk ⊗ 1 |ϕj〉 (2.18a)

tkij = 〈ϕ̃i| 1⊗ σk |ϕj〉 (2.18b)

oij = 〈ϕi|ϕ̃j〉 (2.18c)

haix = −i(λ2
1s
i
12o11 + λ2

2s
i
21o22) (2.18d)

haiy = λ2
2s
i
21o22 − λ2

1s
i
12o11 (2.18e)

haiz = −iλ1λ2(s
i
21o12 − si12o21), (2.18f)

and define hcij similarly to haij, but with the sij’s replaced by tij’s. Note that
skii = tkii = 0. The tildes again denote the spin-flip operation: |ϕ̃〉= σy⊗σy |ϕ∗〉,
and the states |ϕi〉 are those appearing in the Schmidt decomposition of
Eq. (2.5). Then

h(H, |ψ〉) = 4 Re

( ∑
i,j=x,y,z

aijh
a
ij + cijh

c
ij

)
+4

∣∣∣∣∣ ∑
i,j=x,y,z

aijh
a
ij + cijh

c
ij

∣∣∣∣∣ . (2.19)

However, as we are primarily interested in the dependence on entanglement
(i.e. the dependence on the Schmidt coefficients), we can bound the magnitudes
of skij, t

k
ij and oij by 1, and assume all terms sum in phase, giving

h(H, |ψ〉) ≤ 8
∑
ij

(|aij|+ |cij|) = 8 (‖a‖1 + ‖c‖1) , (2.20)
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where ‖ • ‖1 denotes the l1 norm. This is independent of the system state,
depending only on the interaction strengths.

As B is a qubit, the overall pure state of the system has Schmidt rank 2
in the partition B|AC. Therefore, the entanglement across that partition is
equivalent to that of a pure, two-qubit state, and can also be measured by
the concurrence. But we saw in Eq. (2.4) that the concurrence of a pure state
is given by the product of its Schmidt coefficients, so that λ1λ2 = CB|AC .

Using Eq. (2.20) in Eq. (2.17), we obtain a bound on the time-derivative
of the concurrence of AC whose dependence on the system state is entirely
determined by the concurrence CB|AC of the B|AC partition:

dC2
AC

dt
≤ 8 (‖a‖1 + ‖c‖1)CB|AC . (2.21)

The interpretation of this equation is that, for pure states of a system of
two qubits interacting indirectly via a third, the entanglement of the qubit
mediating the interactions acts as a bottleneck for entanglement generation
between the other two. For example, if the mediating qubit is only slightly
entangled, entanglement can only be generated slowly. (In particular, we
recover the result of Section 1.1 of Chapter 1, that it is impossible to generate
any entanglement at all if the mediating particle is not itself entangled.) This
is true independent of the form of the interactions.

Note that the entanglement rate must go to zero as the state of AC
approaches a maximally entangled state. Although this is not explicit in
Eq. (2.21), the bound on the rate does implicitly go to zero as systems A and
C become maximally entangled since they can not then be entangled with B,
so that CB|AC goes to zero.

2.2 General Tripartite Chains

We have demonstrated that the entanglement of a mediating particle acts as
a bottleneck for entanglement generation when all the particles are qubits
(and the system is in a pure state). In this section, we extend the result to
tripartite systems of arbitrary dimension.

2.2.1 Entanglement and Fidelity

As the state of a subsystem will in general be mixed even if the overall system
is in a pure state, we must confront the issue of how to quantify bipartite
entanglement of mixed states in arbitrary dimensions. This remains a difficult
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open problem; even the question of determining whether such states are
entangled or not is unsolved in general.

It is instructive to consider the physical motivation behind our investigation
of entanglement dynamics. Entanglement measures are defined in the LOCC
paradigm: local operations and classical communication can not increase the
entanglement of a state. This is the natural paradigm when thinking about
entanglement from an information-theoretic point of view, in which entangled
states are shared between different parties who are free to act locally on their
part of the state.

But, throughout this chapter, we have had in mind a physical system
of interacting particles. From this standpoint, it is not clear what classical
communication means. Any transfer of classical information between parti-
cles would still have to take place via the (quantum) interactions. In this
context, it may be reasonable to weaken the condition, and require only that
evolution under a local Hamiltonian leaves the quantity used to measure
entanglement invariant (that is, it should not change under local unitary
operations). Of course, as this is less restrictive than invariance under LOCC,
it is automatically satisfied by any entanglement measure.

We will turn to a quantity that, whilst not an entanglement measure
per se (it can increase under LOCC [Verstraete and Verschelde, 2003]), does
satisfy this weaker condition, and also has a useful operational interpretation:
the entanglement fidelity, which is related to the usual fidelity between two
states.

Definition 2.2 (Fidelity)
The fidelity between two states ρ and σ in the same Hilbert space is defined
as

F (ρ, σ) =
(
Tr
√
σ1/2ρ σ1/2

)2

. (2.22)

Though it is not obvious from the definition, the fidelity is symmetric:
F (ρ, σ) = F (σ, ρ). If σ = |ϕ〉〈ϕ| is a pure state, the fidelity reduces to
F (ρ, |ϕ〉) = 〈ϕ| ρ |ϕ〉 (the form used in the entanglement fidelity). If ρ =
|ψ〉〈ψ| is also pure, it reduces to the square of the overlap, F (|ψ〉 , |ϕ〉) =
|〈ψ|ϕ〉|2.

Definition 2.3 (Entanglement Fidelity)
For a bipartite state ρAB, the entanglement fidelity is given by

F (ρAB) = max
|φ〉

〈φ| ρAB |φ〉 , (2.23)

where the maximization is taken over all pure, maximally entangled states
|φ〉AB in the bipartite Hilbert space of ρAB.
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The fidelity is an experimentally relevant quantity. When trying to engi-
neer an evolution to produce a particular state (a highly entangled one, for
instance), we want to know how close the actual state is to the desired one:
precisely what the fidelity measures. For example, in teleportation experi-
ments, it is the entanglement fidelity of the entangled pair that determines
how close the teleported state is to the original [Horodecki et al., 1999].

If a state is separable, its entanglement fidelity is less than or equal to 1/n
(with n the dimension of the smaller of the two Hilbert spaces making up the
bipartite space), whereas a state is maximally entangled if and only if the
entanglement fidelity is 1. It can also be used to give upper and lower bounds
on entanglement measures such as the concurrence (and hence entanglement
of formation) of two-qubit states [Verstraete and Verschelde, 2003].

As any maximally entangled state can be obtained from some fixed maxi-
mally entangled state by local unitaries, we can give an equivalent definition
of the entanglement fidelity in terms of a maximization over unitaries instead
of states.

Definition 2.4 (Entanglement Fidelity (generalization))
For a bipartite state ρAB, the entanglement fidelity is defined by

F (ρAB) = max
UA,UB

〈φ| UA ⊗ UBρABU
†
A ⊗ U †

B |φ〉 . (2.24)

From this definition, it is clear that entanglement fidelity has an operational
interpretation: it is the maximum overlap with a maximally entangled state
that is achievable using only local unitary operations.

A very useful theorem due to Uhlmann, which we will use repeatedly in
the next section and in Chapter 3, re-expresses the fidelity in terms of the
overlap of purifications of the states.

Theorem 2.5 (Uhlmann)
If ρ and σ are two states in the same Hilbert space H, let |ψ〉 and |ϕ〉 be
purifications of ρ and σ into a (in general larger) Hilbert space H′. Then

F (ρ, σ) = max
|ψ〉,|ϕ〉

|〈ψ|ϕ〉|2 (2.25)

where the maximization is over all purifications.

Proof See Jozsa [1994], Uhlmann [1976]. �

Since any purification can be transformed into another by a unitary acting
on H′, we can fix one of the purifications and only maximize over the other
one. Also, global phases can always be chosen to ensure the overlap 〈ϕ|ψ〉 is
real and positive, allowing the absolute value to be dropped.
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2.2.2 Bottleneck Inequality

Returning to our general tripartite chain, we are interested in how the entan-
glement fidelity rate ḞAC of particles A and C depends on the entanglement
fidelity FB|AC of the overall system state |ψ〉ABC in the B|AC partition (see
Fig. 2.1). Applying Uhlmann’s theorem (Theorem 2.5) to FAC , we can write
FAC in terms of purifications. Given that |ψ〉ABC is always a purification
of the reduced state ρAC of AC, we can use the freedom in fixing one of
the purifications to choose the purification of ρAC to be |ψ〉ABC . Thus the
entanglement fidelity at some time t is

FAC(t) = max
|ϕ〉

|〈ϕ|ψ〉|2 = 〈ϕ̄|ψ〉2 , (2.26)

where |ϕ〉ABC is an extension of a maximally entangled state |φ〉AC to HABC :
|ϕ〉ABC = |φ〉AC |ξ〉B. We denote the particular state achieving the maximum
by |ϕ̄〉ABC = |φ̄〉AC |ξ̄〉B, whose global phase is chosen to ensure the overlap is
real and positive. Thus

〈ϕ̄|ψ〉 ≥ 〈ϕ|ψ〉 (2.27)

for all extensions |ϕ〉ABC of any maximally entangled state |φ〉AC .
Allowing the system to evolve for an infinitesimal time δt, the entanglement

fidelity becomes

FAC(t+ δt) = max
|χ〉

〈
χ
∣∣ e−iHδt ∣∣ψ〉2 = 〈χ̄| e−iHδt |ψ〉2 (2.28)

where H = HAB +HBC is the interaction Hamiltonian, we have again chosen
one purification to be the (time-evolved) system state, and |χ〉ABC is another
extension of a maximally entangled state on AC.

Now, Eq. (2.27) is true for all |ϕ〉, so in particular it must be true for
infinitesimal changes |ϕ〉 = |ϕ̄〉 + δt |ϕ̄⊥〉, where |ϕ̄⊥〉 can be taken to be
orthogonal to |ϕ̄〉 without loss of generality. Thus

〈
ϕ̄⊥
∣∣ψ〉 ≤ 0. However, if

there were some |ϕ̄⊥〉 for which the left hand side were strictly negative, the
state − |ϕ̄⊥〉 would make it strictly positive. Therefore,〈

ϕ̄⊥
∣∣ψ〉 = 0 (2.29)

for all states |ϕ̄⊥〉 orthogonal to |ϕ̄〉.
Equation (2.28) for the entanglement fidelity at time t+ δt must tend to

Eq. (2.26) as t→ 0, so the state maximising Eq. (2.28) must have the form
|χ̄〉= |ϕ̄〉+ δt |ϕ̄⊥〉. Substituting this in Eq. (2.28), expanding the exponential
to first order in δt, and using Eq. (2.29) gives

FAC(t+ δt) = 〈ϕ̄| (1− iδtH) |ψ〉2 +O
(
δt2
)
. (2.30)
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That is, the state maximizing Eq. (2.26) also maximizes Eq. (2.28), to first
order in δt.

Because we have assumed global phases were chosen to make it real and
positive, the overlap 〈ϕ̄|ψ〉 =

√
FAC(t). Expanding the square in Eq. (2.30)

and retaining terms to first order in δt, we obtain an expression for the
time-derivative of the entanglement fidelity of particles A and C:

ḞAC(t) = −i
√
FAC

(
〈ϕ̄|H |ψ〉− 〈ψ|H |ϕ̄〉

)
. (2.31)

The Schmidt decomposition of the system state in the partition B|AC is
given by

|ψ〉ABC =
∑
i

λi |ψi〉AC |i〉B , (2.32)

where we sort the Schmidt coefficients in descending order: λ0 ≥ λ1 ≥ · · · ≥
λn−1. Extending the set {|i〉B} to form a complete basis for HB, and recalling
that |ϕ̄〉 is the extension of some maximally entangled state on HA⊗HB, |ϕ̄〉
can be written in a product decomposition, where the coefficients αi are in
general complex:

|ϕ̄〉= |φ̄〉AC
∑
i

αi |i〉B . (2.33)

We know that |ϕ̄〉 = |φ̄〉AC |ξ̄〉B maximizes 〈ϕ|ψ〉, so that 〈ϕ̄|ψ〉 =
maxαi

∑
i α

∗
iλi 〈φ̄|ψi〉. This is just an inner product between a vector α with

components αi and normalization |α| = 1, and a vector x with components
λi 〈φ̄|ψi〉. Therefore, α is proportional to x, yielding

αi =
λi
〈
φ̄
∣∣ψi〉√∑

k λ
2
k

∣∣〈φ̄∣∣ψk〉∣∣2 =
λi
〈
φ̄
∣∣ψi〉√
FAC

. (2.34)

Note that the denominator is just the square-root of the entanglement fidelity
FAC , since using the Schmidt decomposition of |ψ〉ABC from Eq. (2.32),∑

k

λ2
k

∣∣〈φ̄∣∣ψk〉∣∣2 =
〈
φ̄
∣∣ (∑

k

λ2
k |ψk〉〈ψk|

) ∣∣φ̄〉=
〈
φ̄
∣∣TrB

[
|ψ〉〈ψ|

] ∣∣φ̄〉= FAC .

(2.35)
Writing |ψ〉 and |ϕ̄〉 in their product decompositions of Eq. (2.32) and

Eq. (2.33), we have

〈ϕ̄|H |ψ〉=
∑
i,j

α∗jλi 〈φ̄, j|H |ψi, i〉 . (2.36)

Using an argument similar to that leading to Eq. (2.29), we will derive a
relationship between the diagonal and non-diagonal terms of this expression.
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Since a local unitary acting on half of a maximally entangled state produces
another maximally entangled state, Eq. (2.27) gives

〈ϕ̄|ψ〉 ≥ 〈ϕ̄| UA |ψ〉 , (2.37)

similarly for any local unitary UC acting only on C. In particular this is true
for infinitesimal unitaries UA = exp(−iHAδt) = 1− iHAδt+O(δt2). Inserting
this in Eq. (2.37) and taking the limit δt → 0, we obtain 〈ϕ̄|HA |ψ〉 =
〈ϕ̄|HC |ψ〉= 0, or, using Eq. (2.36),

α∗0λ0

〈
φ̄
∣∣HA |ψ0〉= −

∑
i6=0

α∗iλi
〈
φ̄
∣∣HA |ψi〉 , (2.38)

with a similar expression for a Hamiltonian HC acting only on C.
Now, the system Hamiltonian H = HAB +HAC , and

〈ϕ̄|HAB |ψ〉=
∑
i,j

α∗jλi 〈φ̄| 〈j|BHAB |i〉B |ψi〉 . (2.39)

For the i = j = 0 terms, 〈0|BHAB |0〉B is just some Hamiltonian acting only
on A. Similarly for 〈0|BHBC |0〉B. Therefore, using Eq. (2.38) to replace the
i = j = 0 term, we obtain

〈ϕ̄|H |ψ〉=
∑
i6=0

α∗iλi
(〈
φ̄, i
∣∣H |ψi, i〉−

〈
φ̄, 0
∣∣H |ψi, 0〉

)
+
∑
i6=j

α∗jλi
〈
φ̄, j
∣∣H |ψi, i〉 .

(2.40)
Substituting for the αi’s from Eq. (2.34), this becomes

〈ϕ̄|H |ψ〉=
∑
i6=0

λ2
ihii +

∑
i6=j

λiλjhij, (2.41)

where

hii =

〈
ψi
∣∣φ̄〉

√
FAC

(〈
φ̄, i
∣∣H |ψi, i〉−

〈
φ̄, 0
∣∣H |ψi, 0〉

)
, (2.42a)

hij =

〈
ψi
∣∣φ̄〉

√
FAC

〈
φ̄, i
∣∣H |ψi, j〉 for i 6= j. (2.42b)

Substituting Eq. (2.41) in Eq. (2.31) for the time-derivative of FAC gives

ḞAC(t) = −i
√
FAC

(∑
i

λ2
i (hii − h†ii) +

∑
i,j

λiλj(hij − h†ij)
)
. (2.43)

Finally, as we are interested in the dependence of the entanglement fidelity
rate of AC on the entanglement across the AC|B partition (which depends
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only on the Schmidt coefficients λi), any bound on the hij that depends only
on the interaction strengths is sufficient for our purposes. For any i and j,
we have

hij − h†ij
i

≤ 2 |hij| ≤ 2

∣∣〈φ̄, i∣∣H |ψi, j〉
∣∣+ ∣∣〈φ̄, 0∣∣H |ψi, 0〉

∣∣
√
FAC

≤ 4ρ(H)√
FAC

≤ 4 ‖H‖√
FAC

(2.44)
where we have used the bound

∣∣〈φ̄|ψk〉∣∣ ≤ 1 in the second inequality, ρ(H)
is the spectral radius of the system Hamiltonian, and we have used the fact
that the spectral radius is a lower bound on any matrix norm in the final
inequality.

Putting Eq. (2.43) and Eq. (2.44) together and rearranging the sums, we
arrive at our final result:

ḞAC ≤ 4 ‖H‖
(∑

i,j

λiλj − λ2
0

)
. (2.45)

The quantity in brackets is closely related to the entanglement fidelity of
the pure state |ψ〉ABC in the B|AC partition:

FB|AC(|ψ〉〈ψ|) = max
|φ〉B|AC

|〈φ|ψ〉|2 = max
|φ〉B|AC

∣∣∣∑
i

λi 〈φ|ψi, i〉
∣∣∣2 (2.46a)

=
∣∣∣ 1√
n

∑
i,j

λi 〈ψj, j|ψi, i〉
∣∣∣2 = 1

n

∑
i,j

λiλj, (2.46b)

where we have used the Schmidt decomposition of |ψ〉ABC from Eq. (2.32)
in the second equality, and the fact that the particular maximally entangled
state maximising the expression is clearly |φ〉B|AC =

∑
j

1√
n
|ψj〉AC |j〉B (n is

the smaller of the dimensions of B and AC). Subtracting λ2
0 in Eq. (2.45)

rescales this entanglement fidelity so that it is zero when the state is separable
in the B|AC partition (when λ0 = 1, λi>0 = 0).

Therefore, we again have a bottleneck inequality: the entanglement of
the particle that mediates the interactions (B) limits the rate at which
entanglement can be generated between the others (A and C). As in the
three-qubit case, the bound on the rate implicitly goes to zero when systems
A and C become maximally entangled, since they can not then be entangled
with B and the rescaled entanglement fidelity on the right hand side of
Eq. (2.45) goes to zero.

However, unlike the bottleneck inequality of Eq. (2.21) derived in Sec-
tion 2.1, which assumed qubit subsystems, the inequality of Eq. (2.45) for the
entanglement fidelity is valid for tripartite systems of arbitrary dimension.
Therefore, it can be applied to more than just tripartite chains. In a large
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system of many interacting particles in which the particles do not all interact
directly with each other (i.e. the interaction network is not fully connected),
it is always possible to group the particles into three subsets, A, B and C,
such that no particle in A interacts directly with a particle in C (see Fig. 2.2).
The bottleneck inequality then applies to the three compound systems formed
from these groups of particles.

A CB

Figure 2.2: In any network of interacting particles that is not fully connected, the particles
can be grouped into three sets, A, B and C, such that particles in A and C do not
interact directly, but only indirectly via particles in B. The general bottleneck inequality of
Eq. (2.45) then applies to these sets, with the Hamiltonian given by interactions that cross
the boundaries of the sets. The entanglement of set B with the rest acts as a bottleneck
to entanglement generation between sets A and C. For example, for the sets A, B and C
shown in the figure, the Hamiltonian is given by the interactions shown in red.

Of course, considering an entire set of particles as a single system loses
any information about the structure of the interactions within that set. In
the next chapter, we will derive a set of entanglement rate equations for large
sets of interacting particles that take the complete structure of the interaction
network into account.
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Chapter 3

Entanglement Rate Equations

3.1 Motivation from Chemistry

In the previous chapter, we showed that a particle mediating indirect interac-
tions between two others acts as a bottleneck for entanglement generation
between them, and remarked that the general result of Section 2.2 can be
applied to any system of interacting particles by dividing those particles into
three sets. This bottleneck result captures one aspect of the entanglement
dynamics of an interacting system. However, it neglects all details of the
structure of the interactions within a set of particles. Additionally, the result
only applies to systems whose overall state is pure, as demonstrated by the
results of Chapter 1.

Consider a complex chemical reaction, whose reaction mechanism consists
of many intermediate steps. The reaction mechanism describes the steps by
which reactants are transformed, via successive intermediate compounds, into
the final products. The rate at which a compound is produced depends on
the amounts of its immediate precursors that are present, as described by the
rate equation for that step. The complete reaction is described by a complete
set of such rate equations, that is a set of coupled differential equations, one
for each step in the reaction mechanism. Significantly, if one step in the
reaction is slow, it limits the rate of later steps, as the concentrations of some
of the necessary compounds will be low. For example, writing the reaction
shown in Fig. 3.1 as

A+B 
 C +D 
 E +B, (3.1)
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CH3

CH3 C

HO

O−

OHH

CH3

CH3

HO−

C O

CH3

CH3

HO−

C

HO

OH

Figure 3.1: The reaction mechanism for a chemical reaction (in this case the base-catalyzed
hydration of a ketone) describes the steps by which reactants are transformed into the
final products. Each step in the reaction mechanism gives rise to a rate equation: a
differential equation relating the change in the concentrations of the step’s products to
the concentrations of its reactants. The entire reaction is therefore described by a set of
coupled differential equations.

it is described by the set of rate equations

d[A]

dt
= −k1[A][B] + k2[C][D], (3.2a)

d[B]

dt
= −k1[A][B] + k2[C][D] + k3[C][D]− k4[E][B], (3.2b)

d[C]

dt
= k1[A][B]− k2[C][D]− k3[C][D] + k4[E][B], (3.2c)

d[D]

dt
= k1[A][B]− k2[C][D]− k3[C][D] + k4[E][B], (3.2d)

d[E]

dt
= k3[C][D]− k4[E][B], (3.2e)

where the k’s are constants and the square brackets denote concentrations.
If one step in the reaction mechanism is particularly slow, it can act as
a bottleneck for later steps, and this rate determining step will effectively
determine the overall reaction rate.

We would like to derive an analogous description of entanglement flow. Of
course, we have seen in Chapter 1 that there is a sense in which entanglement
does not flow at all. Nevertheless, after introducing a generalization of the
entanglement fidelity in Section 3.2.1, we will derive a set of entanglement
rate equations in Section 3.2.2 that are somewhat analogous to the rate
equations describing a chemical reaction, thereby demonstrating that the
intuitive concept of entanglement flow does have a physical meaning, despite
the results of Chapter 1, and indeed can be made quantitative.

The entanglement rate equations apply to arbitrary networks of interacting
particles, including systems in mixed states, and take into account the full
structure of the interaction network. We will see that, true to the chemical
reaction analogy, if one step in the entanglement flow is slow, it limits the
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rate of subsequent steps. In Section 3.3, we will demonstrate for some simple
examples how the complete set of entanglement rate equations is derived.
In Section 3.4, we prove that the curves saturating the inequalities in a
set of rate equations constitute upper bounds on all possible evolutions of
the entanglement fidelities. Finally, we consider long-range entanglement
generation in Section 3.3, discussing two different entanglement distribution
protocols in the context of the rate equations, before using the results of
Section 3.4 to prove a universal lower-bound on the time required to entangle
the end spins in a spin chain (or, more precisely, the scaling of that time with
the length of the chain).

3.2 Derivation of the Entanglement

Rate Equations

3.2.1 Generalising the Entanglement Fidelity

As in Chapter 2, we will need to measure the entanglement of arbitrary-
dimensional mixed states, and once again we will use the entanglement fidelity
for this (see Definition 2.3 and the discussion preceding it). A natural question
is how entanglement flows when generating bipartite entanglement between
two particular particles in the network. This, along with Definition 2.4 of the
entanglement fidelity in terms of an optimization over local unitaries, motivates
the following generalization of the entanglement fidelity to subsystems.

Definition 3.1 (Entanglement Fidelity (generalization))
Given a bipartite Hilbert space Ha ⊗Hb of two particles a and b, and given a
bipartite state ρAB of a (generally larger) bipartite Hilbert space HA ⊗HB,
where Ha ⊆ HA and Hb ⊆ HB, the entanglement fidelity of ρAB relative to
subsystem ab is defined by

F (ρAB) = max
UA,UB

〈φ|ab Tr/ab

[
UA ⊗ UBρABU

†
A ⊗ U †

B

]
|φ〉ab , (3.3)

where UA and UB are unitary operations on HA and HB, Tr/ab denotes the
partial trace over everything other than Ha ⊗ Hb, and |φ〉ab is any fixed
maximally entangled state on Ha ⊗Hb.

This generalized entanglement fidelity has the same operational interpre-
tation as the usual entanglement fidelity: it is the maximum overlap with a
maximally entangled state that is achievable using only local unitaries. If
HA = Ha and HB = Hb, it reduces to the standard definition of Section 2.2.1.
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It also has the desirable property that tracing over a subsystem can not
increase the entanglement fidelity. More precisely, if A and B are subsystems
of A′ and B′ respectively, where A′ and A contain a common subsystem a,
and similarly B′ and B contain a common subsystem b, the entanglement
fidelity with respect to ab of the state of A′B′ is always larger than or equal
to the entanglement fidelity with respect to ab of the state ρAB = Tr/AB[ρA′B′ ]
of AB. This is immediately clear from Definition 3.1, as the maximization in
the AB case is over a subset of the unitaries maximized over in the A′B′ case.

3.2.2 Rate Equations for Entanglement Fidelities

We consider a system of particles S whose interactions are described by some
interaction network, an example of which is shown in Fig. 3.2. We can write
the system Hamiltonian as H =

∑
ij Hij, where the sum is over particles i

and j that are connected by an interaction. Given two particular particles
a and b, we choose any two sets of particles, A and B, that contain a and b
(see Fig. 3.2).

ba

B’
BA

A’

S

Figure 3.2: A network of interacting particles, showing the sets involved in the entanglement
rate equations. Interactions crossing the boundaries of A and B are indicated in red.

The first part of the derivation of the entanglement rate equations is a
generalization of the analysis in Section 2.2 leading to Eq. (2.31). Applying
Uhlmann’s theorem (Theorem 2.5) to the entanglement fidelity with respect
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to the ab subsystem of the state ρAB, we have

FAB = max
UA,UB

∣∣〈φ|ab Tr/ab[UA ⊗ UB ρAB(t) U †
A ⊗ U †

B]︸ ︷︷ ︸
σab

|φ〉ab
∣∣2 (3.4a)

= max
UA,UB
|χ〉

|〈χ| UA ⊗ UB |ψ〉|2 (3.4b)

= 〈χ̄| ŪA ⊗ ŪA |ψ〉2 . (3.4c)

The state UA ⊗ UB |ψ〉 is a purification of σab. (We are retaining the
unitaries, rather than incorporating them into one of the purifications, for
later convenience. Strictly speaking, they should be extended to HAB⊗H′ (see
Theorem 2.5) and written UA⊗UB⊗1H′ . In the interests of economy, we drop
all 1H′ ’s from now on.) Using the freedom to fix one of the purifications in
Uhlmann’s theorem, we can choose |ψ〉 to be a purification of the overall state
ρS of the entire system, which guarantees that UA ⊗ UB |ψ〉 is a purification
of σab, as required.

The state |χ〉 is a purification of the maximally entangled state |φ〉, i.e.
|χ〉= |φ〉ab |ϑ〉 is an extension of a maximally entangled state on Ha ⊗Hb to
the larger Hilbert space HAB ⊗H′. The maximization over |χ〉 then reduces
to a maximization over |ϑ〉. We have introduced the notation |χ̄〉, ŪA and
ŪB to denote the particular state and unitaries achieving the maximum, and
have dropped the absolute value as the global phase of |χ̄〉 can always be
chosen to make the expression real and positive.

If the system evolves under the Hamiltonian H =
∑

ij Hij for an infinites-

imal time δt, the state evolves to ρAB(t + δt) = Tr/AB[e−iHδtρS(t) e
iHδt].

δt is infinitesimal, so the exponential can be decomposed as a product
e−iHδt =

∏
ij e

−iHijδt + O(δt2). Since unitaries acting locally on A or B
can not change the entanglement fidelity, only those interactions Hij involving
at least one particle outside A and B give a first-order contribution to the
evolution of the entanglement fidelity. Therefore, we need only include that
smaller set of interactions. Letting

dU = exp

(
−iδt

∑
i∈S

j∈A∪B

Hij

)
(3.5)

be the resulting (infinitesimal) unitary evolution operator, the entanglement
fidelity after the evolution becomes

FAB(t+ δt) = max
VA,VB
|ζ〉

|〈ζ| (VA ⊗ VB) dU |ξ〉|2 , (3.6)
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where we have used Uhlmann’s theorem again. VA and VB are unitaries arising
from Definition 3.1 of the entanglement fidelity, the state |ζ〉 is again simply
an extension of |φ〉 to HAB ⊗H′, and (VA ⊗ VB) dU |ξ〉 can be chosen to be
any fixed purification of the two-qubit density operator

τab = Tr/ab
[
(VA ⊗ VB) dUρS dU † (VA ⊗ VB)†

]
. (3.7)

Again making use of this freedom, and recalling that we previously chose |ψ〉
to be a purification of ρS, we can choose |ξ〉 to be the same state: |ξ〉= |ψ〉,
which automatically satisfies the condition that (VA ⊗ VB) dU |ξ〉 must be a
purification of τab.

The state |χ̄〉 and unitaries ŪA and ŪB were defined to be those maximizing
Eq. (3.4b). Thus, by definition,

〈χ̄| ŪA ⊗ ŪB |ψ〉 ≥ |〈χ| UA ⊗ UB |ψ〉| (3.8)

for all |χ〉, UA and UB. In particular, this is true for infinitesimal changes,
e.g. |χ̄〉+ δt |χ⊥〉 where |χ⊥〉 is orthogonal to |χ〉. Thus 〈χ⊥| ŪA ⊗ ŪB |ψ〉 ≤ 0.
However, if this were strictly negative for some |χ⊥〉, then − |χ⊥〉 would make
it positive. Therefore

〈χ⊥| ŪA ⊗ ŪB |ψ〉= 0. (3.9)

Similarly, considering the unitaries ŪA and ŪB, by definition〈
ξ̄
∣∣ ŪA ⊗ ŪB |ψ〉 ≥

〈
ξ̄
∣∣ UA ⊗ UB |ψ〉 (3.10)

for any UA and UB, in particular for infinitesimal changes such as UA =
ŪA exp(−iHAdt) = ŪA − idtŪAHA. Thus, by a very similar argument,

〈χ̄| ŪAHA ⊗ ŪB |ψ〉= 〈χ̄| ŪA ⊗ ŪBHB |ψ〉= 0. (3.11)

Equation (3.6) for the entanglement fidelity at time t+ δt must tend to
Eq. (3.4b) (the corresponding expression for time t) as δt → 0, so |ζ〉 =
|χ̄〉+ δt |χ⊥〉 and VA/B = ŪA/B(1 + iδtHA/B), where HA/B are Hermitian
operators on A orB respectively. Using this, expanding dU = 1−iδtH+O(δt2)
(where H is the sum of interactions involving at least one particle in A or B),
and making use of Eq. (3.9) and Eq. (3.11), we have

FAB(t+ δt) = 〈χ̄| ŪA ⊗ ŪB(1− iδtH) |ψ〉2 +O
(
δt2
)
. (3.12)

That is, the state |χ̄〉 and unitaries ŪA and ŪB maximizing Eq. (3.4b) also
maximizes Eq. (3.6), to first order in δt.

From the definition of the infinitesimal evolution operator dU in Eq. (3.5),
the Hamiltonian H in Eq. (3.12) currently includes all interactions involving at
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least one particle in A or B. By expanding H as a sum over these two-particle
interactions, we can again use Eq. (3.9) and Eq. (3.11) to show that only
interactions that cross the boundary of A or B need to be included to give
the entanglement fidelity to first order in δt:

FAB(t+δt) = 〈χ̄| ŪA⊗ŪB
(
1−iδt

∑
i/∈A,j∈A

Hij−iδt
∑

i/∈B,j∈B

Hij

)
|ψ〉2+O

(
δt2
)
. (3.13)

Now, as global phases were chosen to make it real and positive,

〈χ̄| ŪA ⊗ ŪB |ψ〉=
√
FAB(t). (3.14)

Expanding the square in Eq. (3.13) and only retaining first-order terms in
δt, we arrive at a first expression for the time-derivative of the entanglement
fidelity:

ḞAB =
√
FAB ·

1

i

∑
i/∈A∪B
j∈A∪B

(〈ϕ|Hij |ψ〉− 〈ψ|Hij |ϕ〉), (3.15)

where |ϕ〉 = Ū †
A ⊗ Ū †

B |χ̄〉, and we have dropped the explicit time-dependence
of FAB(t) for notational simplicity. (Cf. Eq. (2.31) of Section 2.2).

To proceed, we will need the following proposition by Fan-Hoffman, which
we will use in the proof of the subsequent Lemma.

Proposition 3.2 (Fan-Hoffman)
For any matrix X, the ordered singular values σ↓i of X, where σ↓1 ≥ σ↓2 ≥
· · · ≥ σ↓n, are individually greater than or equal to the ordered eigenvalues r↓i
of ReX = (X +X†)/2, that is σ↓i ≥ r↓i for all i.

Proof See Bhatia [1997]. �

Note that the eigenvalues of ReX can be negative, in which case the absolute
values of the eigenvalues do not necessarily obey Proposition 3.2.

Lemma 3.3 (Matrix Trace Inequality for Real and Imaginary Parts)
For any matrix X,

(Tr |X|)2 − (Tr[ReX])2 ≥ Tr[(ImX)2], (3.16)

where

|X| =
√
XX†, ReX =

X +X†

2
, ImX =

X −X†

2i
. (3.17)
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Proof Assume initially that Tr[ReX] is non-negative. Defining P (N) to be
the set of indices of the positive semi-definite (negative) eigenvalues of ReX,∑
i6=j

(σiσj − rirj)

=
∑
i6=j

σiσj −
∑
i,j∈P
i6=j

rirj +
∑
i∈P
j∈N

|ri| |rj|+
∑
i∈N
j∈P

|ri| |rj| −
∑
i,j∈N
i6=j

|ri| |rj| (3.18a)

=
∑

i or j /∈P
i6=j

σiσj +
∑
i∈P
j∈N

|ri| |rj|+
∑
i,j∈P
i6=j

(
σ↓i σ

↓
j − r↓i r

↓
j

)
+
∑
i∈N

|ri|
(∑
j∈P

|rj| −
∑
j∈N
j 6=i

|rj|
)
.

(3.18b)

The first two terms are clearly positive, the third is positive by Proposition 3.2,
and the last by the assumption that Tr[ReX] ≥ 0. Thus∑

i6=j

(σiσj − rirj) ≥ 0. (3.19)

Now, making use of this,(
Tr |X|

)2 − (Tr[ReX]
)2

=
(∑

i

σi

)2

−
(∑

i

ri

)2

(3.20a)

=
∑
i

σ2
i −

∑
i

r2
i + 2

∑
i6=j

(σiσj − rirj) (3.20b)

≥
∑
i

σ2
i −

∑
i

r2
i (3.20c)

= Tr
[
XX†]− Tr[(ReX)2] = Tr[(ImX)2] (3.20d)

where in the last line we have expanded X = ReX + i ImX, and used the
fact that ReX and ImX are both Hermitian and that the trace of their
commutator is 0.

For completeness, we can remove the assumption Tr[ReX] ≥ 0 by noting
that, if there existed a matrix X with Tr[ReX] < 0 such that the Lemma
did not hold, then the matrix −X would also violate the Lemma. But then
Tr[Re(−X)] ≥ 0, so the Lemma must hold for all matrices. �

The term Hij in the Hamiltonian acts only on the particles i and j.
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Therefore

1

i

(
〈ϕ|Hij |ψ〉− 〈ψ|Hij |ϕ〉

)
(3.21a)

= Tr
[
Hij ·

1

i
Tr/ij

[
|ψ〉〈ϕ| − |ϕ〉〈ψ|

]]
(3.21b)

= 2 Tr [Hij ImXij] where Xij = Tr/ij |ψ〉〈ϕ| (3.21c)

≤ 2 |Tr[Hij ImXij]| (3.21d)

≤ 2
√

Tr[H2
ij]
√

Tr[(ImXij)2] (3.21e)

≤ 2 ‖Hij‖HS

√
(Tr |Xij|)2 − (Tr[ReXij])2, (3.21f)

using the Cauchy-Scwartz inequality for the Hilbert-Schmidt inner-product
and the fact that Hij and ImXij are both Hermition in the penultimate line,
and Lemma 3.3 in the last line. ‖ • ‖HS denotes the Hilbert-Schmidt norm,
and

Xij = Tr/ij |ψ〉〈ϕ| . (3.22)

Finally, we need to relate the quantities under the square-root to entan-
glement fidelities. Firstly,

(Tr[ReXij])
2 = (Re(Tr |ψ〉〈ϕ|))2 = 〈ϕ|ψ〉2 = FAB(t), (3.23)

where the last equality follows from Eq. (3.4) for FAB because global phases
were chosen to make 〈ϕ|ψ〉 real and positive (recall from Eq. (3.15) that
|ϕ〉= Ū †

A ⊗ Ū †
B |χ̄〉).

Secondly, from Eq. (3.15) for the time-derivative of ḞAB, we are only
interested in the Hij that act on one particle j within one of the sets A
or B, and one particle i that is outside both. If j is in A, define the sets
A′
i = A ∪ i and B′

i = B. If it is in B, define A′
i = A, B′

i = B ∪ i. We apply
Uhlmann’s theorem again, this time to the entanglement fidelity FA′

iB
′
i

of
ρA′

iB
′
i

with respect to the same particles a and b (see Fig. 3.2), and again
choose the same state |ψ〉 (a purification of the overall system state) for one
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of the purifications. So long as A′
i and B′

i are disjoint, we have

FA′
iB

′
i
= max

VA′
i
,VB′

i
|ζ〉

∣∣〈ζ| VA′
i
⊗ VB′

i
|ψ〉
∣∣2 (3.24a)

≥ max
VA′

i
,VB′

i

∣∣〈ϕ| VA′
i
⊗ VB′

i
|ψ〉
∣∣2 (3.24b)

≥ max
Uij

|〈ϕ| Uij |ψ〉|2 (3.24c)

= max
Uij

|Tr[UijXij]|2 (3.24d)

= Tr[|Xij|]2. (3.24e)

An inequality appears each time we restrict the maximization. In the second
line, we choose the particular state |ϕ〉 defined in Eq. (3.15) and drop the
maximization over states. Uij is a unitary acting on particles i and j, which
must both be within either A′

i orB′
i if those sets are disjoint. The maximization

over unitaries VA′
i

and VB′
i

acting on A′
i and B′

i is therefore restricted to a
smaller set of unitaries Uij in the third line. The final equality follows from
the following simple Lemma:

Lemma 3.4 (Variational Characterization of the Absolute Value)
For any matrix X

max
U

|Tr[UX]| = Tr |X| , (3.25)

where |X| =
√
XX†.

Proof This is easily proven using the polar decomposition X = |X|V , where
V is unitary:

|Tr[XU ]| = |Tr[|X|V U ]| =
∣∣∣Tr
[
|X|1/2 |X|1/2 V U

]∣∣∣ (3.26a)

≤
√

Tr |X|
√

Tr [U †V † |X|V U ] = Tr |X| (3.26b)

using the Cauchy-Schwartz inequality for the Hilbert-Schmidt inner product,
followed by the cyclic property of the trace. Equality is obtained by choosing
U = V †. �

If A′
i and B′

i have a particle in common (and it must be particle i if they
do), then the inequality of Eq. (3.24c) is not valid. We can instead bound

Tr[|Xij|]2 = |〈ϕ|ψ〉| ≤ 1. (3.27)

Thus, using Eq. (3.23) and Eq. (3.24e) (A′
i and B′

i disjoint) or Eq. (3.27) (A′
i

and B′
i overlapping) in Eq. (3.21f), and substituting the result in
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Eq. (3.15) for the time-derivative of ḞAB, we arrive at the entanglement
rate equation:

ḞAB(t) ≤ 2
∑

i/∈A,j∈A;
i/∈B,j∈B

‖Hij‖HS

√
FAB(t)

√
FA′

iB
′
i
(t)− FAB(t), (3.28)

where FA′
iB

′
i
is defined to be 1 if sets A′

i and B′
i overlap.

3.3 Examples of Entanglement Rate Equations

Given two particles a and b in an interacting system, the entanglement
rate equation of Eq. (3.28) can be used to build up a complete set of rate
equations for the system, in the following way: starting from the equation
for Ḟab, recursively write down the equations for the entanglement fidelities
appearing on the right-hand side of Eq. (3.28). The equations will trace
through the interaction network, so that the sets A′

i and B′
i appearing on

the right-hand side grow as the iteration procedes. Once those sets overlap,
we have FA′

iB
′
i

= 1, and the corresponding term of the rate equation will
not introduce any new entanglement fidelities, so the recursion eventually
terminates.

Let us use this procedure to derive a set of rate equations for some simple
examples. First, consider a chain of N interacting particles, as shown in
Fig. 3.3, with Hamiltonian

H =
N−1∑
i=1

Hi,i+1. (3.29)

3 N−2 N−11 2 N

1,2H H2,3 HN−2,N−1 HN−1,N

. . . ba

Figure 3.3: A chain of interacting particles.

We label the particles from 1 to N , and label particles 1 and N at the ends
of the chain by a and b (see Fig. 3.3). If A is the set of particles 1 to n and B
is the set of particles N−m+1 to N , we will denote by Fn,m the entanglement
fidelity of the state ρAB with respect to subsystem ab (Definition 3.1). That
is, Fn,m is the entanglement fidelity between n adjacent particles at the left
and m adjacent particles at the right of the chain.
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From the rate equation (Eq. (3.28)) derived in Section 3.2.2, the complete
set of rate equations for the entanglement fidelities relative to a and b includes
one rate equation for each Fn,m:

Ḟn,m = 2 ‖Hn,n+1‖HS

√
Fn,m

√
Fn+1,m − Fn,m

+ 2 ‖HN−m,N−m+1‖HS

√
Fn,m

√
Fn,m − Fn,m+1, (3.30)

where Fn,m = 1 for n +m > N . Graphically, we can represent this by the
directed graph shown in Fig. 3.4, where the edges connect fidelities for which
the derivative of the fidelity at the start of the edge depends explicitly on the
fidelity at the end.

F1,N

F2,N F1,N−1

F3,N F2,N−1 F1,N−2

FN−1,N FN−2,N−1 F2,3 F1,2

1 111

F3,N−1F4,N F2,N−2 F1,N−3

Figure 3.4: The directed graph representing the entanglement rate equations for a chain of
N particles.

Now consider the interaction network shown in Fig. 3.5, with Hamiltonian

H = Ha,c +Ha,d +Hc,b +Hb,d (3.31)

The complete set of rate equations for the entanglement fidelities relative to
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Ha,c

Ha,d Hb,d

Hc,b

a b

c

d

Figure 3.5: A simple, diamond interaction network, with two interaction paths between
any two particles.

the particles labelled a and b is

Ḟa,b =
√
Fa,b

(
‖Hac‖HS

√
F(ac),b − Fa,b + ‖Had‖HS

√
F(ad),b − Fa,b

+ ‖Hbc‖HS

√
Fa,(bc) − Fa,b + ‖Hbd‖HS

√
Fa,(bd) − Fa,b

)
(3.32a)

Ḟ(ac),b =
√
F(ac),b

(
‖Hcb‖HS

√
1− F(ac),b + ‖Had‖HS

√
F(acd),b − Fa,b

)
(3.32b)

...

Ḟ(acd),b = (‖Hcb‖HS + ‖Hdb‖HS)
√
F(acd),b

√
1− F(ac),b , (3.32c)

...

which can be represented graphically by the directed graph shown in Fig. 3.6.
Note how this differs from the graph for the chain (Fig. 3.4). For instance,
the graph in Fig. 3.6 contains loops, reflecting the fact that the interaction
network contains a loop (Fig. 3.5).

3.4 Bounds on Entanglement Flow

Many different, locally-inequivalent states (on the level of operations on the
individual particles) can have the same entanglement fidelity, so it is not a
priori clear that the curves that saturate the inequalities in the rate equations
at all points in time correspond to the evolution that minimizes the time
required to reach a given value of the entanglement fidelity. It could be that
initially increasing the fidelity slower than allowed by the rate equations
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Fa,b

11

1

F F

F

a,(bc) a,(bd)

a,(bcd)

1

11

F F

F

(ac),b (ad),c

(acd),b

Figure 3.6: The directed graph representing the entanglement rate equations for the
diamond network shown in Fig. 3.5.

would enable us to later increase the fidelity at a much faster rate, reducing
the time required to reach the desired value of the fidelity.

In fact, this is not the case: the fastest possible evolution that satisfies the
entanglement rate equations is that which saturates them at each point in time.
Therefore, the rate equations can be used to bound the entanglement fidelities
themselves, not only their derivatives: the solutions to the rate equations of
Eq. (3.28) with the inequality replaced by an equality provide upper bounds on
all possible evolutions of the entanglement fidelities. (Note that this evolution
is not necessarily physically possible. The rate equations only provide upper
bounds, not corresponding lower bounds. Indeed, in Section 3.5, we will give
an example of a system in which the bounds produced by the rate equations
are demonstrably not tight.)

Theorem 3.5 (Entanglement Rate Equation Bounds)
The curves fAB(t) that saturate the inequalities in a complete set of rate
equations for a system are upper bounds on any evolution of the entanglement
fidelities FAB(t) of the system.

Proof The proof is by induction on sets A and B. fAB(t) is the solution of
the rate equation (Eq. (3.28)) with the inequality replaced by equality; it is
the solution to the differential equation

dfAB
dt

= 2
∑

i/∈A,j∈A;
i/∈B,j∈B

‖Hij‖HS

√
fAB(t)

√
fA′

iB
′
i
(t)− fAB(t), (3.33)

with fA′
iB

′
i

= 1 if sets A′
i and B′

i overlap, and the same boundary conditions
as for the FAB’s. Assume that the fA′

iB;i(t)’s are upper bounds on FA′
iB;i(t).
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That is, for all times t, and for all particles i connected by an interaction to
either the set A or the set B,

fA′
iB

′
i
(t) ≥ FA′

iB
′
i
(t). (3.34)

If fAB(t) is not an upper bound on FAB(t), then FAB(t) must cross fAB(t) at
some point t = t0, i.e.

FAB(t0) = fAB(t0) (3.35a)

and

dkFAB
dtk

∣∣∣∣
t0

>
dkfAB
dtk

∣∣∣∣
t0

(3.35b)

for some kth-order derivative of FAB(t) at t0.

First, take the case in which Eq. (3.35b) involves the first-order derivative,
k = 1. FAB(t) must still satisfy the inequality in the rate equation (Eq. (3.28)).
Using that, along with Eq. (3.35a), Eq. (3.34) and Eq. (3.33), gives

ḞAB(t0) ≤ 2
∑

i/∈A,j∈A;
i/∈B,j∈B

√
FAB(t0)

√
FA′

iB
′
i
(t0)− FAB(t0) (3.36a)

= 2
∑

i/∈A,j∈A;
i/∈B,j∈B

√
fAB(t0)

√
FA′

iB
′
i
(t0)− fAB(t0) (3.36b)

≤ 2
√
fAB(t0)

√
fA′

iB
′
i
(t0)− fAB(t0) (3.36c)

= ḟAB(t0), (3.36d)

which contradicts Eq. (3.35b) for k = 1. Therefore, assuming the fA′
iB

′
i
(t)

bound the FA′
iB

′
i
(t) from above, FAB(t) can not cross fAB(t).

Now take the case in which Eq. (3.35b) relating the derivatives of fAB
and FAB involves a higher-order derivative, k > 1. There then exists some
δ > 0 for which, for any 0 < ε < δ, the first-order derivative obeys

ḞAB(t0 + ε) > ḟAB(t0 + ε) +O(εk−1). (3.37)

As all derivatives of FAB(t) and fAB(t) up to oder k are equal at t0, we also
have

FAB(t0 + ε) = fAB(t0 + ε) +O(εk). (3.38)
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But, from Eq. (3.28), and using Eq. (3.38), Eq. (3.34) and Eq. (3.33), we have

ḞAB(t0 + ε) ≤ 2
∑

i/∈A,j∈A;
i/∈B,j∈B

√
FAB(t0 + ε)

√
FA′

iB
′
i
(t0 + ε)− FAB(t0 + ε) (3.39a)

= 2
∑

i/∈A,j∈A;
i/∈B,j∈B

√
fAB(t0 + ε)

√
FA′

iB
′
i
(t0 + ε)− FAB(t0 + ε) +O(εk)

(3.39b)

≤ 2
∑

i/∈A,j∈A;
i/∈B,j∈B

√
fAB(t0 + ε)

√
fA′

iB
′
i
(t0 + ε)− fAB(t0 + ε) +O(εk)

(3.39c)

= ḟAB(t0) +O(εk). (3.39d)

As this upper bound on ḞAB(t0 + ε) is second order in ε, whereas the lower
bound of Eq. (3.37) is first order in ε, we can always choose ε small enough
to produce a contradiction between the two. Therefore, given our initial
assumption that the fA′

iB
′
i
(t) bound the FA′

iB
′
i
(t) from above, we again have

that FAB(t) can not cross fAB(t). Therefore, if all the fA′
iB

′
i(t)

are upper
bounds on the FA′

iB
′
i(t)

, then fAB(t) is an upper bound on fAB(t).
The recursive procedure for building up a complete set of rate equations

(described at the start of this section) terminates when it reaches sets A′
i and

B′
i that overlap, in which case FA′

iB
′
i
= 1 by definition. The initial step in

the induction is trivially provided by the corresponding definition fA′
iB

′
i
= 1,

since clearly fA′
iB

′
i
≥ FA′

iB
′
i
in this case, fulfilling the inductive assumption of

Eq. (3.34) and completing the proof. �

3.5 Long-Distance Entanglement Generation

How quickly can entanglement be created over large distances? The question is
both theoretically interesting and experimentally important. Many quantum
information processing tasks require entanglement, and the faster this can
be produced, the less the system will suffer from decoherence. Quantum
computing algorithms often generate large amounts of entanglement during
their execution, so determining how fast entanglement can be generated can
also provide bounds on algorithm complexity [Ambainis, 2002].

Imagine for example a chain of interacting spins, initially in a completely
separable state, where the goal is to create a maximally entangled state
between the end spins. How does the time required to create the maximally
entangled state scale with the length of the chain? Whereas the correspond-
ing question when sending information along the chain can immediately be
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answered by appealing to causality (the scaling must be linear), creating
entanglement arbitrarily fast does not violate any causality principle. The
entanglement can not be used to transfer information without sending addi-
tional classical information, and this classical communication guarantees that
any causality constraints are satisfied.

In Section 3.5.1, we review some existing entanglement generation
schemes in the context of the entanglement rate equations derived in Sec-
tion 3.2.2. Then, in Section 3.5.2, we use the rate equations to derive a
universal limit on how fast entanglement can be generated, or more precisely,
how the time required to entangle two particles scales with the size of the
system.

3.5.1 Entanglement Generation Schemes

How fast entanglement can be generated depends, of course, on how we are
able to manipulate the system, for example the spins in a spin chain. We can
identify three basic scenarios, differing in the amount of local control that is
allowed:

LOCC Local operations on individual spins (including measurements), and
classical communication from one spin to another are allowed “for free”;
they do not count towards the evolution time.

Fast local unitaries Local unitary operations on individual spins are al-
lowed “for free”, but measurements and classical communication are
not.

No local control No local operations are allowed; the only control over the
system is the ability to switch on the interactions initially, and switch
them off again at some later time.

The LOCC scenario assumes we neglect the time required for classical
communication of the measurement outcomes between different spins. This
can be justified on theoretical grounds, since classical communication can
not create entanglement, and it makes sense to consider the interactions
as the resource. In many physical implementations, it is also reasonable
on pragmatic grounds: classical communication is usually much easier to
implement than quantum operations.

It turns out that measurement is a very powerful resource. In the LOCC
scenario, the end qubits in a qubit chain (a chain of spin-1

2
particles) can

be maximally entangled in a time independent of the length of the chain.
Though not discussed in the context of entanglement generation, Briegel and

61



3.5. LONG-DISTANCE ENTANGLEMENT GENERATION

Raussendorf [2001] showed that a cluster state can be created in a chain in
constant time, and local measurements on a cluster state allow a Bell-state
to be projected out on any desired pair of qubits, including the end pair
[Verstraete et al., 2004].

However, if the interactions are really the only non-local resource, then
any classical communication must also be implemented via the interactions,
and local measurements are of no benefit. The LOCC scenario then becomes
equivalent to the fast local unitary scenario.

If we can apply local unitary operations on any spin in the chain, then we
can efficiently simulate evolution under any Hamiltonian [Nielsen et al., 2002,
Wocjan et al., 2002]. Again, it is reasonable to discount local resources, which
in this scenario means neglecting the time required to carry out the local
unitaries (hence the “fast local unitary” approximation). And again, this can
also be justified on physical grounds, since local unitaries are typically much
faster than interactions. In Section 3.5.1, we will use the entanglement rate
equations to derive a lower bound on the time required to entangle the end
spins of a chain in this scenario.

Khaneja and Glaser [2002] have developed an interesting protocol for state
transfer along qubit chains, in the context of NMR spectroscopy, which can
easily be transformed into an entanglement generation scheme that satisfies
the requirements of the fast local unitary scenario. First the middle qubits are
entangled, then the state of each middle qubit is encoded into a three-qubit
state. The encoded states are transferred along the chain towards the ends,
where they are decoded again. The protocol requires local unitaries to be
applied at discrete points in time during the evolution.

The evolution of the entanglement fidelities is shown in Fig. 3.7, clearly
showing the initial encoding phase followed by the encoded states being moved
step-by-step along the chain. It achieves a surprising three-fold speed-up over
the trivial swapping protocol for entanglement generation in a chain with the
same interactions (entangle the middle qubits; move to the ends by swapping),
though the scaling of the time with the length of the chain is still linear, as
in the trivial protocol.

Finally, we may have no local control over the spins, only retaining the
ability to switch on and off all the interactions in the chain. Christandl
et al. [2004] developed a state-transfer protocol for qubit chains in this
scenario, and Yung et al. [2003] have given a simple extension to entanglement
generation. The only local control required is fixing the coupling strengths
between different qubits, which must be inhomogeneous. Figure 3.8 shows
the entanglement dynamics for the odd chain-length protocol of Yung et al.
[2003].
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Figure 3.7: Entanglement dynamics in the entanglement generation protocol based on the
state transfer scheme of Khaneja and Glaser [2002], for a chain of ten qubits. Successive
curves show the evolution of entanglement fidelities F5 through F1, numbered as in
Section 3.3.
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Figure 3.8: Entanglement dynamics in the entanglement generation scheme for odd chain
lengths from Yung et al. [2003], here for nine qubits. Successive curves show the evolution
of entanglement fidelities F4 through F1, numbered as in Section 3.3. (Note that the times
can not be compared with those in Fig. 3.7, since interaction strengths in Christandl et al.
[2004] and Yung et al. [2003] are not normalized.)
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Comparing with Fig. 3.7, it is clear that the entanglement dynamics are
quite different. The scheme does not involve moving a state step-by-step
along the chain. Rather, the entangled state spreads out over the entire chain,
then refocusses at the ends. If the strongest coupling strength is normalized
to some fixed value, then the time to entangle the end spins using this scheme
again scales linearly with the length of the chain.∗

Osborne and Linden have also developed a protocol for state transfer in
qubit chains, which could be adapted to entanglement generation, involving
limited local control over a vanishingly small (in the limit of large chain
lengths) number of qubits at each end of the chain [Osborne and Linden,
2003].

3.5.2 Bounds on Entanglement Generation

In this section, we use the entanglement rate equations to prove a lower bound
on the time required to entangle the ends of a spin chain, in the fast local
unitary scenario described in the previous section. The bound is universal: it
is valid for all interaction Hamiltonians, and any sequence of local unitary
operations. It can also easily be applied to general interaction networks,
though the bound may be rather weak in that case.

There is a trivial linear upper bound on the scaling with the length of
the chain of the time needed to entangle the ends, achieved for example by
simply entangling the first two spins, then moving half of the entangled pair
along the chain using swap operations. On the other hand, the entanglement
rate equations upper-bound the evolution of the entanglement fidelities, and
the entanglement fidelity of a state is equal to 1 if and only if that state is
maximally entangled. So solving the rate equations for a spin chain would
provide a lower bound on the time required to create a maximally entangled
state.

Unfortunately, the set of non-linear coupled differential equations arising
from the rate equations (Eq. (3.33)) has no known analytic solution. Solving
numerically would provide numerical lower bounds, but we are interested in
the asymptotic scaling behaviour, which requires an analytic solution. Instead,
we will derive analytic upper bounds on the solutions, which we use to give
an upper bound on the asymptotic scaling.

First, number the spins in the chain from 1 to N , and label the spins 1
and N at the ends of the chain by a and b (see Fig. 3.3). Let A and B be sets

∗Christandl et al. [2004] state that the time required to entangle the end qubits is
independent of the length of the chain. For this to be the case, the interaction strengths
must be increased for longer chains. If the interaction strengths are normalized, the scaling
is linear.
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of n neighbouring spins at the two ends of the chain, i.e. A contains spins
1 to n and B contains spins N − n+ 1 to N . Let A′ and B′ be similar sets
of n+ 1 neighbouring spins. The rate equation for the entanglement fidelity
with respect to ab of the AB system is

ḞAB ≤ 2 ‖Hn,n+1‖
√
FAB

√
FA′

n+1B
− FAB

+ 2 ‖HN−n,N−n+1‖
√
FAB

√
FAB′

N−n
− FAB, (3.40)

where the set A′
i, defined in Section 3.2.2, contains spin i in addition to

all the spins in A, similarly for set B′
i, and we have dropped the explicit

time-dependence from the notation for the entanglement fidelities.
A′
n+1 and B′

N−n are subsystems of A′ and B′, respectively, as are A and
B. From the discussion in Section 3.2.1, the entanglement fidelities FA′

n+1B

and FABN−n
with respect to the common subsystem ab are always less than

or equal to FA′B′ :

FA′
n+1B

(t) ≤ FA′B′(t), (3.41a)

FAB′
N−n

(t) ≤ FA′B′(t) (3.41b)

at any time t during the evolution. If we assume that the strengths of all the
interactions in the spin chain are equal to the same value ‖Hij‖, then from
Eq. (3.40) we have

ḞAB(t) ≤ 4 ‖Hij‖
√
FAB(t)

√
FA′B′(t)− FAB(t). (3.42)

We now relabel the entanglement fidelity for system AB where A and
B contain n spins by Fn, so that there are bN/2c fidelities in total, F1 to
FbN/2c (b•c denotes rounding down to the nearest integer). F1 is then the
entanglement fidelity of the two spins a and b, FbN/2c is the entanglement
fidelity of the entire chain split into two down the middle (with one particle in
the middle left over if N is odd), and we define FbN/2c+1 = 1. From Eq. (3.42),
a complete set of rate equations is then given by the coupled set of differential
equations

[equations]Ḟn(t) ≤ 4 ‖Hij‖
√
Fn(t)

√
Fn+1(t)− Fn(t), n = 1 . . . bN/2c.

(3.43)
If the chain starts in a completely separable state |ψ1〉 |ψ2〉 · · · |ψN〉, then

all entanglement fidelities are initially equal to 1/2, since the entanglement
fidelity of a separable pure state is 1/2, giving us the boundary conditions

Fn(0) =
1

2
, n = 1 . . . bN/2c. (3.44)
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Let fn(t) be the solutions of the set of differential equations given by
replacing the inequality in Eq. (3.43) with an equality:

ḟn(t) = 4 ‖Hij‖
√
fn(t)

√
fn+1(t)− fn(t), n = 1 . . . bN/2c, (3.45)

with fbN/2c+1(t) = 1 and the same boundary conditions fn(0) = 1/2 as for
the entanglement fidelities themselves. Applying Theorem 3.5 of Section 3.4,
the fn(t) are bounds on the entanglement fidelities Fn(t):

Fn(t) ≤ fn(t), for all times t. (3.46)

Now, since the entanglement fidelity, and hence fn(t), is bounded by 1,
from Eq. (3.45) we have

ḟn(t) ≤ 4 ‖Hij‖
√
fn+1(t)− fn(t). (3.47)

We can use the argument of Theorem 3.5 to prove that, if un(t) is an upper
bound on fn(t), then the solution un−1(t) to the differential equation

u̇n−1(t) = 4 ‖Hij‖
√
un(t)− un−1(t) (3.48)

(where we have dropped the initial square-root) is an upper bound on fn−1(t),
so long as the boundary conditions on un−1 satisfy

un−1(0) ≥ fn−1(0). (3.49)

Now assume there is a un(t) of the form

un(t) =
4 ‖Hij‖2 t2

an
+

1 + ε

2
(3.50)

that is an upper bound on fn(t) for some positive constants an and ε. The
differential equation Eq. (3.48) for un−1(t) then has a solution of the same
form as un(t) (as can be seen by direct substitution) with the same ε, and a
coefficient an−1 given by the recursion relation

an−1 =
an
2

+
an
2

√
1 +

4

an
. (3.51)

Since un−1(0) = (1 + ε)/2, which is greater than the boundary condition
fn−1(0) = Fn−1(0) = 1/2, it satisfies the requirement in Eq. (3.49). Therefore
un−1(t) is an upper bound on fn−1(t) by the argument above.

All that remains is the initial step in the induction: that there is indeed a
bound ubN/2c(t) on fbN/2c(t) with the form assumed in Eq. (3.50), for some
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constants abN/2c and ε. (Recall that FbN/2c is the entanglement fidelity of the
entire spin chain split into two halves.) Fortunately, the differential equation
for fbN/2c from Eq. (3.45) (recall that fbN/2c+1 = 1 by definition),

ḟbN/2c(t) = 4 ‖Hij‖
√
fbN/2c(t)

√
1− fbN/2c(t), (3.52)

can be solved analytically [Kamke, 1961]. One set of solutions has the form

fbN/2c(t) = sin2(2 ‖Hij‖ t+ φ) (3.53)

with φ an arbitrary constant. There is also a trivial solution: fbN/2c(t) = 1.
Since the chain starts in a completely separable pure state, the initial condition
is fbN/2c(0) = 1/2, and the solution we require is

fbN/2c(t) =

{
sin2(2 ‖Hij‖ t+ π/4) 2 ‖Hij‖ t ≤ π/4

1 2 ‖Hij‖ t > π/4.
(3.54)

The two parts of the solution reflect the fact that, once the entanglement
fidelity has reached its maximum value of 1, there is nothing to be gained by
further evolution, and the interactions affecting FbN/2c (namely the interaction
connecting the two halves of the chain) should be switched off.

Knowing an explicit solution for fbN/2c(t), it is easy to find a bound
ubN/2c(t) with the appropriate form. To make the algebra simpler, we can
upper-bound fbN/2c(t) by 2 ‖Hij‖ t + 1/2. Thus a ubN/2c(t) with the form
given in Eq. (3.50) that satisfies ubN/2c(t) ≥ 2 ‖Hij‖ t+ 1/2 will suffice as the
initial step in the induction. Solving this inequality, namely

4 ‖Hij‖2 t2

abN/2c
+

1 + ε

2
≥ 2 ‖Hij‖ t+

1

2
, (3.55)

leads to the relation abN/2c ≤ 2ε. Any positive abN/2c and ε satisfying this will
give an appropriate ubN/2c(t) ≥ fbN/2c(t) ≥ FbN/2c(t), and will guarantee that
ubN/2c(0) = (1+ε)/2 ≥ fbN/2c(0) = FbN/2c(0) = 1/2. Thus we have shown that
an upper bound on FbN/2c(t) with the appropriate form exists, which completes
the proof. For neatness, we can let ε→ 0, so that un(0) → Fn(0) = 1/2 and
abN/2c → 0 (as used to give the curve u1(t) shown in Fig. 3.9).

Solving u1(t) = 1 will give a lower bound on the time required for f1(t)
to reach 1, which is itself a lower bound on the time Tent required for the
entanglement fidelity of the end two qubits F1 to reach 1, or equivalently,
for the end qubits to become maximally entangled. We are interested in the
scaling of Tent for large chain lengths, when the coefficient a1 becomes large.
Rather than solving u1(t) = 1 explicitly to obtain the bound, it is simpler
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Figure 3.9: Numerically calculated entanglement fidelity curves fn(t) saturating the
inequalities in the entanglement rate equations for a chain (Eq. (3.43)). The final solid
curve is for the entanglement fidelity f1(t) of the end qubits in a chain of lengh N = 100,
and the dashed curves show the corresponding upper and lower bounds u1(t) and l1(t).
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to Taylor expand the square-root in the recursion relation of Eq. (3.51) in
order to show that the relation asymptomatically approaches an−1 = an + 1,
or equivalently a1 = abN/2c + bN/2c, as N →∞. Thus, for large N , choosing
ε→ 0 so that abN/2c → 0 as before, the equation we must solve tends to

u1(t) =
4 ‖Hij‖2 t2

bN/2c
+

1 + ε

2
= 1. (3.56)

Therefore, the bound on Tent tends to

Tent ≥
1

2 ‖Hij‖

√
bN/2c

2
, (3.57)

a square-root scaling with chain length (see Fig. 3.10).
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Figure 3.10: Scaling with chain-length N of the time Tent required to create a maximally
entangled state between the ends. The points show numerical results obtained by saturating
the rate equations (Eq. (3.43)) with all interaction strengths ‖Hij‖ = /2. The solid
and dashed curves show the analytic lower and upper bounds, Tent ≥

√
bN/2c/2 and

Tent ≤
√
bN/2c respectively, from Eq. (3.57) and Eq. (3.59).

We have loosened many an inequality during the proof of this square-root
bound. Could the rate equations of Eq. (3.43) give a tighter bound? We can
use essentially the same proof with the inequalities reversed to prove that a
square-root bound is the best that can be obtained.
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Instead of using Fn(t) ≤ 1 to substitute for the first square-root in the
differential equation for fn(t) (Eq. (3.45)), we use Fn(t) ≥ 1/2, which is valid
when the Fn(t) saturate the inequalities in the rate equations, that is when
Fn(t) = fn(t). Then, solutions of

l̇n−1(t) = 2
√

2 ‖Hij‖
√
ln(t)− ln−1(t) (3.58)

are lower bounds on fn−1(t). We can rescale the time τ = t/
√

2 so that
the differential equation for ln(τ) has the same form as that for un(t) in the
previous proof (Eq. (3.48)). Assuming solutions of the form ln(τ) = τ 2/an,
solving the resulting recursion relation, and proving there is a lower bound
on fn(t) of the appropriate form, leads to an upper bound on the scaling,
for any evolution saturating the rate equations. For large chain lengths, the
bound tends to

Tent ≤
√
bN/2c

2 ‖Hij‖
, (3.59)

which is also a square-root scaling. Therefore, the square-root bound we
have derived is, up to a

√
2 numerical factor, the best that can be obtained

from Eq. (3.43) (see Fig. 3.10). However, as Eq. (3.43) are weaker than the
original rate equations (Eq. (3.40)), it is possible that they could provide
tighter bounds by another method.

In fact, subsequent to the publication of these results in Cubitt et al.
[2005], Bravyi et al. [2006] proved a linear lower-bound on the scaling of Tent

with chain length. Whilst their approach did not involve deriving anything
analogous to the entanglement rate equations, it does suggest that the in-
equality in the rate equation (Eq. (3.28)) is not tight. Whether or not it is
possible to derive a tighter version of the entanglement rate equations (from
which the linear scaling follows) remains an interesting open problem.
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Chapter 4

Engineering Correlation and
Entanglement Dynamics

How does entanglement, or more generally, how do correlations evolve in
large, interacting systems? How easily can the evolution be controlled and
manipulated? The entanglement rate equations derived in Chapter 3 provide
limits that are necessarily obeyed by any physically realizable evolution. In
Section 3.5 of the same chapter, we considered various scenarios that differed
in the amount of control there was over the system. In this chapter, we
will investigate what evolution actually occurs in an explicit example of
an interacting, many-body system, and demonstrate that we can achieve a
surprising amount of control over the evolution of correlations, even when
control over the system is severely limited.

In Section 4.1, we discuss the practical motivation behind the study of
correlation and entanglement dynamics in large systems, in particular the
connection with quantum repeaters. The exact solution for the time-evolution
of the simple model system introduced in Section 4.2 leads, in Section 4.3,
to analytical results for the evolution of string (Section 4.3.1) and two-point
(Section 4.3.2) correlations. These two-point connected correlation functions
provide a lower bound on the localizable entanglement, the relevant figure of
merit for quantum repeaters. We also derive an alternative, though somewhat
less interesting, analytic bound using Grassmann calculus in Section 4.4.
Finally, in Section 4.5, we use these analytic results to investigate how the
correlation and entanglement dynamics can be controlled and engineered, even
when control over the system is limited to changing its two global, external
parameters.
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4.1 Physical and Practical Motivation

Practical applications of entanglement often involve distributing different
parts of an entangled state to different parties, each of whom may be spatially
separated from the others. This raises the problem of how to reliably distribute
entangled states across large distances. If the quantum channel connecting
two parties (a fibre optic cable, for example, or even free space) is noisy,
the entanglement will typically be destroyed before it arrives. The standard
solution is to use a quantum repeater [Briegel et al., 1998, Dür et al., 1999a].

A quantum repeater consists of a chain of nodes that exchange entan-
glement with their neighbours, then use entanglement swapping [Żukowski
et al., 1993] to successively transfer the entanglement to the ends of the chain.
Because the entangled pairs are sent over shorter distances, and entangle-
ment purification can be used after each step to recover a smaller number of
higher-quality entangled pairs from a larger number of imperfect pairs before
proceeding to the next step, this allows entanglement to be distributed over
arbitrarily large distances (at the expense of introducing more intermediate
nodes).

Physically, the nodes of the quantum repeater will be quantum systems
(e.g. atoms in optical cavities) that interact with their neighbours according to
some Hamiltonian (e.g. by exchanging photons) [Cirac et al., 1997, Kraus and
Cirac, 2004, van Enk et al., 1998]. Therefore, instead of actively exchanging
and swapping entanglement, it has been suggested that correlations inherent
in the ground state of this interacting system could be used to distribute
long-range entanglement ([Verstraete et al., 2004]). However, cooling to the
ground state is an unrealistic prospect in many systems. Why not instead
use the non-equilibrium dynamics to distribute the entanglement?

We can model the physical quantum repeater by a spin chain. Clearly, if
we want to distribute entanglement using the system’s dynamics, we must
initially prepare it in a non-equilibrium state, that is, one that is not an
eigenstate of the Hamiltonian. The state must therefore contain excitations.
It is instructive to consider what happens if a single, localized, low-energy
excitation is created on top of an equilibrium state, for example by flipping
a single spin. Since the low-energy excitations take the form of spin waves,
this excitation will create a spin wave that propagates along the chain. Thus
the correlation and entanglement dynamics produced by a single, localized
excitation can be understood as nothing other than propagation of spin waves.

The spin-wave propagation is completely determined by the dispersion
relation given by the system’s spectrum. The form of the dispersion relation
will typically depend on external, physical parameters of the system (e.g.
the strength of an external magnetic field). Thus already in this setup, we
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can manipulate the external parameters to control the dispersion relation,
and hence control the propagation of correlations. For example, changing
the gradient of the dispersion relation will change the speed at which the
correlations propagate.

However, as just described, this idea of using the dispersion relation as
a means to control correlation dynamics is unrealistic. The ground state
will typically be highly correlated and difficult to prepare, and it requires
precise local control over the system in order to create the local excitation
and break the translational symmetry. With that level of local control, more
sophisticated quantum-repeater setups are already possible. Moreover, it is
not clear that the correlations will remain localised; they are likely to disperse
rapidly as they propagate.

Therefore, we will extend the idea to systems prepared in translationally
invariant, uncorrelated initial states, which can be created more easily. For
example, the fully polarised state with all spins down, | ↓〉 | ↓〉 . . . | ↓〉, can be
prepared by applying a large, external magnetic field in the −z direction.
As the initial state will be far from the ground state, it will contain many
excitations. The correlation dynamics is then the result of the propagation
and interference of a large number of spin waves at many different frequencies.
Nonetheless, we will show analytically for a simple, example spin model that
the system can be engineered so that correlations propagate in well-defined,
localised wave packets, with little dispersion. The external parameters can
then be used to control the propagation of these correlation packets.

4.1.1 Localizable Entanglement

The natural figure of merit for a quantum repeater (and other systems
which distribute entanglement via a sequence of nodes) is the localizable
entanglement L of its state before measurements are performed [Popp et al.,
2005]. It is defined as the maximum entanglement that can be created between
two nodes (the end two, for example) using any local operations, including
measurements, on the other nodes, averaged over all possible measurement
outcomes. This definition is not complete until we specify which entanglement
measure is used to quantify the entanglement of the pure states produced by
the measurements, and which local measurement operations (von Neumann
measurements, positive operator value measures, etc.) are allowed.

As we will deal with systems of qubits, we will use the localizable con-
currence, restricted to von Neumann measurements. (The concurrence of a
two-qubit state was defined in Section 2.1.2 of Chapter 2.) Note that any
other definition of the localizable concurrence (e.g. allowing more general
POVM measurements) will be bounded from below by this, as von Neumann
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measurements are a special case of any more general set of measurements.

Definition 4.1 (Localizable Concurrence)
The localizable concurrence between qubits 1 and N of an N -qubit state |ψ〉 is
defined by

L(ψ) = max
{Psi

i }

 ∑
s2...sN−1

=0,1

C
(N−1⊗
i=2

Psi
i |ψ〉

) , (4.1)

where {Psi
i }si=0,1 is a complete set of projectors on qubit i defining a von

Neumann measurement on that qubit, the maximization is over all possible
sets of projectors (all von Neumann measurements), and the concurrence C
is given by Definition 2.1.

4.2 Time-Evolution in the XY–Model

As a simple, yet reasonably realistic example of an interacting, many-body
system, we will consider the XY–model for a chain of N spin-1

2
particles,

which we label sequentially:

HXY = −1

2

N∑
l=1

(
1 + γ

2
σxl σ

x
l+1 +

1− γ

2
σyl σ

y
l+1 + λσzl

)
, (4.2)

where the σ’s are the usual Pauli operators acting on the sites denoted by
their subscripts. The parameter λ can be interpreted as the strength of
an external magnetic field aligned along the z–direction, whilst γ controls
the anisotropy of the interactions. (Note that, following the standard spin-
model convention, throughout this chapter tensor products will be denoted
by juxtaposing operators, without any explicit tensor product symbol “⊗” in
between, and operators act as the identity on systems that are not indicated
explicitly by subscripts. Thus σxl σ

x
l+1 denotes 1i<l ⊗ σxl ⊗ σxl+1 ⊗ 1j>l+1.)

As discussed in Section 4.1, we start the system in a translationally
invariant, completely separable state. For example, the state with all spins
down: |ψ〉 = | ↓〉 | ↓〉 · · · | ↓〉, is easily prepared by initially applying a large,
external magnetic field, corresponding to setting the parameter λ to a large,
negative value. Suddenly reducing or switching off the magnetic field will
then start the system evolving.

The XY–Hamiltonian can be diagonalized by a well-known sequence of
Jordan-Wigner, Fourier, and Bogoliubov transformations [Lieb et al., 1961].
First, the spin-operators are transformed into fermionic operators using
the Jordan-Wigner transformation. We will use a non-standard (though
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equivalent) formulation involving Majorana rather than fermionic operators.
For each site l in the spin-chain, define the Majorana operators

xl =
∏
m<l

σzmσ
x
l , pl =

∏
m<l

σzmσ
y
l (4.3)

which are Hermitian and obey the canonical anti-commutation relations

{xm, xn} = {pn, pm} = 2δm,n, (4.4a)

{xm, pn} = 0. (4.4b)

Rewriting the Hamiltonian in terms of these operators corresponds to ap-
plying the Jordan-Wigner transformation, but in terms of Majorana fermions
rather than the usual Jordan-Wigner fermions cl, c

†
l (the two are related by

xl = c†l + cl and pl = (c†l − cl)/i):

HXY =
i

2

∑
l

(
1 + γ

2
plxl+1 −

1− γ

2
xlpl+1 + λxlpl

)
(4.5)

As the system is translationally invariant, the next step is to apply a
Fourier transform:

xk =
∑
l

(
cos

(
2πkl

N

)
xl − sin

(
2πkl

N

)
pl

)
(4.6a)

pk =
∑
l

(
sin

(
2πkl

N

)
xl + cos

(
2πkl

N

)
pl

)
, (4.6b)

which leads to

HXY = − i
2

∑
k

εk
(
cos θk(xkpk − pkxk)− sin θk(xkx−k − pkp−k)

)
(4.7)

where

cos θk =
cos(2πk

N
)− λ

εk
(4.8)

and εk is defined below. (We have dropped some terms that are inversely
proportional to N , since we will later take the limit N →∞.)

The Fourier transform is a canonical transformation (it preserves the
anti-commutation relations), so it can also be written as an orthogonal
transformation of the Majorana operators (see Section A.5.5 in Appendix A):

κ = OFT r, (4.9)
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where r is a vector of the original Majorana operators (r2l−1 = xl and r2l = pl),
κ its Fourier transform (ordered so that κ4k−3 = xk, κ4k−2 = pk, κ4k−2 = x−k
and κ4k = p−k), and

OFT =

F0,0 · · · F0,N
...

. . .
...

FN,0 · · · FN,N

 , Fk,l =

(
ck,l −sk,l
sk,l ck,l

)
. (4.10)

Finally, using the Bogoliubov transformation,

γxk = ukxk − vkp−k, (4.11a)

γpk = ukpk − vkx−k, (4.11b)

where

uk = cos

(
θk
2

)
, (4.12a)

vk = sin

(
θk

2

)
, (4.12b)

the Hamiltonian takes the diagonal form:

HXY = − i
4

∑
k

εk (γxkγ
p
k − γpkγ

x
k ) , (4.13)

with spectrum

εk =

√(
cos

(
2πk

N

)
− λ

)2

+ γ2 sin2

(
2πk

N

)
. (4.14)

Like the Fourier transform, the Bogoliubov transformation preserves the
canonical anti-commutation relations, and can also be written as an orthogonal
transformation among Majorana operators (see Section A.5.5 in Appendix A):

γ = OBog κ (4.15)

where κ was defined in Eq. (4.9), γ is the corresponding vector of Bogoliubov-
transformed operators (γ4k−3 = γxk , γ4k−2 = γpk , γ4k−2 = γx−k and γ4k = γp−k),
and

OBog =

N/2⊕
k=1


uk 0 0 −vk
0 uk −vk 0
0 vk uk 0
vk 0 0 uk

 (4.16a)
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with

ck,l = cos

(
2πkl

N

)
, (4.16b)

sk,l = sin

(
2πkl

N

)
. (4.16c)

The Hamiltonian in Eq. (4.13) is quadratic in terms of the Majorana
operators, and is reminiscent of a squeezing operation in quantum optics,
except that the mode operators γxk and γpk are fermionic rather than bosonic:

H =
∑
m,n

hm,nγmγn, (4.17a)

h = − i
4

N⊕
k=1

(
0 εk
−εk 0

)
. (4.17b)

Therefore, the time-evolution of the Majorana operators in the Heisenberg
picture also corresponds to a canonical transformation, represented by the
orthogonal transformation

γ(t) = O(t)γ, (4.18a)

where

O(t) = eAt, Am,n = −i(hm,n − hn,m) (4.18b)

=
N⊕
k=1

(
cos(εkt) − sin(εkt)
sin(εkt) cos(εkt)

)
. (4.18c)

The initial state, with all spins down, is the vacuum state of the xl, pl
Majorana operators. Since the vacuum of any set of fermionic operators is a
fermionic Gaussian state, it can be represented by its covariance matrix, or
matrix of two-point correlations (see Section A.5 in Appendix A):

Γm,n = 〈[rm, rn]〉 , (4.19a)

Γvac =
N⊕(

0 −i
i 0

)
. (4.19b)

An equivalent way of stating this is to appeal to Wick’s theorem (Theorem A.28
of Appendix A), which states that all higher-order correlation functions for
the vacuum state of any set of fermionic operators can be re-expressed in
terms of two-point correlations.
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Thus the initial state is Gaussian in terms of the xl, pl operators, the
Hamiltonian is quadratic in terms of the γxk , γpk operators, and these sets of
operators are connected by canonical transformations (namely the Fourier
and Bogoliubov transformations). Transformations that preserve the anti-
commutation relations leave Gaussian states Gaussian. Therefore, the state
of the system remains Gaussian at all times, and the time-evolution can be
analysed using the fermionic Gaussian state formalism, described in detail in
Appendix A.

Putting all this together, the state at time t, as represented by its covari-
ance matrix Γ(t)m,n = 〈[rn(t), rm(t)]〉, is given by

Γ(t) = OT
FTO

T
Bog O(t)OBog ΓvacO

T
Bog O(t)T OBog OFT (4.20a)

=


G0 G1 · · · GN

G−1 G0
...

...
. . .

...
G−N . . . . . . . G0

 (4.20b)

where, in the thermodynamic limit N →∞ with 2πk
N
→ φ, we have

Gx =

∫ π

−π
dφ

(
g0 g1

g−1 g0

)
(4.20c)

g0 = iS sin(φx) sin
(
2tε(φ)

)
(4.20d)

g±1 = 2CS sin(φx) sin2
(
tε(φ)

)
± cos(φx)

(
C2 + S2 cos

(
2tε(φ)

))
(4.20e)

C =
cos(φ)− λ

ε(φ)
, S =

γ sin(φ)

ε(φ)
, x = m− n. (4.20f)

Note that the covariance matrix in Eq. (4.20b) is of Toeplitz form, as required
by translational invariance.

4.3 Correlation and Entanglement Dynamics

Eq. (4.20) gives an analytic expression for the system state at any time t
in terms of the Majorana operators xl, pl. However, we are interested in
calculating correlation functions and entanglement for the original spin system,
and not all of these can be calculated analytically from the covariance matrix.

We first calculate the simpler, albeit less well-motivated, string correlation
functions, and show that their evolution can be described by wave-packet
propagation. We then consider the more interesting spin-spin (or two-point)
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correlations, and show that their evolution can be understood as multiple
wave packets propagating and interfering simultaneously. Finally, we derive
two bounds on the localizable entanglement between two spins, one based
on correlation functions, the other on a Grassmann integral over fermionic
phase-space.

4.3.1 String Correlation Functions

String correlations are important in certain spin models for revealing hidden
order, not detected by two-point correlation functions (for example in the
AKLT model [Affleck et al., 1988]). They take the form of strings of spin
operators acting on adjacent spins, for instance

Sab(x) =
〈
σai σ

z
i+1 · · ·σzi+n−1σ

b
i+x

〉
, (4.21)

where σa is one of the Pauli operators, as is σb. Due to translational invariance,
the right hand side is independent of i.

For a, b = x or y, the string correlations are given directly by elements of
the covariance matrix. For example,

Sxx(x) = Sxx(m− n) (4.22a)

=

〈
σxm

( ∏
m<i<n

σzi

)
σxn

〉
(4.22b)

=
1

i

〈∏
i<m

σzi σ
y
m

∏
j<n

σzjσ
x
n

〉
(4.22c)

=
1

i
〈xmxn〉 (4.22d)

=
1

i
Γ2m−1,2n−1, (4.22e)

using the definition of the Majorana operators from Eq. (4.3) in the third
equality, and the definition of the covariance matrix (Eq. (4.19a)) in the final
one.

From Eq. (4.20) for the covariance matrix at time t, the evolution of this
particular string correlation function is given by

Sxx(x, t) =

∫ π

−π
dk
S

2
cos
(
kx− 2tεk

)
−
∫ π

−π
dk
S

2
cos
(
kx+ 2tεk

)
, (4.23)

where the system spectrum εk was defined in Eq. (4.14), S in Eq. (4.20f).
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This has the form of an equation describing two wave packets with enve-
lope S/2 propagating in opposite directions along the chain, according to a
dispersion relation given by the spectrum εk. Thus the evolution of string
correlations, although produced by the collective dynamics of a large number
of excitations, can be explained by very simple physics.

4.3.2 ZZ–Correlations and Localizable Entanglement

We have seen that the evolution of string correlations is described by propa-
gating wave packets. Does the same hold true for other correlation functions?
In particular, does it hold for the more interesting two-point (connected)
correlation functions?

Two-point connected correlation functions are given by the expectation
values of products of two spin operators, with the classical part of the
correlation subtracted. For instance

Czz(x) = Czz(m− n) = 〈σznσzm〉 − 〈σzn〉 〈σzm〉 , (4.24)

which, again, only depends on x = m− n due to translational invariance.
From the definition of the Majorana operators (Eq. (4.3)), we have σzn =

xnpn/i, so that

Czz(x) = −〈xnpnxmpm〉+ 〈xnpn〉 〈xmpm〉 (4.25a)

= 〈xnxm〉 〈pnpm〉 − 〈xnpm〉 〈pnxm〉 , (4.25b)

using Wick’s theorem (Theorem A.28 of Appendix A) to expand the expecta-
tion value of the product of four Majorana operators as a sum of expectation
values of pairs. These correspond to entries in the covariance matrix of
Eq. (4.20) which leads, after some algebra, to the following expression for the
time-evolution of this connected correlation function:

Czz(x, t)
2 =

(∫ π

−π
dk

S

2

1∑
s=0

(
(−1)s cos(kx+ (−1)1−s 2εkt)

))2

+

(∫ π

−π
dk CS

(
sin(kx)− 1

2

1∑
s=0

sin(kx+ (−1)s 2εkt)
))2

−
(∫ π

−π
dk
(
C2 cos(kx) +

S2

2

1∑
s=0

cos(kx+ (−1)s 2εkt)
))2

.

(4.26)

The spectrum εk was defined in Eq. (4.14), S and C in Eq. (4.20f).
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Although more complicated than the string correlations, this also takes
the form of wave packets evolving according to the same dispersion relation,
albeit multiple wave packets with different envelopes (three in each direction)
propagating and interfering simultaneously. (The time-independent terms
conspire to ensure that the correlations are zero initially, as expected.)

What about entanglement? The following theorem establishes a connection
between two-point correlation functions and the localizable concurrence of
Definition 4.1.

Theorem 4.2 (Localizable Concurrence Correlation Bound)
For an N -qubit pure state |ψ〉, the maximum two-point connected correlation
function between qubits n and m is a lower bound on the localizable concurrence
of Ln,m(ψ) of those qubits:

Ln,m(ψ) ≥ max
a,b

〈ψ| a · σ b · σ |ψ〉 (4.27)

where σ = (σx, σy, σz) is the vector of Pauli matrices, a and b are real vectors
with unit length, and the dot indicates the usual scalar product.

Proof See Popp et al. [2005]. �

It follows trivially from Theorem 4.2 that any two-point connected cor-
relation function provides a lower bound on the localizable concurrence. In
particular, the localizable concurrence L(x, t) between two spins a distance x
apart is bounded from below by the Czz(x, t) correlation function of Eq. (4.26),
for all times t. Therefore, when distributing entanglement using a spin chain
described by the XY–model, the wave-packet description of Eq. (4.26) guar-
antees that at least that amount of entanglement is present.

4.4 Grassmann Integral Bound

The definition of localizable concurrence (Definition 4.1) involves a maximiza-
tion over local operations. Clearly, if we restrict these local operations to
projective measurements in the σz basis, we will obtain a lower bound:

Ln,m ≥
∑
s1...sN
=0,1

∣∣∣∣〈ψ| (∏
1≤i<n

Psi
i

)
σyn

(∏
n<j<m

Psj

j

)
σym

(∏
m<k≤N

Psk
k

)
|ψ∗〉

∣∣∣∣ (4.28)

where P0
i = | ↑〉〈↑ | and P1

i = | ↓〉〈↓ | are projectors on the spin-up/down
state of the ith spin.
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Inserting factors of −1 in front of appropriate terms in the sum, then
taking the modulus outside the sum, we obtain

Ln,m ≥
∑
s1...sN
=0,1

∣∣∣∣〈ψ| (∏
1≤i<n

Psi
i

)
σyn

(
(−1)

∑
j sj

∏
n<j<m

Psj

j

)
σym

(∏
m<k≤N

Psk
k

)
|ψ∗〉

∣∣∣∣

(4.29a)

≥
∣∣∣〈ψ| σyn(∏

n<i<j

σzi

)
σym |ψ∗〉

∣∣∣ (4.29b)

= |〈ψ| xnpm |ψ∗〉| . (4.29c)

This gives an alternative bound, also expressed in terms of Majorana operators,
to the one derived in Section 4.3.2 from correlation functions. However, the
expression in Eq. (4.29c) is not a covariance matrix element because of the
complex conjugation in the ket.

In order to derive an explicit analytic expression for this bound, it is
convenient to use a phase-space representation of the fermionic Gaussian
states |ψ〉 and |ψ∗〉. This is described in detail in Appendix A, though for
convenience we also restate the results as we need them in this section.

Using the fermionic P–representation (Definition A.21), we can write any
density operator ρ for the state of N fermions in the over-complete basis
formed by the fermionic coherent states:

ρ =

∫
dξP (ξ) |ξ〉〈ξ| , (4.30)

where |ξ〉 denotes the fermionic coherent state (Definition A.12) represented
by the N–dimensional vector ξ of Grassmann numbers (see Theorem A.22).
Equation (4.30) can in fact be taken as an implicit definition of the P–
representation for fermionic states.

Rewriting Eq. (4.29c) inside a trace, and making use of the P–represent-
ation, we have

L2
n,m ≥ |〈ψ| xnpm |ψ∗〉| = Tr

[
|ψ〉〈ψ| xnpm |ψ∗〉〈ψ∗| xnpm

]
(4.31a)

= Tr

[(∫
dξPψ(ξ) |ξ〉〈ξ|

)
xnpm

(∫
dηPψ∗(η) |η〉〈η|

)
xnpm

]
(4.31b)

=

∫∫
dξdη

(
−Pψ(ξ)Pψ∗(η) 〈ξ|(c†n + cn)(c

†
m − cm) |η〉

〈−η|(c†n + cn)(c
†
m − cm) |ξ〉

) (4.31c)
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=

∫∫
dξdη

(
Pψ(ξ)Pψ∗(η) 〈ξ|η〉 〈−η|ξ〉×

(ξ̄nξ̄m − ηnηm − ξ̄nηm − ξ̄mηn + δn,m)×

(ξnξm − η̄nη̄m + ξnη̄m + ξmη̄n − δn,m)
)
,

(4.31d)

where Pψ(ξ) and Pψ∗(η) are the P–representations of states |ψ〉 and |ψ∗〉. The
〈−η| in Eq. (4.31c) comes from anti-commuting one of the fermionic coherent
states through the rest of the expression to remove the trace (see Eq. (A.74)
in Appendix A). Equation (4.31d) is obtained by normal-ordering the creation
and annihilation operators ci and c†i , and using the fact that coherent states
are right eigenstates of all annihilation operators and left eigenstates of all
creation operators.

Define α and β to be the “real” representations of the “complex” Grass-
mann vectors ξ and η respectively, that is

α = Ω


ξ1
ξ̄1
...
ξN
ξ̄N

 , β = Ω


η1

η̄1
...
ηN
η̄N

 , (4.32)

where the matrix

Ω =
N⊕ 1√

2

(
1 1
i −i

)
(4.33)

converts from the “complex” to the “real” Grassmann representation. From
Result A.13 of Appendix A, which gives an expression for the overlap of two
fermionic coherent states, we have

〈ξ|η〉 〈−η|ξ〉 = 〈α|β〉 〈−β|α〉 = exp
(
αTβ −αTΓvacα− βTΓvacβ

)
. (4.34)

Also, from Theorem A.27 of Appendix A, the “complex” P–representation
of a fermionic Gaussian state with covariance matrix Γ (where Γ is still
expressed in the “real” representation of Eq. (4.19a) that we have been using
throughout) is given by the Gaussian form

P (ξ) = Pf(Γ− Γvac) exp

(
−1

2
ξ† Ω−1(Γ− Γvac)(Ω

−1)†ξ

)
. (4.35)

Let Γψ denote the (real representation of the) covariance matrix corre-
sponding to the system state |ψ〉, which at time t is given by Eq. (4.20). Let
Γψ∗ denote the (real representation of the) covariance matrix corresponding
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to |ψ∗〉. Now, our initial state (the state with all spins down) obviously has
only real coefficients in the spin basis, and the original spin Hamiltonian
of Eq. (4.2) is also invariant under complex conjugation in that basis. The
only effect of the complex conjugation is to reverse the direction of time in
the evolution operator exp(−iHt). Thus Γψ∗ is given by Eq. (4.20) with t
replaced by −t.

Using Eq. (4.34) and Eq. (4.35) in Eq. (4.31d), the bound on the localizable
entanglement becomes

L2
n,m ≥

∫∫
dξdη pn,m(ξ,η)×

exp

((
ξ† , η†

)
(Ω−1 ⊕ Ω−1)M(Ω−1 ⊕ Ω−1)†

(
ξ
η

))
, (4.36a)

with

M =

(
(Γψ − Γvac)

−1 + 2Γvac −1
1 (Γψ∗ − Γvac)

−1 + 2Γvac

)
(4.36b)

and

pn,m(ξ,η) = (ξ̄nξ̄m − ηnηm − ξ̄nηm − ξ̄mηn + δn,m)×
(ξnξm − η̄nη̄m + ξnη̄m + ξmη̄n − δn,m) (4.36c)

The integrand in Eq. (4.36a) is the product of a multi-dimensional Gaussian
with a fourth-order polynomial pn,m in the Grassmann variables. As such, it
can be carried out using a general result for Grassmann integrals involving
the product of an even monomial with a Gaussian.

Result 4.3 (Even Grassmann Monomial times Gaussian Integral)
The Grassmann integral of the product of an even order monomial with a
Gaussian is given by∫

dα exp

(
−1

2
αTAα

)
αi1αi2 . . . αi2n−1αi2n

= Pf(A)
1

4

∑
P

sgn(π)A−1
π1,π2

. . . A−1
π2n−1,π2n

. (4.37)

The sum is over all permutations π of the indices i1, . . . , i2n, where sgn(π)
denotes the signum of the permutation. Pf(A) denotes the Pfaffian of the
anti-symmetric matrix A, equal to the square-root of its determinant.

Proof See Result A.6 in Section A.2.3. �
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As fermionic covariance matrices are always anti-symmetric, the matrix
M defined in Eq. (4.36b) is also anti-symmetric. With the elements of M
given by Eq. (4.36b) and those of the covariance matrices by Eq. (4.20) from
Section 4.2, applying Result 4.3 to the integral in Eq. (4.36a) for each term
in the polynomial pn,m(ξ,η), gives (after no inconsiderable algebra) a final
expression for the bound on the localizable entanglement:

LE(x, t) ≥∏
k

(cos(2εkt)− iC sin(2εkt))×

1

N

∑
k

(
2
(
C + exp(2iεkt)(1− C)

)(
C cos(kx)− S sin(kx)

)
− 2 cos(kx)

cos(2εkt)− iC sin(2εkt)

+ 2 (S sin(kx)− C cos(kx))

)
. (4.38)

This bound depends only on the separation x = m − n of the two spins,
as expected from the translational invariance of the system. (The system
spectrum εk was defined in Eq. (4.14), S and C in Eq. (4.20f), both in
Section 4.2.)

Unlike the correlation-based bound of Section 4.3.2, this has no simple
physical interpretation. What is worse, it tends to zero in the thermodynamic
limit N → ∞ for t 6= 0, since the product becomes an infinite product of
terms with magnitude less than one. However, for short times and finite
chains, it is typically tighter than the correlation bound given by Eq. (4.26)
(see Fig. 4.1).

It should be pointed out though that, as we neglected terms of order 1/N
during the diagonalization of the XY–Hamiltonian (Eq. (4.7)), the expression
of Eq. (4.20) for the covariance matrix, and hence also the bound we have
just derived, is only strictly valid in the thermodynamic limit. However,
the numerical results shown in Fig. 4.2 indicate that Eq. (4.38) is a good
approximation to the exact bound given by Eq. (4.29c), even for relatively
small N .
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Figure 4.1: Bound on the localizable entanglement in the γ = 1, λ = 0.2 XY–model
at t = 0.5 (blue), from Eq. (4.38). The corresponding correlation-function bound from
Eq. (4.26) (red) is weaker for certain values of x, especially low values and at small times t
(as shown here).
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Figure 4.2: Bound on the localizable entanglement in the γ = 1, λ = 0.2 XY–model
at t = 0.5 (blue), from Eq. (4.38). Numerical calculations of 〈ψ| σy
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1<j<n σ

z
jσ
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(on which the analytic bound is based, and which is a lower bound on the localizable
entanglement even for finite chains) are shown in red (periodic boundary conditions) and
green (open boundary conditions), for a finite chain of length 10. Despite the fact that the
analytic bound is only strictly valid in the thermodynamic limit, it remains a very good
approximation up to times for which the boundary conditions become significant (as is
already happening at x = 9 in the open boundary condition case).
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4.5 Engineering the Correlation Dynamics

The aim of this chapter is not only to demonstrate that the dynamics of
correlations and entanglement in a many-body system can show interesting
behaviour, but moreover to demonstrate that the system can be deliberately
engineered in order to produce useful behaviour. To this end, we will use
the explicit analytic expressions for the correlation functions derived in
Sections 4.3.1 and 4.3.2, and the corresponding correlation-based bound on
the localizable entanglement of Section 4.3.2, to study to what extent the
correlation dynamics can be controlled by changing the external parameters
of our example system.

4.5.1 Correlation Wave Packets

Although the behaviour of the correlations described by Eq. (4.23) and
Eq. (4.26) can be quite complex, the fact that both equations can be inter-
preted in terms of propagating wave packets allows us to make quantitative
predictions as to the behaviour of the correlations.

String Correlations

Taking first the simpler, though less well-motivated, case of string correlations,
Eq. (4.23) for the XX string correlations as a function of block size x and
time t, which we reproduce here for convenience:

Sxx(x, t) =

∫ π

−π
dk
S

2
cos
(
kx− 2εkt

)
−
∫ π

−π
dk
S

2
cos
(
kx+ 2εkt

)
, (4.39)

has precisely the form of a solution to a one-dimensional wave equation, with
dispersion relation

ω(k) = 2εk = 2

√
(cos k − λ)2 + γ2 sin2 k. (4.40)

(The spectrum εk of the XY-model was given in Eq. (4.14). The wave-number
k runs from −π to π, as usual.) The envelope of the wave packets is given by

f(k) =
S

2
=

γ sin(k)

2
√

(cos k − λ)2 + γ2 sin2 k
, (4.41)

plots of which are shown in Fig. 4.3. Note that both the dispersion relation
and the wave-packet envelope depend on the system parameters γ and λ. For
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given γ and λ, the peaks of the envelope are at

k =

{
arccos(λ) λ ≤ 1

arccos
(

1
λ

)
λ > 1,

(4.42)

At that value of k, the first and second derivatives of the dispersion relation
are

v(k) =
dω(k)

dk
=

{
2γλ λ ≤ 1
2
√
γ2+λ2−1

λ
λ > 1,

(4.43a)

d(k) =
d2ω(k)

dk2
=


2(1−γ2)

√
1−λ2

γ
λ ≤ 1

2(1−γ2)
λ

√
λ2−1

γ2+λ2−1
λ > 1.

(4.43b)
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Figure 4.3: String correlation wave-packet envelope (green) from Eq. (4.41), for γ = 1.1,
λ = 2.0. These correlation packets propagate according to the dispersion relation (red),
given by Eq. (4.40). (Note that the green curve shows the absolute value of the envelope
function; its sign is unimportant for our purposes.)

Therefore, we would expect the string correlation dynamics to be well ap-
proximated by a wave packet with envelope f(k) from Eq. (4.41) propagating
at a group velocity given by Eq. (4.43a) and dispersing at a rate given by

91



4.5. ENGINEERING THE CORRELATION DYNAMICS

Eq. (4.43b). (There is also always a mirror-image wave packet propagating in
the opposite direction.) For example, for γ = 1.1 and λ = 2.0, the wave-packet
envelope is shown in Fig. 4.3, and Eq. (4.43a) and Eq. (4.43b) predict a group
velocity v ≈ 2 and dispersion rate d ≈ −0.18. This closely matches the actual
behaviour, shown in Fig. 4.4.
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Figure 4.4: The wave packets defined by the envelope shown in Fig. 4.3 propagate according
to the dispersion relation of Eq. (4.40). For those values of the system parameters (γ = 1.1,
λ = 2.0), Eq. (4.43a) and Eq. (4.43b) predict a group velocity v ≈ 2 and dispersion rate
d ≈ −0.18. This is in good agreement with the actual behaviour, which indeed shows
little dispersion and a well-defined correlation velocity, with the correlations propagating a
distance x = 100 in time t = 50.

Note that, when we talk about wave packets “propagating”, we really
mean that the string correlations in a block of spins of size x spread out over
time according to the wave-packet description given above. Moreover, as
the system is translationally invariant, this dynamics is repeated for every
translation of that block along the chain: the string correlations of spins n to
m are identical to those of spins n+ l to m+ l at all times, for any translation
l.

Two-Point Connected Correlations

The study of two-point (or spin-spin) correlations is better motivated than
that of string correlations (see Section 4.1), but it is also more complicated.
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Equation (4.26) for the ZZ-correlation function,

Czz(x, t)
2 =

(∫ π

−π
dk

S

2

1∑
s=0

(
(−1)s cos(kx+ (−1)1−s 2εkt)

))2

+

(∫ π

−π
dk CS

(
sin(kx)− 1

2

1∑
s=0

sin(kx+ (−1)s 2εkt)
))2

−
(∫ π

−π
dk
(
C2 cos(kx) +

S2

2

1∑
s=0

cos(kx+ (−1)s 2εkt)
))2

,

(4.44)

also resembles the solution to a one-dimensional wave-equation, but this time
there are three wave packets (plus their mirror-images) propagating simul-
taneously. The dispersion relation is the same as for the string correlations
(Eq. (4.40)), so again depends on the system parameters γ and λ, as do
all three wave-packet envelopes. This shows that the complicated dynamics
produced by the propagation and interference of a large number of funda-
mental excitations can lead to correlation dynamics that can be described by
remarkably simple physics, at least in the example system we have analysed.

Unlike the string-correlation case, by “propagation” of two-point correla-
tions wave packets, we mean something closer to propagation along the chain.
If we take one spin n to be fixed, then correlations between that spin and
a spin n + x do indeed propagate along the physical spin-chain. However,
like the string correlations, translational invariance dictates that the same
dynamics is simultaneously occurring all along the chain, repeated for all
translations n+ l and n+ x+ l of the two spins.

In subsequent sections, we will investigate examples of the two-point
correlation dynamics in more detail. As any two-point connected correlation
function gives a lower bound on the localizable entanglement, the discussion
also applies to entanglement, with the caveat that it only guarantees the
behaviour of some minimum amount of entanglement. In the following, we
will use the term “correlations” to refer to both correlation functions and
(localizable) entanglement.

4.5.2 Engineering the Correlation Velocity

What form does the two-point correlation dynamics take for different values
of the system parameters? For parameter regimes in which the dispersion
relation is highly non-linear, and the wave-packet envelopes are very broad
(in frequency-space), the correlations will disperse rapidly, and we would not
expect to see any well-defined propagation of packets of correlation.
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However, if we can find parameter regimes in which the dispersion relation
is reasonably linear over a large frequency range, and all three wave-packet
envelopes are concentrated around this linear region, then we would expect
to see propagation of correlation packets along the chain at some well-defined
group velocity, with the packets dispersing slowly as they propagate. In fact,
such regimes do exist, as shown in Fig. 4.5, and our predictions are borne out
by the actual correlation dynamics. This provides an explicit example of the
behaviour suggested by the group-velocity bound on correlation propagation
of Bravyi et al. [2006] (see Section 3.5.2).
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Figure 4.5: For γ = 1.1, λ = 2.0, all the wave-packet envelopes from Eq. (4.44) (dashed
curves, inset) are similar in form, centred around a nearly linear region of the dispersion
relation with gradient v ≈ 2 (red curve, inset) and curvature d ≈ −0.1. Thus the correlations
propagate in well-defined packets at a speed given by the gradient, with little dispersion.
(Note that the wave-packet envelopes have been scaled up by a factor of 10.)

Changing the system parameters within this regime changes the gradient
of the dispersion relation. As long as the the wave-packet envelopes remain
peaked in the fairly linear region of the dispersion relation, so that the
correlation wave packets remain well-defined as they propagate, this allows
us to engineer the correlation velocity of the system. Examples are shown in
Figs. 4.6 and 4.7.

This demonstrates that it is possible to engineer useful correlation dynam-
ics simply by controlling the global properties of the interactions, without
requiring any detailed local control, either over the interactions or during the
evolution.
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Figure 4.6: For γ = 1.0, λ = 0.1, the most prominent peaks in the wave-packet envelope
(green and magenta curves, inset) are centred around a very linear region of the dispersion
relation (red curve), with group velocity v ≈ 0.2 and dispersion rate d ≈ 0. Correlations
therefore propagate slower than in Fig. 4.5 (note the horizontal scale). The less prominent
peaks in the wave-packet envelope (blue curves, inset) propagate at a slightly slower speed
v ≈ 1.5, and cause the broadening of the correlation packets seen in the figure.
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Figure 4.7: For γ = 10.0, λ = 0.9, the wave-packet envelopes are spread over the entire
frequency range (dashed curves, inset). However, the dispersion relation (red curve, inset) is
reasonably linear both for wave-numbers above and below π/2, with gradients v ≈ ±18. As
the envelopes are symmetric around π/2, the correlations still propagate at a well-defined
speed v ≈ 18, faster than in Fig. 4.6 (note the horizontal scale), though as expected from
the very broad envelopes and larger dispersion rate d ≈ −9 around the envelope peaks,
they also show significantly more dispersion. (Note that the wave-packet envelopes have
been scaled up by a factor of 10.)
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4.5.3 Controlling the Correlation Packets

We have shown that the correlation velocity can be engineered by changing
the system parameters, but an even more interesting possibility arises if
we are able to change the system parameters during the evolution. The
extent of the control over the system parameters will, of course, depend
on the physical setup corresponding to the spin model, but it is not too
unrealistic a requirement; the parameter λ in the XY–model, for example,
can be interpreted as the strength of a uniform, external magnetic field, which
can easily be controlled.

If the system parameters in our example system, the XY–model, are
changed with time, the covariance matrix is no longer given by Eq. (4.20).
Instead, it is given by a similar expression,

Γ(t) = OT
FTO(t) ΓvacO(t)T OFT, (4.45)

but with the orthogonal evolution operator O(t) given by the time-ordered
exponential

O(t) = T

[
exp

(∫ t

0

dt′A(t′)

)]
= lim

h→0

bt/hc∏
n=1

exp
(
A(nh)

)
. (4.46)

(We have incorporated the Bogoliubov transformation into O(t), as it depends
on the system parameters which now depend on time.) The anti-symmetric
matrix A corresponding to the Hamiltonian is now time-dependent, and is
given by

Am,n = −i(hm,n(t)− hn,m(t)), H =
∑
m,n

hm,n(t)rkrk′ , (4.47)

where the decomposition of the Hamiltonian in terms of the Majorana opera-
tors rk defined in Section 4.2 now changes with time.

In general, the time-ordering is essential, and we can not obtain an explicit
analytic expression for the covariance matrix. But, if the system parameters,
and hence A(t), change slowly in time, dropping the time-ordering will
give a good approximation to the evolution operator. In that case, from
Eq. (4.46), O(t) becomes the exponential of the time-averaged value of A(t).
The evolution is therefore determined simply by the running time-average of
the Hamiltonian; that is, the state at time t is the same as that due to evolution
under an XY–Hamiltonian with parameters given by the time-average:

λ =
1

t

∫ t

0

dt′λ(t′), γ =
1

t

∫ t

0

dt′λ(t′). (4.48)
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If we remain in the parameter regime displaying well-defined wave-packet
propagation (see Section 4.5.2), for which the relevant part of the dispersion
relation is approximately linear, adjusting the parameters changes the gradient
of the dispersion relation without significantly affecting its curvature. Thus,
to a good approximation, we can slowly adjust the parameters to control
the velocity of the wave packets as they propagate, allowing us to speed up
and slow down the correlations. Figure 4.8, which shows results calculated
by numerically approximating the time-ordered exponential of Eq. (4.46),
confirms our analysis.
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Figure 4.8: Starting from the parameters γ = 1.1, λ = 2.0 of Fig. 4.5, the parameters
are smoothly changed to move from the solid to the dashed dispersion relation (inset),
increasing the correlation speed. (Note that th wave-packet envelopes (non-dashed curves,
inset) have been scaled up by a factor of 10.)

This implies we can achieve significant control over the propagation of
correlations in a spin chain even during its evolution. And all this whilst
only requiring external control over simple, global properties of the physical
system.

4.5.4 Freezing Correlations

We can engineer a system so that correlations propagate through it in well-
defined packets, and we can control the velocity of these packets as they are
propagating. Clearly if we are interested in using the system to distribute
entanglement, it would be useful to be able to freeze the correlations at any
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desired location. One method would be to simply switch off the interactions.
But, depending on the system, that may be difficult (if the spin model were
realized in a solid-state system, for example, switching off the interactions
would likely involve fabricating an entirely new system).

If we assume, as in the previous section, that the only control we have
is over a few global parameters of the system (γ and λ in our XY–model
example), can we still freeze correlations? Instead of changing the parameters
continuously, we now consider changing them abruptly. The time-evolved
covariance matrix in this scenario can be calculated analytically by the same
methods used in the fixed-parameter scenario of Section 4.2.

Suppose the initial system parameters γ0 and λ0 are suddenly changed to
γ1 and λ1 at time t1. Until time t1, the two-point ZZ correlation function will,
of course, evolve according to Eq. (4.26) from Section 4.3.2, as before. After
time t1, the evolution becomes more complicated. The covariance matrix is
given by

Γ(t) = OT
FTOΓvacOT OFT (4.49)

O = OT
Bog1

O(t− t1)OBog1
OT

Bog0
O(t1)OBog1

. (4.50)

The Fourier transform and time-evolution operators OFT and O(t) are given
by Eq. (4.10) and Eq. (4.18b), as before. The Bogoliubov transformation
operators OBog0

and OBog1
are given by Eq. (4.16a) with parameters γ0, λ0

and γ1, λ1 respectively.
The ZZ correlation function is still given by Eq. (4.25b), and the analogue

of Eq. (4.26) (the wave-packet description of the ZZ–correlations) separates
into a sum of wave packets evolving in four different ways: those that initially
evolve according to ε0 and subsequently (after t1) evolve according to ε1, those
that subsequently evolve according to −ε1, those that only start evolving at
t1, and those that that undergo no further evolution after t1 (all of which can
be seen in Fig. 4.9).

We are primarily interested in the terms whose evolution is “frozen” at
time t1, which for t > t1 are given by

Ct1
zz(x, t)

2 =

(
1

2

∫ π

−π
dkS1S2(C1S2 − C2S1)

∑
±

sin(kx± 2t1ε1)

)2

−

(
1

2

∫ π

−π
dkS1C2(C1S2 − C2S1)

∑
±

cos(kx± 2t1ε1)

)2

.

(4.51)

Since t does not appear on the right hand side, this expression clearly describes
wave packets that propagate until time t1 and then stop. Using these, we can
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move correlations to the desired location, and then “quench” the system by
abruptly changing the parameters, freezing the correlations at that location.
An example of this is shown in Fig. 4.9.
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Figure 4.9: The system is initially allowed to evolve with parameters γ0 = 0.9 λ0 = 0.5,
then “quenched” at time t1 = 20 to γ1 = 0.1, λ1 = 10. Some of the correlations are frozen
at the location they reached at t1 (the bright line at x ≈ 18 after t = 20). Others propagate
according to the new dispersion relation, or are “reflected”.

In conclusion, we have shown that by changing simple, global parameters,
a many-body system can be engineered so that the correlation dynamics
produced when the system is started in an easily prepared non-equilibrium
state consists of correlation packets propagating along the system at a well-
defined group-velocity. Not only can the correlation velocity be engineered in
advance, but by changing the same global parameters during the evolution,
the propagation speed can be controlled, and some of the correlation packets
can even be frozen once they have reached a desired location. This level of
control clearly has applications to entanglement distribution in the quantum-
repeater-like setups discussed in Section 4.1.
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Appendix A

Fermionic Gaussian States

In this appendix, we develop a theory of fermionic Gaussian states which
parallels that used frequently in quantum optics for bosons, and give proofs for
the results used in Chapter 4. There are numerous, equivalent ways to define
fermionic Gaussian states. We will follow the approach used in the bosonic
case, by first defining fermionic coherent states and displacement operators,
and using these to construct a characteristic function and other phase-space
representations for fermionic states. We can then define a Gaussian state to
be one whose phase-space representations are Gaussian.

As will be discussed in Section A.1, this development will require the
use of anti-commuting, or Grassmann, numbers. We give an overview of the
algebra and calculus of Grassmann numbers in Section A.2, and derive a
number of results that will be necessary later. In Section A.3, we show how
Grassmann numbers can be used to define fermionic displacement operators,
which generate coherent states when applied to the vacuum. These will allow
us to construct phase-space representations of fermionic states in Section A.4.
Finally, in Section A.5, we define fermionic Gaussian states and derive some
of their properties.

A number of the results relating to Grassmann numbers, fermionic coherent
states and phase-space representations can be found in Simons [2001, Chapters
3 and 4] and, especially, Cahill and Glauber [1999]. They are reproduced here
in order to make this thesis reasonably self-contained, and in order to present
alternative, simpler proofs for some of the results. These results then serve as
the foundation on which the fermionic Gaussian state formalism is built.
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A.1 Motivation

A coherent state of a collection of bosonic modes is defined to be any simulta-
neous eigenstate of all annihilation operators, and the set of all coherent states
forms an over-complete basis for states of those modes. Bosonic coherent
states are not only useful as a mathematical tool, but are also important
physically: ignoring certain subtleties, they are the states produced by lasers.

Starting from coherent states, and the displacement operators that create
them from the vacuum, it is possible to build various phase-space repre-
sentations and define bosonic Gaussian states. Again, Gaussian states are
relatively simple mathematically, but also physically relevant: they are pre-
cisely the states produced by linear optical elements (lasers, phase plates,
interferometers, optical squeezers, etc.).

It is not unreasonable to suppose that a similar formalism might be
useful in the case of fermions. Many calculations involving collections of
fermionic modes have a very similar mathematical structure to the equivalent
calculations for bosons. Also, experimentalists are now able to create atom
lasers, atom interferometers, etc. If the atoms have half-integer nuclear spin,
they will behave as fermions rather than bosons, so fermionic Gaussian states
are increasingly relevant to today’s experiments.

We can try to define coherent states in a similar way for a collection of
fermionic modes: as simultaneous eigenstates of all fermionic annihilation
operators. Then

ci |η〉= ηi |η〉 , (A.1)

However, we run into trouble due to the anti-commutation relations

{ci, cj} = δij (A.2)

obeyed by the annihilation operators. We get a different sign depending on
which order we apply two annihilation operators ci and cj 6=i:

cicj |η〉 = ciηj |η〉 = ηjηi |η〉

‖ ∦

−cjci |η〉 = −cjηi |η〉 = −ηiηj |η〉

(A.3)

(the final equality in each row follows from linearity of the annihilation
operators). This shows that fermionic coherent states do not exist in the
fermionic Fock space constructed from ci and c†i .

There is a standard solution to this inconvenience. Notice that Eq. (A.3)
would be consistent if the eigenvalues ηi and ηj were anti-commuting numbers,
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as we would then have

ηjηi |η〉= −ηiηj |η〉 . (A.4)

Such anti-commuting numbers can be defined, and are called Grassmann
numbers (see Section A.2). By formally expanding the fermionic Fock space
algebra to include these Grassmann numbers, we can avoid the problems of
Eq. (A.3), and Eq. (A.1) becomes consistent.

The expanded Fock space includes the original fermionic Fock space, so it
includes all physical fermionic states. However, it also includes states that
are not physical. For example, anticipating the more rigorous treatment
of Grassmann algebra in Section A.2, the fact that the coherent states are
unphysical is easily seen by calculating the expectation value of ci+c

†
i . Taking

the Hermitian conjugate of Eq. (A.4), the dual 〈η| of a coherent state |η〉 is
seen to be a left eigenstate of all the creation operators:(

ci |η〉
)†

= 〈η| c†i = η̄ c†i , (A.5)

where complex conjugation of Grassmann numbers is formally defined to be
a mapping between pairs of Grassmanns: η∗ = η̄. The expectation value is
then given by

〈η| ci + c†i |η〉= ηi + η̄i. (A.6)

The operator ci + c†i is Hermitian, so it corresponds to a physical observable.
As such, its expectation value should be a real number for any state of the
system. However, ηi + η̄i is a Grassmann number (it anti-commutes with
any other Grassmann ηj). Therefore, the coherent states can not be physical
states of the fermionic modes. Nonetheless, fermionic coherent states prove
to be a very useful mathematical tool.

A.2 Grassmann Algebra and Calculus

A.2.1 Grassmann Numbers and their Algebra

Grassmann numbers are entities that anti-commute with other Grassmann
numbers, but commute with ordinary numbers. We will denote Grassmann
numbers by lower-case Greek letters (e.g. η, ξ), and ordinary numbers by
lower-case Roman letters (e.g. a, b). Their (anti-)commutation relations are
then given by:

{η, ξ} = ηξ + ξη = 0, (A.7a)

[a, η] = aη − ηa. (A.7b)
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In particular, this implies that, for any Grassmann number η,

η2 = 0. (A.8)

Grassmann multiplication is defined to be distributive over addition:

x(y + z) = xy + xz, (A.9a)

(x+ y)z = xz + yz, (A.9b)

when x, y and z are any combination of Grassmann and ordinary numbers
(and, later, operators). Note that there is no ordering of Grassmann numbers:
it is meaningless to ask whether η is larger or smaller than η.

A set of n mutually anti-commuting Grassmann numbers {ηi} therefore
generates a 2n–dimensional Grassmann algebra over a field of ordinary num-
bers (which we will always take to be the field of complex numbers). The fact
that the algebra has dimension 2n can easily be seen from the fact that any
non-zero product of Grassmann numbers can include each ηi at most once.

As we will often need to deal with products of Grassmanns and fermionic
operators, we define them to anti-commute too:

{ηi, cj} = ηicj + cjηi = 0, (A.10a)

{ηi, c†j} = ηic
†
j + cjη

†
i = 0. (A.10b)

This, along with ordinary multiplication of operators and complex numbers,
allows us to extend the Grassmann algebra to include fermionic operators as
well.∗ Note that a Grassmann number “cancels out” the anti-commutativity
of a fermionic operator, so that the product ηicj commutes with everything
in the algebra.

We also need to define complex conjugation of Grassmann numbers, so
that we can take complex conjugates of products of Grassmanns with complex
numbers, or Hermitian conjugates of their products with operators. To do
this, we arbitrarily associate pairs of Grassmann numbers from the set {ηi}
and define them to be complex conjugates of each other (which means our
set must contain an even number of Grassmanns). To reflect this pairing in
our notation, we denote the members of a pair by ηi and η̄i, so that

η∗i = η̄i, η̄i
∗ = ηi. (A.11)

The sum of a Grassmann number and its conjugate, η+ η̄, is clearly invariant
under complex conjugation, and we will call these “real” Grassmann numbers.

∗Were we to include bosonic operators too, defining them to commute with Grassmanns,
we would end up with a superalgebra, as used in supersymmetric theories of fundamental
particle physics.
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We will generally reserve the letters α and β for “real” Grassmann numbers,
whereas all other lower-case Greek letters will, unless otherwise indicated, be
used for the usual Grassmann numbers.

Finally, for convenience, we arbitrarily define both complex and Hermitian
conjugation to reverse the order of products containing Grassmanns:

(ηiηj)
∗ = η̄j η̄i = −η̄iη̄j, (A.12a)

(ηicj)
† = c†j η̄i = −η̄ic†j. (A.12b)

A.2.2 Grassmann Calculus

The calculus of Grassmann variables is remarkably simple, once one has
become accustomed to the anti-commutation, due to the fact that the square
of any Grassmann number vanishes. The most general function of a single
Grassmann variable must have the form

f(η) = a+ bη, a, b ∈ C (A.13)

and, more generally, any function of n Grassmann variables can contain at
most 2n terms. This implies that the series expansion of any Grassmann
function terminates after a finite number of terms and is exact. Thus a
brute-force way to deal with any Grassmann function is to calculate its Taylor
expansion in full, reducing it to a multi-linear form which is easy to deal with.

Differentiation with respect to a Grassmann variable is defined in analogy
with the complex case.

Definition A.1 (Grassmann Differentiation)
Differentiation with respect to a Grassmann variable ηj is defined by

∂ηi
∂ηj

= ∂ηi
ηj = δij, (A.14)

where ηi is also a Grassmann variable.

Note however that, in order to be consistent with the anti-commutation
relations, the differential operator ∂ηi

must itself anti-commute:

∂ηi
ηjηi = −∂ηi

ηiηj = −ηj = −ηj∂ηi
ηi. (A.15)

Definition A.2 (Grassmann Integration)
Integration over a Grassmann variable η is defined by∫

dη = 0,

∫
dηiηj = δij, (A.16)

called the Berezin integral [Berezin, 1966].
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This definition of integration is exactly equivalent to Definition A.1 of Grass-
mann differentiation:∫

dηf(η) =

∫
dη(a+ bη) = b =

∂

∂η
(a+ bη) = ∂ηf(η), (A.17)

so Grassmann differentiation and integration are the same operation.
We will denote multi-dimensional integrals over all variables contained in

a vector of Grassmann variables η by∫
dη ≡

∫ ∏
i

dηi. (A.18)

We will often take integrals over conjugate pairs of Grassmann variables, and
for convenience we denote this∫

d2η ≡
∫∫

dη̄dη. (A.19)

Note that the conjugated variable comes first. Similarly, we will often en-
counter vectors η containing a set of Grassmann variables ηi and their conju-
gates η̄i. The integral over these will be denoted by∫

d2η ≡
∫ ∏

i

d2ηi =

∫ ∏
i

dη̄idηi. (A.20)

Many results from the calculus of complex variables carry over to the
Grassmann calculus, but one must be careful about the ordering of the
variables. For example, in differentiating the product of two Grassmann
functions f(η)g(η), any part of f(η) that anti-commutes with Grassmann
numbers picks up an extra sign from commuting the differential operator past
it.

Result A.3 (Grassmann Differentiation Product Rule)
The Grassmann derivative of the product of two functions f(η) and g(η), is
given by

∂ηi

(
f(η)g(η)

)
=
(
∂ηi
f(η)

)
g(η) +

(
f+(η)− f−(η)

)(
∂ηi
g(η)

)
, (A.21)

where f(η) = f+(η) + f−(η) is the decomposition of the function f into a
part f+(η) that commutes with all Grassmann numbers, and a part f−(η)
that anti-commutes.

From this, we can derive the Grassmann version of integration by parts.
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Result A.4 (Grassmann Integration by Parts)∫
dη
(
∂ηi
f(η)

)
g(η) = −

∫
dη
(
f+(η)− f−(η)

)
∂ηi
g(η). (A.22)

Proof The integral of a derivative always vanishes for Grassmann variables,
as the derivative will be missing that variable. Therefore, we have∫

dη
∂

∂ηi

(
f(η)g(η)

)
=

∫
dη

(
∂f(η)

∂ηi
g(η) + f(−η)

∂g(η)

∂ηi

)
= 0, (A.23)

from which the result follows immediately. �

A.2.3 Gaussian Grassmann Integrals

The prototypical Gaussian Grassmann integral can be calculated by expanding
the exponential as a (finite) series, then applying the rules of Grassmann
integration described in the previous section. For ηi 6= ηj and complex a, we
have ∫∫

dηidηj e
−aηiηj =

∫∫
dηidηj(1− aηiηj) (A.24a)

= −a
∫∫

dηidηjηiηj (A.24b)

= a

∫∫
dηiηidηjηj (A.24c)

= a. (A.24d)

The ordering of the variables is important, since a similar manipulation leads
to ∫∫

dηjdηi e
−aηiηj = −a. (A.25)

This can be extended to a general formula for multi-dimensional Gaussian
Grassmann integrals.

Result A.5 (Gaussian Grassmann Integral (1))
Given a vector of Grassmann variables η, a fixed Grassmann vector ν, and a
fixed, complex, invertible, real anti-symmetric matrix A,∫

dη exp

(
−1

2
ηTAη + νTη

)
= Pf A exp

(
−1

2
νTA−1ν

)
, (A.26)

where Pf A denotes the Pfaffian of A,

Pf A =
√

detA. (A.27)
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Proof We start by “shifting” the integration variables:∫
dη exp

(
−1

2
ηTAη + vTη

)
=

∫
dη exp

(
−1

2
(ηT + vTA−1)A(η + A−1v) +

1

2
vTA−1v

)
(A.28a)

=

∫
dη′ exp

(
−1

2
η′TAη′

)
exp

(
1

2
vTA−1v

)
, (A.28b)

where η′ = η + A−1ν and the Jacobian matrix for this transformation is
given by

Jij =
∂η′i
∂ηj

= δij. (A.29)

The exponentials in Eq. (A.28b) can be separated because both exponents
contain only terms with an even number of Grassmann variables, so they
commute.

Now any 2N × 2N real anti-symmetric matrix A can be brought into a
block-diagonal form by an orthogonal transformation,

OAOT = Σ =



0 λ1

−λ1 0
0 λ2

−λ2 0
. . .

. . . . . . λN
−λN 0


, (A.30)

where the λ’s are real (see Gantmacher [2000, Section XI.4]). For a (2N +
1)× (2N + 1) matrix, there will be an extra row and column of zeros. The
Pfaffian of A is defined as

Pf A =
∏
i

λi. (A.31)

From Eq. (A.30), the eigenvalues of A occur in pairs ±iλi, so

detA =
∏
i

λ2
i = (Pf A)2. (A.32)

Using Eq. (A.30),∫
dη′ exp

(
−1

2
ηTOTΣOη

)
=

∫
dη′′ exp

(
−1

2
η′′TΣη′′

)
, (A.33)
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where we have “rotated” to a new set of Grassmann variables η′′ = Oη, and
the Jacobian is given by

J ′ij =
∂η′′i
∂η′j

= Oij, det J ′ = detO = 1. (A.34)

Finally, substituting Eq. (A.33) in Eq. (A.28b),∫
dη exp

(
−1

2
ηTAη + vTη

)
= exp

(
1

2
vTA−1v

)∫
dη exp

(
−1

2
η′′TΣη′′

)
(A.35a)

= exp

(
1

2
vTA−1v

)∫
dη exp

(
−1

2

∑
i

(λiηiηi+1 − λiηi+1ηi)

)
(A.35b)

= exp

(
1

2
vTA−1v

)∏
i

∫
dηidηi+1e

−λiηiηi+1 (A.35c)

= Pf A exp

(
1

2
vTA−1v

)
. (A.35d)

The final line follows from Eq. (A.31) for the Pfaffian of A and the Gaussian
integral formula of Eq. (A.25). �

By taking successive derivatives of this result with respect to the compo-
nents of v at v = 0, we obtain expressions for the product of a Grassmann
monomial with a Gaussian.

Result A.6 (Grassmann Monomial times Gaussian Integral)
Given an nth order monomial of Grassmann variables,

∏n
i=1 ηi, and a fixed,

complex, invertible, real anti-symmetric matrix A,

∫
dη exp

(
−1

2
ηTAη

) n∏
i=1

ηi

=

{
0 n odd(

1
2

)n/2
Pf A

∑
π

(
sgn(π)

∏n/2
i=1A

−1
π(2i−1),π(2i)

)
n even.

(A.36)

The sum is over all permutations π of the indices i = 1, . . . , n, where sgn(π)
denotes the signum of the permutation. Pf(A) denotes the Pfaffian of the
anti-symmetric matrix A, equal to the square root of its determinant.
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Proof Taking derivatives of the left hand side of the Gaussian integral formula
of Eq. (A.26) with respect to components ν1, . . . , νn at ν = 0,

∂ν1 . . . ∂νn

∣∣∣∣
v=0

∫
dη exp

(
−1

2
ηTAη + νTη

)
=

∫
dη exp

(
−1

2
ηTAη

) n∏
i=1

ηi.

(A.37)
Assume first that n is even. Taking the same derivative of the right hand side
of Eq. (A.26), and denoting permutations of the labels 1 . . . n by π,

∂ν1 . . . ∂νn Pf A exp

(
−1

2
νTA−1ν

)∣∣∣∣
ν=0

= Pf A ∂ν1 . . . ∂νn

∏
p,q

(
1− 1

2
νpA

−1
pq νq

)∣∣∣∣
ν=0

(A.38a)

= Pf A

(
1

2

)n/2
∂ν1 . . . ∂νn

∑
π

(
n/2∏
i=1

(
−νπ(2i−1)A

−1
π(2i−1),π(2i)νπ(2i)

))∣∣∣∣∣
ν=0

(A.38b)

dropping terms whose derivatives vanish,

= Pf A

(
1

2

)n/2
×

∑
π

(
sgn(π)∂νπ(1)

. . . ∂νπ(n)

n/2∏
i=1

(
−νπ(2i−1)A

−1
π(2i−1),π(2i)νπ(2i)

)∣∣∣∣
ν=0

)
(A.38c)

anti-commuting the differential operators ∂νi
to order them according to the

permutation π,

= Pf A

(
1

2

)n/2
×

∑
π

(
sgn(π)

n/2∏
i=1

∂νπ(2i−1)
∂νπ(2i)

(
−νπ(2i−1)A

−1
π(2i−1),π(2i)νπ(2i)

)∣∣∣∣
ν=0

)
(A.38d)

= Pf A

(
1

2

)n/2∑
π

sgn(π)

n/2∏
i=1

A−1
π(2i−1),π(2i). (A.38e)
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Terms that do not involve all ν1, . . . , νn will vanish in Eq. (A.38b) due to the
rules of Grassmann differentiation (Definition A.1). Terms involving one or
more extra νi>n will vanish when evaluating the term at ν = 0.

If on the other hand n is odd, it becomes impossible to pair up the
differential operators ∂νi

, and the terms inside the product in Eq. (A.38b)
will always either include an extra νi>n and vanish when evaluated at ν = 0,
or will be missing one of the ν1≤i≤n and vanish due to the rules of Grassmann
differentiation (Definition A.1). �

A final variant of Gaussian Grassmann integration leads to an integral
formula that will be useful later. (Conjugates of Grassmann variables will be
used for later notational convenience; since conjugation is simply an arbitrary
mapping between pairs of Grassmann numbers, and the complex conjugation
operation is never used here, the result would be equally valid if all the
variables were written without the conjugates.)

Result A.7 (Gaussian Grassmann Integral (2))
Given a vector η containing Grassmann variables ηi and their conjugates η̄i,
and fixed Grassmann vectors µ and ν,∫

d2η exp

(
−
∑
i

η̄iηi + ν̄iηi + η̄iµi

)
= e

∑
i ν̄iµi . (A.39)

Proof “Shifting” the integration variables to

η′i = ηi + µi, η̄i = η̄i + ν̄i (A.40)

with Jacobian matrix

Jij =
∂η′i
∂ηj

= δij, (A.41)

we have ∫
d2η exp

(
−
∑
i

η̄iηi + ν̄iηi + η̄iµi

)
(A.42a)

=

∫
d2η exp

(
−
∑
i

(η̄i + ν̄i)(ηi + µi)− ν̄iµi

)
(A.42b)

= e
∑

i ν̄iµi

∫
d2η′e−

∑
i η̄

′
iη
′
i (A.42c)

= e
∑

i ν̄iµi , (A.42d)

where the final equality follows from the Gaussian integral formula given in
Eq. (A.24a). �
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A.2.4 Grassmann Fourier Transforms

A Grassmann integral transformation that is analogous to the usual Fourier
transform of complex variables can be defined, and will be important in
deriving the most useful of the fermionic phase-space representations in
Section A.4. We give here the results that will be required. For a more
complete treatment of Grassmann Fourier transforms, see Cahill and Glauber
[1999].

Definition A.8 (Grassmann Fourier Transform)
The Grassmann Fourier transform f̃(ξ) of a function f(η) of Grassmann
variables ηi and their conjugates η̄i is defined by

f̃(ξ) =

∫
d2η exp

(
−
∑
i

η̄iξi + ηiξ̄i

)
f(η). (A.43)

A Grassmann analogue of the Dirac δ–function can also be defined.

Lemma A.9 (Grassmann δ–Function)
The function of Grassmann variables ηi given by

δ(η − ξ) =
∏
i

(ηi − ξi) =

∫
d2µ exp

(
−
∑
i

(ηi − ξi)µi

)
(A.44)

has the property that, for any function f(η),∫
dη δ(η − ξ)f(η) =

∫
dη δ(ξ − η)f(η) = f(ξ). (A.45)

Proof For any monomial (
∏

j<i ηi)ηi(
∏

k>i ηk) containing the variable ηi,
where the product over j contains n variables,∫

dηi (ηi − ξi)
∏
j,k 6=i

ηjηiηk =

∫
dηi (ηi − ξi)(−1)nηi

∏
j,k 6=i

ηjηk (A.46a)

=

∫
dηi ηiξi(−1)n

∏
j,k 6=i

ηjηk (A.46b)

= ξi(−1)n
∏
j,k 6=i

ηjηk (A.46c)

=
∏
j,k 6=i

ηjξiηk. (A.46d)

The same final result Eq. (A.45) is obtained if (ηi− ξi) is changed to (ξi− ηi),
as two factors of −1 cancel. Since any Grassmann function can be expanded
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as a finite sum of such monomials, we can carry out the integrals over ηi in
Eq. (A.45) one by one, using Eq. (A.46) for each monomial in the expansion.
This will successively replace each ηi by ξi, resulting in Eq. (A.45).

To show that the two expressions for the δ–function in Eq. (A.44) are
equivalent, all that is necessary is to expand the exponential and do the
integration using the Gaussian integral formula of Eq. (A.24a):

∫
d2µ exp

(
−
∑
i

(ηi− ξi)µi

)
=
∏
i

∫
dµi exp(1− (ηi− ξi)µi) =

∏
i

(ηi− ξi).

(A.47)

�

The Grassmann δ–function can be used to prove the following relation that
we will need later to derive one of the fermionic phase-space representations. It
is analogous to a version of Parseval’s theorem for normal Fourier transforms.

Lemma A.10 (Grassmann Parseval Theorem)
For functions f(η) and g(η) of Grassmann variables ηi and η̄i, and their

Grassmann Fourier transforms f̃(ξ) and g̃(ξ),

∫
dξf̃(ξ)g̃(−ξ) =

∫
dηf(η)g(η). (A.48)

Proof This is easily proven by inserting the integral form of the Grassmann
δ–function from Lemma A.9:∫

d2ξ f̃(ξ) g̃(−ξ)

=

∫
d2ξ

∫
d2η e−

∑
i η̄iξi+ηiξ̄i f(η)

∫
d2µ e

∑
i µ̄iξi+µiξ̄i g(µ) (A.49a)

=

∫
d2ξ d2η d2µ e−

∑
i(η̄i−µ̄i)ξi+(ηi−µi)ξ̄if(η)g(µ) (A.49b)

=

∫
d2η f(η)

∫
d2µ δ(η − µ) g(µ) (A.49c)

=

∫
d2η f(η) g(η). (A.49d)

�
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A.3 Displacement Operators and

Coherent States

We now turn to systems of n fermionic modes, with creation and annihilation
operators c†i and ci obeying the usual anti-commutation relations

{ci, cj} = {c†i , c
†
i} = 0, (A.50a)

{ci, c†j} = δij. (A.50b)

We define the vacuum |0〉 of the set of modes to be the state annihilated by
all annihilation operators

ci |0〉= 0 ∀i. (A.51)

As it will often be convenient to work in the “real” representation, we also
define Majorana operators

xi = c†i + ci, pi =
c†i − ci
i

, (A.52)

which obey the equivalent anti-commutation relations

{ri, rj} = 2δij. (A.53)

For convenience, we will often use the notation

r2i−1 = xi, r2i = pi. (A.54)

A.3.1 Definitions and Basic Properties

In analogy with the bosonic phase-space formalism, we start by defining
fermionic displacement operators.

Definition A.11 (Fermionic Displacement Operator)
Fermionic displacement operators, parameterized by a vector η of Grassmann
numbers ηi and their conjugates η̄i, are defined by

D(η) = exp

(
−
∑
i

ηic
†
i + η̄ici

)
. (A.55)

Note that all summands with different indices i commute with one another,
as they consist of products of a Grassmann with a fermionic operator, and the
operators in each summand act on different modes; the anti-commutativity
of the Grassmann numbers “cancels” that of the fermionic operators. Also,
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the commutator of the two terms within each summand [ηic
†
i , η̄ici] = η̄iηi

is product of two Grassmanns, so commutes with everything. Thus, using
the Cambell-Baker-Hausdorf relation for exponents that commute with their
commutator,

eA+B = eAeBe−
1
2
[A,B], (A.56)

we can decompose the displacement operator in a number of ways:

D(η) = e−
∑

i ηic
†
i e−

∑
i η̄icie−

1
2

∑
i η̄iηi (A.57)

=
∏
i

(
1− ηic

†
i − η̄ici +

1
2
ηic

†
i η̄ici +

1
2
η̄iciηic

†
i

)
. (A.58)

Equivalently, we can write the displacement operator in the “real” repre-
sentation,

D(α) = exp

(
−
∑
i

α2i−1xi + α2ipi

)
= exp

(
−
∑
i

αiri

)
, (A.59)

where α is a vector of “real” Grassmann numbers

α2i−1 =
η̄i + ηi

2
, α2i =

η̄i − ηi
2i

. (A.60)

If we now apply an annihilation operator to the state produced by dis-
placing the fermionic vacuum,

cjD(η) |0〉= cj
∏
i

(
1− ηic

†
i − η̄ici +

1
2
ηic

†
i η̄ici +

1
2
η̄iciηic

†
i

)
|0〉 (A.61a)

=
∏
i6=j

(
1− ηic

†
i − 1

2
ηiη̄i

)
cj

(
1− ηjc

†
j − 1

2
ηj η̄j

)
|0〉 (A.61b)

=
∏
i6=j

(
1− ηic

†
i − 1

2
ηiη̄i

)
ηj |0〉 (A.61c)

=
∏
i

(
1− ηic

†
i − 1

2
ηiη̄i

)(
1− ηjc

†
j − 1

2
ηj η̄j

)
ηj |0〉 (A.61d)

since η2
j = 0,

= ηj exp
(
−
∑
i

ηic
†
i + η̄ici

)
|0〉 (A.61e)

= ηjD(η) |0〉 . (A.61f)

This shows that the displaced vacuum is a simultaneous eigenstate of all
the annihilation operators. That is, it is a fermionic coherent state. This
gives a concrete second-quantization description of fermionic coherent states,
introduced in a more abstract way in Section A.1.
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Definition A.12 (Fermionic Coherent State)
A fermionic coherent state |η〉 of a collection of fermionic modes with creation

and annihilation operators c†i and ci is defined to be a simultaneous eigenstate
of all the annihilation operators,

ci |η〉= ηi |η〉 , (A.62)

and is generated by the action of a displacement operator on the vacuum state:

|η〉= D(η) |0〉= exp

(
−1

2

∑
i

η̄iηi

)
exp

(
−
∑
i

ηic
†
i

)
|0〉 . (A.63)

The duals 〈η| of these coherent states are obtained by taking the Hermitian
conjugate of Eq. (A.63),

〈η| = 〈0|D†(η) = 〈0| exp

(∑
i

η̄ici

)
exp

(
−1

2

∑
i

η̄iηi

)
. (A.64)

They are clearly right-eigenstates of all creation operators:

〈η| c†i = 〈η| η̄i. (A.65)

We will frequently need to know the overlap between two coherent states.

Result A.13 (Coherent State Overlap)
The overlap of two fermionic coherent states |η〉 and |ξ〉 is given by

〈η|ξ〉 = exp

(∑
i

η̄iξi − 1
2
η̄iηi − 1

2
ξ̄iξi

)
. (A.66)

Proof Writing the coherent states as displaced vacuum states,

〈η|ξ〉 = 〈0|D†(η)D(ξ) |0〉 (A.67a)

=
〈
0
∣∣∏

i

(
1− ciη̄i − c†iηi +

1
2
c†iηiciη̄i +

1
2
ciη̄ic

†
iηi

)
×(

1− ξic
†
i − ξ̄ici +

1
2
ξic

†
i ξ̄ici +

1
2
ξ̄iciξic

†
i

) ∣∣0〉 (A.67b)

=
∏
i

〈
0i
∣∣ (1− ciη̄i − 1

2
η̄iηicic

†
i

)(
1− ξic

†
i − 1

2
ξ̄iξicic

†
i

) ∣∣0i〉 (A.67c)

=
∏
i

(
1 + η̄iξi − 1

2
η̄iηi − 1

2
ξ̄iξi +

1
4
η̄iηi

1
2
ξ̄iξi
)

(A.67d)

= exp

(∑
i

η̄iξi − 1
2
(η̄iηi + ξ̄iξi)

)
. (A.67e)

�

116



APPENDIX A. FERMIONIC GAUSSIAN STATES

Finally, two successive displacements are, up to Grassmann number factors,
equivalent to a displacement by the sum.

Result A.14 (Displacement Operator Product)

D(µ)D(ν) = exp

(
−1

2

∑
i

µ̄iνi + µiν̄i

)
D(µ + ν). (A.68)

Proof The only terms in the exponents of the two displacement operators
(Definition A.11) that do not commute are those acting on the same mode.
The commutator of these is

[(µic
†
i+µ̄ici), (νic

†
i+ν̄ici)] = −µiν̄i{c†i , ci}−µ̄iνi{ci, c

†
i} = −µiν̄i−µ̄iνi. (A.69)

Since the commutator contains only pairs of Grassmann numbers, it commutes
with any combination of Grassmanns and operators, so we can use the Cambell-
Baker-Hausdorf relation Eq. (A.56) again to give

D(µ)D(ν) = exp

(
−
∑
i

µic
†
i + µ̄ici

)
exp

(
−
∑
i

νic
†
i + ν̄ici

)
(A.70a)

= exp

(
−1

2

∑
i

[(µic
†
i + µ̄ici), (νic

†
i + ν̄ici)]

)
×

exp

(
−
∑
i

(µi + νi)c
†
i + (µ̄i + ν̄i)ci

) (A.70b)

= exp

(
−1

2

∑
i

µ̄iνi + µiν̄i

)
D(µ + ν). (A.70c)

�

A.3.2 Completeness Properties

The coherent states and displacement operators introduced in the previous
section respectively form complete bases for states and operators in the
fermionic Fock space. Therefore, any state or operator can be decomposed in
terms of them. (In fact, both the coherent states and displacement operators
form over-complete bases.) We now prove this.

Theorem A.15 (Completeness of Coherent States)
The fermionic coherent states form an over-complete basis for the fermionic
Fock space F , so that any state |ψ〉 can be written as

|ψ〉=

∫
d2η 〈η|ψ〉 |η〉 (A.71)
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Proof We will prove that the coherent states give rise to a resolution of
identity, ∫

d2η |η〉〈η| = 1F (A.72)

(where 1F is the identity operator on the Fock space), as this implies that
they must span the entire Fock space, and leads directly to Eq. (A.71).

The easiest way to prove this is via Schur’s lemma: if we can show that
the left hand side of Eq. (A.72) commutes with all operators in the Fock
space algebra, then Schur’s lemma implies that it must be proportional to
the identity. First, we show it commutes with the annihilation operators:

ci

∫
d2η |η〉〈η| =

∫
d2η ci |η〉〈η| (A.73a)

=

∫
d2η ηiD(η) |0〉〈0|D†(η) (A.73b)

=

∫
d2η ηie

− 1
2

∑
i η̄iηie−

∑
i ηic

†
i |0〉〈0| e−

1
2

∑
i η̄iηie−

∑
i ciη̄i

(A.73c)

=

∫
d2η

(
−∂η̄i

e−
∑

i η̄iηie
∑

i ηic
†
i |0〉

)(
〈0| e−

∑
i ciη̄i

)
(A.73d)

=

∫
d2η

(
e−

∑
i η̄iηie

∑
i ηic

†
i |0〉

)(
∂η̄i

〈0| e−
∑

i ciη̄i

)
(A.73e)

integrating by parts using Result A.4, and noting that the function in the
left hand bracket commutes with all Grassmann variables,

=

∫
d2η

(
e−

∑
i η̄iηie

∑
i ηic

†
i |0〉

)(
〈0| e−

∑
i ciη̄ici

)
(A.73f)

=

∫
d2η |η〉〈η| ci. (A.73g)

Taking the Hermitian conjugate of both sides shows that the left hand
side of Eq. (A.72) also commutes with all creation operators. Since the
creation and annihilation operators generate the complete Fock space algebra,
it therefore commutes with all elements of the algebra, which concludes the
proof. �

If we expand the exponential containing the creation operators in Defini-
tion A.12 of the fermionic coherent states, we see that a coherent state consists
of a superposition of all possible number states, with Grassmann number
coefficients. These coefficients will pick up a sign factor when commuted
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past another Grassmann number, or past a product of an odd number of
creation and annihilation operators. Therefore, if we use the coherent state
resolution of identity (Eq. (A.72)) inside a trace over an operator A, and want
to cyclically permute the bra to the front, we again have to be careful about
minus signs; the bra will pick up an extra sign factor when commuted past
the ket.

Tr[A] = Tr

[
A

∫
d2η |η〉〈η|

]
=

∫
d2η 〈−η|A |η〉 (A.74)

Completeness of the coherent states allows us to prove the following
Lemma, which we will need to prove completeness of the displacement opera-
tors.

Lemma A.16 (Coherent State Diadic)
For any diadic |µ〉〈ν| formed from coherent states |µ〉 and |ν〉, the following
operator identity holds:

|µ〉〈ν| =

∫
d2η

〈
ν
∣∣D†(η)

∣∣µ〉D(η). (A.75)

Proof Introducing two more coherent states |γ〉 and |δ〉,∫
d2η

〈
ν
∣∣D†(η)

∣∣µ〉 〈γ|D(η) |δ〉

=

∫
d2η 〈ν| e

∑
i ηic

†
i e−

1
2

∑
i η̄iηie

∑
i η̄ici |µ〉〈γ| e−

∑
i ηic

†
i e−

1
2

∑
i η̄iηie−

∑
i η̄ici |δ〉

(A.76a)

= 〈ν|µ〉 〈γ|δ〉
∫

d2η exp

(
−
∑
i

η̄iηi − (γ̄i − ν̄i)ηi − η̄i(µi − δi)

)
(A.76b)

= 〈ν|µ〉 〈γ|δ〉 exp

(∑
i

(γ̄i − ν̄i)(µi − δi)

)
(A.76c)

evaluating the Gaussian integral using Result A.7,

= 〈γ|µ〉 〈ν|δ〉 . (A.76d)

The final equality follows from expanding the inner products using Result A.13
for the overlap of two coherent states, and noticing that the terms in the
exponential effectively reorder the coherent states in the inner products.

Since this integral identity holds for all |γ〉 and |δ〉 and the coherent
states form a complete basis, Eq. (A.75) is true for all matrix elements of
the operators on each side of the equality, therefore holds for the operators
themselves. �
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Completeness of the displacement operators is now easy to prove from
completeness of the coherent states.

Theorem A.17 (Completeness of Displacement Operators)
The fermionic displacement operators form an over-complete basis for opera-
tors on the fermionic Fock space F , so that any operator A can be decomposed
as

A =

∫
d2ηd2µ 〈µ|AD†(η) |µ〉D(η). (A.77)

Proof Inserting the coherent state resolution of identity (Eq. (A.72)) twice,
we have

A =

(∫
d2µ |µ〉〈µ|

)
A

(∫
d2ν |ν〉〈ν|

)
(A.78a)

=

∫
d2µ d2ν 〈µ|A |ν〉 |µ〉〈ν| (A.78b)

=

∫
d2µ d2ν 〈µ|A |ν〉

∫
d2η

〈
ν
∣∣D†(η)

∣∣µ〉D(η) (A.78c)

using Lemma A.16 to expand the coherent state diadic,

=

∫
d2ηd2µ 〈µ|A

(∫
d2ν |ν〉〈ν|

)
D†(η) |µ〉D(η) (A.78d)

=

∫
d2ηd2µ 〈µ|AD†(η) |µ〉D(η). (A.78e)

�

A.4 Fermionic Phase Space

Theorem A.17, in particular Eq. (A.77), shows that there is a one-to-one cor-
respondence between operators A on the fermionic Fock space and Grassmann
functions

∫
d2µ 〈µ|AD(η) |µ〉. Therefore, these functions provide faithful

representations of operators. In particular, they can be used to represent
fermionic density operators ρ, leading to “phase-space” representations of
fermionic states analogous to the complex functions that provide phase-space
representations of bosonic states.

To establish our first phase-space representation, we will need a relation
between the Fourier transform of a coherent state diadic and the displacement
operators.
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Lemma A.18 (Fourier Transform of Coherent State Diadic)
The following operator identity holds for the Fourier transform of the coherent
state diadic |µ〉〈−µ|:∫

d2µe−
∑

i µ̄iηi+µiη̄i |µ〉〈−µ| = e−
1
2

∑
i η̄iηi

∫
d2µD†(η) |µ〉〈−µ| . (A.79)

Proof Introducing two additional coherent states |δ〉 and |γ〉, we can calculate
the matrix element of the Fourier transformed diadic,

〈δ|
∫

d2µ e−
∑

i µ̄iηi+µiη̄i |µ〉〈−µ|γ〉 (A.80a)

=

∫
d2µ e−

∑
i µ̄iηi+µiη̄ie

∑
i δ̄iµi− 1

2
δ̄iδi− 1

2
µ̄iµie

∑
i −µ̄iγi− 1

2
µ̄iµi− 1

2
γ̄iγi (A.80b)

using Result A.13 for the overlap of two coherent states,

= e−
1
2

∑
i δ̄iδi+γ̄iγi

∫
d2µ e−

∑
i µ̄iµi−(η̄i+δ̄i)µi+µ̄i(ηi+γi) (A.80c)

= e−
1
2

∑
i δ̄iδi+γ̄iγi+η̄iηie−

∑
i δ̄iηi

∫
d2µ′ e−

∑
i µ̄

′
iµ

′
i−(η̄i+δ̄i)µ

′
i+µ̄

′
i(ηi+γi)

(A.80d)

by “shifting” the integration variable µi = µ′i + ηi (but without shifting the
conjugate variable µ̄i = µ̄′i),

= e−
∑

i η̄iηi

∫
d2µ′ e

∑
i ηiδ̄ie

∑
i η̄iµi 〈δ|µ〉 〈−µ|γ〉 (A.80e)

= e−
1
2

∑
i η̄iηi

∫
d2µ′ e−

1
2

∑
i η̄iηi

〈
δ
∣∣∣ e∑

i ηic
†
i e

∑
i η̄ici

∣∣∣µ〉 〈−µ|γ〉 (A.80f)

= e−
1
2

∑
i η̄iηi

∫
d2µ′ 〈δ∣∣D†(η)

∣∣µ〉 〈−µ|γ〉 , (A.80g)

using the decomposition of the displacement operator from Eq. (A.77) in the
final equality.

Since this holds for any |δ〉 and |γ〉 and the coherent states form a
complete basis (Theorem A.15), Eq. (A.79) is true for all matrix elements of
the operators on each side of the equality, therefore holds for the operators
themselves. �

We are now ready to derive the characteristic function phase-space repre-
sentation of fermionic states. We first define the characteristic function, then
show that it does indeed provide a faithful representation of any fermionic
state.

121



A.4. FERMIONIC PHASE SPACE

Definition A.19 (Characteristic Function)
The fermionic characteristic function χ(η) for a state ρ of a collection of
fermionic modes is defined by

χ(η) = Tr[ρD(η)] (A.81)

where η is a vector of Grassmann variables ηi and their conjugates η̄i, and
the displacement operator D(η) is defined by Definition A.11.

If the displacement operator is written in the “real” representation D(α)
of Eq. (A.59), where α is a vector of “real” Grassmann variables, we obtain
a “real” representation of the characteristic function, which is nothing more
than a trivial change of variables:

χ(α) = Tr[ρD(α)] (A.82)

Theorem A.20 (Characteristic Function Decomposition)
The fermionic characteristic function provides a faithful representation of
fermionic density operators, and the expansion of any state ρ in terms of the
characteristic function is given by

ρ =

∫
d2η χ(η)E(η)e

1
2

∑
i η̄iηi (A.83)

where the operator E(η) is the Fourier transform of a coherent state diadic,

E(η) =

∫
d2µ e−

∑
i µ̄iηi+µiη̄i |µ〉〈−µ| . (A.84)

Proof From Theorem A.17, we know that any operator A can be expanded
in terms of displacement operators. Setting A = ρ in Eq. (A.77) we have

ρ =

∫
d2η d2µ

〈
µ
∣∣ ρD†(η)

∣∣µ〉D(η) (A.85a)

=

∫
d2η d2µ d2γ 〈µ| ρ |γ〉

〈
γ
∣∣D†(η)

∣∣µ〉D(η) (A.85b)

inserting a coherent state resolution of identity (Eq. (A.72)),

=

∫
d2η d2µ d2γ Tr

[
ρ |−γ〉〈µ|

] 〈
γ
∣∣D†(η)

∣∣µ〉D(η) (A.85c)

=

∫
d2ξ Tr

[
ρD(ξ)

] ∫
d2γ d2η d2µ

〈
µ
∣∣D†(ξ)

∣∣−γ
〉 〈

γ
∣∣D†(η)

∣∣µ〉D(η)

(A.85d)

122



APPENDIX A. FERMIONIC GAUSSIAN STATES

using Lemma A.16 to expand the coherent state diadic,

=

∫
d2ξ Tr

[
ρD(ξ)

] ∫
d2γD†(ξ) |−γ〉〈γ| (A.85e)

noticing that the second integral is just an expansion in terms of displacement
operators (Theorem A.17),

=

∫
d2ξ χ(ξ)

∫
d2γ e

1
2

∑
i ξ̄iξie−

∑
i γ̄iξi+γiξ̄i |γ〉〈−γ| . (A.85f)

using Lemma A.18 for the Fourier transform of the coherent state diadic,

=

∫
d2ξ χ(ξ)e

1
2

∑
i η̄iηiE(ξ). (A.85g)

�

Successive derivatives of the characteristic function about 0 give succes-
sively higher-order correlation functions. For example, working in the “real”
representation (recall that the ri are the Majorana operators r2i−1 = xi and
r2i = pi, as defined in Eq. (A.54)),

∂αi
χ(α) = ∂αi

Tr
[
ρD(α)

]
(A.86a)

= Tr
[
ρ ∂αi

(1− αiri)e
−

∑
j 6=i αjrj

]
(A.86b)

= −Tr
[
ρ rie

−
∑

j 6=i αjrj
]

(A.86c)

Similarly, taking second derivatives,

∂αi
∂αj

χ(α) = −∂αi
Tr
[
ρ rj e

−
∑

k 6=j αkrk
]

=

{
Tr
[
ρ rirj e

−
∑

k 6=i,j αkrk
]

i 6= j

0 i = j,

(A.87)
and so on for higher derivatives. From these, we have

∂αi
χ(α)

∣∣∣
α=0

= −Tr[ρ ri] = 〈ri〉 , (A.88)

∂αi
∂αj

χ(α)
∣∣∣
α=0

=

{
Tr
[
ρ rirj

]
i 6= j

0 i = j

}
=

1

2
〈[ri, rj]〉 , (A.89)

and so on. Thus fermionic correlation functions can be obtained by taking
derivatives of the characteristic function χ(α) at α = 0.

It is possible to define a number of other fermionic phase-space repre-
sentations (for an exhaustive analysis, see Cahill and Glauber [1999]), but
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a particularly useful one is the fermionic P–representation, as it gives a
decomposition of fermionic states in terms of coherent states. In analogy with
the bosonic P–representation, it is defined as Grassmann Fourier transform
of the characteristic function.

Definition A.21 (P–Representation)
The P–representation for a fermionic state with characteristic function χ(ξ)
(in the “complex” representation) is given by

P (ξ) =

∫
d2η exp

(
−
∑
i

η̄iξi + ηiξ̄i

)
exp

(
1

2

∑
i

η̄iηi

)
χ(η), (A.90)

where η and ξ are both vectors of Grassmann variables along with their
conjugates.

That the P–representation is indeed a faithful representation of fermionic
states is demonstrated by the following theorem.

Theorem A.22 (P–Representation Decomposition)
Any state ρ of a set of fermionic modes can be decomposed in terms of the
P–representation,

ρ =

∫
d2ξ P (ξ) |ξ〉〈−ξ| . (A.91)

Proof From Eq. (A.83) from Theorem A.20 for the decomposition of any
operator A in terms of the characteristic function χ(η), we have

ρ =

∫
d2ξ

(
χ(ξ) e

1
2

∑
i ξ̄iξi
)
E(ξ) (A.92a)

=

∫
d2ξ

∫
d2η exp

(
−
∑
i

η̄iξi + ηiξ̄i

)
exp

(
1

2

∑
i

η̄iηi

)
χ(η) ×∫

d2ζ exp

(
−
∑
i

ζ̄iξi + ζiξ̄i

)
E(−ζ)

(A.92b)

applying the Grassmann Parseval theorem of Lemma A.10,

=

∫
d2ξ P (ξ)

∫
d2ζ exp

(∑
i

ζ̄iξi + ζiξ̄i

)
E(ζ) (A.92c)

=

∫
d2ξ P (ξ) |ξ〉〈−ξ| , (A.92d)

noticing that the integral is just the inverse Fourier transform of E(ζ), which
was defined in Eq. (A.84) to be the Fourier transform of the diadic |ξ〉〈−ξ|.�
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A.5 Fermionic Gaussian States

We are finally in a position to define fermionic Gaussian states based on
their phase-space representation: they are simply states whose phase-space
representations are Gaussian functions of Grassmann variables. In this section,
we will emphasize the “real” representation, as it is mathematically slightly
more elegant.

A.5.1 Fermionic Gaussian State Definition
Definition A.23 (Fermionic Gaussian State)
A fermionic Gaussian state is one whose characteristic function in the “real”
representation is a Gaussian Grassmann function of the form

χ(α) = exp
(
−1

2
αTΓα + 2νTα

)
, (A.93)

where α is a vector of “real” Grassmann variables, ν is a vector of “real”
Grassmann numbers, and Γ is a real, anti-symmetric matrix.

Alternatively, the definition can be written in the “complex” representation:

χ(η) = exp
(
−1

2
η†Mη + µ†η

)
, (A.94)

where η is a vector of Grassmann variables and their conjugates, and the
vector µ and matrixM are related to the vector ν and the real, anti-symmetric
matrix Γ appearing in Definition A.23 by

µ = Ω−1ν, M = Ω−1ΓΩ, (A.95a)

Ω =
⊕ 1

2

(
1 1
i −i

)
. (A.95b)

Taking derivatives of χ(α) with respect to the variables αi about α = 0,
as we did in Section A.4, gives

∂αi
χ(α)

∣∣∣∣
α=0

= −2νi (A.96)

∂αi
∂αj

χ(α)

∣∣∣∣
α=0

=

{
1
2
(Γij − Γj i) + νiνj i 6= j

0 i = j.
(A.97)

Comparing with the corresponding Eq. (A.88) and Eq. (A.89) from Section A.4,
the i = j cases are consistent, and we must have

−2νi = −〈ri〉 (A.98a)

1

2
(Γij − Γj i) + 4νiνj =

1

2
〈[ri, rj]〉 i 6= j. (A.98b)
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There is some freedom in the choice of Γ, but we can choose the components
so that the matrix is anti-symmetric. As its components are commutators
of Majorana operators, the matrix Γ appearing in Definition A.23 is in fact
the covariance matrix, or matrix of two-point correlation functions. We
summarize this in the following result.

Result A.24 (Gaussian Characteristic Function)
The displacement coefficients and covariance matrix in the characteristic
function representation of a fermionic Gaussian state (Definition A.23) can
be chosen to be

νi =
1

2
〈ri〉 , (A.99a)

Γij =
1

2
〈[ri, rj]〉 − 〈ri〉 〈rj〉 . (A.99b)

A.5.2 Examples of Fermionic Gaussian States

The simplest examples of fermionic Gaussian states are the coherent states
themselves.

Result A.25 (Coherent States as Gaussian States)
A fermionic coherent state |µ〉〈µ| is a Gaussian state, with “real” character-
istic function

χ(α) = e−
1
2
αT Γα+2νT α, (A.100a)

ν2i−1 =
µ̄i + µi

2
, ν2i =

η̄i − ηi
2i

, Γ =
⊕(

0 −i
i 0

)
. (A.100b)

Proof From Definition A.19 of the characteristic function in the “complex”
representation, we have for a coherent state ρ = |µ〉〈µ|

χ(η) = Tr[|µ〉〈µ|D(η)] (A.101a)

=

∫
d2ξ 〈ξ|µ〉 〈µ|D(η) |−µ〉 (A.101b)

=

∫
d2ξe−

∑
i ξ̄iµi+

1
2
ξ̄iξi+

1
2
µ̄iµie−

1
2

∑
i ν̄iξi+νiξ̄i 〈µ|ν + ξ〉 (A.101c)

using Result A.13 for the coherent state overlap, and expanding |ξ〉= D(ξ) |0〉
before using Result A.14 for the product of two displacement operators,

= e
∑

i µ̄iηi−µ̄iµi− 1
2
n̄uiνi

∫
d2ξe−

∑
i ξ̄iξi+(η̄iµ̄i)ξi−ξ̄iµi (A.101d)

= e
∑

i µ̄iηi−µ̄iµie−
∑

i(η̄i−µ̄i)µi (A.101e)
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using Result A.7 to carry out the Gaussian integral,

= exp
(
−1

2
η†Mη + µ†η

)
, M =

⊕ 1

2

(
1 0
0 −1

)
, (A.101f)

Thus the characteristic function indeed has the Gaussian form of Eq. (A.94).
Transforming to the “real” representation of Eq. (A.93), we have

ν = Ωµ, ν2i−1 =
µ̄i + µi

2
, ν2i =

µ̄i − µi
2i

, (A.102)

Γ = (Ω†)−1M Ω−1 =
⊕(

0 −i
i 0

)
. (A.103)

�

As noted in Section A.1, fermionic coherent states can not be physical
states, since the expectation values of the observables ri are the Grassmann
numbers νi. Indeed, no Gaussian state with non-zero displacement ν in
Eq. (A.93) can be a physical state, for the same reason.

The fermionic vacuum can be written as a coherent state |ξ〉〈ξ| with
ξ = 0, so it is also a Gaussian state.

Result A.26 (Fermionic Vacuum as Gaussian State)
The fermionic vacuum is a Gaussian state with “real” characteristic function

χ(α) = e−
1
2
αT Γvacα, Γvac =

⊕(
0 −i
i 0

)
. (A.104)

Naturally, the vacuum state is a valid, physical state of a set of fermionic
modes; it is the only coherent state with all displacement coefficients ν = 0.

A.5.3 P–Representation of a Gaussian State

We can obtain the form of the P–representation for Gaussian states by
transforming the characteristic function Eq. (A.93) according to Eq. (A.90)
from Definition A.21 of the P–representation.

Theorem A.27 (Gaussian State P–Representation)
The “real” P–representation of a Gaussian state with covariance matrix Γ
and displacement coefficients ν is

P (α) = (2i)N Pf(Γ− Γvac) e
−2(α+ν)(Γ−Γvac)−1(α+ν), (A.105)

where α is a vector of “real” Grassmann numbers, and N is the number of
fermionic modes.
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Proof We can change variables in the integral of Eq. (A.90) defining the
P–representation, from Grassmann variables η to the “real” Grassmann
variables β = Ωη. The Jacobian is |J | = det Ω−1 = (2i)N , where N is the
number of fermionic modes. This gives the following expression for the “real”
P–representation:

P (α) = (2i)N
∫

d2β exp

(∑
i

αiβi

)
exp

(
−i
∑
i

β2i−1β2i

)
χ(β), (A.106)

(where α is related to ξ from Eq. (A.90) by α = Ω ξ).
Writing all the sums in vector notation and substituting the Gaussian

characteristic function χ(β) of Eq. (A.93), we obtain

P (α) = (2i)N
∫

dβ exp
(
2αTβ

)
×

exp

(
1

2
βTΓvacβ

)
exp

(
−1

2
βTΓβ + 2νTβ

)(A.107a)

= (2i)N
∫

dβ exp

(
−1

2
β2(Γ− Γvac)β + 2(α + ν)Tβ

)
(A.107b)

= (2i)N Pf(Γ− Γvac) exp
(
−2(α + ν)(Γ− Γvac)

−1(α + ν)
)
,
(A.107c)

carrying out the Grassmann Gaussian integral using Result A.5. �

If we transform to Grassmann variables ηi, µi and their conjugates using
η = Ω−1α and µ = Ω−1ν, we obtain the “complex” P–representation:

P (η) = (2i)N Pf(Γ− Γvac) e
−2(η†+µ†)Ω†(Γ−Γvac)−1Ω(η+µ). (A.108)

Since the vector η contains both Grassmann variables and their conjugates,
as does µ, we can permute the entries of M so that the exponent can be
rewritten as (ηT + µT )M ′(η + µ). Noting that the diagonal entries of M ′ are
irrelevant since the square of any Grassmann is zero, and re-balancing the
off-diagonal entries that give the coefficients of the η̄iηi and ηiη̄i terms, we
can rewrite this in the form

P (η) = (2i)N Pf(Γ− Γvac) exp

(
−1

2
(ηT + µT )A(η + µ),

)
(A.109)

where A is some anti-symmetric matrix. (The factor of 1/2 is included for
convenience.) This form will be useful later.
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A.5.4 Wick’s Theorem

Wick’s theorem can be stated in a number of ways, for example as an
operator identity, or in terms of time-ordered products in field theories.
Writing fermionic states in their phase-space representation, it is clear that
the fermionic Gaussian states are precisely those fermionic states for which
Wick’s theorem is valid, and the theorem becomes an application of Grassmann
Gaussian integration. For simplicity, we state and prove Wick’s theorem only
for physical Gaussian states, that is those whose displacement coefficients are
all zero.

Theorem A.28 (Wick’s Theorem)
The expectation value of a product of fermionic operators with respect to a
physical fermionic Gaussian state can be expressed in terms of expectation
values of pairs of operators:

〈 n∏
i=1

ai

〉
=

{
0 n odd(

1
2

)n/2∑
π sgn(π)

∏n/2
i 〈aπ(2i−1)aπ(2i)〉 n even,

(A.110)

where the sum is over all permutations π of the n indices i, and each ai is
either a creation or an annihilation operator c†si

or csi
acting on the sth

i mode.

Proof Define a product of fermionic operators to be normal-ordered if all
creation operators stand to the left of all annihilation operators. If the
operators in

∏
i ai are not normal-ordered, we can move all operators that act

on different modes past each other until they are. Each interchange of two of
the operators gives rise to a sign factor from the anti-commutation relations,
but this is already accounted for on the right hand side of Eq. (A.110), since
swapping the order of two operators changes the signum of the permutation.
Therefore, if the theorem holds for normal-ordered products of operators
that each act on a different mode, then it holds for any product of the same
operators.

The only non-zero product of two operators on the same mode that is not
normal-ordered is cic

†
i . If the product

∏
i ai contains ci and c†i in that order,

we can move them to the beginning of the product by the preceding argument,
so it is sufficient to consider products of the form cic

†
i

∏
i≥3 ai. Divide the

permutations π into two sets, π0 being those that leave cic
†
i at the beginning

of the product, and π1 being those that do not. Then, assuming the theorem

129



A.5. FERMIONIC GAUSSIAN STATES

is true for normal-ordered products and for 〈
∏

i≥3 ai〉,〈
cic

†
i

n∏
i=1

ai

〉
=
〈
(1− c†ici)

n∏
i=3

ai

〉
(A.111a)

=
〈 n∏
i=3

ai

〉
−
〈
c†ici

n∏
i=3

ai

〉
(A.111b)

=
∑
π0

sgn(π0)
∏
i≥3

〈aπ0(2i−1)aπ0(2i)〉 − 〈c†ici〉
∑
π0

sgn(π0)
n∏
i=3

〈aπ0(2i−1)aπ0(2i)〉

+
∑
π1

sgn(π1)
n∏
i=1

〈aπ1(2i−1)aπ1(2i)〉 (A.111c)

where the extra sign factor in the third term of comes from interchanging the
order of ci and c†i , which changes the signum of the permutation π1 in each
term of the sum,

= 〈cic†i〉
∑
π0

sgn(π0)
∏
i=3

〈aπ0(2i−1)aπ0(2i)〉+
∑
π1

sgn(π1)
n∏
i=3

〈aπ1(2i−1)aπ1(2i)〉

(A.111d)

=
∑
π

sgn(π)
n∏
i=1

〈aπ(2i−1)aπ(2i)〉 . (A.111e)

If the operators in the product
∏

i≥3 ai are not normally-ordered, we can
apply this result recursively until the entire operator product

∏
i ai is normal-

ordered. Therefore, if the theorem is true for normal-ordered products, it is
true for any product of operators.

Writing the state in its “complex” P–representation and assuming the
operator product is normal-ordered so that

∏n
i=1 ai =

∏
j c

†
sj

∏
k csk

, we can
re-express the expectation value as a Grassmann Gaussian integral:〈∏

i

c†si

∏
j

csj

〉
= Tr

[∏
i

c†si

∏
j

csj

∫
d2ηP (η) |η〉〈−η|

]
(A.112a)

=

∫
d2ηP (η) 〈η|

∏
i

c†si

∏
j

csj
|η〉 (A.112b)

=

∫
d2ηP (η)

∏
i

η̄si

∏
j

ηsj
. (A.112c)

Now, from Eq. (A.109), the “complex” P–representation of a physical
Gaussian state can be written in the form

P (ξ) = K exp
(
−1

2
ξTA−1ξ

)
. (A.113)
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We have absorbed all normalization factors into K, A is an anti-symmetric
matrix related to the state’s covariance matrix, the displacement coefficients
must be zero if the state is to be physical (see Section A.5.2), and ξ2i−1 = ηi,
ξ2i = η̄i is a convenient relabelling of η. The expectation value of a normal-
ordered product of two creation or annihilation operators is then given by

〈aiaj〉 = K

∫
dξ exp

(
−1

2
ξTA−1ξ

)
ξsi
ξsj

(A.114a)

= K Pf(A−1)
1

2
(Asi,sj

− Asj ,si
) (A.114b)

= K Pf(A−1)Asi,sj
(A.114c)

carrying out the integration using Result A.6. By the above argument, this
also holds for any product of two fermionic operators, even if they are not
normal-ordered.

Finally, the expectation value of the normal-ordered product
∏n

i=1 ai =∏
j c

†
sj

∏
k csk

is given by〈∏
j

c†sj

∏
k

csk

〉
=

∫
dξ exp

(
−1

2
ξTA−1ξ

)∏
j

ξ2sj

∏
k

ξ2sk−1 (A.115a)

=

∫
dξ exp

(
−1

2
ξTA−1ξ

) n∏
i=1

ξsi
(A.115b)

=

{
0 n odd

K Pf(A−1)
(

1
2

)n/2∑
π sgn(π)

∏
iAπ(2si−1),π(2si) n even

(A.115c)

=

{
0 n odd(

1
2

)n/2∑
π sgn(π)

∏
i 〈aπ(2si−1)aπ(2si

)〉 n even,
(A.115d)

again using Result A.6 to carry out the integration, and using Eq. (A.112) in
the final equality. This proves Wick’s theorem for normal-ordered products.
But, by the argument given above, this implies that the theorem is true for
any product of operators, thereby concluding the proof. �

Note that since the operators xi and pi are linear combinations of creation
and annihilation operators, Wick’s theorem also holds for expectation values
of products of these Majorana operators.
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A.5.5 Canonical Transformations and Time Evolution

Orthogonal transformations of the Majorana operators ri preserve their anti-
commutation relations:

r′i = Oij rj, OTO = OOT = 1 (A.116a)

{r′i, r′j} = {Oimrm, Ojnrn} = OimOjn{rm, rn} = OimO
T
nj2δmn = 2δij.

(A.116b)

Since the covariance matrix elements are given by expectation values of com-
mutators of Majorana operators, and the displacement coefficients are given
by expectation values of single operators, these canonical transformations of
the Majorana operators will induce transformations of the covariance matrix
and displacement coefficients:

ν′ = Oν, (A.117)

Γ′ = OΓOT , (A.118)

but will leave the forms of all phase-space representations unchanged. In
particular, Gaussian states will remain Gaussian. (Γ′ is still anti-symmetric,
since orthogonal transformations preserve anti-symmetry).

One consequence of this is that, since all anti-symmetric matrices can be
brought into the block-diagonal form of Eq. (A.30) by orthogonal transforma-
tions, all fermionic Gaussian states can be brought by canonical transforma-
tions of the Majorana operators into a normal form analogous to the Wilson
normal form for bosonic Gaussian states.

Result A.29 (Wilson Normal Form)
The covariance matrix Γ of any fermionic Gaussian state can be brought into
a normal form

Γ =
⊕
i

(
0 λi
−λi 0

)
. (A.119)

A particularly important class of transformations are those induced by
evolution under a Hamiltonian. If the Hamiltonian is quadratic in terms of
the Majorana operators,

H =
∑
i,j

hij rirj, (A.120)

then from the Heisenberg evolution equations, the Majorana operators evolve
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according to

drn
dt

= i[H, rn] = i
∑
i,j

hij[rirj, rn] = i
∑
i,j

hij(riδnj − rjδni) (A.121a)

= −i
∑
i

(hni − hin)rn. (A.121b)

Integrating this, we we obtain the transformation

rn(t) = e−iAtrn, Aij = hij − hji. (A.122)

Since A is anti-symmetric, exp(−iAt) is orthogonal. Therefore, if a fermionic
system evolves under a quadratic Hamiltonian, the fermionic operators un-
dergo a canonical transformation. Thus Gaussian initial states will remain
Gaussian at all times, and the evolution can be completely described by the
corresponding transformations of the covariance matrix and displacement
coefficients.

Result A.30 (Fermionic Gaussian State Evolution)
The evolution of a Gaussian state under a quadratic Hamiltonian

H =
∑
i,j

hij rirj (A.123)

can be completely described by an orthogonal transformation of the initial
displacement coefficients ν and covariance matrix Γ:

ν(t) = O ν, (A.124a)

Γ(t) = OΓOT , (A.124b)

O = e−iAt, Aij = hij − hji. (A.124c)

This concludes our survey of the fermionic Gaussian state formalism. Ex-
amples of its application to non-trivial calculations can be found in Chapter 4.
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