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Abstract

We prove that given a stress-free elastic body there exists, for sufficiently small

values of the gravitational constant, a unique static solution of the Einstein equa-

tions coupled to the equations of relativistic elasticity. The solution constructed

is a small deformation of the relaxed configuration. This result yields the first

proof of existence of static solutions of the Einstein equations without symme-

tries. c� 2008 Wiley Periodicals, Inc.

1 Introduction

General relativistic effects generated by compact, isolated bodies, such as stars

and even satellites, are of increasing importance in observational astronomy and

experimental general relativity. Given this fact, it is remarkable how little is known

about solutions of the Einstein field equations for systems with spatially compact

sources. The situation is not much better if we describe gravity by Newton’s theory.

The present paper provides the first existence result for compact, isolated, static

elastic bodies in Einstein’s theory of gravity. With the notable exception of colli-

sionless matter, essentially all previous results concerning compact, isolated, self-

gravitating bodies deal with static or stationary fluid bodies. Under reasonable con-

ditions, static fluid bodies are spherically symmetric, while stationary fluid bodies

are axisymmetric.

Although the variational formulation of elasticity has strong similarities with

that of fluid models, static elastic bodies may, in contrast to static fluid bodies, be

nonsymmetric. In fact, in this paper we prove, for the first time, existence of static

solutions of the Einstein equations without symmetries.

1.1 Compact Bodies

Fluids and dust (i.e., a pressureless fluid) are the conceptually simplest and most

commonly used matter models. For a self-gravitating compact body, it is necessary
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to consider a free boundary problem with zero traction on the boundary. It was only

recently that an existence proof was given by Lindblad for the Cauchy problem for

a nonrelativistic perfect fluid with free boundary, in the absence of gravity [23, 24].

For self-gravitating fluids, no results of this generality are known, and it is only in

the static or stationary cases that results are available.

If we assume that space-time is static, the standard conjecture is that any iso-

lated self-gravitating body consisting of a perfect fluid is spherically symmetric.

This is known to be the case in Newton’s theory for a general equation of state. In

Einstein’s theory there is the work by Beig and Simon [8] that solves the problem

for a large class equation of states; a proof in the general case remains to be found.

For the case of stationary space-times in Einstein gravity, i.e., space-times with a

timelike, nonhypersurface orthogonal Killing field, it is known under certain addi-

tional assumptions on the thermodynamic properties of the fluid that there exists

an additional, rotational Killing field so that stationary space-times containing fluid

bodies are axisymmetric [25].

In spite of the symmetry restrictions discussed above, there are rich classes

of stationary and static solutions describing isolated bodies, even in Newtonian

gravity. The almost completely forgotten work of Leon Lichtenstein from roughly

the period 1910 through 1933 provides existence results in the Newtonian case for

rotating fluid solutions in various configurations; see the book [22]. Inspired by

Lichtenstein, Uwe Heilig showed in 1995 the existence of stationary rotating fluid

solutions in Einstein’s theory [15].

These results allow one to construct stationary fluid solutions with slowly rotat-

ing, almost spherical balls. Further, one has rings, rings around balls, and families

of nested rings. It seems almost impossible to get an overview on all possibilities.

New solutions can often be constructed as perturbations of known solutions. For

example, starting with a static, spherically symmetric fluid ball whose existence

can be shown by using ODE techiques, one may prove the existence of a rotating

solution with small angular velocity. This is essentially what was done by Lichten-

stein and Heilig.

The Vlasov matter model is a statistical description of weakly interacting par-

ticles. It is conceptually more difficult to work with than fluids but has been used

very successfully in various circumstances. For a survey of known results, see

[28]. The existence of various dynamical and time-independent solutions has been

demonstrated. All the known stationary and static solutions have axial symmetry.

1.2 Elasticity and Relativity

Elasticity is of course one of the oldest topics of theoretical physics, with origins

that can be traced back to the seventeenth century. The book by Marsden and

Hughes [26] gives a modern treatment of elasticity. Already in 1911, Herglotz [16]

gave a formulation of elasticity in special relativity. There are various formulations

of elasticity in the framework of general relativity; see, for example, Rayner [27],
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Carter and Quintana [11], Kijowski and Magli [18, 19], and Christodoulou [12, 13],

to name just a few important works.

Strangely enough, the problem of existence of static or dynamical self-gravitat-

ing elastic bodies in Einstein’s or Newton’s theory of gravity has, to the best of our

knowledge, until recently not been considered. The only exception is for the spher-

ically symmetric case. Even in nonrelativistic elasticity quite little is known. The

first existence theorem in three-dimensional static elasticity was given by Stoppelli

in 1954 [29].

About six years ago, two of the present authors (R.B. and B.S.), motivated by

this state of affairs, initiated a program to develop existence results for elasticity in

the setting of Einstein’s theory of gravity. We first showed the existence of static

solutions describing elastic bodies deformed by their own Newtonian gravitational

field [5], and later established the existence of relativistic elastic bodies deformed

under rigid rotation [6]. For time-dependent solutions local in time and space (no

boundary conditions), uniqueness was proved in [13]; for existence, see [4]. In [9]

an existence theorem for the motion of a free elastic body in special relativity is

given.

Elasticity can be described as a Lagrangian field theory [4, 13], and hence the

action for self-gravitating elastic bodies is derived by simply adding the gravita-

tional Lagrangian to the Lagrangian for elasticity. The basic matter field is a map,

the configuration, from a region in space-time to the body, an abstract 3-manifold

whose points label the constituents of the elastic body moving in space-time. The

stress of a configuration is determined by the stored-energy function that com-

pletely fixes the matter model. This formulation can be used in a nonrelativistic

space-time, in special relativity, and in Einstein’s theory. Elastic materials where

the stress is determined by a stored-energy function are usually called hyperelas-

tic. Diffeomorphism invariance, a necessary condition in Einstein’s theory, implies

that the stored-energy function satisfies the additional condition known in the non-

relativistic case as material frame indifference.

Once the stored-energy function is given, the variational problem as well as

the Euler-Lagrange equations are determined. In particular, one is led to consider

Einstein’s field equations with an energy momentum tensor that is determined by

the deformation. The elasticity equations are a consequence of the conservation

law in Einstein’s theory.

Since the configuration is a map from space-time to the body, we have a free

boundary value problem. To deal with this difficulty, one reformulates elasticity

using deformations, i.e., maps from body to space-time, as the basic variable. In

this setting, known as the material picture, one has a fixed a priori known boundary.

Let us now consider the static self-gravitating bodies in general relativity. In

this case, the theory can be given a variational formulation on the quotient space of

the timelike Killing field. Thus, in order to construct a static self-gravitating body

in Einstein gravity, we start from a relaxed elastic body without a gravitational field

and determine the deformation of such a body under its own gravitational field for
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small values of the gravitational constantG. To do this, it is convenient to choose a

stored-energy function for which there exists a configuration that is stress free, i.e.,

which satisfies, together with the Minkowski metric, the Einstein field equations

for G D 0, as well as the the elasticity equation. We start from this background

solution and construct nearby self-gravitating solutions for small values of G.

As mentioned above, self-gravitating static fluid bodies in general relativity are

known to be spherically symmetric for a large class of equations of state. In fact,

the result proved in this paper provides the first example of a static solution to

Einstein’s field equations that is not spherically symmetric.

It is worth pointing out that the approach used in this paper cannot be applied

to the problem of constructing an elastic neutron star, since in this case there is

no nearby stressfree configuration. To deal with this problem, one would have to

choose a stored-energy function in which the shear strains are much smaller than

the hydrostatic compression. Then one could begin with a spherically symmetric

solution in which the radial pressure would be different from the tangential pres-

sure. One could then use the methods developed in this paper to construct nearby

solutions that are not spherically symmetric.

Finally, we remark that it may be argued that the result proved in this paper

is very weak, since G is required to be sufficiently small. However, it should be

noted that we make no restriction on the shape of the body. For example, one may

consider two very large bodies connected by a very thin neck. In this situation it is

clear that if we make gravity too strong (i.e., G too large), the neck will break and

hence there can be no static solution for such a configuration for arbitrarily large

values of G. Thus, without restrictions on the shape of the undeformed body, we

cannot expect a stronger result.

1.3 Overview of This Paper

In Section 2 we give some analytical preliminaries. We also for the convenience

of the reader review some basic ideas from linearized elasticity that we will make

use of. Further, we prove some results that will be used concerning Bianchi iden-

tities for weakly differentiable metrics and concerning the divergence of tensors

with compact support.

Section 3 presents the gravitational field equations in space and the elastic equa-

tions on the body. We use the harmonic gauge to make the field equations elliptic.

An important step is to extend the body to R3, the extended body, and to extend the

deformation, the inverse configuration, to a map from the extended body to phys-

ical space, which in our case is also R3. Then we move the field equations from

space to the extended body. In this way we obtain a quasi-linear system of partial

differential equations, the reduced Einstein equations in material form, where the

geometrical unknowns are defined on the extended body and the elastic variables

on the body.

In Section 4 we formulate the reduced Einstein equations in terms of a nonlinear

mapping between Sobolev spaces and calculate the Frechet derivative of the map at
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the relaxed configuration. It contains esssentially linearized gravity and linearized

elasticity. The linearized operator is Fredholm with nontrivial kernel and range.

The geometric reason for this is the combination of diffeomorphism invariance

of the Einstein equations and Euclidean invariance of the background solution.

Using an approach to some extent inspired by [21], we define a projection operator

such that we can use the implicit function theorem. This way we obtain for small

G a solution of the reduced field equation together with the projected elasticity

equations.

Section 5, which is the heart of the paper, contains a proof that the solution to

the reduced, projected system obtained using the implicit function theorem is in

fact a solution of the full system of equations for the self-gravitating elastic body.

At first it might seem that there are two possibilities to prove this. On the one hand,

if the exact elastic equations were satisfied, a standard argument using the Bianchi

identities would imply that the harmonicity condition is also satisfied and we have

in fact solved the full field equations. On the other hand, if we could show that

the full Einstein equations hold, the Bianchi identities would imply we also have a

solution to the exact elastic equations.

In fact, neither of these two alternatives is applicable, and one must prove both

properties simultaneously. To do this a type of bootstrap argument must be used. It

is worth mentioning that the boundary condition of vanishing normal traction is es-

sential. We could in principle solve the projected elasticity equation together with

the reduced field equations for a boundary condition that prescribes the position of

the boundary in space. However, it would then in general not be possible to show

that all the Einstein field equations are satisfied. This is consistent with the fact that

fixing the surface of a body in space is not a physical problem in Einstein’s theory.

The result of this paper is proved in a way that is completely different from the

analogous result in our Newtonian paper [5]. In Appendix B we add an outline

of the proof of the Newtonian result, found and kindly communicated to us by an

anonymous referee, which exactly follows the pattern of the present work.

2 Preliminaries

The following index conventions will be used. Uppercase Latin indices A;B;

C; : : : , take values 1; 2; 3, lowercase Latin indices i; j; k; : : : , take values 1; 2; 3,

and Greek indices ˛; ˇ; �; : : : , take values 0; 1; 2; 3.

We will make use of Sobolev spaces W k;p on domains and the trace spaces

Bs;p , as well as weighted Sobolev spaces W
k;p

ı
. Unless there is room for confu-

sion, the same notation will be used for spaces of tensors and vectors as for spaces

of scalar functions. The rest of this section collects some notions and facts from

analysis that will be needed.
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2.1 Sobolev Spaces on Domains

The books [1, 10] are general references for the material discussed in this sec-

tion. For an integer k � 0, 1 < p < 1, and a domain �, W k;p.�/ is the closure

of C1.�/ in the norm

kukW k;p.�/ D
X

j˛j�k

k@˛f kLp.�/:

Further, we shall need the Nikol0skii-Besov spaces Bs;p D B
s;p
p , which are the

trace spaces for the Sobolev spaces. These are Banach spaces with norm defined

on Rn for s > 0, 1 < p < 1, by

kukBs;p D kukLp C
� Z

Rn

jhj�.nCsp/k��
hukp

Lp dh

�1=p

;

where � is the smallest integer strictly greater than s, and �h is the difference

operator. There are also versions of many of the facts stated in this section for

p D 1 and p D 1; see the references given above. Note Bk;p ¤ W k;p except for

the case p D 2.

Let k � 1. A well-known fact is that for a domain � � Rn with C k boundary,

then for 1 < p < 1, the trace tr@� has the property

tr@�W
k;p.�/ D Bk�1=p;p.@�/:

We shall make use of this fact in the case k D 1. Further, under these condi-

tions, there is a bounded linear extension operator E W W k;p.�/ ! W k;p.Rn/ \
C1.Rn n N�/. Here N� D � [ @� denotes the closure of �. In fact, for the last-

mentioned result to hold, it is sufficient to assume that � has a Lipschitz regular

boundary.

2.2 The Boundary Problem of Linearized Elasticity

The book [30] is a general reference for the material discussed in this section.

Let Ai
j

k
l be a fourth-order elasticity tensor on a domain � � Rn; i.e., A has

symmetries

Ai
j

k
l D Aj

i
k

l D Ai
j

l
k D Ak

l
i
j :

Let

�.u/i
j D Ai

j
k

l@lu
k

and define the operator L by

Lui D @j�.u/i
j :

L is strongly elliptic if

Ai
j

k
l�i�j�

k�l > 0 for all �; � 2 R
n:
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For applications in elasticity it is natural to assume there is a positive constant �

such that for all symmetric n � n matrices  i
j

(2.1) �j j2 � jAi
j

k
l i

j 
k

l j � ��1j j2I
see [30, chap. III] or [26, sec. 4.3]. The pointwise stability condition (2.1) implies

strong ellipticity. We will assume that (2.1) holds for the rest of this section.

The Neumann-type problem

(2.2) Lui D bi ; tr@� �.u/i
jnj D �i ;

is equivalent to the statement that

(2.3) A.	; u/ D �
Z
�

	ibi C
Z

@�

	i�i

for all 	 2 C1.�/, where A.u; v/ is the symmetric bilinear form

A.u; v/ D
Z
�

@j v
iAi

j
k

l@lu
k :

Let H s.�/ D Bs;2.�/. Then A defines a bounded quadratic form on H 1.�/.

The radical Z of A is the space of � 2 H 1.�/ such that A.�; u/ D 0 for all

u 2 H 1.�/. It follows from (2.1) and the symmetry properties ofA thatZ consists

of all Euclidean Killing fields �, i.e., fields of the form

(2.4) � i D ai C bi
jx

j ; ai ; bi
j constants, bi

j D �bj
i :

Let H 1.�/e be the L2 orthogonal complement of the radical, i.e., the space of

u 2 H 1.�/ such that

(2.5)

Z
�

�iu
i D 0 8� 2 Z:

Under the above conditions, the quadratic form A.u; v/ is coercive on H 1.�/e .

This follows from the pointwise stability condition (2.1) and Korn’s inequality; see

[30, p. 92]. Thus, by the Lax-Milgram theorem, we have that for any .bi ; �i / 2
H�1.�/ �H�1=2.@�/ satisfying

(2.6)

Z
�

� ibi �
Z

@�

� i�i D 0 8� 2 Z;

there is a unique u 2 H 1.�/e that is a weak solution to (2.2) and that satisfies the

estimate

kukH 1 � C.kbkH �1.�/ C k�kH �1=2.@�//:

We will later refer to (2.6) as an equilibration condition. The physical meaning of

the equilibration condition is that the total force and torque exerted by .b; �/ is 0.
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Now, assuming @� 2 C kC2, Ai
j

k
l 2 C kC1, and u 2 W kC2;p.�/, one has

from [2] an estimate of the form

kukW kC2;p.�/ �
C.kL.u/kW k;p.�/ C k tr@� �.u/ � nkB1�1=p;p.@�/ C kukLp.�//:

Let W k;p.�/e be the space of u 2 W k;p.�/ such that the condition (2.5) holds.

Then we have by the above that for b; � 2 W k;p.�/�BkC1�1=p;p.@�/ satisfying

(2.6), there is a unique u 2 W kC2;p.�/e that solves (2.2). In particular, in view

of the above stated estimates, we have that the linear mapping W kC2;p.�/ !
W k;p.�/ � BkC1�1=p;p.@�/ defined by

(2.7) u 7! .Lu; tr@� �.u/ � n/
is Fredholm. It follows from the discussion above that the cokernel of the operator

defined by (2.7) is defined by (2.6), and that the kernel consists of Killing fields of

the form given in (2.4).

2.3 Weighted Sobolev Spaces on R
n

The material that we shall need can be found in [3]. Let n > 2, r D jxj, and

� D .1 C r2/1=2. For k � 0, k an integer, 1 � p � 1, ı 2 R, define function

spaces W
k;p

ı
as the closure of C1

0 .Rn/ in the norms

kukp

W
k;p

ı

D
X

j˛j�k

��� j˛j�ı�n=p@˛u
��p

Lp :

We use the notation L
p

ı
for W

0;p

ı
. Decreasing ı means faster decay. The spaces

W
k;p

s�n=p
are equivalent to the homogenous Sobolev space PW k;p without weight, in

particular, L
p

�n=p
D Lp. The dual space ofW

s;p

ı
isW

�s;p0

ı 0 with 1=pC1=p0 D 1,

ı0 D �ı � n. Weighted Hölder spaces C
k;˛
ı

can be defined analogously; see [3].

Weighted function spaces can be analyzed in terms of ordinary function spaces

by the following standard construction: Let 	 be a bump function that has support

in jxj � 2 and that equals 1 on jxj � 1. Define a cutoff function  by  .x/ D
	.x/ � 	.2x/. Then  has support in the annulus 1

2
� jxj � 2. For a function u,

let u0 D 	u, and let ui .x/ D  .x/u.2ix/ be the dilatations of u. An equivalent

norm for W
k;p

ı
is given by

kjukjp
W

k;p

ı

D
1X

iD0

2�ipıkuikp

W k;p :

Using this formulation, inequalities on compact domains may be systematically

generalized to weighted spaces. The following are some of the basic inequalities

for the weighted spaces:
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(1) Inclusion: If p1 � p2, ı2 < ı1, and u 2 Lp2

ı2
, then

(2.8) kuk
L

p1
ı1

� Ckuk
L

p2
ı2

:

(2) Sobolev I: If n � kp > 0 and p � q � np=.n � kp/, then if u 2 W k;p

ı
,

kukL
q

ı
� Ckuk

W
k;p

ı

:

(3) Sobolev II: If n < kp, then if u 2 W k;p

ı
,

kukL1
ı

� Ckuk
W

k;p

ı

;

and in fact ju.x/j D o.rı/ as r ! 1.

(4) Product estimate: If n < kp, u 2 W
k;p

ı1
, and v 2 W

k;p

ı2
, then with ı D

ı1 C ı2,

(2.9) kuvk
W

k;p

ı

� Ckuk
W

k;p

ı1

kvk
W

k;p

ı2

:

Let � denote the Laplacian defined with respect to the Euclidean metric on

Rn. We recall some facts about its mapping properties in the setting of weighted

Sobolev spaces. Let E D fj W j integer; j ¤ 3 � n; : : : ;�1g. In particular, for

n D 3,E consists of all integers. The elements ofE are called exceptional weights.

A weight ı 2 R n E is called nonexceptional. Given ı 2 R, define k�.ı/ to be the

largest exceptional weight < ı.

A basic fact is that � W W k;p

ı
! W

k�2;p

ı�2
for k � 2, 1 < p < 1, is Fredholm

if and only if ı is nonexceptional. In particular, for ı 2 .2 � n; 0/, � W W k;p

ı
!

W
k�2;p

ı�2
is an isomorphism. Let the operator L be of the form L D aij @i@j C

bi@i C c. Then with q > n, we will say that L is asymptotic to �, of order � < 0,

if

aij � ıij 2 W 2;q
� ; bi 2 W 1;q

��1; c 2 Lq
��2:

Note that the above conditions are stronger than those stated in [3, def. 1.5], and

that we use the opposite-sign convention for � . If L is asymptotic to �, then for

1 < p � q, L W W 2;p

ı
! L

p

ı
is bounded.

The following version of elliptic regularity is easily proved using standard es-

timates for elliptic operators on domains (see, for example, [14, chaps. 8–9]) and

scaling. Suppose L is asymptotic to � of order � < 0 and suppose 2 � p � q.

For u 2 W
1;p

ı
such that Lu 2 L

p

ı�2
, elliptic regularity gives u 2 W

2;p

ı
, and the

inequality

kuk
W

2;p

ı

� C.kLukL
p

ı�2
C kukL

p

ı
/

holds. See [3, prop. 1.6] for a stronger version of elliptic regularity.

If ı is nonexceptional, there are constants C and R so that if u 2 W
1;p

ı
, the

scale broken estimate

kuk
W

2;p

ı

� C.kLukL
p

ı�2
C kukLp.BR//
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holds; cf. [3, theorem 1.10]. Here BR D fx W jxj � Rg. We will now state

a consequence of this estimate that we shall make use of. Assume that ı C � is

nonexceptional. If u 2 W 2;p

ı
, Lu 2 Lp

ıC��2
, then for exceptional values ı C � <

j � k�.ı/, there are hj 2 C1.Rn/, harmonic and homogenous of order j in

Rn n BR, such that

u D
X

ıC�<j �k�.ı/

hj C v;

where v 2 W 2;p

ıC�
, and an estimate of the formX

j

khj kj C kvk
W

2;p

ıC�

� C.kLukL
p

ıC��2
C kvkBR

/

holds. Here khj kj is a suitable norm for homogenous, harmonic functions, for

example, khj kj D kr�jhj kL1.S2R/, with S2R D fx W jxj D 2Rg. In particular,

if kerL D 0 on W
2;p

ı
, then the above estimate takes the formX
j

khj kj C kvk
W

2;p

ıC�

� CkLukL
p

ıC��2
:

To make the above explicit, suppose n D 3, �1 < ı < 0, and �2 < ı C � < �1.

Then k�.ı/ D �1 and with u 2 W 2;p

ı
, Lu 2 Lp

ıC��2
, we have

u D c1

r

 C v

where 
 is a cutoff function such that 
 D 1 in R3 n BR and 
 D 0 in BR=2, and

where v 2 W 2;p

ıC�
satisfies an estimate of the form

jc1j C kvk
W

2;p

ıC�

� C.kLukL
p

ıC��2
C kvkBR

/:

We shall make use of this estimate in Section 5.1.

For � < 0, p > n, define the space E
k;p
� of asymptotically Euclidean metrics

on Rn as the space of hij such that

hij � ıij 2 W k;p
�

where ıij denotes the flat Euclidean metric on Rn. Then E
k;p
� is a Banach mani-

fold.

LetRij be the Ricci tensor of hij . We shall make use of the fact that if h 2 E2;p
�

for p > n, the operators �h and V i 7! LVi D �hVi C RijV
j are asymptotic

to � of order � . Here it should be noted that the principal part of the operator L

is the scalar Laplacian, acting diagonally. The results concerning elliptic operators

that we have stated in this subsection generalize immediately to the case of elliptic

systems of diagonal form.
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2.4 Bianchi Identity

The Bianchi identity for weakly regular Riemann spaces will play an important

role in this paper, and therefore we give a proof of this fact below. The consider-

ations in this subsection are local, and we work in local Sobolev spaces, denoted

by W
k;p

loc . By definition, f 2 W
k;p

loc if for each compact domain U � M , we

have f 2 W k;p.U /. For 1 < p < 1, let q be the dual exponent of p such that

1=pC 1=q D 1. For nonnegative integers k, we defineW
�k;q

loc as the dual space to

W
k;p

loc . Then @˛f 2 W �k;p
loc if f 2 Lp

loc, where k D j˛j.
We make note of the following product estimates: Suppose that p > n. If

u 2 W
2;p

loc , v 2 W
1;q

loc , then uv 2 W
1;q

loc . To see this, differentiate the product

and use Sobolev imbedding. Further, if u 2 W
2;p

loc and w 2 W
�1;p

loc , then uw 2
W

�1;p
loc . We estimate the product uw as follows: Let v 2 W

1;q
loc and consider for

any domain U with compact closure
R

U vuw. By the above-mentioned estimates,

vu 2 W 1;q.U /. Thus the integral is well-defined, and the inequality j RU vuwj �
CkvkW 1;q.U /kukW 2;p.U /kwkW �1;p.U / holds. But v 2 W 1;q.U / was arbitrary.

It follows that uw defines a bounded linear functional on W 1;q.U /, and hence

uw 2 W �1;p
loc .

LEMMA 2.1 (Bianchi Identities) Consider a Riemann manifold .M; hij / of dimen-

sion n with metric hij 2 W
2;p

loc , p > n. Then the first Bianchi identity holds for

Rijkl . Further, the second Bianchi identity

rŒmRij �kl D 0

and the contracted second Bianchi identity

riRij � 1

2
rjR D 0

are valid in the sense of distributions.

PROOF: The first two statements are clear from the product estimates and the

definition of r and Rijkl . It is most convenient to prove the Bianchi identity using

the Cartan formalism. Let � be an orthonormal coframe. The structure equations

are

d� C ! ^ � D 0; d! C ! ^ ! D �:

Assuming hij 2 W 2;p
loc , we have ! 2 W 1;p

loc and � 2 Lp
loc.

The Bianchi identity is the statement d!d!d! D 0, where d! is the covariant

exterior derivative. Recall that on a section of a tensor bundle, d!d!s D .d! C
1
2
Œ!^!�/s D �s and on a so.n/-valued tensor, such as�, d!H D dHCŒ!^H�.

Evaluating d!d!d! gives

d!� D d�C Œ! ^��
D d2! C 1

2
dŒ! ^ !�C Œ! ^��
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Now, d2 D 0 on distributions. Further, expanding the other terms in the right-

hand side gives products of elements of W
1;p

loc and L
p
loc. Therefore the standard

algebraic identities hold to show that d!� D 0 in the sense of distributions. This

is equivalent to the statement that rŒmRkl�i
j D 0 in the sense of distributions.

Contracting this identity twice gives by the standard argument (making use of the

product estimates stated above and the fact that rmRkli
j 2 W

�1;p
loc to justify the

contraction), the identity

riRij � 1

2
rjR D 0;

which holds in the sense of distributions. �

For a domain � with boundary @�, let 
� denote the characteristic function

of �, and tr@� the trace to the boundary. The following lemma characterizes the

divergence-free tensors supported on a domain.

LEMMA 2.2 Let .M; hij / be a Riemann manifold of dimension n with metric of

class W
2;p

loc , p > n. Let � be a bounded domain compactly contained in M .

Assume that � has C 1 boundary @�, and let Tij be a symmetric tensor of class

W
1;p

loc . Then

ri .Tij
�/ D .riTij /
� 2 Lp

if and only if the zero traction condition

.tr@� Tij /n
j D 0

holds, where nj denotes the normal of @�. In particular, the identity

ri .Tij
�/ D 0

holds in the sense of distributions, if and only if .riTij /
� D 0 and the zero

traction condition holds.

PROOF: Let Y i 2 C1
0 . Then we haveZ

M

Y j ri .Tij
�/ D �
Z
M

riY jTij D �
Z
�

riY jT ij

D
Z
�

Y j riTij C
Z

@�

Y jTijn
i

where ni is the outward normal of @�. This implies that with 1=p C 1=q D 1, the

inequality ˇ̌̌̌Z
M

Y j ri .Tij
�/

ˇ̌̌̌
� kY kLq k.riTij /
�kLp

holds if and only if .tr@� T
ij /nj D 0. This proves the lemma. �
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3 The Field Equations for a Static, Self-Gravitating Elastic Body

We first consider a variational formulation of a self-gravitating elastic body in

a 3 C 1 dimensional space-time .M; g˛ˇ / and then specialize this to the static

case. The body B is a 3-manifold, possibly with boundary. We use coordinatesXA

on B and x˛ on space-time. In the Eulerian formulation of elasticity, the body is

described by configurations f W M ! B. The total Lagrangian density for the

Einstein-matter system under consideration is, setting the speed of light c D 1 for

convenience,

L D � 1

16�G

p�g Rg C p�g�

where � D �.f; @f; g/ is the energy density of the material in its own rest frame.

General covariance implies that � is of the form � D �.f A; �AB/ where �AB D
f A

;˛f
B

;ˇg
˛ˇ , where f A

;˛ D @˛f
A.

Geometrically, this means the following: there is a function O� on the bundle

of contravariant, symmetric 2-tensors over B, and �.f A; �AB/ is the composition

O� ı f�.g
�1/, where g�1 is the inverse metric and f� is the pushforward under the

map f acting on contravariant 2-tensors. For an equivalent description of elastic

materials, see [12, 13]. These references require in addition that B be furnished

with a crystalline structure, which is essentially a choice of three linearly indepen-

dent vector fields on B describing (the continuum limit of) the crystal lattice. More

precisely, a crystalline structure is a linear subspace of the space of vector fields

on B with the following property: for all points of B the evaluation map, which

sends vector fields on B to tangent vectors at this point of B, is an isomorphism

when restricted to this subspace. Our assumptions, in Section 3.3, will render such

a choice of vector fields that Lie-commute. This means there are no dislocations in

the crystal lattice.

We now specialize to the static case. Let M D R � M , where the space

manifold M is diffeomorphic to Eucidean 3-space, M Š R3
S

. Further, we take the

body B to be a bounded open domain in Euclidean 3-space, B � R3
B

. We refer to

R3
B

as the extended body and will use coordinate XA also on R3
B

. The body B will

be assumed to have smooth boundary @B, and the closure B [ @B will be denoted

by NB. Letting .x˛/ D .t; xi / where xi are coordinates on M , we can write the

static space-time metric in the form

(3.1) g˛ˇ dx
˛ dxˇ D �e2U dt2 C e�2Uhij dx

i dxj

where U and hij depend only on xi . Further, the configurations f W M ! B are

assumed to depend only on xi . Assuming that a volume form VABC on B is given,

we may introduce the particle number density n by

(3.2) f A
;i .x/f

B
;j .x/f

C
;k.x/VABC .f .x// D n.x/ �ijk.x/
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where �ijk is the volume element of hij . Note that the actual number density

defined with respect to the metric e�2Uhij is e3Un. We assume the configurations

f are orientation preserving in the sense that n is positive on f �1.B/.

Let

(3.3) HAB D f A
;if

B
;jh

ij

so that �AB D e2UHAB . Note that equation (3.2) implies

6n2 D HAA0

HBB 0

HCC 0

VABCVA0B 0C 0 :

The Lagrangian density L is in terms of these variables, modulo a total divergence,

(3.4) L D � 1

16�G

p
h.R � 2jrU j2/C eUn�

p
h:

Here, R is the scalar curvature of hij , jrU j2 D hij riUrjU , and the relativistic

stored-energy function �, defined by � D n�, is of the form � D �.f A; e2UHAB/,

where � is a smooth function of its arguments. In particular, by the chain rule, we

have @�=@HAB D e2U @�=@�AB .

Suppose that a nonrelativistic stored-energy functionw.f A; KAB/ is given, for

example one suggested by experiment, where KAB is the nonrelativistic analogue

ofHAB . A relativistic stored-energy function � corresponding to w can be defined

as a sum of the specific rest mass V� and the relativistic analogue w.f A; e2UHAB/

of the stored-energy function. The specific rest mass is defined such that V�VABC

is the rest mass distribution of the material in its natural state. It can be shown

that if the dependence on the light speed c is properly taken into account, the

field equations tend to those of the corresponding Newtonian model when we let

c % 1. See [4] for details.

3.1 Field Equations in Eulerian Form

In order to write the field equations, we introduce the stress tensor � . We will

need the form of the stress tensor on the body and in space. These are given by

(3.5) �AB D �2 @�

@HAB
; �ij D nf A

;if
B

;j�AB ; �i
A D f B

;i�BCH
CA:

We remark that our convention for the stress here is that used in standard nonrela-

tivistic elasticity, as opposed to the usual one in general relativity. It is important

to note that the elastic quantities such as HAB and �ij , viewed as functions on

space, are only defined on f �1.B/. The Euler-Lagrange equations resulting from

the Lagrangian (3.4) are

(3.6a) rj .e
U �i

j / D eU .n� � �l
l/riU in f �1.B/; �i

jnj jf �1.@B/ D 0;

�hU D 4�GeU .n� � �l
l/
f �1.B/ in R

3
S
;(3.6b)

Gij D 8�G.‚ij � eU �ij
f �1.B// in R
3
S
;(3.6c)



1002 L. ANDERSSON, R. BEIG, AND B. G. SCHMIDT

where

(3.7) ‚ij D 1

4�G

�
riUrjU � 1

2
hij jrU j2

�
:

System (3.6) is equivalent to the 4-dimensional Einstein equations

(3.8) G�� D 8�GT�� ;

where G�� is the Einstein tensor of the static Lorentz metric given by (3.1) on

R �M , and

(3.9) T�� dx
� dx� D eU Œe2Un�.u�dx

�/2 � �ij dx
i dxj �; u�@� D e�U @t :

Equations (3.6b) and (3.6c) together imply the elasticity equation (3.6a). The

reason is that the contracted Bianchi identity for Gij , riGij D 0, implies that

the right-hand side of (3.6c) has vanishing divergence, and in particular the di-

vergence of the compactly supported term eU �ij
f �1.B/ must be well-defined. By

Lemma 2.2 this implies that the zero traction boundary condition in equation (3.6a)

holds, and hence by equations (3.6b) and (3.7), equation (3.6a) follows.

Let Oı be a fixed background metric on M , which we will take to be Euclidean,

and let O� i
jk

be the Christoffel symbol of Oı. Then, with

(3.10) V i D hjk.� i
jk � O� i

jk/;

�V is the tension field of the identity map .M; hij / ! .M; Oı/, and we have the

identity

(3.11) Rij D �1
2
�hhij C r.iVj / CQij .h; @h/;

where �hhij is the scalar Laplacian defined with respect to hij acting on the com-

ponents of hij , andQij is quadratic in @h. We use the notation t.ij / D 1
2
.tij C tj i /

for the symmetrization of a tensor. In particular, hij 7! Rij � r.iVj / is a quasi-

linear elliptic operator, while hij 7! Rij fails to be elliptic. This failure is es-

sentially due to the covariance of Rij . It also follows that system (3.6) fails to be

elliptic. In order to construct solutions to (3.6), we will replace equation (3.6c) by

the reduced system that results from replacing Rij by Rij � r.iVj /. The modified

system that we will consider is of the form

(3.12) �1
2
�hhij CQij .h; @h/ D 2riUrjU � 8�GeU .�ij � hij�l

l/
f �1.B/:

3.2 Field Equations in Material Form

In the Eulerian formulation above, the elasticity equation (3.6a) is a nonlinear

system with Neumann-type boundary conditions on the domain f �1.B/, which

depends on the unknown configuration f . We will avoid dealing directly with this

“free boundary” aspect of system (3.6) by passing to the material, or Lagrangian,

form of the system. In this picture the configurations f W M ! B are replaced by

deformations, i.e., maps 	 W B ! M satisfying 	 D f �1 on B. Recall that the
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body B is a bounded open domain in RB, the extended body, and that B is assumed

to have a smooth boundary @B. We will assume throughout the rest of this paper

that B is connected. See Remark 4.4 for discussion on this point.

We assume given a diffeomorphism i W R3
B

! R3
S

, which is an isometry, i� Oı D
ıB. In Cartesian coordinate systems XA on R3

B
and xi on R3

S
where ıB and Oı

have components ıAB and ıij , respectively, i can be assumed to have the form

ii .X/ D ıi
AX

A, so that @Aii D ıi
A. Since B has a smooth boundary, functions on B

can be extended to the whole space, and in particular, given 	, there is an extensionb	 W R3
B

! R3
S

, depending smoothly on 	, such that b	.X/ D i.X/ for X outside

some large ball.

In the material picture, the dependent variables f , U , and hij are replaced

by the fields 	, NU , and hij , which we now introduce. As mentioned above, 	 is

assumed to be a diffeomorphism B ! 	.B/ � R3
S

, and the extension b	 of 	,

which depends real analytically on 	, is used to define the fields NU D U ı b	, a

function on R3
B

, and hij D hij ıb	, a metric on R3
B

. We will use the same symbols

for these fields restricted to B.

Remark 3.1. It is important to note that hij ¤ b	�hij , since we are only pulling

back the components of hij in the coordinate system .xi /, not the tensor itself.

In particular, hij does not transform as a tensor and is more properly viewed as a

collection of scalars. See Appendix A for a discussion.

Equation (3.2) defining n can be written in the form f �V D n�h, where �h

is the volume element of h. Defining J D n�1, we have 	��h D JV . The Piola

transform of �i
j can now be written in the form

N�i
A D J.f A

;j�i
j / ı 	:

With this notation we have in particular the relation rA N�i
A D J.ri�i

j / ı 	. To

derive the material version of (3.6a), one may use this relation directly or proceed

by first pulling back the matter Lagrangian to B and then applying the variational

principle; see [6]. One finds

(3.13) rA.e
NU N�j

A/ D e
NU

�
N� � N�l

l

Nn
�
@jU in B; N�j

AnA

ˇ̌
@B

D 0:

Here rA.e
NU N�i

A/ is defined in terms of the volume element V and does not involve

a choice of metric on B. We have

rA.e
NU N�j

A/ D 1

V
@A.Ve

NU N�j
A/ � e NU	i

;A�
k
ij N�k

A:

The bars in equation (3.13) correspond to the convention that f A
;i be replaced by

 A
i defined as a functional of 	 by

(3.14)  A
i .X/b	i

;B.X/ D ıA
B
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and HAB be changed into

(3.15) NHAB D  A
i 

B
jhij I

thus NHAB is the inverse ofb	�hij .

Note that  A
i is defined on R3

B
. With N� D N�.X; e2 NU NHAB/ and NHAB under-

stood in this sense, we have the identity

(3.16) N�i
A D @N�

@	i
;A

:

In particular, N�i
A D  B

i N�BC
NHCA, and hence (3.13) is a second-order equation

for 	. For barred quantities the corresponding rule for bars of derivatives gives

for U

(3.17) @iU D  A
i @AU :

For equations (3.6b) and (3.12) we simply replace each term by its barred version,

i.e.,

(3.18) �hU D 4�Ge
NU . NnN� � N�l

l/
B in R
3
B
:

Further, the covariance of the Laplacian implies

�hU D .�hU/ ıb	 D �b��h
.U ıb	/;

so that in this expression, the pullbackb	�h appears. This tensor is given by the in-

verse of NHAB . It follows that�hU involves second derivatives ofb	. An analogous

remark applies to

(3.19) �1
2
�hhij CQij .h; @h/ D 2.riU/.rjU/ � 8�Ge NU . N�ij � hij N�l

l/
B:

3.3 Constitutive Conditions

We shall need to assume that the elastic material is able to relax in Euclidean

space (which in particular implies the absence of dislocations; see the remark at the

beginning of Section 3). Further, the stored-energy function � must be such that

the linearized elasticity operator is elliptic. In fact, we shall assume the pointwise

stability condition. The constitutive conditions for � are thus formulated as follows.

There should exist a Euclidean metric ıB D ıAB dX
A dXB on B (we will use the

same symbol for this metric extended to R3
B

) such that

(3.20) V�.X/ D �j.U D0;HDıB/ � C;

�
@�

@HAB

�ˇ̌̌̌
.U D0;HDıB/

D 0 in B

and

(3.21) VLABCDN
ABNCD � C 0.ıCAıBD C ıCBıAD/N

ABNCD in B;
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where

(3.22) VLABCD.X/ WD
�

@2�

@HAB@HCD

�ˇ̌̌̌
.U D0;HDıB/

and C and C 0 are positive constants. Condition (3.21) is just the pointwise stability

condition (2.1) discussed in Section 2.2.

The quantity V� appearing in (3.20) is the rest mass term in the relativistic stored-

energy function, as discussed above. For physical reasons, and in fact for hyper-

bolicity of the time-dependent theory, it is necessary to assume that C is positive.

However, for the purposes of the present paper, this condition could be dropped.

We shall assume, for simplicity, that VABC is the volume form associated with ıB
(i.e., that V123 D 1 in Euclidean coordinates), so that n

p
h D det.@f /.

4 Analytical Setting

We will use the implicit function theorem to construct, for small values of New-

ton’s constant G, static, self-gravitating, elastic bodies near the reference state de-

scribed in Section 3.3. We will use the field equations in the material form given

by (3.13), (3.18), and (3.19).

We will now introduce the analytical setting where this work will be carried

out. Fix a weight ı 2 .�1;�1
2
/. This choice of ı determines the weighted Sobolev

spaces that will be used in the implicit function theorem argument below. The

range of weights for which the isomorphism property for � holds is .�1; 0/, but

we shall need ı 2 .�1;�1
2
/ later on. Further, we fix p > 3 to be used in setting up

the function spaces that will appear in our argument.

The body B is a bounded, open domain in RB, the extended body, with smooth

boundary @B. Under these conditions, the trace to the boundary tr@B is a continuous

linear map W 1;p.B/ ! B1�1=p;p.@B/, and there is a bounded, linear extension

operator E W W 2;p.B/ ! W
2;p

loc .R3
B
/; see the discussion in Section 2.1 or [1].

The spaces that will be used in the implicit function theorem argument are B1 D
W 2;p.B/�W 2;p

ı
�E2;p

ı
, and let B2 D ŒLp.B/�B1�1=p;p.@B/��Lp

ı�2
�Lp

ı�2
.

Thus, B1 is a Banach manifold, and B2 is a Banach space.

The residuals of equations (3.13), (3.18), and (3.19) define a map F W R �
B1 ! B2, F D F.G;Z/, where we use Z D .	; NU ; hij / to denote a general
element of B1. We assume that 	 is a diffeomorphism onto its image. Thus, F has
components F D .F� ;FU ;Fh/, corresponding to the components of B2, given by

F� D
�

rA.e
NU N�j

A/ � e NU

�
N� � N�l

l

Nn

�
@iU ; tr@B. N�i

A/nA

�
;(4.1a)

FU D �hU � 4�Ge NU . NnN� � N�l
l /
B;(4.1b)

Fh D �1
2
�hhij CQij .h; @h/ � 2riUrjU C 8�Ge

NU . N�ij � hij N�l
l /
B:(4.1c)
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Recall from the discussion in Section 3.2 that the extension b	 is needed in the

definition of F . The proof of the following lemma, a straightforward construction

involving the use of the extension operator E and a cutoff function, is left to the

reader.

LEMMA 4.1 Fix some X0 2 B. There are constants � > 0 and R such that for

each 	 W B ! R3
S

, k	 � ik
W

2;p
B

� �, there is an extension b	 W R3
B

! R3
S

that

depends real analytically on 	. The extension b	 can be chosen such that the map

	 7! b	 is given by a continuous linear map from W 2;p.B/ to W 2;p.BR.X0//,b	.X/ D i.X/ for X 2 R3
B

n B2R.X0/, andb	�1 2 W 2;p
loc .R3

S
/.

The equation to be solved is F.G;Z/ D 0. The material form of the reference

state is given by

Z0 D .i; 0; Oıij ı i/ 2 B1:

The map F defined by (4.1) is easily verified to satisfy F.0;Z0/ D 0 and to map

B1 ! B2 locally near the reference state Z0.

4.1 Differentiability of F

In order to apply the implicit function theorem, we must verify that F is C 1 as

a map R � B1 ! B2 in the arguments .G;Z/, Z D .	; NU ; hij /, near .0;Z0/. In

fact, F is real analytic if the stored-energy function � is real analytic near Z0. It is

clear that the dependence on G is smooth. We will freely make use of the standard

fact that if f is a smooth function, and u 2 W 1;p.B/, p > 3, then u 7! f .u/ is

a smooth mapping W 1;p.B/ ! W 1;p.B/, as well as the corresponding statement

that holds for weighted Sobolev spaces. The map u 7! f .u/ is sometimes called a

Nemytskiı̆ operator. We consider the dependence on Z for each term separately.

It is straightforward to see that  A
i depends smoothly on 	. This means that in

view of (3.16) and the smoothness of the stored-energy function, for F� , we note

that N�i
A depends smoothly on Z. By expanding the definition of F� it is clear that

this depends smoothly on Z.

Next consider FU . Note that �hU is the covariant Laplacian in the metric
NHAB , where NHAB is the inverse of NHAB given by (3.15), and thus �hU depends

smoothly on Z. Using the fact that N�i
j D Nn N�i

A	j
;A, the lower-order terms in FU

are seen to be smooth in Z.

Finally, we consider Fh. The discussion above of �hU also applies to �hhij .

The quadratic term Qij .h; @h/ is evaluated by replacing each occurrence of hij by

hij and @khij by

 A
k@Ahij :

In view of the regularity assumptions we find that Qij .h; @h/ is smooth in Z. It is

straightforward to analyze the remaining terms in Fh in the same manner. We have

now proved the following:
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LEMMA 4.2 The map F W B1 ! B2 is C 1 near .0;Z0/.

4.2 The Frechet Derivative D2F.0; Z0/

Next we calculate the Frechet derivative D2F.0;Z0/ and consider its proper-

ties. As we shall see, this derivative is not an isomorphism TZ0
B1 ! B2, and

therefore it will be necessary to modify the system of equations by applying a pro-

jection before applying the implicit function theorem.

We will denote by 
, v, and k the infinitesimal variations of the fields 	, NU , and

hij . Using the notation of Section 3.3, let

VS A B
i j .X/ D ıAEıBF ıC

iı
D

j
VLCEDF .X/:

The tensor VS A B
i j corresponds to the tensor Ai

j
k

l of Section 2.2. A calculation

shows that

D� N� A
i .0;Z0/
 D VS A B

i j @B

j ;

D NU N� A
i .0;Z0/v D 2 VSi

A
j

Bı
j
Bv;

D Nh
N� A
i .0;Z0/k D VSi

A
j

Bılmın
Bkmn:

Let � i be a Killing field in the reference metric Oıij , in Euclidean coordinates

� i .x/ D ˛i C ˇi
jx

j , with ˛i ; ˇi
j constants, ˇi

j D �ˇj
i , and define � i .X/ D

� i .i.X//. Then we have @A�
i D ˇi

k
ık
A, and hence due to the antisymmetry of ˇi

k ,

(4.2) @A�
i VSi

A
j

B � 0:

Now let ı N� A
i denote any combination of the Frechet derivatives of N� A

i , eval-

uated at .0;Z0/. Assuming we use a coordinate system XA where V123 D 1, we

have, due to (4.2) and Stokes’ theorem, the important relation

0 D
Z
B

� i@A.ı N� A
i / �

Z
@B

� i .ı N� A
i /nA;

where nA is the outward normal. This can be interpreted as saying that due to

the natural boundary conditions, the linearized elasticity operator is automatically

equilibrated at the reference configuration .0;Z0/. It follows from the constitu-

tive conditions stated in Section 3.3 that 
 7! D�F�.0;Z0/
 is elliptic; cf. the

discussion in Section 2.2. Therefore, the operator

D�F�.0;Z0/ W W 2;p.B/ ! ŒLp.B/ � B1�1=p;p.@B/�

is Fredholm with kernel consisting of the Killing fields on B, and cokernel (in the

sense of the natural L2 pairing) consisting of the Killing fields on i.B/, as above.
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The only nonzero contribution from the Frechet derivative of the first-order term

�e NU

"
N� � N�l

l

Nn

#
@iU

in F� is

D NU

 
�e NU

"
N� � N�l

l

Nn

#
@iU

!ˇ̌̌̌
.0;Z0/

:v D �V�@iv:

This is a lower-order term that cannot affect the Fredholm property of D2F ,

but it should be noted that it is not a priori equilibrated, and therefore in general

does not take values in the range of D�F� . By the above discussion we have

D2F�.0;Z0/ D .@A.ı N�i
A/ � V�@iv; tr@B.ı N�i

A/nA/:

Considering the other components ofD2F , the only nonzero terms are the diagonal

entries D NUFU and D Nh
Fh. These are given by

D NUFU :v D �v

and

.D Nh
Fh:k/ij D �1

2
�kij

where � D ıAB@A@B is the Laplacian in the Euclidean background metric on R3
B

.

The operator � is an isomorphism W
2;p

ı
! L

p

ı�2
for ı 2 .�1; 0/; cf. [3].

It follows from the above discussion that the Frechet derivative D2F.0;Z0/

can be represented as the matrix of operators0@D�F� DUF� DhF�

0 � 0

0 0 �1
2
�

1A
(where the entries are evaluated at .0;Z0/). In particular, the matrix is upper trian-

gular; the diagonal entries are isomorphisms, with the exception of D�F�.0;Z0/,

which is Fredholm with nontrivial kernel and cokernel; cf. the discussion above.

The off-diagonal terms are bounded operators. Therefore, if we compose F with

a projection that in the first component maps onto the range of D�F�.0;Z0/ and

restrict the domain of definition of F to a subspace transverse to its kernel, the re-

sulting map will have a Frechet derivative at .0;Z0/ that is an isomorphism, which

will allow us to apply the implicit function theorem. The projection that will be

used is introduced in the next section.

4.3 Projection

Introduce the projection operator PB W B2 ! B2, which acts as the identity

in the second and third components of B2 and is defined in the first component

of B2 as the unique projection along the cokernel of D�F�.0;Z0/ onto the range

of D�F�.0;Z0/, which leaves the boundary data in the first component of B2

unchanged. We use the the label B to indicate that PB operates on fields on the body
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and the extended body. We shall later need to transport the projection operator to

fields on R3
S

.

In order to give the explicit form of the action of PB in the first component of

B2, let .bi ; �i / denote pairs of elements in Lp.B/ � B1;1�1=p.@B/. By a slight

abuse of notation, denote this operator too by PB. We require that PB.bi ; �i / D
.b0

i ; �i /, which satisfies

(4.3)

Z
B

� ib0
i D

Z
@B

� i�i

for all Killing fields � i . Pairs .b0
i ; �i / satisfying this condition will be called equi-

librated. Since PB is a projection along the cokernel, b0
i must be of the form

b0
i D bi � �i
B

where �i D ˛i CˇijX
j , with ˛i ; ˇij constants satisfying ˇij D � ǰ i . We remark

that the bilinear pairing .�; �/ 7! R
B
� i�i is nondegenerate; it is simply the L2.B/

inner product on the space of Killing fields. Further, the map

� 7!
Z
B

� ibi �
Z
@B

� i�i

defines a linear functional on the space of killing fields for each pair .bi ; �i /. There-

fore, there is a unique �i of the form given above such that b0
i D bi ��i
B satisfies

(4.3) for all Killing fields � i .

4.4 Existence of Solutions to the Projected System

We are now in a position to apply the implicit function theorem to prove the

following:

PROPOSITION 4.3 Let F W B1 ! B2 be a map defined by (4.1), and let PB be de-

fined as in Section 4.3. Then, for sufficiently small values of Newton’s constant G,

there is a solution Z D Z.G/, where Z D .	; NU ; hij /, to the reduced, projected

equation for self-gravitating elastostatics given by

(4.4) PBF.G;Z/ D 0:

In particular, for any � > 0, there is aG > 0 such thatZ.G/ satisfies the inequality

(4.5) k	 � ikW 2;p.B/ C khij � ıij k
W

2;p

ı

C k NU k
W

2;p

ı

< �:

PROOF: Let Y denote the range of PB and let X be the subspace of TZ0
B1

such that .	 � i/i .X0/ D 0 and ıC
iıC.A@B/.	 � i/i .X0/ D 0 holds at some point

X0 2 B. We have already shown that F W R � B1 ! B2 is C 1, and it follows

from the definition of PB that PBF W R � X ! Y is C 1. Since F.0;Z0/ D 0,

the Frechet derivative of PBF.G;Z/ with respect to Z, evaluated at .0;Z0/, is

PBD2F.0;Z0/, which we will denote by A. It is clear from the discussion above

that A is Fredholm with trivial cokernel. Therefore all that remains to be checked
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is that kerA is trivial. To see this, note that kerD�F� consists of Killing fields, by

the discussion in Section 2.2. Prescribing the value and antisymmetrized derivative

of a Killing field at one point determines the Killing field in all of B. This implies

that A W X ! Y has a trivial kernel, and it is therefore an isomorphism. Thus,

the implicit function theorem for Banach spaces [20] applies to prove the existence

of solutions to the equation PBF.G;Z/ D 0 for small values of G. Since Z.G/

depends continuously on G in B2, inequality (4.5) follows. �

Remark 4.4. Up to this stage, the connectedness of the body B has not played a

role in our arguments. In particular, in the case of a body with N > 1 connected

components, there is a collection ofN elastic fields 	 and an extension common to

all of them. The equilibration argument of Section 5 below fails, however, for the

simple reason that we have one equation, namely (5.15), but N elastic fields.

In the next section, we study the solutions provided by Proposition 4.3 and

prove that they in fact represent solutions of the full system (3.6).

5 Equilibration

Let .	; NU ; hij / 2 B1 be a solution to the reduced, projected system (4.4) as in

Proposition 4.3, and let b	 be the extension of 	 provided by Lemma 4.1. Define

U and hij by U D NU ıb	�1 and hij D hij ıb	�1. Then U and hij are elements

of W
2;p

ı
.R3

S
/ and E

2;p

ı
.R3

S
/, respectively. Further, we set f D b	�1. Then f 2

W
2;p

loc and f D i�1 outside a large ball.

Let b	 be the extension of 	 provided by Lemma 4.1, and let U and hij be

defined by U D NU ıb	�1 and hij D hij ıb	�1. The following corollary to Propo-

sition 4.3 is immediate in view of the composition properties of Sobolev functions:

COROLLARY 5.1 For any � > 0, there is a G > 0 such that the inequality

(5.1) k	 � ikW 2;p.B/ C khij � ıij k
W

2;p

ı

C kU k
W

2;p

ı

< �

holds.

5.1 Eulerian Form of the Projected System

Next we introduce the projection operator in space that corresponds to PB.

From this point on, we are only interested in the action of PB in the first com-

ponent of B1. We will be dealing with solutions to the projected system PBF D 0;

in particular, this means that the boundary condition N�i
AnAj@B D 0 will be satis-

fied, due to the nature of the projection operator defined in Section 4.3. Therefore

it is convenient to write PBb D PB.b; 0/.



STATIC SELF-GRAVITATING BODIES 1011

Recall the change-of-variables formulaZ
B

u.X/dV.X/ D
Z

f �1.B/

u ı f .x/n.x/d�h.x/;

which results from the definition of n in equation (3.2). This impliesZ
B

� i .X/bi .X/dV.X/ D
Z

f �1.B/

� i ı f .x/n.x/bi ı f .x/d�h:

Letting bi D rA.e
NU N�j

A/ � e
NU .N� � N�l

l= Nn/@jU , we have, using the properties of

the Piola transform,

nbi ı f D rj .e
U �i

j / � eU .n� � �l
l/@iU:

Based on this, we define the space version Pf �1.B/ of the projection PB by

Pf �1.B/.n � .b ı f // D n.PBb/ ı f:
PB is a projection by construction, and it follows from the definition of Pf �1.B/

that it also is a projection. Due to this definition, the equation PBF� D 0 im-

plies Pf �1.B/.nF� ı f / D 0. This relation is written more explicitly as equation

(5.2a) below. Summarizing, the triple .	; U; hij / we have constructed satisfies the

following set of equations:

Pf �1.B/

�rj .e
U �i

j / � eU .n� � �l
l/@iU

� D 0 in f �1.B/;(5.2a)

�i
jnj j@f �1.B/ D 0 in @f �1.B/;(5.2b)

�hU D 4�GeU .n� � �l
l/
f �1.B/ in R

3
S
;(5.2c)

Gij �
�

r.iVj / � 1

2
hij rlV

l

�
D 8�G.‚ij � eU �ij 
f �1.B// in R

3
S
:(5.2d)

Recall that equation (5.2d) is equivalent to the space version of equation (3.19),

(5.3) �1
2
�hhij CQij .h; @h/ D 2riUrjU � 8�GeU .�ij � hij�l

l/
f �1.B/:

Since the body is bounded, the right-hand sides of equation (5.2c) and the contri-

bution from the stress in equation (5.3) have compact support, and hence U and

hij satisfy the reduced vacuum static Einstein equations near spatial infinity. This

implies that we can get more information about their asymptotic behavior than is

a priori given from the implicit function theorem argument.

LEMMA 5.2 U and hij have the forms

U D mU

r
C U.2/;(5.4)

hij D ıij C �ij

r
C h.2/ ij ;(5.5)
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for constants mU ; �ij , with h.2/ ij ; U.2/ 2 W 2;p

2ı
. Further, for sufficiently small G,

we have the estimates

kU.2/kW
2;p

2ı

C jmU j � C.khij � ıij k
W

2;p

ı

C k	 � ikW 2;p.B//;(5.6)

kh.2/ ij k
W

2;p

2ı

C k�k � C.khij � ıij k
W

2;p

ı

C k	 � ikW 2;p.B//;(5.7)

where k�k D .
P

i;j �
2
ij /

1=2.

Remark 5.3. If hij and U were solutions of the full static vacuum Einstein equa-

tions near infinity, with the same falloff conditions, one could conclude that the

O.1=r/ term in hij vanishes, following the argument in [17]; see also [7]. How-

ever, in our situationU and hij satisfy the reduced static vacuum Einstein equations

near infinity, and this argument does not apply directly.

PROOF: By construction, we have hij � ıij 2 W
2;p

ı
and U 2 W

2;p

ı
, with

ı 2 .�1;�1
2
/. This, together with equation (5.2c), implies by using the product

estimates (2.9) to expand �hU that

�eU D f 2 Lp

2ı�2

with

kf kL
p

2ı�2
� C.khij � ıij k

W
2;p

ı

C kn� � �l
lkLp.f �1.B//

� C.khij � ıij k
W

2;p

ı

C k	 � ikW 2;p.B//;

where in the last step we estimated n� � �l
l in terms of hij and 	 � i.

We follow the proof of [3, theorem 17]; see also the discussion in Section 2.3.

Let u satisfy

�eu D f 2 Lp

2ı�2
:

By the isomorphism property of �e W W 2;p

ı
! L

p

ı�2
and the inclusion L

p

2ı�2
�

L
p

ı�2
, we have

kuk
W

2;p

ı

� Ckf kL
p

2ı�2
:

Fix some large radius R and a point x0 2 R3. Let BR D BR.x0/, and let ER D
R3 � BR. By assumption, ı 2 .�1;�1

2
/, so that �2 < 2ı < �1. In particular, 2ı

is nonexceptional, and hence �e W W 2;p

2ı
! L

p

2ı�2
is Fredholm. Hence there is a

v 2 W 2;p

2ı
such that

�e.u � v/ D 0 in ER:

It follows that u � v satisfies

u � v D m

r
CO.1=r2/ in ER

for some constant m. Here the term O.1=r2/ comes from the expansion of har-

monic functions and is in W
2;p

2ı
.
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Let 
 be a cutoff function such that 
 D 1 in E2R, 
 D 0 in BR.x0/ and with

j@
j � C=R. Set

w D u � m

r

 2 W 2;p

2ı
:

Then we have w D u in BR.x0/. Further, we have

�ew D f ��e

�
m

r



�
where �e.

m
r

/ has compact support and we can estimate�����e

�
m

r



�����
L2

2ı�2

� C jmj:

Since

u D � ? f

where � D 1=r is the fundamental solution of �e, we have

jmj � Ckf kL1.R3/ � Ckf kL
p

2ı�2
:

Here we used the inclusion L
p

2ı�2
� L1

2ı�2
� L1

�3 and the fact that L1 D L1
�3

in three dimensions. Thus we have

k�ewkL
p

2ı�2
� Ckf kL

p

2ı�2
:

Using the fact that ker�e is trivial in W
2;p

2ı
together with the Fredholm property,

we now have

kwk
W

2;p

2ı

� Ckf kL
p

2ı�2
:

This argument proves (5.4) and (5.6). Applying the same argument to hij shows

hij D ıij C �ij

r
C h.2/ ij

with �ij constant and h.2/ ij 2 W 2;p

2ı
and gives an estimate for h.2/ ij ; �ij in terms

of hij � ıij , U , and 	 � i. This gives (5.7), since we have an estimate for U in

terms of hij � ıij , 	 � i from (5.6). �

5.2 The Tension Field

The next three lemmas state the properties of the tension field V k , defined by

(3.10), which we shall need. We may assume O� i
jk

D 0. Let the operator L be

defined by

LV k D �hV
k CRk

jV
j

where �h and Rij are the covariant Laplacian and the Ricci tensor of hij , respec-

tively.
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LEMMA 5.4 Assume we are in a Cartesian coordinate system so that Oıij D ıij

and O�k
ij D 0. Let r D jxj and set � i D xi=r . Let hij and �ij be as in (5.5).

Suppose LV 2 L
p

ı�3
, where V is the tension field of h. Then if G is sufficiently

small, V 2 W 2;p

ı�1
and the estimate

(5.8) kV k
W

2;p

ı�1

� CkLV kL
p

ı�3

holds. Further, V is of the form

(5.9) V k D � 1

2r2
.�k

j �
j � �m

m�
k/C V k

.3/

where V k
.3/

2 W 2;p

2ı�1
and � i

j D ıik�kj .

PROOF: The operator L is an elliptic system, which is of diagonal type. There-

fore the results discussed in Section 2.3 apply to L. In particular, L is asymptotic

to � with rate ı. Thus, L W W 2;p

ı�1
! L

p

ı�3
is Fredholm. It follows from the defi-

nition of V and the assumptions on h that V 2 W 1;p

ı�1
. If LV 2 Lp

ı�3
, then elliptic

regularity gives V 2 W
2;p

ı�1
. For small data, L has trivial kernel in this range of

spaces, since L is then a small perturbation of �e that has trivial kernel in W
2;p

� ,

� < 0. By Corollary 5.1, for G sufficiently small, the required condition on L will

hold. Therefore, if G is sufficiently small, an estimate of the form (5.8) holds.

Recall from Lemma 5.2 that

hij D ıij C �ij

r
C h.2/ ij

with h.2/ ij 2 W 2;p

2ı
. Let

(5.10) Hk D � 1

2r2
.�k

j �
j � �m

m�
k/:

Under our assumptions, O�k
ij D 0. From the definition of V k , a calculation shows

V k �Hk 2 W 1;p

2ı�1
I

in particular, V k � Hk D o.1=r2ı�1/. The operator L is asymptotic to �e with

rate ı; see Section 2.3 for this notion. It follows by an argument along the lines of

the proof of Lemma 5.2 that

V k D Hk C V k
.3/

with V k
.3/

2 W 2;p

2ı�1
. This completes the proof of the lemma. �

Let � be a Euclidean Killing field of the form � i .X/ D � i .i.X// with � i .x/ D
˛i C ˇi

jx
j for ˛i and ˇi

j constants such that ˇi
j D �ˇj

i .
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LEMMA 5.5 Let V be as in (5.9). Then the identity

(5.11)

Z
� i ı fLVi d�h D

Z
L.� i ı f /Vi d�h

holds.

PROOF: First note that both sides of equation (5.11) are well-defined. The

integrand on the left-hand side has compact support by equation (5.15). Recall that

f equals the identity map outside of a compact set. We have

L.� ı f / 2 Lp

ı�1
and Vi D O.1=r2/:

Therefore the integrand in the right-hand side is an element of L
p

ı�3
� L1. In

order to justify the partial integration, let BR D fjxj � Rg and SR D fjxj D Rg.

Then (5.11) is equivalent to

lim
R!1

Z
BR

� i ı fLVi d�h D lim
R!1

Z
BR

L.� i ı f /Vi d�h:

Gauss’ law applied to the integral over BR givesZ
BR

� i ı fLVi d�h D
Z

BR

L.� i ı f /Vi d�h C
Z

SR

� i ı f rkV
ink dAh

�
Z

SR

rk.�
i ı f /nkVi dAh:

(5.12)

Let �k D xk=r . With the asymptotic behavior of hij from Lemma 5.2, we have

nk D �k C O.1=r/ and � i
jk

D O.1=r2/. Further, the area element induced

on SR from hij differs from the standard area element of SR by a term of order

O.1=R/. Recall that by Lemma 5.4, V k D Hk CV k
.3/

withHk given by (5.10) and

V k
.3/

2 W 2;p

2ı�1
. Since we are interested in the integral over SR in the limitR ! 1,

this shows that the only important terms in the boundary integrals in (5.12) are

(5.13)

Z
SR

ˇk
ix

i@lHk�
l dAR �

Z
SR

ˇi
kH

i�k dAR:

We consider the first of these terms. Thus letZ D ˇk
ix

i@lHk�
l , the integrand

in the first boundary integral above. At this point, we will be doing all calculations

in the background metric ıij , and therefore it is convenient to lower all indices

using ıij and sum over repeated indices. A calculation shows

@lHk D � 1

2r3

�
2�lk � �mmılk � 3.2�jk�l�j � �mm�l�k/

	
:
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This gives, with �k�k D 1,

Z D ˇkixi@lHk�l D � 1

2r2
ˇki�i .�4�jk�j C 2�mm�k/:

Note that the second term in the right-hand side vanishes due to the fact that ˇki D
�ˇik , but not the first. To show this vanishes, we proceed as follows: We have

dAR D R2 dA where dA is the area element of the unit sphere S , so we can writeR
SR
Z dAR D R2

R
S Z dA. Recall the identityZ

S

�k�l dA D 4�

3
ıkl :

This gives Z
SR

Z dAR D �2�
3
ˇki .�4�jkıij C 2�mmıik/ D 0

due to the fact that ˇki D �ˇik . The integrand in the second term in (5.13) is

� 1

2r2
ˇik.�ij �j � �mm�i /�k;

which can be handled using the same method. It follows that

lim
R!1

� Z
SR

� i ı f rkV
ink dAh �

Z
SR

rk.�
i ı f /nkVi dAh

�
D 0;

which completes the proof of the Lemma. �

LEMMA 5.6 For sufficiently smallG, there is a constant C such that the inequalityˇ̌̌̌Z
.� i ı f /LVi d�h

ˇ̌̌̌
� Cd

�khij � ıij k
W

2;p

ı

C k	 � ikW 2;p.B/

�j�jkV k
W

2;p

ı�1

holds, where, for � i D ˛i C ˇi
jx

j , we write j�j D j˛j C jˇj.
PROOF: Using Lemma 5.5 we considerZ

L.� i ı f /Vi d�h:

We need to estimate kL.� i ı f /VikL1 . We expand out L.� ı f /, dropping the

reference to f for brevity, and writing ? to denote a general contraction

L� D h ? @2� C � ? @� C @� ? � CR ? �:

Using the form of hij given in equation (5.5), we have

� D O.1=r2/C v with v 2 Lp

2ı�1
;

@� D O.1=r3/C ´ with ´ 2 Lp

2ı�2
;

R D O.1=r3/C w with w 2 Lp

2ı�2
:
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Further, using the estimates from Lemma 5.2, the coefficients in the O.1=r2/

and O.1=r3/ terms can be estimated in terms of j� j, where �ij is the constant

metric in (5.5), and the lower-order terms can be estimated in terms of h.2/ ij . The

term involving @2� has compact support and can be estimated in terms of 	 � i.

Multiplying L� ı f by V and using � D O.r/ and V 2 W
2;p

ı�1
, we find the result

gives terms in L
p

ı�3
and L

p

3ı�2
coming from theO.1=r2/ andO.1=r3/ terms and

the Sobolev terms, respectively. Since L
p

3ı�2
� L

p

ı�3
and L

p

ı�3
� L1, this means

that using Lemma 5.2 we have an estimate of the form

kL.� ı f /V kL1 � C
�j� j C kh.2/ij k

W
2;p

2ı

C k	 � ik
W

2;p
B

�j�j kV k
W

2;p

ı�1

� C
�khij � ıij k

W
2;p

ı

C k	 � ikW 2;p.B/

�j�j kV k
W

2;p

ı�1

:

This completes the proof. �

We now take, in the sense of distributions, the divergence of equation (5.2d),

i.e., the equation

(5.14) Gij �
�

r.iVj / � 1

2
hij rlV

l

�
D 8�G.‚ij � eU �ij 
f �1.B// ;

which holds in R3
S

. For the first term on the left in equation (5.14), we use the

Bianchi identity from Lemma 2.1 to conclude riGij D 0 in the sense of distri-

butions. In order to take the divergence of the second term on the left, note that it

follows from the definition of V that V 2 W
1;p

ı�1
. The regularity assumptions on

hij imply that the identity

rj

�
r.iVj / � 1

2
hij rlV

l

�
D 1

2
.�hVi CRijV

j /

holds in the sense of distributions.

For the first term on the right of (5.14), we use equation (5.2c). In the second

term on the right in (5.14), using that the boundary condition (5.2b) is satisfied, we

apply Lemma 2.2 to get the identity

�rj
�
‚ij � eU �ij
f �1.B/

� D �rj .e
U �i

j / � eU .n� � �l
l/@iU

	

f �1.B/:

In view of the projected elastic equation (5.2a), this is equivalent to

� rj
�
‚ij � eU �ij
f �1.B/

� D
.If �1.B/ � Pf �1.B//

�rj .e
U �i

j / � eU .n� � �l
l/@iU

	

f �1.B/;

where If �1.B/ is the identity operator in the space Lp.f �1.B//. Thus, defining

the operator L by

LVi D �hVi CRijV
j ;
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we finally conclude that the equation

LVi D 16�G.If �1.B/ � Pf �1.B//

� �rj .e
U �i

j / � eU .n� � �l
l/@iU

	

f �1.B/

(5.15)

holds in R3
S

.

We observe that equation (5.15) implies that LV is supported in f �1.B/. Fur-

ther, in view of the fact that Pf �1.B/ is a projection, we have

(5.16) Pf �1.B/LV D 0:

Recall from Section 4 that PB was defined in terms of the Killing fields � i .X/ D
� i .i.X//with � i .x/ D ˛i Cˇi

jx
j for ˛i and ˇi

j constants such that ˇi
j D �ˇj

i .

It follows from the definition of Pf �1.B/ that we have

0 D
Z

R
3
S

.� i ı f .x//Pf �1.B/´i
f �1.B/d�h

for any � i of the above form and any ´i 2 Lp
loc.R

3
S
/.

Now define the linear mapping Q W Lp

ı�3
.R3

S
/ ! R6 by setting

Q�.´i / D
Z

R
3
S

.� i
.�/ ı f /´i d�h; � D 1; : : : ; 6;

where f�.�/g6
�D1 forms a basis for the space of Killing fields. We have the following

estimate:

LEMMA 5.7 There is a constant, depending on f and hij , such that the inequality

(5.17) k´kLp.f �1.B// � C.kPf �1.B/´kLp.f �1.B// C kQ´
f �1.B/kR6/

holds.

PROOF: From the definition of Pf �1.B/, we have

´
f �1.B/ D Pf �1.B/´
f �1.B/ C n.
 ı f /
f �1.B/

where 
 is a Killing field, and from the definition of Q, we have

Q.�/´
f �1.B/ D
Z

R
3
S

.� i
.�/ ı f /n.
 ı f /
f �1.B/ d�h

D
Z
B

� i
.�/
i dV

for a basis of Killing fields f�.�/g6
�D1. In view of the nondegeneracy of theL2 pair-

ing on the space of Killing fields on B, this means that there is a constant C such

that kn.
 ı f /kLp.f �1.B// � CkQn.
 ı f /
f �1.B/kR6 . Inequality (5.17) now

follows after an application of the triangle inequality. �
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PROPOSITION 5.8 For sufficiently small G, there is a constant C such that the

estimate

(5.18) kV k
W

2;p

ı�1

� CkQLV kR6

holds.

PROOF: Due to the boundedness of B and f �1.B/, there is a constant C such

that

k´
f �1.B/kL
p

ı�3
� Ck´kLp.f �1.B//:

Since V solves (5.15), LV is supported in f �1.B/ so the above inequality applies

to LV . Now making use of (5.16) and estimate (5.17), together with estimate (5.8)

from Lemma 5.4, we find that for hij sufficiently close to ıij , i.e., for G suffiently

close to 0, estimate (5.18) holds. �

5.3 The Main Theorem

We are now able to prove the following:

THEOREM 5.9 For sufficiently small values of G, the solution to the reduced, pro-

jected system of equations for a static, elastic, self-gravitating body, equation (5.2)

is a solution to the full system (3.6) of equations for a static, elastic, self-gravitating

body.

PROOF: Recall the definition of Q. We have

Q.�/LV D
Z
.� i

.�/ ı f /LVi d�h:

For small data, i.e., for sufficiently small G, � is an approximate Killing field

for hij . Therefore by Lemma 5.6, there is for sufficiently small G a constant C

such that

kQLV kR6 � C
�khij � ıij k

W
2;p

ı

C k	 � ikW 2;p.B/

�kV k
W

2;p

ı�1

:

By (5.18), this implies that after possibly decreasing G, there is a constant C such

that

kV k
W

2;p

ı�1

� C
�khij � ıij k

W
2;p

ı

C k	 � ikW 2;p.B/

�kV k
W

2;p

ı�1

:

Hence, by Corollary 5.1, for sufficiently small values of G, we have

kV k
W

2;p

ı�1

� 1

2
kV k

W
2;p

ı�1

:

Thus, in fact, V D 0. Hence equation (5.2d) implies the full Einstein equation

(3.6c). Further, by (5.15) we have that

.If �1.B/ � Pf �1.B//
�rj .e

U �i
j / � eU .n� � �l

l/@iU
	

f �1.B/ D 0;
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while by equation (5.2a),

Pf �1.B/

�rj .e
U �i

j / � eU .n� � �l
l/@iU

� D 0 in f �1.B/:

It follows that equation (3.6a) is satisfied, and hence that the solution .	; U; hij / to

the projected, reduced system, which was constructed using the implicit function

theorem, is a solution to the full system (3.6). �

Appendix A

The way the spatial metric hij is treated in Section 4 may seem surprising at

first. We start by reducing the Einstein equation (3.6c) using the harmonic gauge,

and then pull back the components of hij in that gauge. Geometrically it might

seem much more natural to start by pulling back the metric itself under O	. Doing

this would result in replacing (3.6c) by

NGAB D 8�G. N‚AB � e� NU N�AB
B/ in R
3
B
;

where NGAB is the Einstein tensor of NHAB . Furthermore, we have that

N‚AB D 1

8�G

�
DA

NUDB
NU � 1

2
NHAB

NHCDDC
NUDD

NU
�

and N�AB is the extension of �AB . But then the quantity N�i
A in equation (3.16)

depends on 	 only through b A
i , since the remaining factors in

(A.1) N�A
i D b B

iJ N�BC
NHAC

depend only on NHAB . Let us now look at the nature of equation (3.13), when

.	; NU ; NHAB/ are used as the basic variables rather than .	; NU ; Nhij /. There are po-

tentially two terms depending on second derivatives of 	. One comes from taking

a derivative of b A
i in equation (A.1) above. The other comes from writing the

Christoffel symbols of hij entering the left-hand side of (3.13) in terms of 	. Re-

markably, both these terms cancel! For the linearization of the residual of equation

(3.13) at .	 D i; NU D 0; NHAB D ıAB/, the only surviving term will involve first

partial derivatives of NHAB , i.e., terms that break diffeomorphism invariance on R3
B

.

However, note that the very presence of the a priori given domain B (which of

course is the reason why this whole maneuver was performed) breaks diffeomor-

phism invariance. It is thus no wonder that after going over to the material picture

in the sense of using the full pullback of hij , the elastic equation gives us terms

that break diffeomorphism invariance.

Appendix B

The following Newtonian version of the argument in this paper was contributed

by the anonymous referee.
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In the Newtonian theory the equations, with the standard definition of the stress,

taking the specific mass to be 1, are

rj�i
j C n@iU D 0 in f �1.B/;(B.1a)

�i
jnj

ˇ̌
@f �1.B/

D 0;(B.1b)

�U D 4�Gn
f �1.B/ in R
3
S
:(B.1c)

The argument to show that the projected version of (B.1a) implies (B.1a) would go

as follows: We define Xi to be the solution of

(B.2) �Xi D rj�i
j C n@iU

tending to 0 at infinity. Since

�i D rj�i
j C n@iU;

the right-hand side of (B.2) has compact support, andXi has a multipole expansion

in a neighborhood of infinity,

�4�Xi D Mi

r
C xjDij

r3
CO.r�3/:

Here

Mi D
Z

R3

�i .x/d
3x; Dij D

Z
R3

xj�i .x/d
3x:

Writing

n@iU D rj‚i
j ;

where ‚i
j D ‚ij is given by (3.7) with hij replaced by ıij , using the fact that

‚ij D O.r�4/ at infinity, and taking into account (B.1b), we obtain

M D 0; Dij D �
Z

R3

.�i
j C‚i

j /d3x:

Thus,

Xi D �Dijx
j

4�r3
CO.r�3/;

where Dij D Dj i , in agreement with (5.9). Lemma 5.5 then applies with � in

the role of L, and Lemma 5.6 applies with ıij in the role of hij . Proposition 5.8

also applies. The argument of the proof of Theorem 5.9 then applies to show that

Xi D 0; therefore equation (B.1a) holds.
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