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The random-phase approximation (RPA) as an approach for computing the electronic correlation
energy is reviewed. After a brief account of its basic concept and historical development, the paper
is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With
several illustrating applications, we discuss the implications of RPA for computational chemistry
and materials science. The computational cost of RPA is also addressed which is critical for its
widespread use in future applications. In addition, current correction schemes going beyond RPA
and directions of further development will be discussed.

I. INTRODUCTION

Computational materials science has developed into an
indispensable discipline complementary to experimental
materials science. The fundamental aim of computa-
tional materials science is to derive understanding en-
tirely from the basic laws of physics, i.e., quantum me-
chanical first principles, and increasingly also to make
predictions of new properties or new materials for specific
tasks. The rapid increase in available computer power to-
gether with new methodological developments are major
factors in the growing impact of this field for practical
applications to real materials.

Density functional theory (DFT) [1] has shaped the
realm of first principles materials science like no other
method today. This success has been facilitated by the
computational efficiency of the local-density [2] or gener-
alized gradient approximation [3–5] (LDA and GGA) of
the exchange-correlation functional that make DFT ap-
plicable to polyatomic systems containing up to several
thousand atoms. However, these approximations are sub-
ject to several well-known deficiencies. In the quest for
finding an “optimal” electronic structure method, that
combines accuracy and tractability with transferability
across different chemical environments and dimension-
alities (e.g. molecules/clusters, wires/tubes, surfaces,
solids) many new approaches, improvements and refine-
ments have been proposed over the years. These have
been classified by Perdew in his “Jacob’s ladder” hierar-
chy [6].

In this context, the treatment of exchange and cor-
relation in terms of “exact-exchange plus correlation in
the random-phase approximation” [7, 8] offers a promis-
ing avenue. This is largely due to three attractive fea-
tures. The exact-exchange energy cancels the spurious
self-interaction error present in the Hartree energy ex-
actly (although the RPA correlation itself does contain
some “self-correlation” and is non-zero for one-electron
systems). The RPA correlation energy is fully non-
local and includes long-range van der Waals (vdW) in-
teractions automatically and seamlessly. Moreover, dy-
namic electronic screening is taken into account by sum-
ming up a sequence of “ring” diagrams to infinite order,

which makes RPA applicable to small-gap or metallic sys-
tems where finite-order many-body perturbation theories
break down [8–10].

The random-phase approximation actually predates
density-functional theory, but it took until the late 1970s
to be formulated in the context of DFT [11] and until
the early years of this millennium to be applied as a first
principles electronic structure method [12, 13]. We take
the renewed and widespread interest of the RPA [12–42]
as motivation for this review article. To illustrate the
unique development of this powerful physical concept,
we will put the RPA into its historical context before
reviewing the basic theory. A summary of recent RPA
results demonstrates the strength of this approach, but
also its current limitations. In addition we will discuss
some of the most recent schemes going beyond RPA, in-
cluding renormalized second order perturbation theory
(r2PT), which is particularly promising in our opinion.
We will also address the issue of computational efficiency
which, at present, impedes the widespread use of RPA,
and indicate directions for further development.

A. Early history

During the 1950s, quantum many-body theory under-
went a major transformation, as concepts and techniques
originating from quantum electrodynamics (QED)—in
particular Feynman-Dyson diagrammatic perturbation
theory—were extended to the study of solids and nu-
clei. A particularly important contribution at an early
stage of this development was the RPA, a technique in-
troduced by Bohm and Pines in a series of papers pub-
lished in 1951–1953 [7, 43–45]. In recent years, the RPA
has gained importance well beyond its initial realm of
application, in computational condensed-matter physics,
materials science, and quantum chemistry. While the
RPA is commonly used within its diagrammatic formu-
lation given by Gell-Mann and Brueckner [46], it is nev-
ertheless instructive to briefly discuss the history of its
original formulation by Bohm and Pines. Some of the
cited references are reprinted in [47], which also recounts
the history of the RPA until the early 1960s. Historical
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accounts of the work of Bohm and Pines can be found in
Refs. [48–50] as well as in Refs. [35, 40].

In 1933–1934, Wigner and Seitz published two papers
on the band structure of metallic sodium [51, 52] in which
they stressed the importance of the electronic correlation
energy correction to band-theory calculations of the co-
hesive energy of metals. Wigner subsequently studied
the interaction of electrons in a homogeneous electron
gas (HEG) within a variational approach going beyond
Hartree-Fock [53]. He initially provided estimates for the
correlation energy only in the low- and high-density lim-
its, but later interpolated to intermediate densities [54].
For almost two decades, Wigner’s estimate remained the
state of the art in the prototypical many-body problem of
the HEG. According to a later statement by Herring,“the
magnitude and role of correlation energy remained inad-
equately understood in a considerable part of the solid-
state community for many years.” [55, pp. 71-72]

Due to the long-range nature of the Coulomb inter-
action and the resulting divergences, perturbative ap-
proaches, so successful in other areas, had to be com-
plemented with approximations that accounted for the
screening of the charge of an electron by the other elec-
trons. Before the 1950s, these approximations commonly
drew on work on classical electrolytes by Debye and
Hückel [56, 57] and on work on heavy atoms by Thomas
[58] and Fermi [59, 60], as well as later extensions [61, 62].

As a reaction to work by Landsberg and Wohlfarth
[63, 64], Bohm and Pines in 1950 reported to have been
led “independently to the concept of an effective screened
Coulomb force as a result of a systematical classical and
quantum-mechanical investigation of the interaction of
charges in an electron gas of high density” [65, p. 103].
Their 1951–1953 series of papers [7, 43–45] presents this
systematical investigation. The RPA was one of several
physically-motivated approximations in the treatment of
the HEG which allowed them to separate collective de-
grees of freedom (plasma oscillations) from single-particle
degrees of freedom (which today would be called quasi-
particles or charged excitations) via a suitable canonical
transformation reminiscent of early work in QED [66–68].
A similar theory was developed rather independently for
nuclei by Bohr and Mottelson [69].

In their first paper, illustrating the fundamental idea
of separating single-particle and collective degrees of free-
dom, Bohm and Pines introduce RPA as one of four re-
quirements [43]:

“(3) We distinguish between two kinds of
response of the electrons to a wave. One
of these is in phase with the wave, so that
the phase difference between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the orga-
nized behavior of the system. The other re-
sponse has a phase difference with the wave
producing it which depends on the position of
the particle. Because of the general random

location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-
mation.”

In their second paper [44], Bohm and Pines develop a
detailed physical picture for the electronic behavior in
a HEG due to the presence of Coulomb interactions.
Only in their third paper, Bohm and Pines treat the
(Coulomb-)interacting HEG quantum-mechanically [7].
The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behavior
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
The RPA amounts to neglecting the interaction between
the collective and the single-particle degrees of freedom.
Consequently, the momentum transfers of the Coulomb
potential in Fourier space can be treated independently.
The fourth paper [45] applies the new method to the
electron gas in metals, discussing both validity and con-
sequences of the RPA, such as the increase in electronic
effective mass.

Within condensed-matter theory, the significance of
the Bohm-Pines approach quickly became apparent:
Renormalizing the long-range Coulomb interaction into
an effective screened interaction between new, effective
single-particle degrees of freedom allowed both to over-
come the divergences appearing in older theories of in-
teracting many-body systems and to explain the hith-
erto puzzling success of the single-particle models of early
condensed-matter theory (see, e.g., [54]). An early appli-
cation of the RPA was Lindhard’s calculation of the di-
electric function of the electron gas [70]. Alternative ap-
proaches to and extensions of the Bohm-Pines approach
were formulated by Tomonaga [71, 72], and by Mott [73],
Fröhlich and Pelzer [74], and Hubbard [75, 76].

In 1956, Landau’s Fermi liquid theory [77] delivered
the foundation for effective theories describing many-
body systems in terms of quasiparticles. Brueckner [78]
already in 1955 had introduced a “linked-cluster ex-
pansion” for the treatment of nuclear matter (see also
Ref. [79]). In 1957, Goldstone [80], using Feynman-like
diagrams (based on Ref. [81]), was able to show that
Brueckner’s theory is exact for the ground-state energy
of an interacting many-fermion system. This put the
analogy between the QED vacuum and the ground state
of a many-body system on firm ground. It had been in-
troduced explicitly by Miyazawa for nuclei [82] and by
Salam for superconductors [83], although the essence of
the analogy dated back to the early days of quantum field
theory in the 1930s.

In late 1956, Gell-Mann and Brueckner employed a
diagrammatic approach for treating the problem of the
interacting electron gas. Their famous 1957 paper [46]
eliminated the spurious divergences appearing in previ-
ous approaches. Expressing the perturbation series for
the correlation energy of the HEG in terms of the Wigner-
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Seitz radius rs, they found that the divergences within
earlier calculations [e.g., 84] were mere artifacts: The log-
arithmic divergence appearing in the perturbative expan-
sion of the correlation energy is canceled by similar di-
vergences in higher-order terms. Summing the diagrams
(which had a ring structure) to infinite order yielded a ge-
ometric series, and thus a convergent result. Gell-Mann
and Brueckner derived an expression for the ground state
energy of the interacting electron gas in the high-density
limit. Their work, and Goldstone’s paper [80], are the
earliest examples of the application of Feynman-type di-
agrammatic methods in condensed-matter theory.

Many applications of the new quantum-field theoreti-
cal methods followed: Gell-Mann calculated the specific
heat of the high-density HEG [85]; Hubbard [86, 87] pro-
vided a description of the collective modes in terms of
many-body perturbation theory (MBPT); Sawada et al.
[88, 89] demonstrated that the Gell-Mann-Brueckner ap-
proach indeed contained the plasma oscillations of Bohm
and Pines [7], a point around which there had been quite
some confusion initially [see, e.g., 90]. In addition, they
demonstrated that the RPA is exact in the high-density
limit. In 1958, Nozières and Pines formulated a many-
body theory of the dielectric constant and showed the
equivalence of Gell-Mann and Brueckner’s diagrammatic
approach and the RPA [91, 92].

B. RPA in modern times

Today, the concept of RPA has gone far beyond the
domain of the HEG, and has gained considerable im-
portance in computational physics and quantum chem-
istry. As a key example, RPA can be introduced within
the framework of DFT [1] via the so-called adiabatic-
connection fluctuation-dissipation (ACFD) theorem [11,
93, 94]. Within this formulation, the unknown exact
exchange-correlation (XC) energy functional in Kohn-
Sham [2] DFT can be formally constructed by adiabati-
cally switching on the Coulomb interaction between elec-
trons, while keeping the electron density fixed at its phys-
ical value. This is formulated by a coupling-strength in-
tegration under which the integrand is related to the lin-
ear density-response function of fictitious systems with
scaled Coulomb interaction. Thus, an approximation to
the response function directly translates into an approxi-
mate DFT XC energy functional. RPA in this context is
known as an orbital-dependent energy functional [95] ob-
tained by applying the time-dependent Hartree approxi-
mation to the density response function.

The versatility of RPA becomes apparent when con-
sidering alternative formulations. For instance, the RPA
correlation energy may be understood as the shift of the
zero-point plasmon excitation energies between the non-
interacting and the fully interacting system, as shown by
Sawada for the HEG [89], and derived in detail by Furche
[96] for general cases (see also Ref. [31]). In quantum
chemistry, RPA can also be interpreted as an approxi-

mation to coupled-cluster doubles (CCD) theory where
only diagrams of “ring” structure are kept [15, 97]. The
equivalence of the “plasmon” and “ring-CCD formula-
tion” of RPA has recently been established by Scuseria
et al. [15]. These new perspectives not only offer more
insight into the theory, but also help to devise more ef-
ficient algorithms to reduce the computational cost, e.g.,
by applying the Cholesky decomposition to the “ring-
CCD” equations [15].

Following the early work on the HEG, other model
electron systems were investigated, including the HEG
surface [98, 99], jellium slabs [24] and jellium spheres
[100]. The long-range behavior of RPA for spatially well-
separated closed-shell subsystems was examined by Sz-
abo and Ostlund [101], as well as by Dobson [102–104].
These authors showed that RPA yields the correct 1/R6

asymptotic behavior for the subsystem interaction. In
addition, the long-range dispersion interaction of RPA
is fully consistent with the monomer polarizability com-
puted at the same level of theory. This is one of the
main reasons for the revival of the RPA in recent years,
because this long-range interaction is absent from LDA,
GGA, and other popular density-functionals. Other rea-
sons are the compatibility of the RPA correlation with
exact exchange (which implies the exact cancellation of
the self-interaction error present in the Hartree term) and
the applicability to metallic systems.

For the HEG it has been demonstrated that RPA is not
accurate for short-range correlation [105, 106], and hence
for a long time RPA was not considered to be valuable
for realistic systems. Perdew and coworkers investigated
this issue [99, 107], and found that a local/semi-local cor-
rection to RPA has little effect on iso-electronic energy
differences, which suggests that RPA might be accurate
enough for many practical purposes. The application of
RPA to realistic systems appeared slightly later, starting
with the pioneering work of Furche [12], and Fuchs and
Gonze [13] for small molecules. Accurate RPA total en-
ergies for closed-shell atoms were obtained by Jiang and
Engel [20]. Several groups investigated molecular proper-
ties, in particular in the weakly bound regime, with RPA
and its variants [14, 17, 28, 30, 33, 34, 108, 109], while
others applied RPA to periodic systems [19, 21–23, 110–
112]. Harl and Kresse in particular have performed ex-
tensive RPA benchmark studies for crystalline solids of
all bonding types [21, 22, 112]. At the same time, the ap-
plication of RPA to surface adsorption problems has been
reported [25–27, 32, 113, 114], with considerable success
in resolving the “CO adsorption puzzle”.

Most practical RPA calculations in recent years have
been performed non-self-consistently based on a preced-
ing LDA or GGA reference calculation. In these calcu-
lations, the Coulomb integrals are usually not antisym-
metrized in the evaluation of the RPA correlation energy,
a practice sometimes called direct RPA in the quantum-
chemical literature. In this paper we will denote this com-
mon procedure “standard RPA” to distinguish it from
more sophisticated procedures. While a critical assess-
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ment of RPA is emerging and a wide variety of applica-
tions are pursued, certain shortcomings of standard RPA
have been noted. The most prominent is its systematic
underestimation of binding energies [12, 22, 34], and the
failure to describe stretched radicals [18, 115, 116]. Over
the years several attempts have been made to improve
upon RPA. The earliest is RPA+, where, as mentioned
above, a local/semi-local correlation correction based on
LDA or GGA is added to the standard RPA correla-
tion energy [99, 107]. Based on the observation that
in molecules the correlation hole is not sufficiently ac-
curate at medium range in RPA, this has recently been
extended to a non-local correction scheme [36, 37]. Sim-
ilarly, range-separated frameworks [117] have been tried,
in which only the long-range part of RPA is explicitly
included [16, 17, 28, 118–122], whereas short/mid-range
correlation is treated differently. Omitting the short-
range part in RPA is also numerically beneficial whereby
the slow convergence with respect to the number of basis
functions can be circumvented. Due to this additional
appealing fact, range-separated RPA is now an active
research domain despite the empirical parameters that
govern the range separation. Another route to improve
RPA in the framework of ACFD is to add an fxc kernel
to the response function and to find suitable approxima-
tions for it [14, 35, 123, 124]. Last but not least, the CCD
perspective offers a different correction in form of the
second-order screened exchange (SOSEX) contribution
[18, 97, 125], whereas the MBPT perspective inspired sin-
gle excitation (SE) corrections [34]. SOSEX and SE are
distinct many-body corrections and can also be combined
[126]. These corrections have a clear diagrammatic repre-
sentation and alleviate the above-mentioned underbind-
ing problem of standard RPA considerably [126]. Yet an-
other proposal to improve RPA by incorporating higher-
order exchange effects in various ways has also been dis-
cussed recently [121]. However, at this point in time, a
consensus regarding the “optimal” correction that com-
bines both efficiency and accuracy has not been reached.

Although the majority of practical RPA calculations
are performed as post-processing of a preceding DFT
calculation, self-consistent RPA calculations have also
been performed within the optimized effective potential
(OEP) framework. OEP is a procedure to find the opti-
mal local multiplicative potential that minimizes orbital-
dependent energy functionals. The first RPA-OEP cal-
culations actually date back more than 20 years, but
were not recognized as such. Godby, Schlüter and Sham
solved the Sham-Schlüter equation for the GW self-
energy [127, 128], which is equivalent to the RPA-OEP
equation, for the self-consistent RPA KS potential of bulk
silicon and other semiconductors, but did not calculate
RPA ground-state energies. Similar calculations for other
bulk materials followed later by Kotani [129] and Grüning
et al.[130, 131]. Hellgren and von Barth [132] and then
later Verma and Bartlett [42] have looked at closed-shell
atoms and observed that the OEP-RPA KS potential
there reproduces the exact asymptotic behavior in the

valence region, although its behavior near the nucleus
is not very accurate. Extensions to diatomic molecules
have also appeared recently [41, 42]. Our own work
on the SE correction to RPA indicates that the input-
orbital dependence in RPA post-processing calculations
is a significant issue. Some form of self-consistency would
therefore be desirable. However, due to the considerable
numerical effort associated with OEP-RPA calculations,
practical RPA calculations will probably remain of the
post-processing type in the near future.

Despite RPA’s appealing features its widespread use in
chemistry and materials science is impeded by its com-
putational cost, which is considerable compared to con-
ventional (semi)local DFT functionals. Furche’s original
implementation based on a molecular particle-hole basis
scales as O(N6) [12]. This can be reduced to O(N5) using
the plasmon-pole formulation of RPA [96], or to O(N4)
[30] when the resolution-of-identity (RI) technique is em-
ployed. Scuseria et al. [15] pointed out even slightly ear-
lier that a O(N4) scaling can be achieved by combining
the “ring-CCD” RPA formulation and the Cholesky de-
composition technique. Our own RPA implementation
[133] in FHI-aims [134], which has been used in produc-
tion calculations [26, 34, 126] before, is based on localized
numeric atom-centered orbitals and the RI technique,
and hence naturally scales as O(N4). Plane-wave based
implementations [13, 112] also automatically have O(N4)
scaling. However, in standard implementations the con-
vergence with respect to unoccupied states is slow. Pro-
posals to eliminate the dependence on the unoccupied
states [135, 136] in the context of plane wave bases, by
obtaining the response function from density-functional
perturbation theory [137], have not been explored so far
for local-orbital based implementations. In local orbital
based approaches the O(N4) scaling can certainly be re-
duced by exploiting matrix sparsity, as demonstrated re-
cently in the context of GW [138] or second-order Møller-
Plesset perturbation theory (MP2) [139]. Also approxi-
mations to RPA [31] or effective screening models [140]
might significantly improve the scaling and the compu-
tational efficiency. Recently, RPA has been cast into
the continuum mechanics formulation of DFT [141] with
considerable success in terms of computational efficiency
[142]. In general, there is still room for improvement,
which, together with the rapid increase in computer
power makes us confident that RPA-type approaches will
become a powerful technique in computational chemistry
and materials science in the future. It would thus be de-
sirable, if the material science community would start to
build up benchmark sets for materials science akin to the
ones in quantum chemistry (e.g. G2 [143] or S22 [144]).
These should include prototypical bulk crystals, surfaces,
and surface adsorbates and would aid the development of
RPA-based approaches.
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II. THEORY AND CONCEPTS

RPA can be formulated within different theoretical
frameworks. One particularly convenient approach to
derive RPA is the so-called “adiabatic connection (AC)”,
which is a powerful mathematical technique to obtain the
ground-state total energy of an interacting many-particle
system. Starting with the AC approach, the interacting
ground-state energy can be retrieved either by coupling
to the fluctuation-dissipation theorem in the DFT con-
text, or by invoking the Green-function based MBPT.
RPA can be derived within both frameworks. In addi-
tion, RPA is also intimately linked to the coupled-cluster
(CC) theory. In this section, we will present the theoret-
ical aspects of RPA from several different perspectives.

A. Adiabatic connection

The ground-state total energy of an interacting many-
body Hamiltonian can formally be obtained via the AC
technique, in which a continuous set of coupling-strength
(λ) dependent Hamiltonians is introduced

Ĥ(λ) = Ĥ0 + λĤ1(λ), (1)

that “connect” a reference Hamiltonian Ĥ0 = Ĥ(λ = 0)

with the target many-body Hamiltonian Ĥ = Ĥ(λ = 1).

For the electronic systems considered here, Ĥ(λ) has the
following form:

Ĥ(λ) =

N
∑

i=1

[

−
1

2
∇2
i + vextλ (i)

]

+

N
∑

i>j=1

λ

|ri − rj |
, (2)

where N is the number of electrons, vextλ is a λ-dependent
external potential with vextλ=1(r) = vext(r) being the phys-
ical external potential of the fully-interacting system.
Note that in general vextλ can be non-local in space for
λ 6= 1. Hartree atomic units ~ = e = me = 1 are used
here and in the following. The reference Hamiltonian H0,
given by Eq. (2) for λ = 0, is of the mean-field (MF) type,
i.e., a simple summation over single-particle Hamiltoni-
ans:

Ĥ0 =

N
∑

i=1

[

−
1

2
∇2
i + vextλ=0(i)

]

=
N
∑

i=1

[

−
1

2
∇2
i + vext(ri) + vMF(i)

]

. (3)

In Eq. (3), vMF is a certain (yet-to-be-specified) mean-
field potential arising from the electron-electron interac-
tion. It can be the Hartree-Fock (HF) potential vHF or
the Hartree plus exchange-correlation potential vHxc in
DFT. Given Eq. (2) and (3), the perturbative Hamilto-

nian Ĥ1(λ) in Eq. (1) becomes

Ĥ1(λ) =
N
∑

i>j=1

1

|ri − rj |
+

1

λ

N
∑

i=1

[

vextλ (ri) − vextλ=0(i)
]

,

=

N
∑

i>j=1

1

|ri − rj |
+

1

λ

N
∑

i=1

[

vextλ (ri) − vext(ri) − vMF(i)
]

.

(4)

In the AC construction of the total energy, we introduce
the ground-state wave function |Ψλ〉 for the λ-dependent
system such that

H(λ)|Ψλ〉 = E(λ)|Ψλ〉 . (5)

Adopting the normalization condition 〈Ψλ|Ψλ〉 = 1, the
interacting ground-state total energy can then be ob-
tained with the aid of the Hellmann-Feynman theorem,

E(λ = 1) =E0 +

∫ 1

0

dλ×

〈Ψλ|

(

Ĥ1(λ) + λ
dĤ1(λ)

dλ

)

|Ψλ〉 , (6)

where

E0 = E(0) = 〈Ψ0|H0|Ψ0〉 (7)

is the zeroth-order energy. We note that the choice of
the adiabatic-connection path in Eq. (6) is not unique.
In DFT, the path is chosen such that the electron density
is kept fixed at its physical value along the way. This im-
plies a non-trivial (not explicitly known) λ-dependence

of Ĥ1(λ). In MBPT, one often chooses a linear connec-

tion path — Ĥ1(λ) = Ĥ1 (and hence dĤ1(λ)/dλ = 0).
In this case, a Taylor expansion of |Ψλ〉 in terms of λ in
Eq. (6) leads to standard Rayleigh-Schrödinger pertur-
bation theory (RSPT) [145].

B. RPA derived from ACFD

Here we briefly introduce the concept of RPA in the
context of DFT, which serves as the foundation for most
practical RPA calculations in recent years. In Kohn-
Sham (KS) DFT, the ground-state total energy for an
interacting N -electron system is an (implicit) functional
of the electron density n(r) and can be conveniently split
into four terms:

E[n(r)] = Ts[ψi(r)] +Eext[n(r)] +EH[n(r)] +Exc[ψi(r)] .
(8)

Ts is the kinetic energy of the KS independent-particle
system, Eext the energy due to external potentials,
EH the classic Hartree energy, and Exc the exchange-
correlation energy. In the KS framework, the electron
density is obtained from the single-particle KS orbitals
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ψi(r) via n(r) =
∑occ

i |ψi(r)|
2. Among the four terms in

Eq. (8), only Eext[n(r)] and EH[n(r)] are explicit func-
tionals of n(r). Ts is treated exactly in KS-DFT in terms
of the single-particle orbitals ψi(r) which themselves are
functionals of n(r).

All the many-body complexity is contained in the un-
known XC energy term, which is approximated as an
explicit functional of n(r) (and its local gradients) in con-
ventional functionals (LDA and GGAs), and as a func-
tional of the ψi(r)’s in more advanced functionals (hybrid
density functionals, RPA, etc.). Different existing ap-
proximations to Exc can be classified into a hierarchical
scheme known as “Jacob’s ladder” [6] in DFT. However,
what if one would like to improve the accuracy of Exc in a
more systematic way? For this purpose it is illuminating
to start with the formally exact way of constructing Exc

using the AC technique discussed above. As alluded to
before, in KS-DFT the AC path is chosen such that the
electron density is kept fixed. Equation (6) for the exact
ground-state total-energy E = E(λ = 1) then reduces to

E = E0+

∫ 1

0

dλ〈Ψλ|
1

2

N
∑

i6=j=1

1

|ri − rj |
|Ψλ〉

+

∫ 1

0

dλ〈Ψλ|
N
∑

i=1

d

dλ
vextλ (ri)|Ψλ〉

= E0+
1

2

∫ 1

0

dλ

∫∫

drdr′×

〈Ψλ|
n̂(r) [n̂(r′) − δ(r− r

′)]

|r− r
′|

|Ψλ〉

+

∫

drn(r)
[

vextλ=1(r) − vextλ=0(r)
]

, (9)

where

n̂(r) =

N
∑

i=1

δ(r− ri) (10)

is the electron-density operator, and n(r) =
〈Ψλ|n̂(r)|Ψλ〉 for any 0 ≤ λ ≤ 1.

For the KS reference state |Ψ0〉 (given by the Slater
determinant of the occupied single-particle KS orbitals
{ψi(r)}) we obtain

E0 = 〈Ψ0|

N
∑

i=1

[

−
1

2
∇2 + vextλ=0(ri)

]

|Ψ0〉

= Ts [ψi(r)] +

∫

drn(r)vextλ=0(r) , (11)

and thus

E =Ts [ψi(r)] +

∫

drn(r)vextλ=1(r)+

1

2

∫ 1

0

dλ

∫∫

drdr′〈Ψλ|
n̂(r) [n̂(r′) − δ(r− r

′)]

|r− r
′|

|Ψλ〉 .

(12)

Equating (8) and (12), and noticing

EH[n(r)] =
1

2

∫

drdr′
n(r)n(r′)

|r− r
′|

(13)

Eext[n(r)] =

∫

drn(r)vextλ=1(r) , (14)

one obtains the formally exact expression for the XC en-
ergy

Exc =
1

2

∫

dλ

∫∫

drdr′
nλxc(r, r

′)n(r)

|r− r
′|

. (15)

Here

nλxc(r, r
′) =

〈Ψλ|δn̂(r)δn̂(r′)|Ψλ〉

n(r)
− δ(r − r

′) , (16)

is the formal expression for the so-called XC hole, with
δn̂(r) = n̂(r) − n(r) being the fluctuation of the density
operator n̂(r) around its expectation value n(r). Equa-
tion (16) shows that the XC hole is related to the density-
density correlation function. In physical terms, it de-
scribes how the presence of an electron at point r depletes
the density of all other electrons at another point r

′.
In the second step, the density-density correlations

(fluctuations) in Eq. (16) are linked to the response
properties (dissipation) of the system through the zero-
temperature fluctuation-dissipation theorem (FDT). The
FDT is a powerful technique in statistical physics. It
states that the response of a system at thermodynamic
equilibrium to a small external perturbation is the same
as its response to the spontaneous internal fluctuations
in the absence of the perturbation [146]. The FDT
is manifested in many physical phenomena and applies
to both thermo and quantum-mechanical fluctuations.
The dielectric formulation of the many-body problem by
Noziéres and Pines [147] is a key example of the latter.
In this context, the zero-temperature FDT leads to [148]

〈Ψλ|δn̂(r)δn̂(r′)|Ψλ〉 = −
1

π

∫ ∞

0

dωImχλ(r, r′, ω) , (17)

where χλ(r, r′, ω) is the linear density response func-
tion of the (λ-scaled) system. Using Eqs. (15-17) and
v(r, r′) = 1/|r − r

′|, we arrive at the renowned ACFD
expression for the XC energy in DFT

Exc =
1

2

∫ 1

0

dλ

∫∫

drdr′v(r, r′) ×

[

−
1

π

∫ ∞

0

dωImχλ(r, r′, ω) − δ(r− r
′)n(r)

]

=
1

2π

∫ 1

0

dλ

∫∫

drdr′v(r, r′) ×

[

−
1

π

∫ ∞

0

dωχλ(r, r′, iω) − δ(r− r
′)n(r)

]

.

(18)
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The reason that the above frequency integration can be
performed along the imaginary axis originates from the
analytical structure of χλ(r, r′, ω) and the fact that it be-
comes real on the imaginary axis. The ACFD expression
in Eq. (18) transforms the problem of computing the XC
energy to one of computing the response functions of a
series of fictitious systems along the AC path, which in
practice have to be approximated as well.

In this context the random-phase approximation is a
particularly simple approximation of the response func-
tion:

χλRPA(r, r′, iω) = χ0(r, r′, iω) +
∫

dr1dr2χ
0(r, r1, iω)λv(r1 − r2)χλRPA(r2, r

′, ω).

(19)

χ0(r, r1, iω) is the independent-particle response function
of the KS reference system at λ = 0 and is known ex-
plicitly in terms of the single-particle KS orbitals ψi(r),
orbital energies ǫi and occupation factors fi

χ0(r, r′, iω) =
∑

ij

(fi − fj)ψ
∗
i (r)ψj(r)ψ

∗
j (r′)ψi(r

′)

ǫi − ǫj − iω
.

(20)
From equations (18) and (19), the XC energy in RPA can
be separated into an exact exchange (EX) and the RPA
correlation term,

ERPA
xc = EEX

x + ERPA
c , (21)

where

EEX
x =

1

2

∫∫

drdr′v(r, r′) ×

[

−
1

π

∫ ∞

0

dωχ0(r, r′, iω) − δ(r− r
′)n(r)

]

= −
∑

ij

fifj

∫∫

drdr′ψ∗
i (r)ψj(r)v(r, r′)ψ∗

j (r′)ψi(r
′)

(22)

and

ERPA
c = −

1

2π

∫∫

drdr′v(r, r′) ×

∫ ∞

0

dω

[
∫ 1

0

dλχλRPA(r, r′, iω) − χ0(r, r′, iω)

]

=
1

2π

∫ ∞

0

dωTr
[

ln(1 − χ0(iω)v) + χ0(iω)v
]

.

(23)

For brevity the following convention

Tr [AB] =

∫∫

drdr′A(r, r′)B(r′, r) (24)

has been used in Eq. (23).

C. RPA derived from MBPT

An alternative to ACFD is to compute the interacting
ground-state energy by performing an order-by-order ex-
pansion of Eq. (6). To this end, it is common to choose
a linear AC path, i.e., in Eq. (4) vextλ = vext + (1−λ)vMF

such that

Ĥ1(λ) = Ĥ1 =
N
∑

i>j=1

1

|ri − rj |
−

N
∑

i=1

vMF
i . (25)

Now equation (6) reduces to

E = E0 +

∫ 1

0

dλ〈Ψλ|Ĥ1|Ψλ〉 . (26)

A Taylor expansion of |Ψλ〉 and a subsequent λ inte-
gration lead to an order-by-order expansion of the in-
teracting ground-state total energy, e.g., the first-order
correction to E0 is given by

E(1) =

∫ 1

0

dλ〈Ψ0|Ĥ1|Ψ0〉

= 〈Ψ0|Ĥ1|Ψ0〉

= EH + EEX
x − EMF, (27)

where EH and EEX
x are the classic Hartree and exact ex-

change energy defined in Eq. (13) and (22), respectively.
EMF = 〈Ψ0|v

HF|Ψ0〉 is the “double-counting” term due
to the MF potential vMF, which is already included in
H0. The sum of E0 and the first-order term E(1) yields
the Hartree-Fock energy, and all higher-order contribu-
tions constitute the so-called correlation energy.

The higher-order terms can be evaluated using the di-
agrammatic technique developed by Goldstone [80]. For
instance, the second-order energy in RSPT is given by

E(2) =
∑

n>0

|〈Φ0|Ĥ1|Φn〉|
2

E0 − E
(0)
n

=

occ
∑

i

unocc
∑

a

|〈Φ0|Ĥ1|Φ
a
i 〉|

2

E0 − E
(0)
i,a

+

occ
∑

ij

unocc
∑

ab

|〈Φ0|Ĥ1|Φ
ab
ij 〉|

2

E0 − E
(0)
ij,ab

(28)

where |Φ0〉 = |Ψ0〉 is the ground state of the reference

Hamiltonian Ĥ0, and |Φn〉 for n > 0 correspond to its

excited states with energy E
(0)
n = 〈Φn|Ĥ0|Φn〉. |Φn〉

can be classified into singly-excited configurations |Φi,a〉,
doubly-excited configurations |Φij,ab〉, etc.. The summa-
tion in Eq. (28) terminates at the level of double exci-

tations. This is because Ĥ1 only contains one- and two-
particle operators, and hence does not couple the ground
state |Φ0〉 to triple and higher-order excitations. We will
examine the single-excitation contribution in Eq. (28) in
detail in Section IV C. Here it suffices to say that this
term is zero for the HF reference and therefore is not
included in MP2. The double-excitation contribution
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EMP2
c =

+   

FIG. 1: Goldstone diagrams for the MP2 correlation energy.
The two graphs describe respectively the second-order direct

process, and the second-order exchange process. The upgoing
solid line represents a particle associated with an unoccupied
orbital energy ǫa, the downgoing solid line represents a hole
associated with an occupied orbital energy ǫi, and the dashed
line denotes the bare Coulomb interaction.

can be further split into two terms, corresponding to the
second-order direct and exchange energy in MP2, whose
representation in terms of Goldstone diagrams is depicted
in Fig. 1. The rules to evaluate Goldstone diagrams can
be found in the classic book by Szabo and Ostlund [145].
As a side remark, the application of MP2 used to be re-
stricted to finite systems, and its extension to infinite
periodic systems has been a big challenge because of its
O(N5) canonical scaling. In recent years, however, sev-
eral authors demonstrated that it is in principle feasi-
ble to apply MP2 to one- or two-dimensional systems
[149–151]. With the more recent implementations in the
CRYSCOR code [152] as well as in the VASP code [10],
the application of MP2 to three-dimensional crystalline
solids has become realistic.

The Goldstone approach is convenient for the lowest
few orders, but becomes cumbersome or impossible for
arbitrarily high orders, the evaluation of which is essen-
tial when an order-by-order perturbation breaks down
and a “selective summation to infinite order” procedure
has to be invoked. In this case, it is much more conve-
nient to express the total energy in terms of the Green
function and the self-energy, as done, e.g., by Luttinger
and Ward [153]. Using the Green function language, the
ground-state total energy can be expressed as [9, 153],

E = E0 +
1

2

∫ 1

0

dλ

λ

(

1

2π

∫ ∞

−∞

dωTr
[

G0(iω)Σ(iω, λ)
]

)

(29)

= E0 +
1

2

∫ 1

0

dλ

λ

(

1

2π

∫ ∞

−∞

dωTr [G(iω, λ)Σ∗(iω, λ)]

)

(30)

where G0 and G(λ) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(λ), respec-
tively. Σ∗(λ) and Σ(λ) are the proper (irreducible) and
improper (reducible) self-energies of the interacting sys-
tem with interaction strength λ. [Proper self-energy dia-
grams are those which cannot be split into two by cutting
a single Green function line.] Note that in Eq. (29) and
(30), the trace convention of Eq. (24) is implied.

The above quantities satisfy the following relationship

G(iω, λ) = G0(iω) +G0(iω)Σ(iω, λ)G0(iω)

= G0(iω) +G0(iω)Σ∗(iω, λ)G(iω, λ). (31)

From Eq. (31) the equivalence of Eq. (29) and Eq. (30)
is obvious. In Eq. (29), a perturbation expansion of
the λ-dependent self-energy Σλ(iω) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of Σλ(iω) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (27). All higher-order (n ≥ 2) contributions of
Σλ(iω), here denoted Σc, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to Σc is the
GW approach, which corresponds to a selective summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illustrated in Fig. 2(a). Multiplying G0 to
the GW self-energy ΣGWc (iω) as done in Eq. (29) and
performing the λ integration, one obtains the RPA cor-
relation energy

ERPA
c =

1

2

∫ 1

0

dλ

λ

(

1

2π

∫ ∞

−∞

dωTr
[

G0(iω)ΣGWc (iω, λ)
]

)

.

(32)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is shown in Fig. 2(b). We emphasize that the dia-
grams in Fig. 2(a) and 2(b) are Feynman diagrams, i.e.,
the arrowed lines should really be interpreted as prop-
agators, or Green functions. A similar representation
of ERPA

c can be drawn in terms of Goldstone diagrams
[145], as shown in Fig 2(c). However, caution should be
applied, because the rules for evaluating these diagrams
are different (see e.g., Ref. [9, 145]), and the prefactors in
Fig. 2(b) are not present in the corresponding Goldstone
diagrams. The leading term in RPA corresponds to the
second-order direct term in MP2.

We note that starting from Eq. (29) this procedure
naturally gives the perturbative RPA correlation energy
based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (30) and
applies the GW approximation therein, G(λ, iω) and
Σ∗(λ, iω) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in Eq. (29), which are neglected in the perturba-
tive GW approach (known as G0W 0 in the literature),
are introduced and the total energy differs from that of
the RPA. An in-depth discussion of self-consistent GW
and its implications can be found in [154–157].

D. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
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(a)

ΣGW
c (λ) = λ2 + λ3 + · · ·

(b)

ERPA
c = − 1

4
− 1

6
− · · ·

(c)

ERPA
c = + + ...

FIG. 2: Feynman diagrams for the GW self-energy (a), Feyn-
man diagrams for the RPA correlation energy (b), and Gold-
stone diagrams for the RPA correlation energy (c). Solid lines
in (a) and (b) (with thick arrows) represent fermion propa-
gators G, and those in (c) (with thin arrows) denote parti-
cle (upgoing line) or hole states (down-going line) without
frequency dependence. Dashed lines correspond to the bare
Coulomb interaction v in all graphs.

cluster (CC) theory, which has been very successful for
accurately describing both covalent and non-covalent in-
teractions in molecular systems. To understand this re-
lationship, we will give a very brief account of the CC
theory here. More details can for instance be found in
a review paper by Bartlett and Musia l [158]. The essen-
tial concept of CC builds on the exponential ansatz for
the many-body wave function Ψ for correlated electronic
systems

|Ψ〉 = eT̂ |Φ〉. (33)

|Φ〉 is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of different order,

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂n + · · · , (34)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
conveniently expressed using the language of second-
quantization, namely,

T̂1 =
∑

i,a

tai ĉ
†
aĉi,

T̂2 =
1

4

∑

ij,ab

tabij ĉ
†
aĉ

†
bĉj ĉi, (35)

· · ·

T̂n =
1

(n!)2

∑

ijk··· ,abc···

tabc···ijk··· ĉ
†
aĉ

†
b ĉ

†
c · · · ĉk ĉj ĉi, (36)

where ĉ† and ĉ are single-particle creation and annihila-
tion operators and tai , tabij , . . . are the so-called CC singles,
doubles, . . . amplitudes yet to be determined. As before,
i, j, . . . refer to occupied single-particle states, whereas
a, b, · · · refer to unoccupied (virtual) ones. Acting with

T̂n on the non-interacting reference state |Φ0〉 generates
n-order excited configuration denoted |Φabc···ijk···〉:

T̂n|Φ0〉 =
∑

i>j>k··· ,a>b>c···

tabc···ijk··· |Φ
abc···
ijk···〉. (37)

The next question is how to determine the expansion
coefficients tabc···ijk···? The CC many-body wave function

in Eq. (33) has to satisfy the many-body Schrödinger
equation,

ĤeT̂ |Φ〉 = EeT̂ |Φ〉 , (38)

or

e−T̂ ĤeT̂ |Φ〉 = E|Φ〉 . (39)

By projecting Eq. (39) onto the excited configurations
|Φabc···ijk···〉, which have zero overlap with the non-interacting

ground-state configuration |Φ〉, one obtains a set of cou-
pled non-linear equations for the CC amplitudes tabc···ijk··· ,

〈Φabc···ijk··· |e
−T̂ ĤeT̂ |Φ〉 = 0 . (40)

These can be determined by solving Eqs. (40) self-
consistently.

In analogy to the Goldstone diagrams, equation (40)
can be represented pictorially using diagrams, as illus-
trated by Čı́žek [159] in 1966. In practice, the expan-

sion of the T̂ operator has to be truncated. One popular
choice is the CC doubles (CCD) approximation, or T2
approximation [159], that retains only the double exci-
tation term in Eq. (34). The graphical representation of
CCD contains a rich variety of diagrams including ring
diagrams, ladder diagrams, the mixture of the two, etc.
If one restricts the choice to the pure ring diagrams, as
practiced in early work on the HEG [97, 160], the CCD
equation is reduced to the following simplified form [15],

B +AT + TA+ TBT = 0. (41)

A, B, T are all matrices of rank Nocc ·Nvir with Nocc and
Nvir being the number of occupied and unoccupied single-
particle states, respectively. Specifically we have Aia,jb =
(ǫi− ǫa)δijδab−〈ib|aj〉, Bia,jb = 〈ij|ab〉, and Tia,jb = tabij ,
where the Dirac notation for the two-electron Coulomb
repulsion integrals

〈pq|rs〉 =

∫∫

drdr′
ψ∗
p(r)ψr(r)ψ

∗
q (r′)ψs(r

′)

|r− r
′|

(42)

has been adopted.
Equation (41) is mathematically known as the Riccati

equation [161]. Solving this equation yields the ring-CCD
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amplitudes T rCCD, with which the RPA correlation en-
ergy can be written as

ERPA
c =

1

2
Tr
(

BT rCCD
)

=
1

2

∑

ij,ab

Bia,jbT
rCCD
jb,ia . (43)

The CCD formulation of RPA as given by Eq. (41) and
(43) was shown by Scuseria et al. [15] to be analyti-
cally equivalent to the plasmonic formulation of RPA.
The latter has recently been discussed in detail by Furche
[40, 96], and hence will not be presented in this review.
Technically, the solution of the Riccati equation (41) is
not unique, due to the non-linear nature of the equation.
One therefore has to make a judicious choice for the ring-
CCD amplitudes in practical RPA calculations [116].

III. ALGORITHMS AND IMPLEMENTATIONS

A. RPA implementations and scaling

In this section we will briefly review different imple-
mentations of the RPA approach, since scaling and effi-
ciency are particularly important for a computationally
expensive approach like the RPA. Also, for historical rea-
sons, the theoretical formulation of RPA is often linked
closely to a certain implementation. Similar to conven-
tional DFT functionals, implementations of RPA can be
based on local orbitals (LO), or on plane waves, or on
(linearized) augmented plane waves (LAPW). LO im-
plementations have been reported for the development
version of Gaussian [16, 18, 118], the development ver-
sion of Molpro [17, 123], FHI-aims [133] and Turbomole
[12, 30]. Plane-wave based implementations can be found
in ABINIT [13], VASP [21, 112], and Quantum-Espresso
[23, 135]. An early implementation by Miyake et al. [110]
was based on LAPW.

Furche’s original implementation uses a molecular
particle-hole basis and scales as O(N6) [12], where N is
the number of atoms in the system (unit cell). This can
be reduced to O(N5) using the plasmon-pole formulation
of RPA [96], or to O(N4) [30] when the resolution-of-
identity (RI) technique is employed. Our own RPA im-
plementation [133] in FHI-aims [134] is described in Ap-
pendix A. It is based on localized numeric atom-centered
orbitals and the RI technique, and hence naturally scales
as O(N4).

The key in the RI-RPA implementation is to expand
the occupied -virtual orbital pair products φ∗i (r)φj(r) ap-
pearing in Eq. (20) in terms of a set of auxiliary ba-
sis functions (ABFs) {Pµ(r)}. In this way, one can re-
duce the rank of the matrix representation of χ0 from
Nocc ∗Nvir to Naux with Naux ≪ Nocc ∗Nvir. Here Naux,
Nocc, and Nvir denote the number of ABFs, and the num-
bers of occupied and unoccupied (virtual) single-particle
orbitals respectively. With both χ0 and the coulomb ker-
nel v represented in terms of the ABFs, the RPA correla-
tion energy expression in Eq. (23) can be re-interpreted

as a matrix equation of rank Naux, which is numerically
very cheap to evaluate. The dominating step then be-
comes the build of the matrix form of χ0 which scales
as O(N4). We refer the readers to Appendix A and
Ref. [133] for further details.

Plane-wave based implementations [13, 112] automat-
ically have O(N4) scaling. In a sense the plane-wave
based RPA implementation is very similar in spirit to the
local-orbital-based RI-RPA implementation. In the for-
mer case the plane waves themselves serve as the above-
mentioned ABFs.

B. Speed-up of RPA with iterative methods

The RPA correlation energy in (23) can also be rewrit-
ten as follows,

ERPA
c = −

1

2π

∫ ∞

0

dω

Naux
∑

µ

[

ln
(

εDµ (iω)
)

+ 1 − εDµ (iω)
]

,

(44)
where εDµ (iω) is the µth eigenvalue of the dielectric func-

tion ε(iω) = 1 − χ0(iω)v represented in the ABFs. All
eigenvalues are larger than or equal to 1. From (44) it
is clear that eigenvalues which are close to 1 have a van-
ishing contribution to the correlation energy. For a set
of different materials, Wilson et al. [136] observed that
only a small fraction of the eigenvalues differs signifi-
cantly from 1, which suggests that the full spectrum of
ε(iω) is not required for accurate RPA correlation en-
ergies. This opens up the possibility of computing the
RPA correlation energy by obtaining the “most signifi-
cant” eigenvalues of ε(iω) (or equivalently χ0(iω)v) from
an iterative diagonalization procedure, instead of con-
structing and diagonalizing the full ε(iω) or χ0(iω)v ma-
trices. In practice this can be conveniently done by re-
sorting to the linear response technique of density func-
tional perturbation theory (DFPT) [137] and has been
proposed and implemented in the two independent works
of Galli and coworkers [23, 136], and of Nguyen and
de Gironcoli [135] within a pseudopotential plane-wave
framework. In these (plane-wave based) implementations
the computational cost is reduced from N2

pw-χNoccNvir to

Npw-ψN
2
occNeig, where Npw-χ and Npw-ψ are the numbers

of plane waves to expand the response function χ0 and
the single-particle orbitals ψ respectively, and Neig is the
number of dominant eigenvalues. In this way, although
the formal scaling is still O(N4), one achieves a large re-
duction of the prefactor, said to be 100-1000 [135]. This
procedure is in principle applicable to RI-RPA implemen-
tation in local-orbital basis sets as well, but has, to the
best of our knowledge, not been reported so far.
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IV. COMPUTIONAL SCHEMES BEYOND RPA

In this Section we will give a brief account of the ma-
jor activities for improving the standard RPA, aiming at
better accuracy.

A. Semi-local and non-local corrections to RPA

It is generally accepted that long-range interactions are
well described within RPA, whereas short-range correla-
tions are not adequate [106]. This deficiency manifests
itself most clearly in the pair-correlation function of the
HEG, which spuriously becomes negative when the sepa-
ration between two electrons gets small [105, 106]. Based
on this observation, Perdew and coworkers [99, 107] pro-
posed a semi-local correction to RPA, termed as RPA+

ERPA+
c = ERPA

c + EGGA
c − EGGA-RPA

c , (45)

where EGGA
c is the GGA correlation energy, and

EGGA-RPA
c represents the random-phase approximation

within GGA. Thus the difference between EGGA
c and

EGGA-RPA
c gives a semi-local correction to RPA for in-

homogeneous systems. As mentioned before in the intro-
duction, the RPA+ scheme, although conceptually ap-
pealing, and good for total energies [20], does not sig-
nificantly improve the description of energy differences,
in particular the atomization energies of small molecules
[12]. This failure has been attributed to the inaccuracy
of RPA in describing the multi-center non-locality of the
correlation hole, which cannot be corrected by semi-local
corrections of the RPA+ type [36, 37]. A fully non-local
correction (nlc) to RPA has recently been proposed by
Ruzsinszky, Perdew, and Csonka [37]. It takes the fol-
lowing form

Enlc
c =

∫

drn(r)
[

ǫGGA(r) − ǫGGA-RPA(r)
]

[1 − αF (f(r)]] ,

(46)
where ǫGGA(r) and ǫGGA-RPA(r) are the GGA energy
density per electron and its approximate value within
RPA, respectively. α is an empirical parameter yet to be
determined, and F is a certain functional of f(r) – the
dimensionless ratio measuring the difference between the
GGA exchange energy density and the exact-exchange
energy density at a given point r,

f(r) =
ǫGGA
x (r) − ǫexactx (r)

ǫGGA
x (r)

. (47)

One may note that by setting α = 0 in Eq. (46) the usual
RPA+ correction term is recovered. A simple choice
of the functional form F (f) = f turns out to be good
enough for fitting atomization energies, but the correct
dissociation limit of H2 given by the standard RPA is
destroyed. To overcome this problem, Ruzsinszky et al.
chose a more complex form of F ,

F (f) = f [1 − 7.2f2][1 + 14.4f2]exp(−7.2f2), (48)

ESOSEX
c = + + ...   

FIG. 3: Goldstone diagrams for SOSEX contribution. The
rules to evaluate Goldstone diagrams can be found in
Ref. [145].

which ensures the correct dissociation limit, while yield-
ing significantly improved atomization energies for α = 9.
Up to now the correction scheme of Eq. (46) has not
been widely benchmarked except for a small test set of
10 molecules where the atomization energy has been im-
proved by a factor of two [37].

B. Screened second-order exchange (SOSEX)

The SOSEX correction [18, 97, 125] is an important
route to go beyond standard RPA. This concept can be
most conveniently understood within the context of the
ring-CCD formulation of RPA as discussed in Sec. II D.
If in Eq. (43), the anti-symmetrized Coulomb integrals

B̃ia,jb = 〈ij|ab〉 − 〈ij|ba〉 are inserted instead of the un-
symmetrized Coulomb integrals, the RPA+SOSEX cor-
relation energy expression is obtained

ERPA+SOSEX
c =

1

2

∑

ij,ab

T rCCD
ia,jb B̃ia,jb . (49)

This approach, which was first used by Freeman [97],
and recently examined by Grüneis et al. for solids [125]
and Paier [18] for molecular properties, has received in-
creasing attention in the RPA community. In contrast to
RPA+, this scheme has the attractive feature that it im-
proves both total energies and energy differences simul-
taneously. Although originally conceived in the CC con-
text, SOSEX has a clear representation in terms of Gold-
stone diagrams, as shown in Fig. 3 (see also Ref. [125]),
which can be compared to the Goldstone diagrams for
RPA in Fig. 2(c). From Fig. 3, it is clear that the leading
term in SOSEX corresponds to the second-order exchange
term of MP2. In analogy, the leading term in RPA cor-
responds to the second-order direct term of MP2. Physi-
cally the second-order exchange diagram describes a (vir-
tual) process in which two particle-hole pairs are created
spontaneously at a given time. The two particles (or
equivalently the two holes) then exchange their positions,
and these two (already exchanged) particle-hole pairs an-
nihilate themselves simultaneously at a later time. In
SOSEX, similar to RPA, a sequence of higher-order dia-
grams are summed up to infinity. In these higher-order
diagrams, after the initial creation and exchange process,
one particle-hole pair is scattered into new positions re-
peatedly following the same process as in RPA, until it
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annihilates simultaneously with the other pair at the end
of the process.

SOSEX is one-electron self-correlation free and ame-
liorates the short-range over-correlation problem of RPA
to a large extent, leading to significantly better total en-
ergies [97, 125]. More importantly, the RPA underesti-
mation of atomization energies is substantially reduced.
However, the dissociation of covalent diatomic molecules,
which is well described in RPA, worsens considerably as
demonstrated in Ref. [18] and to be shown in Fig. 6. It
was argued that the self-correlation error present in RPA
mimics static correlation, which becomes dominant in the
dissociation limit of covalent molecules [116].

C. Single excitation correction and its combination
with SOSEX

In most practical calculations, RPA and SOSEX corre-
lation energies are evaluated using input orbitals from a
preceding KS or generalized KS (gKS) [162] calculation.
In this way both RPA and SOSEX can be interpreted as
infinite-order summations of selected types of diagrams

within the MBPT framework introduced in Sec. II C, as
is evident from Figs 2(c) and (3). This viewpoint is help-
ful for identifying contributions missed in RPA through
the aid of diagrammatic techniques. An an example, the
second-order energy in RSPT in Eq. (28) have contribu-
tions from single excitations (SE) and double excitations.
The latter gives rise to the familiar MP2 correlation en-
ergy, which is included in the RPA+SOSEX scheme as
the leading term. The remaining SE term is given by

ESE
c =

occ
∑

i

unocc
∑

a

|〈Φ0|Ĥ1|Φ
a
i 〉|

2

E0 − E
(0)
i,a

=
∑

ia

|〈ψi|v̂
HF − v̂MF|ψa〉|

2

ǫi − ǫa
(50)

=
∑

ia

|〈ψi|f̂ |ψa〉|
2

ǫi − ǫa
(51)

where v̂HF is the self-consistent HF single-particle poten-
tial, v̂MF is the mean-field potential associated with the

reference Hamiltonian, and f̂ = −∇2/2 + v̂ext + v̂HF is
the single-particle HF Hamiltonian (also known as the
Fock operator in the quantum chemistry literature). A
detailed derivation of Eq. (50) using second-quantization
can be found in the supplemental material of Ref. [34].
The equivalence of Eqs. (51) and (50) can be readily

confirmed by observing the relation between f̂ and the

single-particle reference Hamiltonian ĥMF: f̂ = ĥMF +

v̂HF − v̂MF, and the fact 〈ψi|ĥ
MF|ψa〉 = 0. Obviously

for a HF reference where v̂MF = v̂HF, Eq. (51) becomes
zero, a fact known as Brillouin theorem [145]. Therefore,
as mentioned in Section II C, this term is not present in
MP2 theory which is based on the HF reference. We
note that a similar SE term also appears in 2nd-order

ErSE
c =

+   ia +     ...  
a

b
i+   

∆via

i

∆vai

j
a

∆via

∆vij

∆v

∆via

∆

∆vbiaj

vab

2nd−order 3rd−order

FIG. 4: Goldstone diagrams for renormalized single excitation
contributions. Dashed lines ending with a cross denote the
matrix element ∆vpq = 〈ψp|v̂

HF − v̂MF|ψq〉.

Görling-Levy perturbation theory (GL2) [163, 164], ab

initio DFT [165], as well as in CC theory [158]. How-
ever, the SE terms in different theoretical frameworks
differ quantitatively. For instance, in GL2 vMF should
be the exact-exchange OEP potential instead of the ref-
erence mean-field potential.

In Ref. [34] we have shown that adding the SE term of
Eq. (51) to RPA significantly improves the accuracy of
vdW-bonded molecules, which the standard RPA scheme
generally underbinds. This improvement carries over to
atomization energies of covalent molecules and insulat-
ing solids as shown in Ref. [126]. It was also observed
in Ref. [34] that a similar improvement can be achieved
by replacing the non-self-consistent HF part of the RPA
total energy by its self-consistent counterpart. It ap-
pears that, by iterating the exchange-only part towards
self-consistency, the SE effect can be accounted for effec-
tively. This procedure is termed “hybrid-RPA”, and has
been shown to be promising even for surface adsorption
problems [32].

The SE energy in Eq. (51) is a second-order term in
RSPT, which suffers from the same divergence problem
as MP2 for systems with zero (direct) gap. To overcome
this problem, in Ref. [34] we have proposed to sum over
a sequence of higher-order diagrams involving only single
excitations. This procedure can be illustrated in terms of
Goldstone diagrams as shown in Fig. 4. This summation
follows the spirit of RPA and we denote it renormalized
single excitations (rSE) [34]. The SE contribution to the
2nd-order correlation energy in Eq. (51), represented by
the first diagram in Fig 4, constitutes the leading term
in the rSE series. A preliminary version of rSE, which
neglects the “off-diagonal” terms of the higher-order SE
diagrams (by setting i = j = · · · and a = b = · · · ),
was benchmarked for atomization energies and reaction
barrier heights in Ref. [126]. Recently we were able to
also include the “off-diagonal” terms, leading to a refined
version of rSE. This rSE “upgrade” does not affect the
energetics of strongly bound molecules, as those bench-
marked in Ref. [126]. However, the interaction energies
of weakly bound molecules improve considerably. A more
detailed description of the computational procedure and
extended benchmarks for rSE will be reported in a forth-
coming paper [166]. However, we note that all the rSE
results reported in Section (Sec. V) correspond to the
upgraded rSE.

Diagrammatically, RPA, SOSEX and rSE are three
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distinct infinite series of many-body terms, in which the
three leading terms correspond to the three terms in 2nd-
order RSPT. Thus it is quite natural to include all three
of them, and the resultant RPA+SOSEX+rSE scheme
can be viewed a renormalization of the normal 2nd-order
RSPT. Therefore we will refer to RPA+SOSEX+rSE as
“renormalized second-order perturbation theory” or r2PT
in the following.

D. Other “beyond-RPA” activities

There have been several other attempts to go beyond
RPA. Here we will only briefly discuss the essential con-
cepts behind these approaches without going into details.
The interested reader is referred to the corresponding ref-
erences. Following the ACFD formalism, as reviewed in
Sec. II B, one possible route is to improve the interact-
ing density response function. This can be conveniently
done by adding the exchange correlation kernel (fxc) of
time-dependent DFT [167, 168], that is omitted in RPA.
Fuchs et al. [169], as well as Heßelmann and Görling [124]
have added the exact-exchange kernel to RPA, a scheme
termed by these authors as RPA+X or EXX-RPA, for
studying the H2 dissociation problem. RPA+X or EXX-
RPA displays a similar dissociation behavior for H2 as
RPA: accurate at infinite separation, but slightly repul-
sive at intermediate bond lengths. This scheme however
gives rise to a noticeable improvement of the total en-
ergy [123]. Furche and Voorhis examined the influence
of several different local and non-local kernels on the at-
omization energies of small molecules and the binding
energy curves of rare-gas dimers [14]. They found that
semilocal fxc kernels lead to a diverging pair density at
small inter-particle distances, and it is necessary to go to
non-local fxc kernels to cure this. More work along these
lines has to be done before conclusions can be drawn and
accurate kernels become available.

Quantum chemistry offers another route to go beyond
the standard RPA by including higher-order exchange ef-
fects (often termed as “RPAx”). There the two-electron
Coulomb integrals usually appear in an antisymmetrized
form, whereby exchange-type contributions, which are
neglected in standard RPA, are included automatically
[101, 170]. The RPA correlation energy can be expressed
as a contraction between the ring-CCD amplitudes and
the Coulomb integrals (see Eq. (43)), or alternatively be-
tween the coupling-strength-averaged density matrix and
the Coulomb integrals (see Ref. [119]). Different flavors of
RPA can therefore be constructed depending on whether
one antisymmetrizes the averaged density matrix and/or

the Coulomb integrals (see Ángyán et al. [121]). Ac-
cording to our definitions in this article, these schemes
are categorized as different ways to go beyond the stan-
dard RPA, while in the quantum chemistry community
they might be simply referred to as RPA. The SOSEX
correction, discussed in Sec. IV B, can also be rewrit-
ten in terms of a coupling-strength-averaged density ma-

trix [119]. Another interesting scheme was proposed by
Heßelmann [38], in which RPA is corrected to be exact at
the third order of perturbation theory. These corrections
show promising potential for the small molecules consid-
ered in Ref. [38]. However, more benchmarks are needed
for a better assessment.

Both standard RPA and RPA with the exchange-type
corrections discussed above have been tested in a range-
separation framework by several authors [16, 17, 28, 118–
122]. As mentioned briefly in the introduction, the con-
cept of range separation is similar to the RPA+ proce-
dure, in which only the long-range behavior of RPA is re-
tained. However, instead of additional corrections, here
RPA at the short-range is completely removed and re-
placed by semi-local or hybrid functionals. The price to
pay is an empirical parameter that controls the range
separation. The gain is better accuracy in describing
molecular binding energies [16, 17], and increased compu-
tational efficiency. The latter is due to a reduction in the
number of required basis functions to converge the long-
range RPA part, which is no longer affected by the cusp
condition. More details on range-separated RPA can
be found in the original references [16, 17, 28, 118–122].
Compared to the diagrammatic approaches discussed be-
fore, the range-separation framework offers an alternative
and computationally more efficient way to handle short-
range correlations, albeit at the price of introducing some
empiricism into the theory.

V. APPLICATIONS

A. Molecules

RPA based approaches have been extensively bench-
marked for molecular systems, ranging from the disso-
ciation behavior of diatomic molecules [12, 13, 16, 17,
122, 124, 140], atomization energies of small covalent
molecules [12, 18, 36, 37, 126], interaction energies of
weakly bonded molecular complex [28, 33, 119–121], and
chemical reaction barrier heights [40, 126]. The behavior
of RPA for breaking covalent bonds was examined in its
early days [12, 13], and today is still a topic of immense
interest [17, 122, 124, 140]. Atomization energies of co-
valent molecules are somewhat disappointing, because
standard RPA, as well as its local correction (RPA+),
is not better than semi-local DFT functionals [12]. This
issue was subsequently referred to as “the RPA atom-
ization energy puzzle” [36]. A solution can be found in
the beyond-RPA schemes such as RPA+SOSEX [18, 125]
and RPA+SE [34, 126, 166]. Another major application
area of RPA are weakly bonded molecules. Due to the
seamless inclusion of the ubiquitous vdW interactions,
RPA clearly improves over conventional DFT function-
als, including hybrids. This feature is very important
for systems where middle-ranged non-local electron cor-
relations play a significant role, posing great challenges
to empirical or semi-empirical pairwise-based correction



14

schemes. Finally, for activation energies it turned out
that standard RPA performs remarkably well [40, 126]
and the beyond RPA correction schemes that have been
developed so far do not improve the accuracy of the stan-
dard RPA [126].

In the following, we will discuss the performance of
RPA and its variants using representative examples to
illustrate the aforementioned points.

1. Dissociation of diatomic molecules

The dissociation of diatomic molecules is an important
test ground for electronic structure methods. The perfor-
mance of RPA on prototypical molecules has been exam-
ined in a number of studies [12, 13, 16, 17, 115, 122, 124,
140]. Here we present a brief summary of the behavior
of RPA-based approaches based on data produced using
our in-house code FHI-aims [134]. The numerical details
and benchmark studies of our RPA implementation have
been presented in Ref. [133]. In Fig. 5 the binding en-
ergy curves obtained with PBE, MP2, and RPA-based
methods are plotted for four molecular dimers, including
two covalent molecules (H2 and N2), one purely vdW-
bonded molecule (Ar2), and one with mixed character
(Be2). Dunning’s Gaussian cc-pV6Z basis [171, 172] was
used for H2 and N2, aug-cc-pV6Z for Ar2, and cc-pV5Z
for Be2. Currently, no larger basis seems to be avail-
able for Be2, but this will not affect the discussion here.
Basis-set superposition errors (BSSE) are corrected us-
ing the Boys-Bernardi counterpoise procedure [173]. Also
plotted in Fig. 5 are accurate theoretical reference data
for H2, Ar2, and Be2 coming respectively from the full
CI approach [174], the Tang-Toennies model [175], and
the extended germinal model [176]. To visualize the cor-
responding asymptotic behavior more clearly, the large
bond distance regime of all curves is shown in Fig. 6.

RPA and RPA+ dissociate the covalent molecules cor-
rectly to their atomic limit at large separations, albeit
from above after going through a positive “bump” at in-
termediate bond distances. The fact that spin-restricted
RPA calculations yield the correct H2 dissociation limit is
quite remarkable, given the fact that most spin-restricted
single-reference methods, including local and semi-local
DFT, Hartree-Fock, as well as the coupled cluster meth-
ods, yield an dissociation limit that is often too high in
energy, as illustrated in Fig. 5 for PBE. MP2 fails more
drastically, yielding diverging results in the dissociation
limit for H2 and N2. The RPA+ binding curves fol-
low the RPA ones closely, with only minor differences.
The rSE corrections are also quite small in this case,
shifting the RPA curves towards larger binding ener-
gies, with the consequence that the binding energy dips
slightly below zero in the dissociation limit (see the N2

example in Fig. 6). This shift however leads to bet-
ter molecular binding energies around the equilibrium
where RPA systematically underbinds. The SOSEX cor-
rection, on the other hand, leads to dramatic changes.

Although “bump” free, RPA+SOSEX yields dissociation
limits that are much too large, even larger than PBE.
This effect carries over to r2PT at large bond distances
where rSE does not reduce the SOSEX overestimation.

For the purely dispersion-bonded dimer Ar2, all RPA-
based approaches, as well as MP2, yield the correct
C6/R

6 asymptotic behavior, whereas the semi-local PBE
functional gives a too fast exponential decay. Quantita-
tively, the C6 dispersion coefficient is underestimated by
∼ 9% within RPA (based on a PBE reference) [177], and
SOSEX or rSE will not change this. In contrast, MP2
overestimates the C6 value by ∼ 18% [177]. Around the
equilibrium point, RPA and RPA+ underbind Ar2 sig-
nificantly. The rSE correction improves the results con-
siderably, bringing the binding energy curve into close
agreement with the Tang-Toennies reference curve. The
SOSEX correction, on the other hand, does very little in
this case. As a consequence, r2PT resembles RPA+rSE
closely in striking contrast to the covalent molecules.

Be2 represents a more complex situation, in which both
static correlation and long-range vdW interactions play
an important role. In the intermediate regime, the RPA
and RPA+ binding energy curves display a positive bump
which is much more pronounced than for purely covalent
molecules. At very large bonding distances, the curves
cross the energy-zero line and eventually approach the
atomic limit from below. The rSE correction moves the
binding energy curve significantly further down, giving
binding energies in good agreement with the reference
values, whereas in the intermediate region a small pos-
itive bump remains. The SOSEX correction exhibits a
complex behavior. While reducing the bump it concomi-
tantly weakens binding around the equilibrium distance.
Combining the corrections from SOSEX and rSE, r2PT
does well at intermediate and large bonding distances,
but the binding energy at equilibrium is still noticeably
too small. Regarding MP2, it is impressive to observe
that this approach yields a binding energy curve that
is in almost perfect agreement with the reference in the
asymptotic region, although a substantial underbinding
can be seen around the equilibrium region.

Summarizing this part, RPA with and without correc-
tions shows potential, but at this point, none of the RPA-
based approaches discussed above can produce quantita-
tively accurate binding energy curves for all bonding sit-
uations. It is possible, but we consider it unlikely, that
iterating RPA to self-consistency will change this result.
Apart from applications to neutral molecules, RPA and
RPA+SOSEX studies have been carried out for the dis-
sociation of charged molecules. RPA fails drastically in
this case [115], giving too low a total energy in the disso-
ciation limit. Adding SOSEX to RPA fixes this problem,
although the correction now overshoots (with the excep-
tion of H+

2 ) (see Ref. [18, 40, 115, 116] for more details).



15

1 2 3 4 5 6

-4

-2

0

2

4

B
in

di
ng

 e
ne

rg
y 

(e
V

)
1 2 3 4 5 6

-12

-8

-4

0

4

8

12

2 3 4 5 6 7
-300

-200

-100

0

100

200

3 4 5 6 7 8

Bond length (Å)

-12

-8

-4

0

4

8
B

in
di

ng
 e

ne
rg

y 
(m

eV
)

PBE
MP2
RPA
RPA+
RPA+rSE
RPA+SOSEX
r2PT
Accurate

H
2

N
2

Be
2Ar

2

FIG. 5: Dissociation curves for H2, N2, Ar2, and Be2 using PBE, MP2, and RPA-based methods. All RPA-based methods
use PBE orbitals as input. “Accurate” reference curves are obtained with the full CI method for H2 [174], the Tang-Toennies
potential model for Ar2 [175], and the extended germinal model for Be2 [176].

2 3 4 5 6 7 8
-2

0

2

4

B
in

di
ng

 e
ne

rg
y 

(e
V

)

2 3 4 5 6 7
-10

-5

0

5

10

15

20

5 6 7 8 9 10
-4

-3

-2

-1

0

1

5 6 7 8 9

Bond length (Å)

-6

-4

-2

0

B
in

di
ng

 e
ne

rg
y 

(m
eV

)

PBE
MP2
RPA
RPA+
RPA+rSE
RPA+SOSEX
r2PT
Accurate

H
2 N

2

Be
2Ar

2

FIG. 6: Asymptotic region of the curves in Fig. 5.

2. Atomization energies: the G2-I set

One important molecular property for thermochem-
istry is the atomization energy, given by Emol −

∑

iE
at
i

where Emol is the ground-state energy of a molecule and
Eat
i that of the i-th isolated atom. According to this

definition, the negative of the atomization energy gives
the energy cost to break the molecule into its individ-
ual atoms. Here we examine the accuracy of RPA-based
approaches for atomization energies of small molecules.

The RPA results for a set of 10 small organic molecules
were reported in Furche’s seminal work [12] where the un-
derestimation of RPA for atomization energies was first
observed. This benchmark set is included in their re-
cent review [40]. A widely accepted representative set
for small organic molecules is the G2-I set [143], that
contains 55 covalent molecules and will be used as an
illustrative example here. The RPA-type results for the
G2-I set have recently been reported in the work by Paier
et al. [18, 126].
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G2-I atomization energies obtained with four RPA-based ap-
proaches in addition to PBE, PBE0 and MP2.

In Fig 7 we present in a bar graph the mean absolute
percentage error (MAPE) for the G2-I atomization ener-
gies obtained by four RPA-based approaches in addition
to GGA-PBE, the hybrid density-functional PBE0, and
MP2. The actual values for the mean error (ME), mean
absolute error (MAE), MAPE, and maximum absolute
percentage error (MaxAPE) are listed in table II in Ap-
pendix B. The calculations were performed using FHI-
aims [133, 134] with Dunning’s cc-pV6Z basis [171, 172].
Reference data are taken from Ref. [178] and corrected
for zero-point energies. Fig 7 and Table II illustrate
that among the three traditional approaches, the hy-
brid functional PBE0 performs best, with a ME close
to the “chemical accuracy” (1 kcal/mol = 43.4 meV).
MP2 comes second, and PBE yields the largest error and
shows a general trend towards overbinding. Concerning
RPA-based approaches, standard RPA leads to ME and
MAE that are even larger than the corresponding PBE
values, with a clear trend of underbinding. RPA+ does
not improve the atomization energies [12]. All this is
in line with previous observations [12, 18, 126, 133]. As
shown in the previous section, the underbinding of RPA
for small molecules can be alleviated by adding the SO-
SEX or rSE correction. And the combination of the two
(i.e. r2PT) further brings the MAE down to 3.3 kcal/mol,
comparable to the corresponding PBE0 value. Whether
the mechanism of this improvement can be interpreted in
terms of the “multi-center non-locality of the correlation
hole” as invoked by Ruzsinszky et al. [36, 37] or not, is
not yet clear at the moment.

3. vdW interactions: S22 set

As discussed above, one prominent feature of RPA is
that it captures vdW interactions that are of paramount

importance for non-covalently bonded systems. Bench-
marking RPA-based methods for vdW bonded systems
is an active research field [14, 16, 17, 21, 23, 28, 33, 34,
109, 119, 120]. Here we choose the S22 test set [144] as
the illustrating example to demonstrate the performance
of RPA for non-covalent interactions. This test set con-
tains 22 weakly bound molecular complex of different size
and bonding type (7 of hydrogen bonding, 8 of dispersion
bonding, and 7 of mixed nature). Since its inception this
test set has been widely adopted as the benchmark or
training dataset for computational schemes that aim at
dealing with non-covalent interactions [179–185] includ-
ing RPA-based approaches [28, 33, 34, 120]. The con-
sensus emerging from these studies is as expected: RPA
improves the binding energies considerably over semilocal
functionals.

Quantitatively the MAEs given by standard RPA re-
ported for S22 by different groups show an unexpected
spread. Specifically Zhu et al. [28] report an MAE of 2.79
kcal/mol, Ren et al. 39 meV or 0.90 kcal/mol [34], and
Eshuis and Furche 0.41 kcal/mol [33]. The latter authors
investigated this issue in detail [186] and concluded that
the discrepancy is due to basis set incompleteness and
BSSE. Using Dunning’s correlation consistent basis sets
plus diffuse functions and extrapolating to the complete
basis set (CBS) limit Eshuis and Furche obtained a MAE
of 0.79 kcal/mol with 0.02 kcal/mol uncertainty [186].
These authors confirmed our observation that standard
RPA generally underbinds weakly bound molecules. The
basis set we have used, NAO tier 4 plus diffuse func-
tions from aug-cc-pV5Z (denoted as “tier 4 + a5Z-d”)
[34, 133], yields RPA results very close to the CBS limit.
The results reported in Ref. [34] are, in our opinion, the
most reliable RPA results (based on the PBE reference)
for S22 so far.

In Fig 8 the relative errors (in percentage) of five RPA-
based schemes are plotted for the molecules of the S22
set. Results for PBE, PBE0, and MP2 are also pre-
sented for comparison. For MP2 and RPA-based meth-
ods, the relative errors (in percentage) for the 22 indi-
vidual molecules are further demonstrated in Fig 9. The
reference data were obtained using CCSD(T) and prop-
erly extrapolated to the CBS limit by Takatani et al.
[187]. MP2 and RPA results are taken from Ref. [34].
The RPA+rSE, RPA+SOSEX, and r2PT results are pre-
sented for the first time. Further details for these calcu-
lations and an in-depth discussion will be presented in
a forthcoming paper [166]. Figure 8 shows that PBE
and PBE0 fail drastically in this case, because these
two functionals do not capture vdW interactions by con-
struction, whereas all other methods show significant im-
provement. Figure 9 further reveals that MP2 describes
the hydrogen-bonded systems very accurately, but vastly
overestimates the strength of dispersion interactions, par-
ticularly for the π-π stacking systems. Compared to
MP2, RPA provides a more balanced description of all
bonding types, but shows a general trend to underbind.
It has been shown that this underbinding is significantly
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molecules obtained with RPA-based approaches in addition
to MP2. Connection lines are just guide to eyes

reduced by adding SE corrections [34]. The renormal-
ized SE correction presented here gives rise to a more
systematic correction to RPA, as can be seen from Fig 9.
SOSEX shows a similar correction pattern as rSE for hy-
drogen bonding and mixed interactions, but has little
effect on the dispersion interaction. The r2PT scheme,
that combines SOSEX and rSE corrections, overshoots
for hydrogen bonding, but on average improves the de-
scription of the other two bonding types. Figure 9 also
reveals that π-π stacking configurations, as exemplified
by the benzene dimer in the slip parallel geometry (#
11), represent the most challenging case for RPA-based
methods. The relative error of RPA for this case is the
largest. rSE provides little improvement, whereas SO-
SEX worsens slightly. More work is needed to understand
the origin of this failure.

The detailed errors (ME, MAE, MAPE, and MaxAPE)
for S22 are presented in table III in Appendix B. Among
the approaches we have investigated, RPA+rSE gives the
smallest MAE for S22, while r2PT gives the smallest
MAPE. Due to space restrictions it is not possible to in-
clude the multitude of computational schemes that have
emerged in recent years for dealing with non-covalent
interactions [179–185]. Compared to these approaches,
the RPA-based approaches presented here are completely
parameter-free and systematic in the sense that they have
a clear diagrammatic representation. Thus RPA-based
approaches are expected to have a more general appli-
cability, and may well serve as the reference for bench-
marking other approaches for systems where CCSD(T)
calculations are not feasible.

4. Reaction barrier heights

One stringent test for an electronic structure method
is its ability to predict chemical reaction barrier heights,
i.e., the energy difference between the reactants and their
transition state. This is a central quantity that dic-
tates chemical kinetics. Semi-local density approxima-
tions typically underestimate barrier heights [18, 188].
RPA has already been benchmarked for barrier heights
in two independent studies [40, 126]. Both studies
used the test sets of 38 hydrogen-transfer barrier heights
(HTBH38) and 38 non-hydrogen-transfer barrier heights
(NHTBH38) designed by Zhao et al. [189, 190] (together
coined as BH76 in Ref. [191]). HTBH38 contains the for-
ward and inverse barrier heights of 19 hydrogen transfer
reactions, whereas NHTBH38 contains 19 reactions in-
volving heavy atom transfers, nucleophilic substitutions,
association, and unimolecular processes. The reference
data were obtained using the “Weizmann-1” theory [192]
– a procedure to extrapolate the CCSD(T) results – or
by other “best theoretical estimates” [190]. Paier et al.
[126] presented results for standard RPA and “beyond
RPA” approaches based on the PBE reference, where
a two-point cc-pVTZ→cc-pVQZ basis-set extrapolation
strategy is used. In the work of Eshuis et al. [40], stan-
dard RPA results based on both PBE and TPSS [193]
references were presented, where the Def2-QZVP basis
[194] was used. The RPA@PBE results for BH76 re-
ported by both groups are very close, with an ME/MAE
of -1.35/2.30 kcal/mol from the former and -1.65/3.10
kcal/mol from the latter.

The performance of RPA-based approaches, as well as
PBE, PBE0, and MP2 for HTBH38/NHTBH38 test sets
is demonstrated by the MAE bar graph in Fig. 10. The
calculations were done using FHI-aims with the cc-pV6Z
basis set. The ME, MAE, and the maximal absolute
error (MaxAE) are further presented in table IV in Ap-
pendix B. In this case we do not present the relative
errors, which turn out to be very sensitive to the compu-
tational parameters due to some small barrier heights in
the test set, and hence cannot be used as a reliable mea-
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approaches in addition to PBE, PBE0, and MP2. The cc-
pV6Z basis set was used in the calculations.

sure of the performance of the approaches examined here.
Compared to the results reported in Ref. [126], besides
a different basis set (cc-pV6Z instead of cc-pVTZ→cc-
pVQZ extrapolation), we also used the refined rSE cor-
rection (see discussion in Section IV C) for the RPA+rSE
and r2PT results in Tab. IV, which gives slightly better
results in this case.

On average, PBE underestimates the reaction barrier
heights substantially, a feature that is well-known for
GGA functionals. The hybrid PBE0 functional reduces
both the ME and MAE by more than a factor of two.
However, the remaining error is still sizable. Standard
RPA performs magnificently and shows a significant im-
provement over PBE0. The performance of RPA+ is
again very similar to standard RPA. As already noted
in Ref. [126], both the rSE and the SOSEX corrections
deteriorate the performance of RPA. This is somewhat
disappointing, and highlights the challenge for designing
simple, generally more accurate corrections to RPA. For-
tunately, the errors of rSE and SOSEX are now in the
opposite direction, and largely canceled out when com-
bining the two schemes. Indeed, the AEs and MAEs of
r2PT are not far from their RPA counterparts, although
the individual errors are more scattered in r2PT as man-
ifested by the larger MaxAE.

B. Crystalline solids

Crystalline solids are an important domain for RPA
based approaches, in particular because the quantum
chemical hierarchy of benchmark approaches cannot eas-
ily be transfered to periodic systems. Over the years RPA
calculations have been performed for a variety of systems
such as Si [110, 111, 135], Na [110], h-BN [19], NaCl [111],

TABLE I: ME, MAE, MAPE (%), and MaxAPE (%) for the
atomization energies (in eV/atom), lattice constants (in Å),
and bulk moduli (in Gpa) of 24 crystalline solids. Results are
taken from Ref. [112]. The experimental atomization ener-
gies Ref. [195] are corrected for temperature effect (based on
thermochemical correction data) [196] and zero-point vibra-
tional energy. The experimental lattice constants have been
corrected for anharmonic expansion effects.

Atomization energies

ME (eV) MAE (eV) MAPE (%) MaxAPE (%)

LDA −0.74 0.74 18.0 32.7
PBE 0.15 0.17 4.5 15.4
RPA 0.30 0.30 7.3 13.5
RPA+ 0.35 0.35 8.7 15.0

Lattice constants

ME (Å) MAE (Å) MAPE (%) MaxAPE (%)

LDA −0.045 0.045 1.0 3.7
PBE 0.070 0.072 1.4 2.7
RPA 0.016 0.019 0.4 0.9
RPA+ 0.029 0.030 0.6 1.1

Bulk Moduli

ME (GPa) MAE (GPa) MAPE (%) MaxAPE (%)

LDA 9 11 9.6 31.0
PBE −11 11 10.7 23.7
RPA −1 4 3.5 10.0
RPA+ −3 5 3.8 11.4

rare-gas solids [21], graphite [22, 29], and benzene crys-
tals [23]. The most systematic benchmark study of RPA
for crystalline solids was conducted by Harl, Schmika,
and Kresse [22, 112]. These authors reported “technically
converged” calculations using their VASP code and the
projector augmented plane wave method for atomization
energies, lattice constants, and bulk moduli of 24 repre-
sentative crystals, including ionic compounds (MgO, LiF,
NaF, LiCl, NaCl), semiconductors (C, Si, Ge, SiC, AlN,
AlP, AlAs, GaN, GaP, GaAs, InP, InAs, InSb), and met-
als (Na, Al, Cu, Rh, Pd, Ag). The error analysis of their
RPA and RPA+ results, based on a PBE reference, as
well as the LDA and PBE results are presented in Tab. I.
As is clear from Tab. I, the RPA lattice constants and
bulk moduli are better than in LDA and PBE. The at-
omization energies, however, are systematically underes-
timated in RPA, and the MAE in this case is even larger
than that of PBE. This behavior is very similar to that for
the atomization energies in the G2 set discussed above.
Harl et al. also observed that the error of RPA does not
grow when going to heavier atoms, or open-shell systems
in contrast to LDA or PBE [112]. The RPA+ results are
in general slightly worse than those of standard RPA.

The performance of RPA has not been extensively
benchmarked for vdW-bound solids. However, judging
from the studies on h-BN [19], rare-gas crystals [21],
benzene crystal [23], and graphite [22], standard RPA
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does an excellent job regarding the equilibrium lattice
constants and cohesive energies, whereas semi-local DFT
fails miserably, yielding typically too weak binding and
too large lattice constants. LDA typically gives a finite
binding (often overbinding) for weakly bonded solids, but
its performance varies significantly from system to sys-
tem, and cannot be trusted in general, as the functional
by construction does not contain the necessary physics
to reliably describe this phenomenon. In a recent work
[29], it was shown that RPA also reproduces the correct
1/d3 asymptotics between graphite layers as analytically
predicted by Dobson et al. [197]. This type of behavior
can neither be described by LDA, GGAs, nor by hybrid
functionals.

For solids attempts have also been made to go beyond
the standard RPA. For a smaller test set of 11 insulators,
Paier et al. [126] showed that adding SOSEX corrections
to RPA the MAE of atomization energies is reduced from
0.35 eV/atom to 0.14 eV/atom. By replacing the non-
self-consistent HF energy by its self-consistent counter-
part, which mimicks the effect of adding single excita-
tion corrections [34], reduces the MAE further to 0.09
eV/atom [126]. Thus the trend in periodic insulators is
again in line with what has been observed for molecular
atomization energies. The effects of SOSEX and rSE cor-
rections for metals, and for other properties such as the
lattice constants and bulk moduli have not been reported
yet.

C. Adsorption at surfaces

The interaction of atoms and molecules with surfaces
plays a significant role in many phenomena in surface
science and for industrial applications. In practical cal-
culations, the super cells needed to model the surfaces
are large and a good electronic structure approach has
to give a balanced description for both the solid and the
adsorbate, as well as the interface between the two. Most
approaches today perform well for either the solid or the
isolated adsorbate (e.g. atoms, molecules, or clusters),
but not for the combined system, or are computationally
too expensive to be applied to large super cells. This is
an area where we believe RPA will prove to be advanta-
geous.

The systems to which RPA has been applied include Xe
and 3,4,9,10-perylene-tetracarboxylic acid dianhydride
(PTCDA) adsorbed on Ag(111) [25]; CO on Cu(111)
[22, 26] and other noble/transition metal surfaces [27];
benzene on Ni(111) [27], Si(001) [114], and the graphite
surface[113]; and graphene on Ni(111) [198, 199], and
Cu(111), Co(0001) surfaces [199]. In all these applica-
tions, RPA has been very successful.

To illustrate how RPA works for an adsorbate system,
here we briefly describe the RPA study of CO@Cu(111)
following Ref. [26]. The work was motivated by the so-
called “CO adsorption puzzle” – LDA and several GGAs
predict the wrong adsorption site for CO adsorbed on
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FIG. 11: Adsorption energies for CO adsorbed at the on-
top and fcc hollow sites of the Cu(111) surface as obtained
using LDA, AM05, PBE, PBE0, and RPA. RPA results are
presented for both PBE and PBE0 references, and they differ
very little.

several noble/transition metal surfaces at low coverage
[200]. For instance, for the (111) surface of Cu and Pt
DFT within local/semi-local approximations erroneously
favor the threefold-coordinated hollow site, whereas ex-
periments clearly show that the singly-coordinated on-
top site is the energetically most stable site [201, 202].
This posed a severe challenge to the first-principles mod-
eling of molecular adsorption problems and the question
arose, at what level of approximation can the correct
physics be recovered. In our study, the Cu surface was
modeled using systematically increasing Cu clusters cut
out of the Cu(111) surface. Following a procedure pro-
posed by Hu et al. [203], the RPA adsorption energy was
obtained by first converging its difference to the PBE val-
ues with respect to cluster size, and then adding the con-
verged difference to the periodic PBE results. The RPA
adsorption energies for both the on-top and fcc (face cen-
tered cubic) hollow sites are presented in Fig. 11, together
with the results from LDA, AM05 [204], PBE, and the
hybrid PBE0 functional. Fig. 11 reveals what happens in
the CO adsorption puzzle when climbing the so-called Ja-
cob’s ladder in DFT [6] — going from the first two rungs
(LDA and GGAs) to the fourth (hybrid functionals), and
finally to the fifth rung (RPA and other functionals that
explicitly depend on unoccupied KS states). Along the
way the magnitude of the adsorption energies on both
sites are reduced, but the effect is more pronounced for
the fcc hollow site. The correct energy ordering is already
restored at the PBE0 level, but the energy between the
two sites is too small. RPA not only gives the correct
adsorption site, but also produces a reasonable adsorp-
tion energy difference of 0.22 eV, consistent with exper-
iments. This result was later confirmed by the periodic
RPA calculations of Harl and Kresse in Ref. [22], with
only small numerical differences arising from the differ-
ent implementations and different convergence strategy.

The work of Rohlfing and Bredow on Xe and PTCDA
adsorbed at Ag(111) surface represents the first RPA
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study regarding surface adsorption problems, where the
authors explicitly demonstrated that RPA yields the ex-
pected −C3/(d−d0)

3 behavior for large molecule-surface
separations d. Schimka et al. extended the RPA bench-
mark studies of the CO adsorption problem to more sur-
faces [27]. They found that RPA is the only approach so
far that gives both good adsorption energies as well as
surface energies. GGAs and hybrid functionals at most
yield either good surface energies, or adsorption ener-
gies, but never both. Göltl and Hafner investigated the
adsorption of small alkanes in Na-exchanged chabazite
using RPA and several other approaches. They found
that the “hybrid RPA” scheme, as proposed in Ref. [34]
and further examined in Ref. [126], provides the most
accurate description of the system compared to the al-
ternatives e.g. DFT-D [205] and vdW-DF [206]. More
recently RPA was applied to the adsorption of benzene
on the Si(001) surface by Kim et al [114], graphene on the
Ni(111) surface by Mittendorfer et al [198] and by Olsen
et al. [199], and additionally graphene on Cu(111) and
Co(0001) surfaces by the latter authors. In all these stud-
ies, RPA is able to capture the delicate balance between
covalent and dispersive interactions, and yields quantita-
tively reliable results. We expect RPA to become increas-
ingly more important in surface science with increasing
computer power and more efficient implementations.

VI. DISCUSSION AND OUTLOOK

RPA is an important concept in physics and has a more
than 50 year old history. Owing to its rapid develop-
ment in recent years, RPA has shown great promise as a
powerful first-principles electronic-structure method with
significant implications for quantum chemistry, compu-
tational physics, and materials science in the foreseeable
future. The rise of the RPA method in electronic struc-
ture theory, and its recent generalization to r2PT, were
borne out by realizing that traditional DFT functionals
(local and semi-local approximations) are encountering
noticeable accuracy and reliability limits and that hybrid
density functionals are not sufficient to overcome them.
With the rapid development of computer hardwares and
algorithms, it is not too ambitious to expect RPA-based
approaches to become (or at least to inspire) main-stream
electronic-structure methods in computational materials
science and engineering in the coming decades. At this
point it would be highly desirable if the community would
start to build up benchmark sets for materials science
akin to the ones in quantum chemistry (e.g. G2 [143] or
S22 [144]). These should include prototypical bulk crys-
tals, surfaces, and surface adsorbates and would aid the
development of RPA-based approaches.

As an outlook, we would like to indicate several direc-
tions for future developments of RPA-based methods.

i. Improved accuracy: Although RPA does not suffer
from the well-documented pathologies of LDA and
GGAs, its quantitative accuracy is not always what

is desired, in particular for atomization energies.
To improve on this and to make RPA worth its
computational effort, further corrections to RPA
are necessary. To be useful in practice, these should
not increase the computational cost significantly.
The r2PT approach as presented in Sec. IV and
benchmarked in Sec. V is one example of this kind.
More generally the aim is to develop RPA-based
computational schemes that are close in accuracy
to CCSD(T), but come at a significantly reduced
numerical cost. More work can and should be done
along this direction.

ii. Reduction of the computational cost : The major
factor that currently prevents the widespread use
of RPA in materials science is its high numeri-
cal cost compared to traditional DFT methods.
The state-of-the-art implementations still have an
O(N4) scaling, as discussed in Sec. III. To enlarge
the domain of RPA applications, a reduction of this
scaling behavior will be highly desirable. Ideas can
be borrowed from O(N) methods [139] developed
in quantum-chemistry (in particular in the context
of MP2) or compression techniques applied in the
GW context [138].

iii. RPA forces : For a ground-state method, one cru-
cial component that is still missing in RPA are
atomic forces. Relaxations of atomic geometries
that are common place in DFT and that make DFT
such a powerful method are currently not possible
with RPA or at least have not been demonstrated
yet. An efficient realization of RPA forces would
therefore extend its field of application to many
more interesting and important materials science
problems.

iv. Self-consistency: Practical RPA calculations are
predominantly done in a post-processing manner,
in which single-particle orbitals from KS or gen-
eralized KS calculations are taken as input for a
one-shot RPA calculation. This introduces unde-
sired uncertainties, although the starting-point de-
pendence is often not very pronounced, if one re-
stricts the input to KS orbitals. A self-consistent
RPA approach can be defined within KS-DFT
via the optimized effective potential method [95],
and has already been applied in a few instances
[41, 42, 129, 130, 132]. However, in its current re-
alizations self-consistent RPA is numerically very
challenging, and a more practical, robust and nu-
merically more efficient procedure will be of great
interest.

With all these developments, we expect RPA and its
generalizations will play an increasingly important role
in computational materials science in the near future.
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Appendix A: RI-RPA implementation in FHI-aims

In this section we will briefly describe how RPA
is implemented in the FHI-aims code [134] using the
resolution-of-identity (RI) technique. More details can
be found in Ref. [133]. For a different formulation of RI-
RPA see Ref. [30, 40]. We start with the expression for
the RPA correlation energy in Eq. (23), which can be
formally expanded in a Taylor series,

ERPA
c = −

1

π

∫ ∞

0

dω
∞
∑

n=2

1

2n
Tr
[

(

χ0(iω)v
)n
]

. (A1)

Applying RI to RPA in this context means to represent
both χ0(iω) and v in an appropriate auxiliary basis set.
Eq. (A1) can then be cast into a series of matrix op-
erations. To achieve this we perform the following RI
expansion

ψ∗
i (r)ψj(r) ≈

Naux
∑

µ=1

CµijPµ(r) , (A2)

where Pµ(r) are auxiliary basis functions, Cµij are the ex-
pansion coefficients, and Naux is the size of the auxiliary
basis set. Here C serves as the transformation matrix
that reduces the rank of all matrices from Nocc ∗ Nvir

to Naux, with Nocc, Nvir and Naux being the number
of occupied single-particle orbitals, unoccupied (virtual)
single-particle orbitals, and auxiliary basis functions, re-
spectively. The determination of the C coefficients is
not unique, but depends on the underlying metric. In
quantum chemistry the “Coulomb metric” is the stan-
dard choice where the C coefficients are determined by
minimizing the Coulomb repulsion between the residuals
of the expansion in Eq. (A2) (for details see Ref. [133]
and references therein). In this so-called “RI-V” approx-
imation, the C coefficients are given by

Cµij =
∑

ν

(ij|ν)V −1
νµ , (A3)

where

(ij|ν) =

∫∫

φi(r)φj(r)Pν(r′)

|r− r
′|

drdr′ , (A4)

and

Vµν =

∫

Pµ(r)Pν (r′)

|r− r
′|

drdr′ . (A5)

In practice, sufficiently accurate auxiliary basis set can
be constructed such that Naux ≪ Nocc ∗Nvir, thus reduc-
ing the computational effort considerably. A practically
accurate and efficient way of constructing auxiliary basis
set {Pµ(r)} and their associated {Cµij} for atom-centered
basis functions of general shape has been presented in
Ref. [133].

Combining Eq. (20) with (A2) yields

χ0(r, r′, iω) =
∑

µν

∑

ij

(fi − fj)C
µ
ijC

ν
ji

ǫi − ǫj − iω
Pµ(r)Pν (r′)

=
∑

µν

χ0
µν(iω)Pµ(r)Pν(r′), (A6)

where

χ0
µν(iω) =

∑

ij

(fi − fj)C
µ
ijC

ν
ji

ǫi − ǫj − iω
. (A7)

Introducing the Coulomb matrix

Vµν =

∫∫

drr′Pµ(r)v(r, r′)Pν(r′) , (A8)

we obtain the first term in (A1)
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This term corresponds to the 2nd-order direct correla-
tion energy also found in MP2. Similar equations hold
for the higher order terms in (A1). This suggests that
the trace operation in Eq. (23) can be re-interpreted as a
summation over auxiliary basis function indices, namely,
Tr [AB] =

∑

µν AµνBνµ, provided that χ0(r, r′, iω) and

v(r, r′) are represented in terms of a suitable set of aux-
iliary basis functions. Equations (23), (A7), and (A8)
constitute a practical scheme for RI-RPA. In this imple-
mentation, the most expensive step is Eq. (A7) for the
construction of the independent response function, scal-
ing as N2

auxNoccNvir. We note that the same is true for
standard plane-wave implementations [112] where Naux

corresponds to the number of plane waves used to expand
the response function. In that sense RI-based local-basis
function implementations are very similar to plane-wave-
based or LAPW-based implementations, where the plane
waves themselves or the mixed product basis serve as the
auxiliary basis set.

Appendix B: Error statistics for G2-I, S22, and
NHBH38/NHTBH38 test sets

Tables II, III, and IV present a more detailed error
analysis for the G2-I, S22, and NHBH38/NHTBH38 test
sets. Given are the mean error (ME), the mean ab-
solute error (MAE), the mean absolute percentage er-
ror (MAPE), the maximum absolute percentage error
(MaxAPE), and the maximum absolute error (MaxAE).
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TABLE II: ME (in eV), MAE (in eV), MAPE (%),
MaxAPE(%) for atomization energies of the G2-I set obtained
with four RPA-based approaches in addition to PBE, PBE0
and MP2. A negative ME indicates overbinding (on average)
and a positive ME underbinding. The cc-pV6Z basis set was
used.

ME MAE MAPE MaxAPE

PBE -0.28 0.36 5.9 38.5
PBE0 0.07 0.13 2.6 20.9
MP2 -0.08 0.28 4.7 24.6
RPA 0.46 0.46 6.1 24.2
RPA+ 0.48 0.48 6.3 24.9
RPA+SOSEX 0.22 0.25 4.2 36.7
RPA+rSE 0.30 0.31 4.0 22.5
r2PT 0.07 0.14 2.6 24.9

TABLE III: ME (in meV), MAE (in meV), MAPE (%), and
MaxAPE(%) for the S22 test set [144] obtained with five RPA-
based approaches in addition to PBE, PBE0, and MP2 ob-
tained with FHI-aims. The basis set “tier 4 + a5Z-d” [133]
was used in all calculations.

ME MAE MAPE MaxAPE
PBE 116.2 116.2 57.8 170.3
PBE0 105.7 106.5 55.2 169.1
MP2 -26.5 37.1 18.7 85.1
RPA 37.8 37.8 16.1 28.7
RPA+ 51.2 51.2 21.9 39.4
RPA+rSE 14.1 14.8 7.7 24.8
RPA+SOSEX 15.4 18.0 10.5 34.6
r2PT -8.4 21.0 7.1 30.7

TABLE IV: ME, MAE, and MaxAE (in eV) for the HTBH38
[189] and NHTBH38 [190] test sets obtained with four RPA-
based approaches in addition to PBE, PBE0, and MP2, as
obtained using FHI-aims. The cc-pV6Z basis set was used in
all calculations. Negative ME indicates an underestimation
of the barrier height on average.

HTBH38 NHTBH38

ME MAE MaxAE ME MAE MaxAE

PBE -0.399 0.402 0.863 -0.365 0.369 1.320
PBE0 -0.178 0.190 0.314 -0.134 0.155 0.609
MP2 0.131 0.169 0.860 0.215 0.226 1.182
RPA 0.000 0.066 0.267 -0.065 0.081 0.170
RPA+ 0.005 0.069 0.294 -0.068 0.084 0.168
RPA+rSE -0.170 0.187 0.809 -0.251 0.252 0.552
RPA+SOSEX 0.243 0.244 0.885 0.185 0.188 0.781
r2PT 0.072 0.084 0.453 -0.001 0.129 0.432
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[131] M. Grüning, A. Marini, and A. Rubio, J. Chem. Phys

124, 154108 (2006).
[132] M. Hellgren and U. von Barth, Phys. Rev. B 76, 075107

(2007).
[133] X. Ren, P. Rinke, V. Blum, J. Wieferink,

A. Tkatchenko, A. Sanfilippo, K. Reuter, and M. Schef-
fler, New J. Phys. 14, 053020 (2012).

[134] V. Blum, F. Hanke, R. Gehrke, P. Havu, V. Havu,
X. Ren, K. Reuter, and M. Scheffler, Comp. Phys.
Comm. 180, 2175 (2009).

[135] H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B 79,
205114 (2009).

[136] H. F. Wilson, F. Gygi, and G. Galli, Phys. Rev. B 78,
113303 (2008).

[137] S. Baroni, S. de Gironcoli, A. D. Corso, and P. Gian-
nozzi, Rev. Mol. Phys. 73, 515 (2001).

[138] D. Foerster, P. Koval, and D. Sánchez-Portal, J. Chem.
Phys. 135, 074105 (2011).

[139] C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht, in In

Reviews in Computational Chemistry (VCH Publishers,



25

New York, 2007), vol. 23, pp. 1–82.
[140] H.-V. Nguyen and G. Galli, J. Chem. Phys. 132, 044109

(2010).
[141] J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Phys.

Rev. Lett. 103, 086401 (2009).
[142] T. Gould and J. F. Dobson, Phys. Rev. B 84, 241108

(2011).
[143] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A.

Pople, J. Chem. Phys. 94, 7221 (1991).
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