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The information carrier of today’s communications, a weak pulse of light, is an 

intrinsically quantum object. As a consequence, complete information about the 

pulse cannot, even in principle, be perfectly recorded in a classical memory.  In the 

field of quantum information this has led to a long standing challenge: how to 

achieve a high-fidelity transfer of an independently prepared quantum state of 

light onto the atomic quantum state1-4? Here we propose and experimentally 

demonstrate a protocol for such quantum memory based on atomic ensembles. We 

demonstrate for the first time a recording of an externally provided quantum state 

of light onto the atomic quantum memory with a fidelity up to 70%, significantly 
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higher than that for the  classical recording. Quantum storage of light is achieved 

in three steps: an interaction of light with atoms, the subsequent measurement on 

the transmitted light, and the feedback onto the atoms conditioned on the 

measurement result.  Density of recorded states 33% higher than that for the best 

classical recording of light on atoms is achieved. A quantum memory lifetime of up 

to 4 msec is demonstrated.  

Light is a natural carrier of information in both classical and quantum communications.  

In classical communications, bits are encoded in large average amplitudes of light 

pulses which are detected, converted into electric signals, and subsequently stored as 

charges or magnetization of memory cells. In quantum information processing, 

information is encoded in quantum states that cannot be accurately recorded by such 

classical means. Consider a state of light defined by its amplitude and phase, or 

equivalently by two quadrature phase operators,  LX̂  and L̂P , with the canonical 

commutation relation [ ] iPX =LL ˆ,ˆ . These variables play the same role in quantum 

mechanics as the classical quadratures X,P do in the decomposition of the electric field 

of light with the frequency ω as tPtXE ωω sincos +∝ . Other  quantum properties of 

light, such as the photon number ( )1ˆˆˆ 2
L

2
L2

1 −+= PXn , etc., can be expressed in terms of 

LX̂  and L̂P .  

The best classical approach to recording a state of light onto atoms would involve 

homodyne  measurements of both observables LX̂  and L̂P  by using, e.g., a beam 

splitter. The non-commutativity of LX̂  and L̂P  leads to additional quantum noise added 

during this procedure. The target atomic state has its intrinsic quantum noise (coming 

from the Heisenberg uncertainty relations). All this extra noise leads to a limited fidelity 

for the classical recording, e.g., to a maximum fidelity of 50% for coherent states5-7. 

Thus the challenge of implementing a quantum memory can be formulated as a faithful 

storing of the simultaneously immeasurable values of LX̂ and L̂P . 
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A number of quantum information protocols, such as eavesdropping in quantum 

cryptography, quantum repeaters8, and linear optics quantum computing9 would benefit 

from a memory meeting the following criteria: 1.The light pulse to be stored is sent by a 

third party in a state unknown to the memory party. 2. The state of light is converted 

into a quantum state of the memory with a fidelity higher than that of the classical 

recording. Several recent experiments10-13 have demonstrated entanglement of light and 

atoms. However, none of these experiments demonstrated the memory obeying the two 

above criteria. In ref. 14, where squeezed light was mapped onto atoms, the atomic state 

existed only while the light was on, so it was not a memory device. The 

electromagnetically induced transparency (EIT) approach has led to the demonstration 

of a classical memory for light15,16. A theoretical proposal for EIT-based quantum 

memory for light has been published in ref. 3. Other proposals for quantum memory for 

light with better-than-classical quality of recording have also been published recently1-4.  

Quantum state transfer from one species to another is most simply presented if both 

systems are described by canonical quantum variables PX ˆ,ˆ . All canonical variables 

have the same commutation relations and the same quantum noise for a given state, 

providing thus a common frame for the analysis of the state transfer. 

In the present work the state of light is stored in the superposition of magnetic sublevels 

of the ground state of an atomic ensemble. As in ref. 12, we introduce the operator Ĵ of 

the collective magnetic moment (orientation) of a ground state F.  All atomic states 

utilized here are not too far in phase space from the coherent spin state (CSS) for which 
only one projection has a non-zero mean value, e.g., xx JJ =ˆ  whereas the other two 

projection have minimal quantum uncertainties, xzy JJJ 2
122 == δδ . For all such 

states the commutator [ ] xzy iJJJ =ˆ,ˆ can be reduced to the canonical commutator 

[ ] iPX =AA
ˆ,ˆ  with xzxy JJPJJX /ˆˆ,/ˆˆ

AA == . Hence the y,z-components of the 

collective atomic angular momentum play the role of canonical variables.  Although the 
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memory protocol, in principle, can work with a single atomic ensemble, experimental 

technical noise is substantially reduced if two oppositely polarized ensembles placed in 

a bias magnetic field H
r

are used (see Methods sections and Supplementary Methods for 

details). Combined canonical variables for two ensembles 

xzzxyy JJJPJJJX 2/)ˆˆ(ˆ,2/)ˆˆ(ˆ
21A21A +=−=  are then introduced where 

atomsxxx FNJJJ ==−= 21
ˆˆ . In the presence of H the memory couples to the Ω-sidebands 

of light: ∫ Ω+= +
T

T
dtttataX

0

1
L )cos())(ˆ)(ˆ(ˆ , ∫ Ω−= +

T

T
i dtttataP

0
L )cos())(ˆ)(ˆ(ˆ , where Ω is 

the Larmor frequency of spin precession. 

Quantum storage of light is achieved in three steps: (1) an interaction of light with 

atoms; (2) a subsequent measurement of the transmitted light; and (3) Feedback onto the 

atoms conditioned on the measurement result (Fig. 1). The off-resonant interaction of 

light with spin polarized atomic ensembles has been described elsewhere4,17-19, and is 

summarized in the Methods section. The interaction leads to the equations 

  
in

A
out

A
in

L
in
A

out
A

in
L

out
L

in
A

in
L

out
L

ˆˆ,ˆˆˆ

ˆˆ,ˆˆˆ

PPPkXX

PPPkXX

=+=

=+=
  (1) 

These equations imply that light and atoms get entangled. The remarkable simplicity of 

equations (1) provides a direct link between an input light state, an atomic state, and the 

output light. Suppose the input light is in a vacuum (or in a coherent) state and atoms 
are in a CSS  with mean values 0ˆˆˆˆ

ALAL ==== PPXX and 

variances 2
12

A
2

L
2
A

2
L ==== PPXX δδδδ . The interaction parameter k whose value is 

crucial for the storage protocol is then readily found as ( ) 12
22 −= out

LXk δ . 

For a perfect fidelity of mapping, the initial atomic state must be an entangled spin state 

such as in ref. 12, with 02
A→Xδ .  The pulse to be recorded, combined with the 

entangling pulse (see Methods section), is sent through, and its variable out
LX̂ is 

measured. The measurement outcome, in
A

in
L

ˆˆ PkXx += , is fed back into the atomic 
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variable AP̂  with a feedback gain g. The result is in
L

in
A

in
A

mem
A

ˆ)1(ˆˆˆ XgkgPgxPP −−=−= (see 

Supplementary Notes for justification of this equation). With 1== kg , the mapping of 
in
LX̂ onto mem

AP̂−  is perfect.  

The second operator of light is already mapped onto atoms via in
L

in
A

mem
A

ˆˆˆ PXX +=  see 

equation (1). For the entangled initial state the mapping is perfect for this component 

too, mem
A

in
L

ˆˆ XP → , leading to the fidelity of the light-to-atoms state transfer %100→F . 

If the initial atomic state is a CSS the mapping is not perfect due to the noisy 

operator in
AX̂ . However, F=82%, still markedly higher than the classical limit, can be 

achieved. Note that the above discussion holds for an arbitrary single mode input 

quantum state of light. 

In our experiment the atomic storage unit consists of two samples of Cesium vapor 

placed in paraffin coated glass cells placed inside magnetic shields (Fig. 1). H is applied 

along the x-direction with Ω = 322kHz. Optical pumping along H initializes the atoms 

in the first/second sample in the 4,4 ±== FmF  ground state with the orientation above 

99%. Hence 12
21 102.14ˆˆ ×≈==−= atomsxxx NJJJ . We thoroughly check and regularly 

verify that the initial spin state is close to CSS (Supplementary Methods). The coupling 

parameter k is varied by adjusting the density of Cs. 

The input state )(ˆ ta  is encoded in a 1-msec y-polarized pulse. The state is chosen from 

the set }ˆ{ inputa of coherent states with the photon number in the range { }max,0 nn = and 

an arbitrary phase. )(ˆ ta  is generated as Ω-sidebands by an electro-optical modulator 

(EOM) and has the same spatial and temporal profile as the strong entangling field 

(more information can be found in the Methods section). Thus the EOM plays the third 

party, providing the field to be stored. The pulses are detuned by 700 MHz to the blue 

from the 6S1/2, F=4 ?  6P3/2, F=5 transition (λ=852nm). The polarization measurement 

of the light is followed by the feedback onto atoms achieved by a 0.2ms radio-frequency 

magnetic pulse conditioned on the measurement result.  
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Next the experimental verification of the quantum storage is carried out. A read-out x-

polarized pulse is sent through the samples with the delay of 0.7-10 milliseconds after 

the feedback is applied. Atomic memory generates a y-polarized pulse which is 

analyzed as follows. Since both  mem
AX̂  and mem

AP̂ cannot be measured at the same 

time, we carry out two series of measurements for each input state. Each series consists 

of 104 quantum storage sequences. To verify the mem
A

in
L

ˆˆ PX →−  step of the storage, we 

measure the component mem
A

inread
L

outread
L

ˆˆˆ PkXX += −− of the read-out pulse (XL is a Stokes 

parameter measured in units of shot noise as discussed in the Methods section). An 

example of such a measurement carried out after 0.7 msec of storage is presented in Fig. 

2a as a histogram of outread
L

1 ˆ −Xk (right histogram) with k measured as described in the 

Methods section and in Supplementary methods. For this 
series 4ˆ in

L −=P and 0ˆ in
L =X  corresponding to 8ˆ =n  photons in the pulse. From this 

measurement we find the mean outread
L

1mem
A

ˆ −= XP k  and the variance 

( ) ( )( )2

2 22 mem read out1 1
A L 2

ˆ
p k

P Xσ δ δ −= = −  (see equation 1) for the quantum state of the 

memory. We note that only the knowledge of k and the shot noise level of light is 

necessary for the determination of the mean values and variances of the atomic 

canonical variables from the experimental data. 

Next we run another series of storage with the same input state for the verification of the 

step mem
A

in
L

ˆˆ XP → .  The mem
AX̂ operator does not couple to the read-out pulse in our 

geometry; therefore, we first apply a 2
π -pulse (Fig. 1) to atoms converting 

p
A

mem
A

ˆˆ PX → and then measure p
AP̂ with the verifying pulse. We then find mem

AX̂  and  

( )2mem
A

2 X̂x δσ =  of the memory state (left histogram).  

The above sequence is repeated for different input states. From in
L

mem
A XP ˆ/ˆ   and 

in
L

mem
A PX ˆ/ˆ  the mapping gains for the two quadratures are determined. For the 

experimental data presented in Fig.2 and 3a, these gains are 0.80 and 0.84 respectively, 
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which is close to the optimal gain for the chosen input set of states. This step would 

complete the proof of the classical memory performance, because we have shown that 

the y-polarized pulse recovered from the memory has the same mean amplitude and 

mean phase as the input pulse (up to a chosen constant factor).  

To prove a quantum memory performance we need in addition to consider the quantum 

noise of the stored state. Towards this end we plot the atomic variances 22 , xp σσ  for the 

storage time 0.7 msec in Fig. 3a. The experimentally obtained variances of the stored 

state are on average 33% below the best possible variance of the classical recording. 

Hence the density of stored states 33% higher than that for the best classical recording 

can be obtained. Thus the goal of quantum storage with less noise than for the classical 

recording is achieved.  

Next the overlap between the input state of light and the state of the atomic memory is 

determined (Methods section). An example is shown in Fig. 2b. The fidelity F of the 

quantum recording is then calculated for a given set }ˆ{ inputa . For example, 

F=(66.7±1.7)% for }80{}ˆ{ input →== na  and F=(70.0±2.0)% for }40{}ˆ{ input →== na , 

respectively for the storage time of 0.7 msec. Note that the fidelity of the classical 

recording can exceed 50% for a limited set }ˆ{ inputa . The maximum classical fidelity for 

}80{}ˆ{ input →== na  is 55.4%, and for }40{}ˆ{ input →== na it is 59.6% - still significantly 

lower than that for the quantum recording.  

The main sources of imperfection of our quantum memory are decoherence of the 

atomic state and reflection off the cell walls. We have performed extensive studies of 

the atomic decoherence caused by the light-assisted collisional relaxation20 to optimize 

the fidelity. Fig. 3b presents the fidelity of the stored state as a function of the storage 

time. A simple model provides a good description for the observed fidelity reduction. 
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The single observable read-out described above can be useful, e.g., in quantum 

cryptography eavesdropping, where the memory is read after the basis has been publicly 

announced by Alice and Bob. The present experiment also paves the road towards the 

proposed quantum cloning of light onto atomic memory21. However, other applications 

require complete state recovery via reverse mapping of the memory state onto light. 

Proposals for performing this task within our approach have been published4,19,22. 

Probably the most intuitively clear protocol for the memory read-out is just to run the 

storage protocol of the present paper with the reversed roles of light and atoms. Indeed 

the equations of interaction (1) are completely symmetric. The read-out, as the storage, 

would involve three steps: sending a read-out light pulse through atoms, measuring the 

spin projection out
AX̂  with an auxiliary light pulse, and applying the feedback 

conditioned on this measurement to the read-out pulse. 

In the present experiment we have demonstrated the memory for a subset of linearly 

independent coherent states. Due to the linearity of quantum mechanics this 

demonstration signifies that our method provides faithful mapping for an arbitrary 

coherent state. Since any arbitrary quantum state can be written as a superposition of 

coherent states, our approach should in principle work for an arbitrary quantum state, 

including entangled and single photon (qubit) states. 

Methods 

Quantum coupling of light to two atomic ensembles in the presence of magnetic 

field 

Here we discuss the physics behind the equations of interaction (1).  The off-resonant 

atom/light interaction is described in terms of Stokes operators for the polarization state 

of light and the collective spin of atoms4,17,18. The Stokes operators are defined as one 

half of the photon number difference between orthogonal polarization modes: 1Ŝ - 
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between vertical x- and horizontal  y-polarizations, 2Ŝ - between the modes polarized at 
045±  to the vertical axis, and 3Ŝ - between the left- and right-hand circular 

polarizations. In the experiment a strong entangling x-polarized pulse with the photon 

flux )(tn is mixed on a polarizing beamsplitter with the y-polarized quantum field 

)(ˆ ta prior to interaction with atoms. Hence the Stokes operators of the total optical field 

are )()()(ˆ
2
1

11 tntStS == , ))(ˆ)(ˆ()(ˆ
2
1

2 tatatnS += + , ))(ˆ)(ˆ()(ˆ
23 tatatnS i −= + . Note 

that )(ˆ
2 tS  and )(ˆ

3 tS are proportional to the canonical variables for the quantum light 

mode ))(ˆ)(ˆ(ˆ)),(ˆ)(ˆ(ˆ
22

1 tataPtataX i −=+= ++ . Light is transmitted through the atomic 

samples placed in the bias magnetic field oriented along the x-axis. The magnetic field 

allows for encoding of the memory at the Larmor frequency Ω, thus dramatically 

reducing technical noise present at low frequencies. However, in the presence of the 

Larmor precession, there is an undesired coupling of the single cell variables yĴ and zĴ  

to each other. The introduction of the second cell with the opposite Larmor precession 

allows us to introduce new two-cell variables )ˆˆ(),ˆˆ( 2121 zzyy JJJJ +−  that do not couple 

to each other. As in ref. 12, where a similar trick was used, the Stokes parameters of 

light transmitted through the two cells along the z direction become 

( ) )(ˆ)(ˆ,]ˆˆ)[sin(]ˆˆ)[cos()(ˆ)(ˆ in
3

out
321211

in
2

out
2 tStSJJtJJtaStStS yyzz =+Ω++Ω+=   (2)  

where yzJ ,
ˆ  are the projections in the frame rotating at Ω and 

A
a

∆
=

π
γλ

8

2

,with γ and λ - 

the natural linewidth and the wavelength of the transition respectively, ∆ - the detuning, 

and A - the beam cross-section. At the same time, the transverse spin components of the 

two cells evolve as follows: 

    
)sin(ˆ2]ˆˆ[),cos(ˆ2]ˆˆ[

,0]ˆˆ[]ˆˆ[

in
321

in
321

2121

tSaJJJ
dt
d

tSaJJJ
dt
d

JJ
dt
dJJ

dt
d

xzzxyy

yyzz

Ω=−Ω=−

=+=+
   (3)  
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As evident from equation (3), in the process of propagation the operator in
3Ŝ is recorded 

onto the operators 21
ˆˆ

yy JJ −  and 21
ˆˆ

zz JJ − (the “back action” of light on atoms via the 

dynamic Stark effect caused by light17,18), while the operators 21
ˆˆ

yy JJ +  and 21
ˆˆ
zz JJ +  

are left unchanged. The latter are read out onto out
2Ŝ via the Faraday rotation (2). 

Canonical variables are defined for the quantum light mode 

as ∫ Ω+= +
T

T
dtttataX

0

1
L )cos())(ˆ)(ˆ(ˆ , ∫ Ω−= +

T

T
i dtttataP

0
L )cos())(ˆ)(ˆ(ˆ , that is the relevant 

light mode involves the O-sidebands. T is the pulse duration, )(ˆ ta is normalized to the 

photon flux. LX̂  and LP̂ (i.e., 2Ŝ  and 3Ŝ ) are detected by a polarization state analyzer 

and by lock-in detection of the O component of the photocurrent. Note that 

the )cos( tΩ component of light couples to the )ˆˆ(),ˆˆ( 2121 zzyy JJJJ +−  components of 

atomic storage variables (equations (2,3)). The equivalent choice of 

a )sin( tΩ modulation instead would mean the use of )ˆˆ(),ˆˆ( 2121 zzyy JJJJ −+  for the 

memory. The atomic canonical variables AX̂ , ÂP  are defined in the main section. With 

the above equations and definitions we straightforwardly derive equation (1) under the 

assumption ΩT >> 1. Theoretically the dimensionless coupling parameter in equation 

(1) is ∫= dttnJak x )(2
2
12 . 

Experimental calibration of the canonical variances for light and atoms 

Calculations of the fidelity, the gains, and the variances from the experimental data are 
based on the experimental calibration of 22 ˆˆ

LL PX δδ =  for the coherent (vacuum) state 

of light and of 22 ˆˆ
AA PX δδ =  for the coherent spin state (CSS) of atoms. The 

calibration for light is carried out along the established procedure of determining the 

shot noise level for measurements of 32
ˆ,ˆ SS  with the quantum field in a vacuum 

state5,17.  Variances and mean values for light are then measured in units of this shot 

noise level. The calibration for the atomic CSS variance is carried out with extreme care 

and has shown excellent reproducibility (See Supplementary Methods). As stated in the 
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main text, as soon as the vacuum (shot) noise level for light is established and the atoms 

are in a CSS, the parameter k2 (equation 1), important for calculations of atomic 

variances and fidelity, is easily determined as ( ) 12
22 −= out

LXk δ . In the experiment this 

is equivalent to ( ) ( )( ) ( )2

2

2

2

2

2
2 / ininout SSSk δδδ −= . 

Fidelity and the state overlap 

To calculate the fidelity of the transfer of an input coherent state into an output 

Gaussian state6, we first define an overlap function between an input state with mean 

values 11 , px  and the output state with the mean values and variances 22
22 ,,, pxpx σσ . 

Straightforward integration yields 

( ) )21)(21(/)21/()()21/()(exp2},,,{ 2222
21

22
212121 pxpx ppxxppxx σσσσ +++−−+−−=Ο

. The fidelity of the transfer for a set of coherent states with mean amplitudes between 

1α  and 2α  can then be found as an average overlap ∫∫ Ο−= −− 2

1

}{)(
2

0

12
1

2
2

1
α

α

π
αααφααπ ddF . 

For classical recording from light onto atoms with the gain g, the overlap between the 

input coherent state with the mean amplitude 22 px +=α and the output state is given 

by ( )1222
2
112 )1()1(exp)1(}{ −− +−−+=Ο ggg αα . The classical fidelity is then given by 

( ) ( ){ }12
2

212
1

221
12class )1()1(exp)1()1(exp)1()( −−−− +−−−+−−−−= gnggnggnnF  where 

we have introduced the mean photon number 2
2
1 α=n . %50class→F  for arbitrary 

coherent states when 1→g . If a restricted class of coherent states is chosen as the 

input, %50class>F  can be obtained with a suitable choice of g. For a set of states 

analyzed in the main text, }80{}ˆ{ input →== na , the maximum classical fidelity of 55.4% 

is achieved with the gain of 0.809. 
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Figure 1. Experimental setup. a) Atomic memory unit consisting of two Cesium 

cells inside magnetic shields 1, 2. The path of the recorded and read-out light 

pulses is shown with arrows. b) The simplified layout of the experiment. The 

input state of light with the desired displacements XL, PL is generated with the 

electro-optic modulator (EOM). The inset shows the pulse sequence for the 

quantum memory recording and read-out. Pulse 1 is the optical pumping (4ms), 

pulse 2 is the input light pulse )(ˆ ta overlapped with the strong entangling pulse 

in orthogonal polarization with the amplitude )(tn .  Pulse 3 is the magnetic 

feedback pulse. Pulse 4 is the magnetic 2/π pulse used for the read out of one 

of the atomic operators. Pulse 5 is the read-out optical pulse.  



 16

 

Figure 2. An example of the atomic memory performance. a). The input state of 
light in the coherent state with 4ˆ,0ˆ

LL −== PX . The results of the read out of 

this state stored in the atomic memory are shown as histograms of experimental 

realizations. The left/right histogram shows the results for the AA PX ˆ/ˆ quadrature 

read out with/without the 2
π -pulse. Dotted Gaussians represent the distributions 

for the best possible quantum memory performance (fidelity 100%). b). The 

input coherent state of light (upper graph) and the reconstructed state stored in 

the atomic memory (lower graph) for the input state as in figure 2a. The 

reconstructed state is obtained from the results presented in figure 2a after 

subtracting the noise of the read out pulse. 
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Figure 3, Quantum noise of the stored state and the fidelity of quantum memory 

as a function of time. a). Experimental and theoretical (quantum and classical) 

stored state variances in atomic projection noise (PN) units. Trianges and filled 

circles are the experimental variances for the atomic memory operators, 

denoted 22 xσ  and 22 pσ respectively in the text. Dash-dotted line – the 

fundamental boundary of three units of noise between quantum and classical 

mapping for an arbitrary coherent input state5,6. Dashed line – best classical 

variance for the experimental set of input states with photon numbers between 

0 and 8. Double-dot-dashed line – the unity variance corresponding to perfect 

mapping. b). Fidelity as a function of storage time for the set of states from 0 to 

10 photons.  Fidelity higher than the classical limit is maintained for up to 4 

msec of storage. Error bars (std. dev.) include fitting uncertainty of gains and 

variances and an additional uncertainty of 2.5% in the projection noise 

calibration. 
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Supplementary Methods  

Calibration of the Atomic Projection Noise level 

From the measurement of the variance of the Stokes parameter out
2Ŝ as a function of the 

macroscopic spin size Jx, we can determine the contribution of the atomic projection 

noise to the noise of the transmitted light. The goal here is to measure the light-atoms 

coupling parameter k that is used for the calculation of the canonical atomic variables in 

the paper. It is convenient that we do not need to know explicitly the absolute value of 
the projection noise (in the sense of atoms

F
yz NJ 2

2
,

ˆ =  ). However, we do need to 

determine the projection noise contribution to the light noise.  

 

In order to determine this contribution we need to (1) extract the linear dependence of 

( )2out
2Ŝδ on Jx; and (2) Ensure that the atoms are spin polarized to a high degree.  

 

The atomic spin noise is measured for two cells together according to the combined 

two-cell quantum variables introduced in the main text. As any modulation technique, 

this approach allows to overcome technical noise by means of lock-in detection at the 

modulation frequency. In our case we have been able in this way to eliminate technical 

noise to well below the 10-6 level, and thus reach the quantum projection noise limit for 

up to 3*1011 atoms.  

 

The atoms are optically pumped with a 4 msec pulse preparing a fresh state before each 

measurement. The Stokes parameter ∫ Ω+= +
T

T
dtttatatnS

0
2
1

2 )cos())(ˆ)(ˆ()(ˆ is 

measured by the lock-in detection. The shot noise of the incoming light ( )2in
2Ŝδ  is 

measured separately. Repeating the optical pumping and the measurement sequence 

many times, we obtain the variance of the operator out
2Ŝ . By measuring the Faraday 

rotation angle φ of a linearly polarized light propagating along the x direction of the 

macroscopic spin polarization we obtain the value proportional to the ensemble mean 
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spin Jx. We also determine the degree of optical pumping (spin orientation of the ground 

state F = 4) by the magneto-optical resonance method20. We routinely find a degree of 

optical pumping better than 99%.  

 

In the figure (part (a)) we plot the atomic contribution to the variance of the transmitted 

light normalized to the shot noise level: ( ) ( )( ) ( )2

2

2

2

2

2 / ininout SSS δδδ − , as a function of φ. 

The value of Jx is varied by varying the temperature of the sample. The lower part of the 

graph shows a nice linear dependence (solid line) which together with a nearly perfect 

degree of orientation proves that we observe quantum spin noise, i.e., the projection 

noise of the coherent spin state (CSS) (while classical noise would grow quadratically 

with Jx). The scattering of the points, especially at high atomic densities, arises from the 

technical laser noise, as proven by an independent monitoring of this noise.   

 

The above procedure has been carried out on a regular basis to ensure that the 

contribution of the projection noise is reliably defined. We find that, provided the 

geometry, detuning, duration, and power of the light beam are carefully reproduced, the 

excess noise of the laser controlled, and the magnetic shielding of the atoms sufficient, 

the PNL contribution can be determined with a high level of confidence.   

 

As an example, in part (b) of the figure we show the PNL calibration 43 days after the 

data (a) was obtained. The solid line here is the same as in part (a) and it neatly 

coincides with a linear fit through zero of the lower half of the points. We have thus a 

reproducible PNL calibration.  

 

The procedure described above is quite similar to the determination of the shot noise 

level of polarized light, a routine well established in the studies of squeezed and 

entangled light (except, of course, that atoms replace photons in our case). There, 
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similarly to the present work, as soon as light is well polarized, the linear dependence of 

the noise variance on the photon number (power) signifies that the coherent state noise 

(shot noise) level is achieved.  

 

The PNL is estimated to be stable to within 2.5% and this number is used in the text to 

calculate the uncertainty of the fidelity F = (66.7±1.6)%. However, the PNL uncertainty 

plays only a minor role here. For example, with a 10% uncertainty in PNL we would get 

F = (66.7±2.6)%. The reason for the weak dependence of the fidelity uncertainty on the 

PNL uncertainty can be understood as follows: if the PNL is higher than estimated, the 

variance of the stored state is actually lower (in the PNL units) which leads to a higher 

fidelity. But at the same time the gain factor is also lower leading to a lower fidelity. 

The two effects oppose each other and hence the fidelity is a rather slowly varying 

function of PNL.   

 

The parameter k2 is determined from the linear contribution to the 

function ( ) ( )( ) ( )2

2

2

2

2

2 / ininout SSS δδδ − , as shown in the figure. k2 is then used to establish 

the relation between canonical variables of light and canonical variables of memory and 

to find the variances and mean values of atomic canonical variables, as described in the 

main text. 
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Supplementary Figure, The projection noise calibration. The atomic noise in 

units of the shot noise of light is plotted as a function of the macroscopic spin 

size Jx which is proportional to the detected Faraday rotation angle. The error 

bars are statistical, arising from the fact that the noise variances are obtained 

from 10.000 cycles of the experiment. An increase in the noise level at high 

atomic densities seen in part (a) of the figure is due to the classical noise of the 

lasers. The solid line – the graph of k2 - is the best estimate for the projection 

noise contribution. The value of k2 for a particular experimental value of Jx is 

shown with the arrow. In part (b) the PNL calibration experiment is repeated 43 

days later and the same calibration still holds. 
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Supplementary Notes 

Derivation of the quantum feedback relations for an arbitrary quantum state of 

light 

Here we present a rigorous justification for the feedback relations used in the theoretical 

part of the paper. In the protocol we make a measurement on the operator of light LX̂  

and then displace the atomic ensemble in momentum AP̂ by a quantity proportional to 

the outcome x. Denote the state of light and atoms after they have interacted as LAΨ . 

Then, the non-normalized state after the measurement is LAL Ψx . After the 

displacement the state is { } LALA
ˆexp Ψ− xPikx . We can write this as 

{ } LAALL
ˆˆexp Ψ− PXikx  by using the fact that x is a (generalized) eigenvalue of the 

operator LX̂ . We now calculate the density operator obtained by averaging with respect 

to all outcomes of the measurement (with corresponding probability) 

{ } { }
{ } { }( ),ˆˆexpˆˆexpTr

ˆexpˆexp

ALLALAALm

ALLALALA

PXikPXik

PikxxxPikxdx

ΨΨ−

=ΨΨ−= ∫
∞

∞−
ρ

 

where the trace is taken with respect to the measured mode. The averaged expectation 

value of any atomic operator )ˆ,ˆ( AA PXf  can be then determined by simply calculating 

its trace with this density operator. By using the cyclic property of the trace, we can re-

express this quantity as the expectation value of the atomic operator in the Heisenberg 

picture which is obtained by displacing the atomic momentum operator by the light 

operator LX̂ , i.e. )ˆˆ,ˆ( LAA XgPXf + . Thus, we can carry out the whole procedure in the 

Heisenberg picture by performing such a displacement. This is precisely what is done in 

the paper where the outcome of the measurement in
A

in
L

ˆˆ PkXx += is fed back into the 

atomic variable AP̂  with a feedback gain coefficient g. The result used in the paper 

is in
L

in
A

in
A

mem
A

ˆ)1(ˆˆˆ XgkgPgxPP −−=−= . 

Note that this analysis is valid for arbitrary input states including mixed states.          

 


