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Abstract

The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a
family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However,
despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation
of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides
are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate
that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast
to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the
ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating
attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction
and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation
and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains
are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both
solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected
complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating
building blocks derived from lipid b-oxidation and amino-acid metabolism. Variation of modules results in strongly altered
signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive
indole ascarosides. Our findings show that the library of ascarosides represents a highly developed chemical language
integrating different neurophysiological pathways to mediate social communication in C. elegans.
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Introduction

Communication among individuals of a species relies on a

number of different sensory inputs including chemical, mechan-

ical, auditory, or visual cues [1]. Chemical signaling is perhaps the

most ancient form of interorganismal communication [1,2], and

analysis of the chemical signals and the behaviors they mediate is

of great significance for understanding the ecological and

evolutionary dynamics of intra- and inter-specific interactions.

The free-living nematode C. elegans is used extensively as a model

system for social behaviors such as foraging, population density

sensing, mating, and aggregation (http://www.wormbook.org;

[3]). Recent investigations have shown that a family of small

molecules, the ascarosides, play important roles as chemical signals

regulating several different aspects of C. elegans behavior (Figure 1A)

[4–8]. The ascarosides ascr#1, ascr#2, and ascr#3 were

originally identified as major components of the dauer phero-

mone, a population-density signal that promotes entry into an

alternate larval stage, the non-feeding and highly persistent dauer

stage [4–7]. Additional work showed that at concentrations far

below those required for dauer formation, synergistic mixtures of

ascarosides act as strong male-specific attractants, and that male

attraction to ascarosides requires the amphid sensory neurons

ASK and the cephalic sensory neurons CEM [6,7]. Wild-type (N2)

hermaphrodites do not respond to low concentrations of ascaro-

sides and show repulsion at dauer-inducing concentrations [4].

However, a recent study showed that mutation of the neuropep-

tide-Y receptor homolog NPR-1 strongly affects hermaphrodite

response to ascarosides [9]. The strong loss-of-function mutant npr-

1(ad609) showed attraction or reduced repulsion to specific
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combinations of ascarosides, in contrast to wild type (N2) worms

that express a high-activity variant of NPR-1 [10,11]. The

interneuron RMG, the central site of action of NPR-1, is proposed

to serve as a central hub computing aggregation and attraction

signals originating from several different sensory neurons,

including the ascaroside-sensing ASK neurons [9].

These findings suggested that mutual attraction and aggregation

in C. elegans are mediated primarily by signaling via NPR-1, and

that strains carrying the high-activity form of NPR-1 including

wild-type (N2) hermaphrodites may not rely on small molecule

signaling to promote aggregation. Nonetheless, wild-type (N2)

hermaphrodites also display aggregation behaviors, for example,

in response to environmental cues such as limited food availability

[12] or perturbations of transforming growth factor–b (TGF–b)

signaling [13–15]. Given the existence of small molecules that

serve as social cues for population density sensing and mate-

finding, and the complicated neural circuitry implicated in

aggregation behavior, we hypothesized that structurally distinct

small molecules might exist that serve as aggregation signals in C.

elegans. Here we show that C. elegans aggregation behavior is

regulated by a dedicated set of highly potent signaling molecules,

the indole ascarosides, which form part of a modular chemical

language that elicits structure-specific behaviors via several distinct

neurophysiological pathways. Our findings provide evidence for

multi-layered social signaling in C. elegans.

Results

Identification of the Indole Ascaroside icas#3 Via
Comparative Metabolomics

All currently known small-molecule pheromones in C. elegans are

derived from peroxisomal b-oxidation of long-chained fatty acids

via DAF-22, a protein with strong homology to human sterol

carrier protein SCPx [6,16]. We hypothesized that putative

aggregation pheromones may be derived from the same pathway,

suggesting that daf-22 mutants would not produce them. In this

case, a spectroscopic comparison of the wild-type metabolome

with that obtained from daf-22 mutant worms should reveal

candidate compounds for attraction or aggregation signals.

In a previous study, we had used an NMR spectroscopy-based

technique termed Differential Analysis of NMR spectra (‘‘DANS’’)

to compare the wild-type metabolome with that of daf-22 mutant

worms [6]. This comparison had led to identification of ascr#6–8,

of which ascr#8 is a major component of the male-attracting

signal [6]. Based on NMR spectra with improved signal-to-noise

ratio, we conducted a more detailed comparison of wild type and

daf-22-mutant metabolomes, which revealed several indole-

containing compounds in the wild-type metabolome that were

not produced by daf-22 worms (Figure 1B,C). The established role

of DAF-22 in pheromone biosynthesis [6,16,17] suggested that

these indole derivatives may represent a previously unrecognized

family of signaling molecules.

To clarify the structures and biological roles of the daf-22-

dependent indole derivatives, we pursued their complete identi-

fication via NMR spectroscopy-guided fractionation of the wild-

type metabolome. Reverse-phase chromatography produced eight

metabolite fractions, which were analyzed by two-dimensional

NMR spectroscopy. The NMR spectra revealed the presence of

daf-22-dependent indole-derivatives in two fractions, which were

selected for additional NMR-spectroscopic and mass spectrometric

studies. These analyses indicated that the most abundant daf-22-

dependent indole derivative consists of an indole carboxy unit

linked to ascarylose bearing a 9-carbon unsaturated side-chain

identical to that found in the known ascr#3 (see Supporting

Information for NMR and MS data) [7]. Based on its structural

relationship to the known ascr#3, we named the newly identified

metabolite indole carboxy ascaroside ‘‘icas#3’’ (Figure 1E).

Icas#3 Is Part of a Larger Family of Tryptophan-Derived
Small Molecules

Next we asked whether some of the other daf-22-dependent

indole compounds we had detected by DANS also represent

indole ascarosides. For this purpose, we employed a mass

spectrometric (MS) approach, because analysis of the mass spectra

of icas#3 had revealed a characteristic MS fragmentation pattern

(loss of the indole-3-carboxy moiety, Figure S1) that enabled a

screen for related compounds. MS screening for compounds with

similar fragmentation profiles indicated that icas#3 is a member

of a larger series of indole ascarosides featuring side chains with

five to nine carbons (Figure 1D,E). The most abundant

components of this family of indole ascarosides are icas#3,

icas#9, and icas#10, which are accompanied by smaller amounts

of icas#1 and icas#7 (Figure 1E). All of these compounds

represent new metabolites, except for icas#9, which recently has

been reported to possess moderate dauer-inducing activity and is

unique among known dauer pheromones in producing a bell-

shaped response curve [18]. We also detected two new non-indole

ascarosides: ascr#9, which features a saturated 5-carbon side

chain, and ascr#10, which features a saturated 9-carbon side

chain, thus representing the saturated analog of the known ascr#3

(Figure 1F).

The MS analyses further revealed that the indole ascarosides’

quantitative distribution is distinctly different from that of the

corresponding non-indole ascarosides, suggesting that incorpora-

tion of the indole unit is strongly regulated. Notably, the most

abundant indole ascaroside, icas#3, is accompanied by 10–40-fold

larger amounts of the corresponding non-indole ascaroside,

ascr#3, whereas icas#9 is more abundant than the corresponding

ascr#9 (Figure 1G). To determine the biosynthetic origin of the

indole ascarosides and to exclude the possibility that they are

produced by the E. coli food source, we established axenic

Author Summary

Chemical signaling is an ancient form of inter-organismal
communication. The nematode Caenorhabditis elegans
exhibits a wide range of social behaviors, including mutual
attraction and aggregation, and has served as a useful
model towards investigating the signaling pathways that
regulate these behaviors. Recent investigations showed
that other C. elegans behaviors, like population density
sensing and mating, are regulated by small molecule
signals called ascarosides. However, it remained unclear
whether C. elegans uses small molecules to promote
intraspecific attraction and aggregation, despite the
presence of extensive neural circuitry regulating these
behaviors. In this study, we show that C. elegans uses a
specifically modified variant of the ascarosides including
an indole unit as a highly potent aggregation pheromone.
These indole ascarosides integrate input from two major
metabolic pathways, amino acid catabolism and lipid beta-
oxidation, suggesting that C. elegans communicates
metabolic status via a modular code of small-molecule
signals. Our study thus provides evidence for use of a
multilayered chemical language for inter-organismal sig-
naling by a model organism. Understanding of chemical
signaling in nematodes may aid the development of new
treatment approaches for parasitic nematodes, which
remain among the most prevalent human disease agents.

C. elegans Aggregation Pheromones
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Figure 1. Identification of indole ascarosides as daf-22-dependent metabolites. (A) Chemical structures of important ascarosides [7]. (B)
Schematic representation of Differential Analysis via 2D-NMR spectroscopy (DANS). Comparison of wild-type NMR spectra with daf-22 mutant NMR
spectra enabled detection of spectroscopic signals that may represent daf-22-dependent signaling molecules. (C) Small section of the actual wild-
type and daf-22 NMR spectra used for DANS. Signals of indole carboxylic acid are present in both spectra (green box), whereas another indole-derived
signal (red box) is only present in the wild-type, but not the daf-22 spectrum. (D) HPLC-MS-based comparison of the wild-type and daf-22
metabolomes. Ion chromatograms obtained for wild-type show peaks for the molecular ions of five different indole ascarosides which are absent
from the daf-22 chromatograms. (E) Structures of identified indole ascarosides. (F) Structures of additional non-indole ascarosides identified in this
study. (G) Relative amounts of indole ascarosides icas#3 and icas#9 and non-indole ascarosides ascr#3 and ascr#9 secreted by C. elegans N2 grown
in liquid culture, as determined by HPLC-MS analyses of media extracts (normalized to concentration of ascr#3; n = 5, 6SEM). For mass spectrometric
quantification of indole and non-indole ascarosides, standard mixtures of authentic reference compounds were used.
doi:10.1371/journal.pbio.1001237.g001
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(bacteria-free) in vitro cultures of C. elegans (N2) using the

chemically defined CeMM medium [19,20]. HPLC-MS analysis

of the axenic cultures revealed the presence of icas#1, icas#3,

icas#9, and icas#10, thus indicating that indole ascarosides are

produced by C. elegans without participation of dietary bacteria.

Use of a 1:1 mixture of L-[2,4,5,6,7-D5]-tryptophan and L-

tryptophan in the axenic medium resulted in production of [D5]-

icas#1, [D5]-icas#3, [D5]-icas#9, and [D5]-icas#10, along with

equivalent amounts of the unlabelled compounds (Figure S2). In

conclusion, our biochemical studies established the tryptophan

origin of the indole-3-carboxy moiety in the indole ascarosides and

indicate that these compounds are products of a strongly regulated

biosynthetic pathway.

Indole Ascarosides Strongly Attract Hermaphrodites
The addition of an indole-3-carboxy moiety to the ascarosides

represents a significant structural change, and we hypothesized

that this chemical difference may indicate signaling functions for

these compounds distinct from those of their non-indole cognates.

Using synthetic samples (see Supporting Information), we tested

three indole ascarosides of varying side-chain lengths, icas#1,

icas#3, and icas#9, in the spot attraction assay we had used

previously to demonstrate social functions of small molecules

(Figure 2A) [6,7]. We found that all three tested indole ascarosides,

icas#1, icas#3, and icas#9, attract both males and hermaphro-

dites at high concentrations (Figure 2C). Testing the most

abundant indole ascaroside, icas#3, over a broader range of

concentrations, we observed that at low concentrations icas#3 was

strongly attractive to hermaphrodites, whereas males were no

longer attracted (Figure 2D, Movies S1, S2, S3). Similarly,

hermaphrodites, but not males, are strongly attracted to low

concentrations of icas#9 (Figure S3A). We further investigated

hermaphrodite attraction to icas#3 using a quadrant chemotaxis

bioassay as described previously (Figure 2B) [9,21]. In contrast to

the spot attraction assay, which measures attraction to a point

source of compounds, the quadrant chemotaxis assay measures

aggregation of hermaphrodites on plate sections with well-defined

compound concentration [9,21]. We found that concentrations as

low as 1 pM icas#3 result in strong attraction of hermaphrodites

(Figure 2E), both in the presence and absence of food (Figure S3B).

The biological role of icas#3 thus starkly differs from that of the

corresponding non-indole ascaroside ascr#3, which strongly

attracts males but repels hermaphrodites [6,7]. Our results show

that simply by attaching an indole-3-carboxy group to the 4-

position of the ascarylose, the strongly male-attracting ascr#3 is

converted into a signal that primarily attracts hermaphrodites.

The difference in the amounts at which ascr#3 and icas#3 are

produced by the worms corresponds to their relative potency: the

male-attracting ascr#3, which is of much lower potency than

icas#3, is produced in much higher concentrations than the highly

potent hermaphrodite attractant icas#3 (Figure 1G).

Solitary and Social Wild-Type Hermaphrodites Are
Attracted to icas#3, But Not to Non-Indole Ascarosides

The results from the spot attraction and quadrant chemotaxis

assays indicate that hermaphrodites are strongly attracted to indole

ascarosides, suggesting that these compounds regulate C. elegans

aggregation behavior. C. elegans exhibits natural variation in its

foraging behavior with some strains (e.g., the common laboratory

strain N2) dispersing individually on a bacterial lawn, whereas

most wild-type strains (e.g., RC301 and CB4856 (Hawaii))

accumulate and aggregate where bacteria are the most abundant

[10,22]. These variants are referred to as ‘‘solitary’’ and ‘‘social,’’

respectively [10,11]. These differences in foraging and aggregation

behavior are associated with two different alleles of the

neuropeptide Y-like receptor NPR-1 [10,11], which differ at a

single amino acid position: solitary strains such as N2 express a

high-activity variant of NPR-1 (215-valine), whereas aggregating

strains such as CB4856 express a low-activity variant of NPR-1

(215-phenylalanine) [10,11]. The strong loss-of-function mutants

npr-1(ad609) and npr-1(ky13), which were generated in the N2

background, also show a high tendency to aggregate [10,22].

A previous study showed that loss of function of npr-1 affects

hermaphrodite response to non-indole ascarosides [9]. Whereas

wild-type (N2) worms expressing the high-activity variant of NPR-

1 are repulsed by non-indole ascarosides, npr-1(ad609) mutants

showed attraction to a near-physiological mixture of the most

abundant non-indole ascarosides, ascr#2, ascr#3, and ascr#5

[9]. We confirmed attraction of npr-1(ad609) hermaphrodites to

ascr#2/3/5 mixtures using both the quadrant chemotaxis and

spot attraction assays, but found that hermaphrodites of the two

tested social wild-type strains (RC301 and CB4856) show no

attraction in either assay (Figure 3A–B). In contrast, both social

wild-type strains (RC301 and CB4856) as well as npr-1(ad609)

hermaphrodites were strongly attracted to icas#3, in both the

quadrant chemotaxis and spot-attraction assays (Figures 3B–D,

S3B–C). These results indicate that icas#3 functions as a

hermaphrodite attractant in both solitary and social C. elegans

strains.

Femtomolar Concentrations of Indole Ascarosides
Promote C. elegans Aggregation

We next tested how a constant background concentration of

indole ascarosides affects hermaphrodite behavior. We measured

aggregation of solitary N2 worms and several social strains

(including the social wild-type strain CB4856 and two npr-1 loss-of-

function mutants) in response to icas#3 using two different

conditions: ‘‘high worm density,’’ with 120 worms per 5 cm plate,

and ‘‘low worm density,’’ with 20 worms per 5 cm plate. At low

worm density, we observed a very strong increase in aggregation at

concentrations as low as 10 fM (femtomolar) icas#3 for both

solitary and social hermaphrodites (Figure 4A, 4E). Aggregation of

N2 hermaphrodites increased as much as 4-fold at 1 pM icas#3,

with higher icas#3 concentrations producing less aggregation.

Similarly, the naturally occurring social strain CB4856 displayed a

bell-shaped response curve with maximal aggregation at 1 pM of

icas#3 and lower aggregation not significantly different from

control at 1 nM of icas#3 (Figure 4A). In contrast, icas#3

increased aggregation of npr-1(ad609) hermaphrodites over the

entire tested concentration range, without a drop-off at higher

concentrations (Figure 4A). At high worm density, we observed up

to a 3-fold increase in aggregation of N2 hermaphrodites on

icas#3 plates (Figure 4B,F), whereas hermaphrodites from all

three tested social strains showed nearly complete aggregation

even in the absence of icas#3, which precluded detection of any

additional aggregation-promoting effect of icas#3 (Figure 4B).

These results show that icas#3 increases hermaphrodite aggrega-

tion even in the absence of a concentration gradient of this

compound, and that solitary and social strains are similarly

affected. Similarly, the second-most abundant indole ascaroside,

icas#9, increased aggregation of both solitary and social

hermaphrodites (Figure S4A). We also investigated the effect of

icas#3 on aggregation of males, which generally tend to aggregate

in the absence of hermaphrodites [23]. We found that aggregation

of him-5 males on icas#3 plates was significantly increased (Figure

S4B).

These results show that indole ascarosides promote aggregation

behavior even in the absence of a concentration gradient,

C. elegans Aggregation Pheromones
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suggesting that sensing of icas#3 and icas#9 affects response to

other aggregation-promoting (chemical or other) signals or

conditions. For example, secretion of additional indole ascarosides

by the worms on plates containing exogenous icas#3 could

contribute to the observed increase in aggregation. To investigate

this possibility, we tested daf-22 hermaphrodites in the aggregation

assay. daf-22 hermaphrodites do not produce indole ascarosides

but respond to icas#3 in both the spot attraction and quadrant

chemotaxis assay as strongly as N2 worms (Figures 3B, S3C). We

found that daf-22 hermaphrodites show less aggregation than N2

worms at 1 pM icas#3 but not at 10 pM icas#3 (Figure 4C).

These results suggest that secretion of additional indole ascarosides

or other daf-22-dependent compounds by the worms may

contribute to aggregation on icas#3 plates, but that other factors,

for example low oxygen levels or contact with other worms

[12,13,24], are more important. Furthermore, changes in

locomotory behavior on icas#3 plates could affect the level of

aggregation [12]. Using an automated machine-vision system to

track worm movement [25], we found that aggregation-inducing

concentrations of icas#3 strongly increase mean stopped duration

and affect other locomotory parameters (Figures 4D, S4D, S4E).

These changes in worm locomotion, in conjunction with other

aggregation-mediating factors, may contribute to the observed

increase in aggregation on icas plates.

Response to icas#3 Requires the Sensory Neuron ASK
and the Interneuron AIA

The amphid single-ciliated sensory neurons type K (ASK) play an

important role in mediating C. elegans behaviors, and previous work

has shown that the ASK neurons are required for behavioral

responses of males and hermaphrodites to non-indole ascarosides

[7,9]. ASK sensory neurons are connected via anatomical gap-

junctions to the RMG interneuron, which has been shown to act as

a central hub regulating aggregation and related behaviors based on

input from ASK and other sensory neurons (Figure 5A) [9,26]. To

investigate the neural circuitry required for icas#3-mediated

hermaphrodite attraction and aggregation, we first tested whether

the ASK neurons are required for these behaviors. For this purpose,

Figure 2. Indole ascarosides attract C. elegans hermaphrodites and males. (A) Schematic representation of the bioassay used to measure
attraction behavior in worms. Zone A is the region where the sample or control solution is applied. The red X denotes the initial position of the
assayed worms. (B) Schematic representation of a quadrant chemotaxis assay. A red X denotes the spot where washed worms are placed at the
beginning of the assay. The shaded regions of the quadrant plate indicate the agar containing the chemical, whereas the white regions denote
control agar. The number of animals in each quadrant was counted after 30 min and a chemotaxis index was computed (see Materials and Methods).
The chemotaxis index for the schematic is 0.84. (C) icas#1, icas#3, and icas#9 are attractive to both C. elegans sexes. All three compounds were
assayed at 1 pmol using N2 hermaphrodites and him-5 males. Open bars: no compound (solvent vehicle) controls. (D) Dose dependence of icas#3
response for N2 hermaphrodites and him-5 males in the spot attraction assay (*p,0.01, **p,0.001, ***p,0.0001, unpaired t test with Welch’s
correction). (E) Dose dependence of icas#3 attraction for N2 hermaphrodites in the quadrant chemotaxis assay (one-factor ANOVA with Dunnett’s
post-test, **p,0.01).
doi:10.1371/journal.pbio.1001237.g002
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we used worms lacking the ASK neurons due to cell-specific

expression of mammalian caspase in the developing neurons

(Tokumitsu Wakabayashi, Iwate University Japan, personal com-

munication). We found that ablation of ASK sensory neurons

resulted in a near complete loss of attraction to icas#3 (Figure 5B).

In contrast, ablation of the ASI neurons, which like the ASK

neurons partake in dauer pheromone sensing, had no significant

effect on icas#3 mediated attraction in hermaphrodites (Figure 5B).

Further, ablation of both ASI and ASK neurons did not result in a

more significant loss of attraction compared to ASK ablations alone,

suggesting that the ASK sensory neurons are required for sensing

icas#3 (Figure 5B). Next we tested whether the ASK neurons are

required for icas#3 mediated aggregation. We found that

hermaphrodites lacking the ASK neurons do not aggregate in

response to icas#3 at any of the tested concentrations (Figure 5C).

Locomotory analysis of ASK-ablated hermaphrodites on icas#3

plates showed neither increased reversal frequency nor decreased

velocity, as we had observed for wild-type worms (Figure S5A,B).

Next we tested whether the RMG interneuron is required for

icas#3-mediated behaviors. We identified the cell position of the

RMG interneuron in wild-type worms using DIC microscopy [27]

and in a transgenic strain expressing ncs-1::gfp (a gift from the

Bargmann Lab). This transgene expresses GFP in the RMG

interneuron and a few other sensory neurons [9]. We found that

ablation of the RMG interneuron in both wild-type and ncs-1::gfp

worms did not affect icas#3-response in the spot attraction assay

(Figure 5B). These results indicate that the RMG interneuron is

not required for transduction of icas#3-derived attraction signals

from the ASK sensory neurons, in contrast to the behavioral

effects of non-indole ascarosides, which require both the ASK

sensory neurons and the RMG interneuron [9]. Given this

observation, we sought to understand which interneuron down-

stream of ASK is required for response to icas#3. According to

the wiring diagram of C. elegans, the primary synaptic output of the

ASK neuron is the AIA interneuron [26]. To test whether this

neuron is required for sensing icas#3, we used a transgenic line

expressing a hyperactive form of MEC-4 in the AIA interneuron (a

kind gift from the Ishihara lab, Japan) [28]. Expression of MEC-4,

a DEG/ENaC sodium channel, causes neuronal toxicity in C.

elegans, thereby resulting in the loss of the AIA neuron [29]. These

AIA-deficient worms did not show any attraction to icas#3,

suggesting that the AIA interneurons are required for icas#3

response. Hence the neural circuitry required for attraction to

icas#3 is different from that of the non-indole ascarosides.

Figure 3. Social and solitary wild-type hermaphrodites are attracted to icas#3, but not to non-indole ascarosides. (A) Solitary and
social wild-type hermaphrodites are not attracted to a physiological ascr#2,3,5 mixture in the spot attraction assays, in contrast to npr-1(ad609)
mutant worms (***p,0.0001, unpaired t test with Welch’s correction). (B) In the quadrant chemotaxis assay, hermaphrodites from all tested strains
are attracted to 1 pM icas#3 and repelled by a physiological mixture of non-indole ascarosides (10 nM ascr#2,3,5), except for npr-1(ad609) mutant
worms, which are also attracted to the ascr#2,3,5 blend (chemotaxis after 30 min; for chemotaxis indices at 15 min, see Figure S3C). (C) Dose-
dependence of icas#3 attraction for social hermaphrodites in the quadrant chemotaxis assay (Figure 3B,C: *p,0.05, **p,0.01, one-factor ANOVA
with Dunnett’s post-test). (D) Social wild-type hermaphrodites and npr-1(ad609) mutant worms are attracted to icas#3 in the spot attraction assay
(**p,0.001, ***p,0.0001, unpaired t test with Welch’s correction).
doi:10.1371/journal.pbio.1001237.g003
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Figure 4. Indole ascarosides mediate aggregation behavior in C. elegans. (A) Aggregation behavior of solitary and social hermaphrodites at
low worm densities (20 worms per plate) on different concentrations of icas#3. (B) Aggregation behavior of solitary and social hermaphrodites at
high worm densities (,120 worms per plate) on different concentrations of icas#3. (C) Aggregation of daf-22 hermaphrodites at low worm density
on two different concentrations of icas#3. (D) Mean stopped duration of N2 hermaphrodites at different icas#3 concentrations (Figure 4A–D:
*p,0.05, **p,0.01 one-factor ANOVA with Dunnett’s post-test). (E) Aggregation (red arrow) of N2 hermaphrodites (20 worms per plate) on plates
containing 10 pM of icas#3 compared to behavior on control plates. (F) Aggregation of N2 hermaphrodites (,120 worms per plate) on plates
containing 1 pM of icas#3 compared to behavior on control plates.
doi:10.1371/journal.pbio.1001237.g004
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Since behavioral assays showed that the ASK and AIA neurons

participate in sensing icas#3, we asked whether icas#3 elicits

calcium flux in these neurons. To measure Ca2+ flux, we used

transgenic lines expressing the genetically encoded calcium sensors

(GCaMP) in these neurons [9]. We used the ‘‘Olfactory chip’’ to

restrain the worms and applied ON and OFF steps of icas#3 while

imaging from these neurons [30]. We were not able to detect Ca2+

transients in ASK neurons even when applying a wide range of

concentration ranging from 1 pM to 1 mM. We then monitored

calcium responses in the AIA interneuron, which is the primary

synaptic target of the ASK neuron [26]. We found that icas#3

elicited significantly increased G-CaMP fluorescence in the AIA

neurons (Figure 5D,E, Movie S4), similar to the results reported by

Macosko et al. for stimulation of AIA interneurons with a mixture

of three non-indole ascarosides [9]. These results show that the

ASK sensory neurons are required for icas response and that this

response is transduced via the AIA interneuron.

Icas#3 and ascr#3 Are Competing Signals
Previous studies have shown that high, dauer-inducing concen-

trations of ascr#3 strongly deter both social and solitary

hermaphrodites [7,9]. To investigate whether addition of ascr#3

would affect icas#3-mediated attraction of hermaphrodites, we

tested mixtures containing these two compounds in a near-

physiological ratio of 12:1 (ascr#3:icas#3) in a modified spot

attraction assay, in which we scored N2 hermaphrodite attraction

to three concentric zones A–C (Figure 2A). We found that at the

lower of the two concentrations tested (120 fmol ascr#3 and

Figure 5. Response to icas#3 in N2 hermaphrodites is mediated by ASK sensory neurons and the downstream AIA interneurons. (A)
Schematic representation of the connectivity of the ASK sensory neuron to other neurons. The primary synaptic output of ASK is the AIA interneuron.
(B) Attraction of hermaphrodites to icas#3 is dependent on the ASK sensory neurons and the AIA interneurons. Ablation of the RMG interneuron
does not affect attraction of N2 or ncs-1::gfp hermaphrodites to icas#3 (*p,0.01, ***p,0.0001, unpaired Student’s t test with Welch’s correction). (C)
Aggregation of N2 and ASK-ablated hermaphrodites at low worm density (20 worms per plate). ASK-ablated worms do not aggregate in response to
icas#3. (D) icas#3 induces G-CaMP fluorescence signals in AIA interneurons. The colored traces represent fluorescence changes in the AIA neurons of
individual animals upon exposure to 1 mM icas#3. The black traces represent fluorescent changes of individual animals upon exposure to buffer. The
grey shading indicates presence of icas#3, n = 10 animals. (E) Average AIA fluorescence change in animals exposed to either buffer or icas#3
(**p,0.01, unpaired Student’s t test with Welch’s correction). Error bars indicate standard error of mean (S.E.M).
doi:10.1371/journal.pbio.1001237.g005
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10 fmol icas#3), the presence of ascr#3 did not interfere with

icas#3-mediated attraction, whereas higher concentrations of

ascr#3 resulted in strong repulsion, even in the presence of

proportionally increased icas#3 concentrations (12 pmol ascr#3

and 1 pmol icas#3, Figure 6A). Following retreat from the outer

edge of zone A, many worms remained ‘‘trapped’’ in a circular

zone B surrounding central zone A, repulsed by the high

concentration of icas#3/ascr#3-blend inside zone A, but

attracted by the lower concentrations of the icas#3/ascr#3 blend

that diffused into zone B (see Movie S5 for a visual record of this

behavior). These results show that at high concentrations of

physiological icas#3/ascr#3 mixtures the repulsive effect of

ascr#3 prevails, whereas at lower concentrations attraction by

icas#3 dominates.

Discussion

Indole ascarosides are the first C. elegans pheromones that

strongly attract wild-type hermaphrodites and promote aggrega-

tion. The indole ascarosides fit the broad definition of aggregation

pheromones in that they attract and/or arrest conspecifics to the

region of release irrespective of sex [1,31,32]. In promoting these

behaviors, the indole ascarosides are active at such low

(femtomolar) concentrations that the worm’s behavioral response

must result from sensing of only a few molecules. For example, at

an icas#3 concentration of 10 fM there are only about 20 icas#3

molecules contained in a cylinder corresponding to length and

diameter of an adult hermaphrodite. Given their high specific

activity, it is not surprising that indole ascarosides (icas’) are of

much lower abundance than non-indole ascarosides (ascr’s).

The indole ascarosides’ strongly attractive properties suggest

that these compounds serve to attract conspecifics to desirable

environments such as food sources. However, the results from our

competition experiments indicate that attraction of hermaphro-

dites by icas#3 can be counteracted by high concentrations of

ascr#3, which are repulsive to hermaphrodites [7]. The

competition experiments further showed that at low concentra-

tions of a physiological blend of icas#3 and ascr#3, the attractive

properties of icas#3 dominate, whereas at high concentrations of

the same blend the repulsion by ascr#3 becomes dominant

(Figure 6A, Movie S5). These findings suggest that under dauer-

inducing conditions with high population density, the associated

high concentrations of ascr#3 promote dispersal [7], whereas low

population density and correspondingly lower concentrations of

ascr#3 result in attraction mediated by icas#3. Therefore, icas’

and ascr’s could represent opposing stimuli regulating population

density and level of aggregation. In turn, population density, food

availability, and other environmental factors may affect relative

rates of the biosyntheses of ascr’s and icas’ as part of a regulatory

circuit.

Indole ascarosides affect aggregation behavior even in the

absence of a concentration gradient: very low background

concentrations (fM-pM) of icas#3 and icas#9 strongly increase

the propensity of hermaphrodites (and males) to aggregate. This

Figure 6. Emerging model for a modular language of signaling molecules. (A) icas#3 and ascr#3 are competing signals for N2
hermaphrodites. Mixtures of 120 fmol ascr#3 and 10 fmol icas#3 (Condition 1) attract worms to zone A, whereas larger amounts of a mixture of the
same ratio (Condition 2; 12 pmol ascr#3 and 1 pmol icas#3) deter worms from zone A and instead attract to the periphery (zones B and C). In
experiments with Condition 2, only one worm entered the treated zone A, whereas 31 worms entered control zone A (***p,0.0001, unpaired
Student’s t test with Welch’s correction). (B) Synergistic blends of non-indole ascarosides induce dauer at nanomolar to micromolar concentrations
and function as a male attractant at picomolar to nanomolar concentrations, whereas indole ascarosides icas#3 and icas#9 act as hermaphrodite
attractants and aggregation signals at femtomolar to picomolar concentrations. (C) Modular assembly of C. elegans signaling molecules, based on
building blocks derived from tryptophan (green), fatty acids (black), p-aminobenzoic acid (PABA, red), and carbohydrate metabolism (blue).
doi:10.1371/journal.pbio.1001237.g006
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finding suggests that sensing of icas#3 and icas#9 increases

susceptibility for aggregation-promoting (chemical or other) signals

or conditions, for example additional quantities of icas’ secreted by

the worms on the plate.

Aggregation in C. elegans is known to depend on a diverse set of

genetic factors and environmental conditions, including food

availability and oxygen concentration, suggesting the existence of

neuronal circuitry that integrates inputs from different sources

[10,33–36]. Aggregation and attraction signals originating from

several different sensory neurons, including the oxygen-sensing

URX-neurons and the ascr-sensing ASK neurons, have recently

been shown to converge on the RMG interneuron, which is

proposed to act as a central hub coordinating these behaviors [9].

The RMG interneuron is the central site of action of the

neuropeptide-Y receptor homolog NPR-1, which distinguishes

solitary strains (high NPR-1 activity) from social strains (low NPR-

1 activity) [10,11]. In social npr-1(lf) mutant hermaphrodites,

oxygen-sensing URX neurons promote aggregation at the edges of

the bacterial lawn, whereas solitary N2 hermaphrodites do not

respond to oxygen gradients. Similarly, repulsion by ascr’s

depends on NPR-1, as solitary hermaphrodites are repelled by

ascr’s, whereas social npr-1(lf) hermaphrodites display either

greatly diminished repulsion or weak attraction [9]. In contrast,

we show that icas#3 promotes hermaphrodite attraction and

aggregation in both social and solitary strains. Icas#3 attracts

solitary N2 as well as social npr-1(lf) hermaphrodites and increases

hermaphrodite aggregation in the solitary strain N2, the social

wild-type strains RC301 and CB4856 (Hawaii) carrying a low-

activity variant of NPR-1, and the two tested npr-1 null alleles. The

finding that icas#3-mediated attraction and aggregation is not

reduced by high NPR-1 activity suggests that these icas#3-

mediated behaviors rely on signaling pathways distinct from those

controlling aggregation responses to other types of stimuli, for

example low oxygen levels. This hypothesis is supported by our

observation that hermaphrodites lacking the RMG interneuron,

which coordinates other aggregation responses via NPR-1, are still

attracted to icas#3. Furthermore, icas#3-mediated aggregation

differs from NPR-1-dependent aggregation behavior in that

aggregation of worms on icas#3 plates is more dynamic and not

restricted to the edge of the bacterial lawn where oxygen is limited

(Animations S1, S2). Worm velocity is not significantly reduced at

the icas#3 concentrations that induce maximal aggregation (1–

10 pM, Figure S4D), and icas#3-mediated aggregation is

associated with less clumping (average clump size 3-5 worms)

than found for aggregating NPR-1 mutant worms (average clump

size 6–16 worms) [12]. These observations show that icas#3-

mediated aggregation is phenotypically distinct from aggregation

behaviors controlled by NPR-1 and the RMG interneuron.

Icas#3-mediated attraction and aggregation depend on the

ASK neurons, similar to hermaphrodite repulsion and male

attraction by ascr’s [7], confirming the central role of this pair of

sensory neurons for perception of different types of pheromones in

C. elegans (Figure 5). We further show that icas#3 responses are

dependent on the AIA interneurons and do not require the RMG

interneuron. Therefore, it appears that the sensory neuron ASK

participates in perception of two different types of pheromones,

ascr’s and icas’, and that these signals are transduced via two

different neurophysiological pathways, as part of a complex neural

and genetic circuitry integrating a structurally diverse array of

pheromone signals.

Calcium transients have been recorded from amphid sensory

neurons in response to non-indole ascarosides; however, the

reported changes in G-CaMP fluorescence were relatively small

(on the order of about 20%) [9,37]. Recently, it was reported that

the non-indole ascaroside ascr#5 does not elicit calcium transients

in the ASI sensory neurons, although the ASI neurons function as

sensors of ascr#5 and express the ascr#5-receptors srg-36 and srg-

37 [38]. Similarly, we were unable to detect significant Ca2+

transients in the ASK neurons in response to a wide range of

concentrations of icas#3 (unpublished data). It is possible that any

icas#3-elicited Ca2+ signals in this neuron are even weaker than

those of non-indole ascarosides, as icas#3 is active at extremely

low concentrations (femtomolar to low picomolar). Additionally,

we cannot rule out involvement of additional neurons in icas#3

signaling, given that the ASK neurons are postsynaptic to a

number of other sensory neurons [26]. Notably, icas#3 elicited

significant changes in G-CaMP fluorescence in the AIA interneu-

rons, which are the primary postsynaptic targets of the ASK

sensory neurons (Figure 5D,E, Movie S4).

The identification of indole ascarosides as aggregation signals

reveals unexpected complexity of social signaling in C. elegans. Our

results indicate that ascarylose-derived small molecules (icas’ and

ascr’s) serve at least three distinct functions in C. elegans: dauer

induction, male attraction, and hermaphrodite social signaling

(Figure 6B). Previous studies have shown that ascr’s often have

more than one function; ascr#3, for example, plays significant

roles for both dauer signaling and male attraction [4,7]. Our study

demonstrates that specific structural variants of ascarylose-derived

small molecules are associated with specific functions (Figure 6C).

We show that addition of an indole carboxy group to ascr’s

changes the signaling properties such that the indole-modified

compounds can have signaling effects very different from those of

the unmodified compounds: icas#3 strongly attracts hermaphro-

dites and promotes aggregation, whereas ascr#3 repulses

hermaphrodites and attracts males. In addition to structural

variation, distinct signaling functions are associated with different

concentration windows: whereas for dauer formation, high

nanomolar concentrations of ascr’s are required, low nanomolar

to high picomolar concentrations of ascr’s promote male

attraction, and picomolar to femtomolar concentrations of icas’

promote hermaphrodite attraction and aggregation (Figure 6B).

Social signaling in C. elegans thus appears to be based on a

modular language of small molecules, derived from combinatorial

assembly of several structurally distinct building blocks (Figure 6C).

Different combinations of these building blocks serve different,

occasionally overlapping signaling functions. Our results for the

relative abundances of ascr’s and icas’ with identical side chains

(Figure 1G) indicate that integration of the different building

blocks is carefully controlled. Biochemically, the building blocks

are derived from three basic metabolic pathways: carbohydrate

metabolism, peroxisomal fatty-acid b-oxidation, and amino acid

metabolism. These structural observations raise the possibility that

social signaling via small molecules transduces input from the

overall metabolic state of the organism. Food availability and

nutrient content in conjunction with other environmental factors

may control ascr and icas biosynthesis pathways to generate

specific pheromone blends that differentially regulate aggregation,

mate attraction, and developmental timing. The expansive

vocabulary of a modular chemical language would make it

possible for different nematodes to signal conspecifically as well as

interspecifically, but it is not known whether nematode species

other than C. elegans rely on ascarylose-based small molecules for

chemical communication. However, lipid-derived glycosides of

ascarylose have been identified from several other nematode

species [39], suggesting that many nematodes have the ability to

produce ascr- or icas-like compounds.

The identification of indole ascarosides as attraction and

aggregation signals demonstrates that C. elegans aggregation
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behavior depends on dedicated chemical signals produced by

conspecifics and not just shared preference for specific environ-

mental conditions. C. elegans social signaling thus appears to be

significantly more highly evolved than previously suspected.

Materials and Methods

Analytical Instrumentation and Procedures
NMR spectra were recorded on a Varian INOVA 600 NMR

(600 MHz for 1H, 151 MHz for 13C). NMR-spectra were

processed using Varian VNMR and MestreLabs MestReC

software packages. Additional processing of bitmaps derived from

NMR spectra was performed using Adobe Photoshop CS3 as

described [6]. HPLC–MS was performed using an Agilent 1100

Series HPLC system equipped with a diode array detector and

connected to a Quattro II spectrometer (Micromass/Waters). Data

acquisition and processing was controlled by MassLynx software.

Flash chromatography was performed using a Teledyne ISCO

CombiFlash system.

C. elegans Strains and General Culture Methods
All strains were maintained at 20uC unless mentioned otherwise

on NGM agar plates, made with Bacto agar (BD Biosciences), and

seeded with OP50 bacteria grown overnight. For the attraction

bioassays and the automated tracker experiments, we used C.

elegans var. N2 Bristol and males from the him-5(e1490) strain

CB1490. The him-5(e1490) mutant segregates XO male progeny

by X chromosome nondisjunction during meiosis [40]. For genetic

ablation of the ASK neuron, we used the transgenic strain PS6025

qrIs2[sra-9::mCasp1], which expresses mammalian caspase in the

ASK neuron under the influence of the sra-9 promoter (this strain

is a kind gift of Tokumitsu Wakabayashi, Iwate University). Other

strains used are as follows: CB4856, C. elegans Hawaii isolate [22];

RC301, C. elegans Freiburg isolate [10,22]; DA609 npr-1(ad609);

CX4148 npr-1(ky13) [10]; CX9740 C. elegans (N2); kyEx2144 [ncs-

1::GFP] [9]; N2;Ex(gcy-28::dp::mec-4D) [28]; CX10981 kyEx2866

[‘‘ASK::GCaMP2.2b’’ sra-9::GCaMP2.2b SL2 GFP, ofm-1::GFP] (ASK

imaging line); CX11073 kyEx2916 [‘‘AIA::GCaMP2.2b’’ T01A4.1::G-

CaMP2.2b SL2 GFP, ofm-1::GFP] (AIA imaging line) [9]; DR476 daf-

22 (m130) [17]; and daf-22 (ok693) [16].

C. elegans Metabolite Naming
All newly identified ascarosides are named with four letter

‘‘SMID’’s (Small Molecule IDentifiers)—e.g., ‘‘icas#3’’ or ‘‘as-

cr#10.’’ The SMID database (www.smid-db.org) is an electronic

resource maintained by Frank Schroeder and Lukas Mueller at the

Boyce Thompson Institute in collaboration with Paul Sternberg

and WormBase (www.wormbase.org). This database catalogues

newly identified C. elegans small molecules, assigns a unique four-

letter SMID (a searchable, gene-style Small Molecule IDentifier),

and for each compound includes a list of other names and

abbreviations used in the literature.

Preparation of Metabolite Extracts
Metabolite extracts were prepared according to a previously

described method [6], which was modified as follows. Worms (N2

or daf-22) from three 10 cm NGM plates were washed using M9-

medium into a 100 mL S-medium pre-culture where they were

grown for 5 d at 22uC on a rotary shaker. Concentrated OP50

derived from 1 L of bacterial culture (grown for 16 h in LB media)

was added as food at days 1 and 3. Subsequently, the pre-culture

was divided equally into four 1 L Erlenmeyer flask containing

400 mL of S-medium for a combined volume of 425 mL of S-

medium, which was then grown for an additional 10 d at 22uC on

a rotary shaker. Concentrated OP50 derived from 1 L of bacterial

culture was added as food every day from days 1 to 9.

Subsequently, the cultures were centrifuged and the supernatant

media and worm pellet were lyophilized separately. The

lyophilized materials were extracted with 95% ethanol (250 mL

2 times) at room temperature for 12 h. The resulting yellow

suspensions were filtered and the filtrate evaporated in vacuo at

room temperature, producing media and worm pellet metabolite

extracts.

Chromatographic Fractionation
The media metabolite extract from two cultures was adsorbed

on 6 g of octadecyl-functionalized silica gel and dry loaded into an

empty 25 g RediSep Rf sample loading cartridge. The adsorbed

material was then fractionated via a reversed-phase RediSep Rf

GOLD 30 g HP C18 column using a water-methanol solvent

system, starting with 100% water for 4 min, followed by a linear

increase of methanol content up to 100% methanol at 42 min,

which was continued up until 55 min. The eight fractions

generated from this fractionation were evaporated in vacuo. The

residue was analyzed by HPLC-MS and 2D-NMR spectroscopy.

Mass Spectrometric Analysis
Worm media extracts or metabolite fractions derived from the

chromatographic fractionation were resuspended in 1.5 ml meth-

anol, centrifuged at 2,000 g for 5 min, and the supernatant

submitted to HPLC-MS analyses. HPLC was performed using an

Agilent 1100 Series HPLC system equipped with an Agilent Eclipse

XDB-C18 column (9.46250 mm, 5 mm particle diameter). A 0.1%

acetic acid–acetonitrile solvent gradient was used, starting with an

acetonitrile content of 5% for 5 min, which was increased to 100%

over a period of 40 min. Mass spectrometry was performed with a

Quattro II spectrometer (Micromass/Waters) using electrospray

ionization in either negative or positive ion mode.

C. elegans Axenic Cultures and Biosynthetic Studies
Axenic in vitro cultures of C. elegans (N2, Bristol) were established

as described by Nass & Hamza [20], using the C. elegans

Maintenance Medium (CeMM, [19]) with cholesterol (5 mg/l)

instead of sitosterol and nucleoside-5-phosphates. After 21 d the

cultures were centrifuged and the supernatant media and worm

pellet were lyophilized separately. The lyophilized worm pellets

(1.2–2.0 mg) were extracted with 2 ml methanol, filtered, and

concentrated in vacuo. The lyophilized worm media were extracted

with ethyl acetate–methanol (95:5, 100 mL 2 times), filtered, and

concentrated in vacuo. Residues were taken up in 150 ml methanol

and investigated by HPLC-ESI-MS. For the application experiment

50 ml CeMM medium was supplemented with 9.2 mg L-[2,4,5,6,7-

D5]-tryptophan (from Cambridge Isotope Laboratories).

Spot Attraction Assays
These assays were done as previously described [6,7]. For both C.

elegans hermaphrodites and males, we harvested 50–60 worms daily at

the fourth larval stage (L4) and stored them segregated by sex at 20uC
overnight to be used as young adults the following day. For the

competition experiments we used 120 nM ascr#3 and 10 nM

icas#3 (Condition 1), or 12 mM ascr#3 and 1 mM icas#3

(Condition 2) in water containing 10% ethanol. Aliquots were stored

at 220uC in 20 mL tubes. 10% ethanol in water was used as control.

Quadrant Chemotaxis Assays
Chemotaxis to both non-indole and indole ascarosides was

assessed on 10 cm four-quadrant Petri plates [21]. Each quadrant
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was separated from adjacent ones by plastic spacers (Figure 2B).

Pairs of opposite quadrants were filled with nematode growth

medium (NGM) agar containing either indole ascarosides or non-

indole ascarosides at different concentrations. Animals were

washed gently in a S-basal buffer and placed in the center of a

four-quadrant plate with ascarosides in alternating quadrants, and

scored after 15 min and 30 min. A chemotaxis index was

calculated as (the number of animals on ascaroside quadrants

minus the number of animals on buffer quadrants)/(total number

of animals).

Measurement of Locomotory Parameters
Reversal frequency and velocity were measured using an

automated worm-tracking system as previously described [6,7].

Aggregation Assays
We measured aggregation behavior of worms using assays

described previously [10]. Aggregation assays were conducted on

standard NGM plates. Plates containing indole ascarosides were

made by adding the indole ascaroside stock solution to the NGM

media before they were poured onto the plates. These plates were

dried at room temperature for 2–3 d. Control plates were treated

similarly except that instead of icas solutions ethanol solutions

were added to the plates, corresponding to the amount of ethanol

introduced via the icas solutions. Final ethanol concentrations of

the plates were below 0.1% for all conditions. After drying, both

control plates and plates containing indole ascarosides were seeded

with 150 ml of an overnight culture of E. coli OP50 using a

micropipette and allowed to dry for 2 d at room temperature. For

‘‘low worm density’’ experiments, we placed 20 worms onto the

lawn and left them at 20uC for 3 h. For ‘‘high worm density’’

experiments we placed approximately 120 worms onto the

bacterial lawn and left them at 20uC for 3 h. Aggregation

behavior was quantified as the number of animals that were in

touch with two or more animals at .50% of their body length.

Calcium Imaging and Analysis
For calcium imaging we used transgenic lines that express the

genetically encoded Ca2+ sensor in ASK (kyEx2866) and AIA

(kyEx2916) [9]. Young adults or adult worms were inserted into an

‘‘Olfactory chip’’ microfluidic device. [30]. Dilutions of icas#3

were done with S-basal buffer (with no cholesterol). As stock

solutions of icas#3 contained small amounts of ethanol, equivalent

amounts of ethanol were added to the S-basal control flow.

Imaging was done using an inverted Zeiss microscope equipped

with an Andor camera. Exposure time for image acquisition was

300 ms. Before imaging the ASK neuron, the worm was exposed

to blue light for 3 min since ASK responds to the blue light itself.

This step is necessary so that the neuron adapts to the blue light

that is used for Ca2+ measurements. The movies were analyzed

using custom-made Matlab scripts. For calculating the average

change in fluorescence upon exposure to either buffer or icas#3,

we chose the first peak of fluorescence immediately after exposure

to buffer or icas#3. The value for this maximum was then

subtracted from the mean fluorescence during the 5 s before the

delivery of icas#3/buffer (corresponding to the region between 5 s

to 10 s in Figure 5D).

Statistical Analysis
Figures 2C,D, 3A,D, 6A, S3A, and S4C: We used unpaired

Student’s t tests with Welch’s correction for comparing attraction

of hermaphrodites and males on indole ascarosides *p,0.01,

**p,0.001, ***p,0.0001. Figures 2E, 3B,C: For comparing the

quadrant chemotaxis indices of the various strains, we used one-

factor ANOVA followed by Dunnett’s post-test, *p,0.05,

**p,0.01. Figures 4A–C, S3C, S4A,B: For comparing aggregation

of solitary, social worms and Cel-daf-22 on plates containing indole

ascarosides, we used one-factor ANOVA followed by Dunnett’s

post-test, *p,0.05, **p,0.01. Figure 4D: To compare stopped

duration of worms on plates with indole ascarosides, we used one-

factor ANOVA followed by Dunnett’s post-test, *p,0.05,

**p,0.01. Figure S4D,E: To compare velocities and reversal

frequencies on plates with indole ascarosides, we used one-factor

ANOVA followed by Dunnett’s post-test, *p,0.05, **p,0.01.

Figure S5A,B: To compare reversals between unablated and ASK

ablated lines, we used Student’s t tests with Welch’s correction,

*p,0.01, **p,0.001. Figure 5B: To compare the attraction of

wild-type worms to the genetically ablated lines for ASK and AIA

as well as the ASI and RMG neuron ablations, we used unpaired

Student’s t test with Welch’s correction, ***p,0.0001. Figure 5E:

For comparing G-CaMP fluorescence changes to buffer and

icas#3, we used unpaired Student’s t test with Welch’s correction,

**p,0.001. All error bars indicate standard error of mean (S.E.M).

Chemical Syntheses
Samples of indole ascarosides icas#1, icas#7, icas#3, and

icas#9 for use in biological assays and as standards for HPLC-MS

were prepared via chemical synthesis. Detailed procedures and

NMR-spectroscopic data are contained in Text S1.

Supporting Information

Animation S1 Time-lapse animation showing behavior of N2

hermaphrodites on control plates. The animation was composed

of 18 individual frames captured every 10 min during the 3-h

experiment.

(MOV)

Animation S2 Time-lapse animation showing dynamic aggre-

gation behavior of N2 hermaphrodites on 1 pM icas#3 plates.

The animation was composed of 18 individual frames captured

every 10 min during the 3-h experiment.

(MOV)

Figure S1 HPLC-MS identification of indole ascarosides.

Electrospray ionization MS spectra (negative ion mode) of icas#9,

9, icas#7, icas#1, icas#3, and icas#10.

(TIF)

Figure S2 HPLC-MS analysis of biosynthetic origin of indole

ascarosides. HPLC-MS ion chromatograms (acquired using

negative-ion electrospray ionization and single-ion recording

mode) of whole-body extracts of C. elegans cultivated in CeMM

medium with a 1:1 mixture of L-[2,4,5,6,7-D5]-tryptophan and L-

tryptophan showing [D5]- and [H]-isotopomers of icas#9, icas#1,

icas#3, and icas#10, respectively.

(TIF)

Figure S3 Indole ascarosides are strong hermaphrodite attrac-

tants. (A) In the spot attraction assay, N2 hermaphrodites are

strongly attracted to low concentrations of icas#9, whereas males

are not attracted (***p,0.0001, unpaired Student’s t test with

Welch’s correction). (B) Quadrant chemotaxis indices of N2 and

CB4856 hermaphrodites on plates containing 1 pM icas#3 with or

without food. (C) In the quadrant chemotaxis assay, hermaphrodites

from all tested strains are attracted to 1 pM icas#3 and repelled by

a physiological mixture of non-indole ascarosides (10 nM of each

ascr#2,3,5), except for npr-1(ad609) mutant worms, which are also

attracted to the ascr#2,3,5 blend (chemotaxis after 15 min; for
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chemotaxis indices at 30 min, see Figure 3B, *p,0.05, **p,0.01,

one-factor ANOVA with Dunnett’s post-test).

(TIF)

Figure S4 Aggregation and locomotory changes in response to

icas#3. (A) Aggregation behavior of solitary and social hermaph-

rodites on icas#9 plates at low worm density (20 worms per 5 cm

plate) (*p,0.05, **p,0.01, one-factor ANOVA with Dunnett’s

post-test). (B) him-5 males aggregate on plates containing 100 fM

or 100 pM of icas#3 (**p,0.01, one-factor ANOVA with

Dunnett’s post-test). (C) daf-22 hermaphrodites are attracted to

icas#3 in the spot attraction assay (*p,0.01, **p,0.01,

***p,0.0001, unpaired Student’s t-test with Welch’s correction).

(D) Forward velocity (velocity of worms during the worm’s forward

movement) of N2 hermaphrodites at different icas#3 concentra-

tions. (E) Number of reversals per minute of N2 hermaphrodites at

different icas#3 concentrations (Figure S4D,E: *p,0.05,

**p,0.01, one-factor ANOVA with Dunnett’s post-test).

(TIF)

Figure S5 ASK ablation affects icas#3-dependent locomotory

behavior of hermaphrodites. (A) ASK-ablated hermaphrodites do

not display reduced forward velocity upon exposure to icas#3. (B)

Reversal frequency of ASK ablated worms does not increase in

response to icas#3 (Figures S5A,B, **p,0.001, unpaired t test

with Welch’s correction).

(TIF)

Movie S1 Attraction assay with N2 hermaphrodites and icas#3.

The icas#3 sample (100 fmol) was added to the scoring region

(black circle, referred to as ‘‘zone A’’ in Figure 2A) on the left. Five

worms were placed on each of the two spots marked X on the top

and bottom. Hermaphrodites spent significantly more time in the

icas#3 treated scoring region than in the control region and

reverse more frequently in the icas#3-treated region than on the

rest of the agar plate. Movie plays at 406 actual speed.

(AVI)

Movie S2 Attraction assay with N2 hermaphrodites and icas#3.

The icas#3 sample (100 fmol) was added to the scoring region

(black circle, referred to as ‘‘zone A’’ in Figure 2A) on the right.

One worm was placed on each of the two spots marked X on the

top and bottom. Hermaphrodites spent significantly more time in

the icas#3 treated scoring region than in the control region and

reverse more frequently in the icas#3-treated region than on the

rest of the agar plate. Movie plays at 406 actual speed.

(AVI)

Movie S3 Attraction assay with N2 hermaphrodites and icas#3.

The icas#3 sample (10 fmol) was added to the scoring region

(black circle, referred to as ‘‘zone A’’ in Figure 2A) on the left. One

worm was placed on each of the two spots marked X on the top

and bottom. Hermaphrodites spent significantly more time in the

icas#3 treated scoring region than in the control region and

reverse more frequently in the icas#3-treated region than on the

rest of the agar plate. Movie plays at 406 actual speed.

(AVI)

Movie S4 The AIA interneuron displays strong depolarization

upon exposure to 1 mM icas#3. Icas#3 elicits a strong increase in

G-CaMP fluorescence after about 5 s of presentation of the

stimulus.

(AVI)

Movie S5 Attraction assay with N2 hermaphrodites using a

mixture of indole ascaroside and non-indole ascaroside. A mixture

of 1 pmol icas#3 and 12 pmol ascr#3 was added to the scoring

region on the left (black circle, referred to as ‘‘zone A’’ in

Figure 2A). Hermaphrodites avoided the black circle on the left,

but were strongly attracted to its periphery (corresponding to zones

B and C in Figure 2A). Movie plays at 406 actual speed.

(AVI)

Text S1 Supporting methods. Includes calculation of number of

icas#3 molecules in one worm volume at 10 fM, detailed synthetic

procedures, and NMR spectroscopic data for ascr#9, ascr#10,

icas#1, icas#3, icas#7, and icas#9.

(PDF)
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