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STATIC SELF-GRAVITATING ELASTIC BODIES IN EINSTEIN

GRAVITY

LARS ANDERSSON∗, ROBERT BEIG, AND BERND G. SCHMIDT

Abstract. We prove that given a stress-free elastic body there exists, for
sufficiently small values of the gravitational constant, a unique static solution
of the Einstein equations coupled to the equations of relativistic elasticity.
The solution constructed is a small deformation of the relaxed configuration.
This result yields the first proof of existence of static solutions of the Einstein
equations without symmetries.

1. Introduction

General relativistic effects generated by compact, isolated bodies, such as stars
and even satellites, are of increasing importance in observational astronomy and
experimental general relativity. Considering this fact, it is remarkable how little
is known about solutions of the Einstein field equations for systems with spatially
compact sources. The situation is not much better if we describe gravity by New-
ton’s theory.

The present paper provides the first existence result for compact, isolated, static
elastic bodies in Einstein’s theory of gravity. With the notable exception of colli-
sionless matter, essentially all previous results concerning compact, isolated, self-
gravitating bodies deal with static or stationary fluid bodies. Under reasonable
conditions, static fluid bodies are spherically symmetric, while stationary fluid bod-
ies are axi-symmetric. Although the variational formulation of elasticity has strong
similarities with that of fluid models, static elastic bodies may, in contrast to static
fluid bodies, be non-symmetric. In fact, in this paper we prove, for the first time,
existence of static solutions of the Einstein equations without symmetries.

1.1. Compact bodies. Fluids and dust (i.e. a pressure-less fluid) are the con-
ceptually simplest and most commonly used matter models. For a self-gravitating
compact body, it is necessary to consider a free boundary problem with zero trac-
tion on the boundary. It was only recently that an existence proof was given by
Lindblad for the Cauchy problem for a nonrelativistic perfect fluid with free bound-
ary, in the absence of gravity [21, 20]. For self-gravitating fluids, no results of this
generality are known, and it is only in the static or stationary cases that results are
available.

If we assume that spacetime is static, the standard conjecture is that any iso-
lated self-gravitating body, consisting of a perfect fluid, is spherically symmetric.
This is known to be the case in Newton’s theory, for a general equation of state. In
Einstein’s theory there is the work by Beig and Simon [5] which solves the problem
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for a large class equation of states; a proof in the general case remains to be found.
For the case of stationary spacetimes in Einstein gravity, i.e. spacetimes with a
timelike, non-hypersurface orthogonal Killing field, it is known under certain addi-
tional assumptions on the thermodynamic properties of the fluid that there exists
an additional, rotational Killing field, so that stationary spacetimes containing fluid
bodies are axisymmetric [22].

In spite of the symmetry restrictions discussed above, there are rich classes of
stationary and static solutions describing isolated bodies, even in Newtonian grav-
ity. The almost completely forgotten work of Leon Lichtenstein from roughly the
period 1910-1933, provides existence results in the Newtonian case for rotating
fluid solutions in various configurations, see the book [19]. Inspired by Lichten-
stein, Uwe Heilig showed in 1995 the existence of stationary rotating fluid solutions
in Einstein’s theory [13].

These results allow one to construct stationary fluid solutions with slowly rotat-
ing almost spherical balls. Further, one has rings, rings around balls and families of
nested rings. It seems almost impossible to get an overview on all possibilities. New
solutions can often be constructed as perturbations of known solutions. For exam-
ple, starting with a static, spherically symmetric fluid ball whose existence can be
shown by using ODE techiques, one may prove the existence of a rotating solution
with small angular velocity. This is essentially what was done by Lichtenstein and
Heilig.

The Vlasov matter model is a statistical description of weakly interacting par-
ticles. It is conceptually more difficult to work with than fluids but has been used
very successfully in various circumstances. For a survey of known results, see [25].
The existence of various dynamical and time independent solution has been demon-
strated. All the known stationary and static solutions have axial symmetry.

1.2. Elasticity and relativity. Elasticity is of course one of the oldest topics of
theoretical physics, with origins that can be traced back to the 17’th century. The
book by Marsden and Hughes [23] gives a modern treatment of elasticity. Already
in 1911, Herglotz [14] gave a formulation of elasticity in special relativity. There
are various formulations of elasticity in the framework of general relativity, see
for example Rayner [24], Carter and Quintana [11], Kijowski and Magli [16], see
also [17], to name just a few important papers. Strangely enough the problem
of existence of static or dynamical self-gravitating elastic bodies in Einstein’s or
Newton’s theory of gravity has, to the best of our knowledge, until recently not
been considered. The only exception is for the spherically symmetric case. Even in
non-relativistic elasticity quite little is known. The first existence theorem in three
dimensional static elasticity was given by Stoppelli in 1954 [26].

About six years ago, two of the present authors (R.B. and B.S.), motivated by
this state of affairs, initiated a program to develop existence results for elasticity
in the setting of Einstein’s theory of gravity. We showed the existence of static
solutions describing elastic bodies deformed by their own Newtonian gravitational
field [7], and later established the existence of elastic bodies deformed under rigid
rotation [8]. For time dependent solutions we showed that the local Cauchy problem
is well posed [6]. In [9] an existence theorem for the motion of a free elastic body
in special relativity is given.

Elasticity can be described as a Lagrangian field theory [6], and hence the ac-
tion for self-gravitating elastic bodies is derived by simply adding the gravitational
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Lagrangian to the Lagrangian for elasticity. The basic matter field is a map, the
configuration, from a region in spacetime to the body, an abstract 3–manifold whose
points label the constituents of the elastic body moving in spacetime. The stress of
a configuration is determined by the stored energy function which completely fixes
the matter model. This formulation can be used in a non relativistic spacetime,
in special relativity and in Einstein’s theory. Elastic materials where the stress is
determined by a stored energy function are usually called hyperelastic. Diffeomor-
phism invariance, a necessary condition in Einstein’s theory, implies that the stored
energy function satisfies the additional condition known in the non-relativistic case
as material frame indifference.

Once the stored energy function is given, the variational problem as well as
the Euler-Lagrange equations are determined. In particular, one is led to consider
Einstein’s field equations with an energy momentum tensor which is determined
by the deformation. The elasticity equations are a consequence of the conservation
law in Einstein’s theory.

As the configuration is a map from spacetime to the body, we have a free bound-
ary value problem. To deal with this difficulty, one reformulates elasticity using
deformations, i.e. maps from body to spacetime, as the basic variable. In this
setting, known as the material picture, one has a fixed apriori known boundary.

Let us now consider the static self-gravitating bodies in general relativity. In this
case, the theory can be given a a variational formulation on the quotient space of
the timelike Killing field. Thus, in order to construct a static self-gravitating body
in Einstein gravity we start from a relaxed elastic body without gravitational field
and determine the deformation of such a body under its own gravitational field for
small values of the gravitational constant G. To do this, it is convenient to choose
a stored energy function for which there exists a configuration which is stress free,
i.e. which satisfies, together with the Minkowski metric, the Einstein field equations
for G = 0, as well as the the elasticity equation. We start from this background
solution and construct nearby self-gravitating solutions for small values of G.

As mentioned above, self-gravitating static fluid bodies in general relativity are
known to be spherically symmetric for a large class of equations of state. In fact,
the result proved in this paper provides the first example of a static solution to
Einstein’s field equations which is not spherically symmetric.

It is worth pointing out that the approach used in this paper cannot be applied
to the problem of constructing for example an elastic neutron star since in this case,
there is no nearby stress free configuration. To deal with this problem one would
have to choose a stored energy function in which the shear strains are much smaller
then the hydrostatic compression. Then one could begin with a spherically sym-
metric solution in which the radial pressure would be different from the tangential
pressure. One could then use the methods developed in this paper to construct
nearby solutions which are not spherically symmetric.

Finally we remark that it may be argued that the result proved in this paper
is very weak, since G is required to be sufficiently small. However, it should be
noted that we make no restriction on the shape of the body. For example, one may
consider two very large bodies connected by a very thin neck. In this situation it is
clear that if we make gravity too strong (i.e. G too large), the neck will break and
hence there can be no static solution for such a configuration for arbitrarily large
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values of G. Thus, without restrictions on the shape of the undeformed body we
can not expect a stronger result.

1.3. Overview of this paper. In section 2 we give some analytical preliminaries.
We also for the convenience of the reader review some basic ideas from linearized
elasticity which we will make use of. Further, we prove some results which will be
used concerning Bianchi identities for weakly differentiable metrics, and concerning
the divergence of tensors wich compact support. Section 3 presents the gravitational
field equations in space and the elastic equations on the body. We use harmonic
gauge to make the field equations elliptic. An important step is to extend the body
to R3, the extended body, and to extend the deformation, the inverse configuration,
to a map from the extended body to physical space, which in our case also is R3.
Then we move the field equations from space to the extended body. In this way we
obtain a quasilinear system of partial differential equations, the reduced Einstein
equations in material form, were the geometrical unknowns are defined on the
extended body and the elastic variables on the body.

In section 4 we formulate the reduced Einstein equations in terms of a non-linear
mapping between Sobolev spaces and calculate the Frechet derivative of the map at
the relaxed configuration. It contains esssentially linearized gravity and linearized
elasticity. The linearized operator is Fredholm with non trivial kernel and range.
The geometric reason for this is the combination of diffeomorphism invariance of the
Einstein equations and Euclidean invariance of the background solution. Suppose
we have a solution of the problem, then we can perform a translation and rigid
rotation to obtain again a solution. We define a projection operator such that we
can use the implicit function theorem. This way we obtain for small G a solution
of the reduced field equation together with the projected elasticity equations.

Section 5, which is the heart of the paper, contains a proof that the solution to
the reduced, projected system obtained using the implicit function theorem, is in
fact a solution of the full system of equations for the self-gravitating elastic body.
At first it might seem that there are two possibilities to prove this. On the one
hand, if the exact elastic equations were satisfied, a standard argument using the
Bianchi identities would imply that also the harmonicity condition is satisfied and
we have in fact solved the full field equations. On the other hand, if we could show
that the full Einstein equations hold, the Binachi identities would imply we also
have a solution to the exact elastic equations.

In fact, none of these two alternatives are applicable, and one must prove both
properties simultaneously. To do this a type of bootstrap argument must be used.
It is worth mentioning that the boundary condition of vanishing normal traction is
essential. We could in principle solve the projected elasticity equation together with
the reduced field equations for a boundary condition which prescribes the position
of the boundary in space. However, it would then in general not be possible to show
that all the Einstein field equations are satisfied. This is consistent with the fact
that fixing the surface of a body in space is not a physical problem in Einstein’s
theory.

2. Preliminaries

The following index conventions will be used. Upper case latin indicesA,B,C, . . .
take values 1, 2, 3, lower case latin indices i, j, k, . . . take values 1, 2, 3, and greek
indices α, β, γ, . . . take values 0, 1, 2, 3.
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We will make use of Sobolev spaces W k,p on domains and the trace spaces Bs,p,

as well as weighted Sobolev spaces W k,p
δ . Unless there is room for confusion, the

same notation will be used for spaces of tensors and vectors, as for spaces of scalar
functions. The rest of this section collects some notions and facts from analysis
which shall be needed.

2.1. Sobolev spaces on domains. The books [1, 10] are general references for
the material discussed in this section. For an integer k ≥ 0, 1 < p < ∞ and a
domain Ω, W k,p(Ω) is the closure of C∞(Ω) in the norm

||u||W k,p(Ω) =
∑

|α|≤k

||∂αf ||Lp(Ω)

Further, we shall need the Nikol′skii-Besov spaces Bs,p = Bs,p
p , which are the trace

spaces for the Sobolev spaces. These are Banach spaces with norm defined on Rn

for s > 0, 1 < p <∞, by

||u||Bs,p = ||u||Lp +

(∫

Rn

|h|−(n+sp)||∆σ
hu||pLpdt

)1/p

where σ > s, σ integer, and ∆h is the difference operator. There are versions of
many of the facts stated in this section also for p = 1, and p = ∞, see the references
given above. Note Bk,p 6= W k,p, except for the case p = 2. Let k ≥ 1. A well known
fact is that for a domain Ω ⊂ Rn with Ck boundary, then for 1 < p <∞, the trace
tr∂Ω has the property

tr∂ΩW
k,p(Ω) = Bk−1/p,p(∂Ω)

We shall make use of this fact in the case k = 1. Further, under these conditions,
there is a bounded linear extension operatorE : W k,p(Ω) →W k,p(Rn)∩C∞(Rn\Ω).
In fact, for the last mentioned result to hold, it is sufficient to assume that Ω has
a Lipschitz regular boundary.

2.2. The boundary problem of linearized elasticity. The book [27] is a gen-
eral reference for the material discussed in this section. Let Ai

j
k

l be a fourth order
elasticity tensor on a domain Ω ⊂ Rn, i.e. A has symmetries

Ai
j
k

l = Aj
i
k

l = Ai
j
l
k = Ak

l
i
j

Let
σ(u)i

j = Ai
j
k

l∂lu
k.

and defined the operator L by

Lui = ∂jσ(u)i
j

L is strongly elliptic if

Ai
j
k

lηiξjη
kξl > 0, for all ξ, η ∈ Rn.

For applications in elasticity it is natural to assume there is a positive constant λ
such that for all symmetric n× n matrices ψi

j

λ|ψ|2 ≤ |Ai
j
k

lψi
jψ

k
l| ≤ λ−1|ψ|2, (2.1)

see [27, Chapter III] or [23, S 4.3]. The pointwise stability condition (2.1) implies
strong ellipticity. We will assume that (2.1) holds for the rest of this section.

The Neumann type problem

Lui = bi, tr∂Ωσ(u)i
jnj = τi (2.2)
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is equivalent to the statement that

A(φ, u) = −
∫

Ω

φibi +

∫

∂Ω

φiτi (2.3)

for all φ ∈ C∞(Ω), where A(u, v) is the symmetric bilinear form

A(u, v) =

∫

Ω

∂jv
iAi

j
k

l∂lu
k

Let Hs(Ω) = Bs,2(Ω). Then A defines a bounded quadratic form on H1(Ω). The
radical Z of A is the space of ξ ∈ H1(Ω) such that A(ξ, u) = 0 for all u ∈ H1(Ω). It
follows from (2.1) and the symmetry properties ofA, that Z consists of all Euclidean
Killing fields ξ, i.e. fields of the form

ξi = ai + bijx
j , ai, bij constants, bij = −bji (2.4)

Let H1(Ω)e be the L2 orthogonal complement of the radical, i.e. the space of
u ∈ H1(Ω) such that

∫

Ω

ξiu
i = 0, ∀ξ ∈ Z (2.5)

Under the above conditions, the quadratic form A(u, v) is coercive on H1(Ω)e.
This follows from the pointwise stability condition (2.1) and Korn’s inequality, see
[27, p. 92]. Thus, by the Lax-Milgram theorem, we have that for any (bi, τi) ∈
H−1(Ω) ×H−1/2(∂Ω) satisfying

∫

Ω

ξibi −
∫

∂Ω

ξiτi = 0, ∀ξ ∈ Z, (2.6)

there is a unique u ∈ H1(Ω)e, which is a weak solution to (2.2), and which satisfies
the estimate

||u||H1 ≤ C(||b||H−1(Ω) + ||τ ||H−1/2(∂Ω))

We will later refer to (2.6) as an equilibration condition. The physical meaning of
the equilibration condition is that the total force and torque exerted by (b, τ) is
zero. Now, assuming ∂Ω ∈ Ck+2, Ai

j
k

l ∈ Ck+1, u ∈ W k+2,p(Ω), one has from [2]
an estimate of the form

||u||W k+2,p(Ω) ≤ C(||L(u)||W k,p(Ω) + ||tr∂Ωσ(u) · n||B1−1/p,p(∂Ω) + ||u||Lp(Ω))

Let W k,p(Ω)e be the space of u ∈ W k,p(Ω) such that the condition (2.5) holds.
Then we have by the above that for b, τ ∈ W k,p(Ω) × Bk+1−1/p,p(∂Ω), satisfying
(2.6), there is a unique u ∈ W k+2,p(Ω)e which solves (2.2). In particular, in view
of the above stated estimates, we have that the linear mapping W k+2,p(Ω) →
W k,p(Ω) ×Bk+1−1/p,p(∂Ω) defined by

u 7→ (Lu, tr∂Ωσ(u) · n) (2.7)

is Fredholm. It follows from the discussion above that the cokernel of the operator
defined by (2.7) is defined by (2.6), and that the kernel consists of Killing fields, of
the form given in (2.4).
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2.3. Weighted Sobolev spaces on Rn. The material which we shall need can
be found in [3]. Let n > 2, r = |x|, and let σ = (1 + r2)1/2. For k ≥ 0, k integer,

1 ≤ p ≤ ∞, δ ∈ R, define function spaces W k,p
δ as the closure of C∞

0 (Rn) in the
norms

||u||p
W k,p

δ

=
∑

|α|≤k

||σ|α|−δ−n/p∂αu||Lp

We use the notation Lp
δ for W 0,p

δ . Decreasing δ means faster decay. The spaces

W k,p
s−n/p are equivalent to the homogenous Sobolev space Ẇ k,p without weight, in

particular Lp
−n/p = Lp. The dual space of W s,p

δ is W−s,p′

δ′ with 1/p + 1/p′ = 1,

δ′ = −δ − n. Weighted Hölder spaces Ck,α
δ can be defined analogously, see [3].

Weighted function spaces can be analyzed in terms of ordinary function spaces
by the following standard construction. Let φ be a bump function with support
in |x| ≤ 2 and which equals 1 on |x| ≤ 1. Define a cutoff function ψ by ψ(x) =
φ(x) − φ(2x). Then ψ has support in the annulus 1/2 ≤ |x| ≤ 2. For a function
u, let u0 = φu, and let ui(x) = ψ(x)u(2ix) be the dilatations of u. An equivalent

norm for W k,p
δ is given by

|||u|||p
W k,p

δ

=
∞∑

i=0

2−ipδ||ui||pW k,p

Using this formulation, inequalities on compact domains may be systematically
generalized to weighted spaces. The following are some of the basic inequalities for
the weighted spaces.

(1) Inclusion: If p1 ≤ p2, δ2 < δ1, and u ∈ Lp2

δ2
, then

||u||Lp1
δ1

≤ C||u||Lp2
δ2

(2.8)

(2) Sobolev I: If n− kp > 0 and p ≤ q ≤ np/(n− kp), then if u ∈W k,p
δ ,

||u||Lq
δ
≤ C||u||W k,p

δ

(3) Sobolev II: If n < kp, then if u ∈W k,p
δ ,

||u||L∞

δ
≤ C||u||W k,p

δ
,

and in fact |u(x)| = o(rδ) as r → ∞.

(4) Product estimate: If n < kp, and u ∈W k,p
δ1

, v ∈ W k,p
δ2

, then with δ = δ1+δ2,

||uv||W k,p
δ

≤ C||u||W k,p
δ1

||v||W k,p
δ2

(2.9)

Let ∆ denote the Laplacian defined with respect to the Euclidean metric on
Rn. We recall some facts about its mapping properties in the setting of weighted
Sobolev spaces. Let E = {j : j integer , j 6= 3 − n, . . . ,−1}. In particular, for
n = 3, E consists of all integers. The elements of E are called exceptional weights.
A weight δ ∈ R \ E is called nonexceptional. Given δ ∈ R, define k−(δ) to be the
largest exceptional weight < δ.

A basic fact is that ∆ : W k,p
δ →W k−2,p

δ−2 for k ≥ 2, 1 < p <∞, is Fredholm if and

only if δ is nonexceptional. In particular, for δ ∈ (2 − n, 0), ∆ : W k,p
δ → W k−2,p

δ−2 is

an isomorphism. Let the operator L be of the form L = aij∂i∂j + bi∂i + c. Then
with q > n, we will say that L is asymptotic to ∆, of order τ < 0, if

aij − δij ∈W 2,q
τ , bi ∈W 1,q

τ−1, c ∈ Lq
τ−2
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Note that the above conditions are stronger than those stated in [3, Definition 1.5],
and that we use the opposite sign convention for τ . If L is asymptotic to ∆, then
for 1 < p ≤ q, L : W 2,p

δ → Lp
δ is bounded.

The following version of elliptic regularity is easily proved using standard esti-
mates for elliptic operators on domains, see for example [12, Chapters 8,9], and
scaling. Suppose L is asymptotic to ∆ of order τ < 0 and suppose 2 ≤ p ≤ q.
For u ∈ W 1,p

δ , such that Lu ∈ Lp
δ−2, elliptic regularity gives u ∈ W 2,p

δ and the
inequality

||u||W 2,p
δ

≤ C(||Lu||Lp
δ−2

+ ||u||Lp
δ
)

holds. See [3, Proposition 1.6] for a stronger version of elliptic regularity.

If δ is nonexceptional, there are constants C,R so that if u ∈ W 1,p
δ , the scale

broken estimate
||u||W 2,p

δ
≤ C(||Lu||Lp

δ−2
+ ||u||Lp(BR))

holds, cf. [3, Theorem 1.10]. Here BR = {x : |x| ≤ R}. We will now state
a consequence of this estimate which we shall make use of. Assume that δ + τ is
non-exceptional. If u ∈W 2,p

δ , Lu ∈ Lp
δ+τ−2, then for exceptional values δ+τ < j ≤

k−(δ), there are hj ∈ C∞(Rn), harmonic and homogenous of order j in Rn \ BR,
such that

u =
∑

δ+τ<j≤k−(δ)

hj + v

where v ∈W 2,p
δ+τ , and an estimate of the form

∑

j

||hj ||j + ||v||W 2,p
δ+τ

≤ C(||Lu||Lp
δ+τ−2

+ ||v||BR)

holds. Here ||hj ||j is a suitable norm of for homogenous, harmonic functions, for
example ||hj ||j = ||r−jhj ||L∞(S2R), with S2R = {x : |x| = 2R}. In particular, if

kerL = 0 on W 2,p
δ , then the above estimate takes the form

∑

j

||hj ||j + ||v||W 2,p
δ+τ

≤ C||Lu||Lp
δ+τ−2

To make the above explicit, suppose n = 3, −1 < δ < 0 and −2 < δ + τ < −1.
Then k−(δ) = −1 and with u ∈ W 2,p

δ , Lu ∈ Lp
δ+τ−2, we have

u =
c1
r
ζ + v

where ζ is a cutoff function such that ζ = 1 in R3 \ BR,and ζ = 0 in BR/2, and

where v ∈W 2,p
δ+τ satisfies an estimate of the form

|c1| + ||v||W 2,p
δ+τ

≤ C(||Lu||Lp
δ+τ−2

+ ||v||BR)

We shall make use of this estimate in section 5.1.
For τ < 0, p > n, define the space Ek,p

τ of asymptotically Euclidean metrics on
Rn as the space of hij such that

hij − δij ∈W k,p
τ

where δij denotes the flat Euclidean metric on Rn. Then Ek,p
τ is a Banach manifold.

Let Rij be the Ricci tensor of hij . We shall make use of the fact that if h ∈ E2,p
τ

for p > n, the operators ∆h and V i 7→ LVi = ∆hVi + RijV
j are asymptotic to ∆

of order τ . Here it should be noted that the principal part of the operator L is
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the scalar Laplacian, acting diagonally. The results concerning elliptic operators
that we have stated in this subsection generalize immediately to the case of elliptic
systems of diagonal form.

2.4. Bianchi identity. The Bianchi identity for weakly regular Riemann spaces
will play an important role in this paper, and therefore we give a proof of this
fact below. The considerations in this subsection are local, and we work in local

Sobolev spaces, denoted by W k,p
loc . By definition, f ∈ W k,p

loc if for each compact

domain U ⊂ M , f ∈ W k,p(U). For 1 < p < ∞, let q be the dual exponent of p,

such that 1/p+ 1/q = 1. For non-negative integers k, we define W−k,q
loc as the dual

space to W k,p
loc . Then ∂αf ∈W−k,p

loc if f ∈ Lp
loc, where k = |α|.

We make note of the following product estimates. Suppose that p > n. If
u ∈ W 2,p

loc , v ∈ W 1,q
loc , then uv ∈ W 1,q

loc . To see this, differentiate the product and

use Sobolev imbedding. Further, if u ∈ W 2,p
loc , w ∈ W−1,p

loc , then uw ∈ W−1,p
loc . We

estimate the product uw as follows. Let v ∈ W 1,q
loc and consider for any domain U

with compact closure,
∫

U
vuw . Since vu ∈ W 1,q

loc , by the above mentioned estimate,

this is well defined. But v ∈W 1,q
loc was arbitrary, and it follows that uw ∈W−1,p

loc .

Lemma 2.1 (Bianchi identities). Consider a Riemann manifold (M,hij) of di-

mension n, with metric hij ∈ W 2,p
loc , p > n. Then the first Bianchi identity holds

for Rijkl. Further, the second Bianchi identity

∇[mRij]kl = 0

and the contracted second Bianchi identity

∇iRij −
1

2
∇jR = 0

are valid in the sense of distributions.

Proof. The first two statements are clear from the product estimates and the defi-
nition of ∇ and Rijkl . It is most convenient to prove the Bianchi identity using the
Cartan formalism. Let θ be an ON coframe. The structure equations are

dθ + ω ∧ θ = 0

dω + ω ∧ ω = Ω

Assuming hij ∈ W 2,p
loc we have ω ∈W 1,p

loc and Ω ∈ Lp
loc.

The Bianchi identity is the statement dωdωdω = 0, where dω is the covariant
exterior derivative. Recall that on a section of a tensor bundle, dωdωs = (dω +
1
2 [ω ∧ ω])s = Ωs and on a so(n)-valued tensor, such as Ω, dωH = dH + [ω ∧ H ].
Evaluating dωdωdω gives

dωΩ = dΩ + [ω ∧ Ω]

= d2ω +
1

2
d[ω ∧ ω] + [ω ∧ Ω]

Now, d2 = 0 on distributions. Further, expanding the other terms in the right hand
side gives products of elements of W 1,p

loc and Lp
loc. Therefore the standard algebraic

identities hold to show that dωΩ = 0 in the sense of distributions. This is equivalent
to the statement that ∇[mR

j
kl]i = 0 in the sense of distributions. Contracting this

identity twice gives by the standard argument (making use of the product estimates
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stated above, and the fact that ∇mRkli
j ∈ W−1,p

loc , to justify the contraction), the
identity

∇iRij −
1

2
∇jR = 0

which holds in the sense of distributions. �

For a domain Ω with boundary ∂Ω, let χΩ denote the characteristic function
of Ω, and tr∂Ω the trace to the boundary. The following Lemma characterizes the
divergence free tensors supported on a domain.

Lemma 2.2. Let (M,hij) be a Riemann manifold of dimension n with metric of

class W 2,p
loc , p > n. Let Ω be a bounded domain compactly contained in M . Assume

that Ω has C1 boundary ∂Ω, and let Tij be a symmetric tensor of class W 1,p
loc . Then

∇i(TijχΩ) = (∇iTij)χΩ ∈ Lp

if and only if the zero traction condition

(tr∂ΩTij)n
j = 0

holds, where nj denotes the normal of ∂Ω. In particular, the identity

∇i(TijχΩ) = 0

holds in the sense of distributions, if and only if (∇iTij)χΩ = 0 and the zero traction
condition holds.

Proof. Let Y i ∈ C∞
0 . Then we have
∫

M

Y j∇i(TijχΩ) = −
∫

M

∇iY jTij

= −
∫

Ω

∇iY jT ij

=

∫

Ω

Y j∇iTij +

∫

∂Ω

Y jTijn
i

where ni is the outward normal of ∂Ω. This implies that with 1/p+ 1/q = 1, the
inequality

|
∫

M

Y j∇i(TijχΩ)| ≤ ||Y ||Lq ||(∇iTij)χΩ||Lp

holds if and only if (tr∂ΩT
ij)nj = 0. This proves the Lemma. �

3. The field equations for a static, self-gravitating elastic body

We first consider a variational formulation of a self-gravitating elastic body in a
3+1 dimensional spacetime (M, gαβ) and then specialize this to the static case. The
body B is a 3-manifold, possibly with boundary. We use coordinates XA on B, and
xα on spacetime. In the Eulerian formulation of elasticity, the body is described by
configurations f : M → B. The total Lagrangian density for the Einstein-matter
system under consideration is, setting the speed of light c = 1 for convenience,

L = − 1

16πG

√−gRg +
√−gρ

where ρ = ρ(f, ∂f, g) is the energy density of the materical in its own rest frame.
General covariance implies that ρ is of the form ρ = ρ(fA, γAB) where γAB =
fA

,αf
B

,βg
αβ, where fA

,α = ∂αf
A. See [17, 6] for discussion and background.
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We now specialize to the static case. Let M = R×M , where the space manifold
M is diffeomorphic to Eucidean 3-space, M ∼= R3

S . Further, we take the body B
to be a bounded open domain in Eucliden 3-space, B ⊂ R3

B. We refer to R3
B as

the extended body, and will use coordinate XA also on R3
B. The body B will be

assumed to have smooth boundary ∂B, and the closure B ∪ ∂B will be denoted by
B̄. Letting (xα) = (t, xi) where xi are coordinates on M , we can write the static
spacetime metric in the form

gαβdx
αdxβ = −e2Udt2 + e−2Uhijdx

idxj (3.1)

where U, hij depend only on xi. Further, the configurations f : M → B are assumed
to depend only on xi. Assuming that a volume form VABC , on B is given, we may
introduce the particle number density n by

fA
,i(x)f

B
,j(x)f

C
,k(x)VABC(f(x)) = n(x) ǫijk(x) (3.2)

where ǫijk is the volume element of hij . We assume the configurations f are orien-
tation preserving in the sense that n is positive on f−1(B).

Let

HAB = fA
,if

B
,jh

ij (3.3)

so that γAB = e2UHAB. Note that equation (3.2) implies

6n2 = HAA′

HBB′

HCC′

VABCVA′B′C′

The Lagrangian density L is in terms of these variables, modulo a total divergence,

L = − 1

16πG

√
h(R − 2|∇U |2) + eUnǫ

√
h (3.4)

Here, R is the scalar curvature of hij , |∇U |2 = hij∇iU∇jU , and the relativistic
stored energy function ǫ, defined by ρ = nǫ, is of the form ǫ = ǫ(fA, e2UHAB),
where ǫ is a smooth function of its arguments. In particular, by the chain rule, we
have ∂ǫ/∂HAB = e2U∂ǫ/∂γAB.

Suppose that a non-relativistic stored energy function w(fA,KAB) is given, for
example one suggested by experiment, where KAB is the non-relativistic analogue
of HAB. A relativistic stored energy function ǫ corresponding to w can be defined
as a sum the specific rest mass ǫ̊ and the relativistic analogue w(fA, e2UHAB) of
the stored energy function. The specific rest mass is defined such that ǫ̊VABC is the
rest mass distribution of the material in its natural state. It can be shown that if
the dependence on the light speed c taken properly into account, the field equations
tend to those of the corresponding Newtonian model when we let c ր ∞. See [6]
for details.

3.1. Field equations in Eulerian form. In order to write the field equations,
we introduce the stress tensor σ. We will need the form of the stress tensor on the
body and in space. These are given by

σAB = −2
∂ǫ

∂HAB
, σij = nfA

,if
B

,jσAB , σi
A = fB

,iσBCH
CA (3.5)

It is important to note that the elastic quantities such as HAB, σij , viewed as
functions on space, are only defined on f−1(B). The Euler-Lagrange equations
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resulting from the Lagrangian (3.4) are

∇j(e
Uσi

j) = eU (nǫ− σl
l)∇iU in f−1(B), σi

jnj |f−1(∂B) = 0 (3.6a)

∆hU = 4πGeU (nǫ− σl
l)χf−1(B) in R3

S (3.6b)

Gij = 8πG(Θij − eUσij χf−1(B)) in R3
S (3.6c)

where

Θij =
1

4πG
[∇iU∇jU − 1

2
hij |∇U |2]. (3.7)

The system (3.6) is equivalent to the 4-dimensional Einstein equations

Gµν = 8πGTµν , (3.8)

where Gµν is the Einstein tensor of the static Lorentz metric given by (3.1) on
R ×M , and

Tµνdx
µdxν = eU [e2Un ǫ (uµdx

µ)2 − σij dx
idxj ] , uµ∂µ = e−U∂t (3.9)

The equations (3.6b,3.6c) together imply the elasticity equation (3.6a). The
reason is that the contracted Bianchi identity for Gij , ∇iGij = 0, implies that the
right hand side of (3.6c) has vanishing divergence, and in particular the divergence
of the compactly supported term eUσijχf−1(B) must be well defined. By Lemma
2.2 this implies that the zero traction boundary condition in equation (3.6a) holds,
and hence by equations (3.6b) and (3.7), equation (3.6a) follows.

Let δ̂ be a fixed background metric on M , which we will take to be Euclidean,

and let Γ̂i
jk be the Christoffel symbol of δ̂. Then, with

V i = hjk(Γi
jk − Γ̂i

jk), (3.10)

−V is the tension field of the identity map (M,hij) → (M, δ̂), and we have the
identity

Rij = −1

2
∆hhij + ∇(iVj) +Qij(h, ∂h), (3.11)

where ∆hhij is the scalar Laplacian defined with respect to hij , acting on the
components of hij and Qij is quadratic in ∂h. We use the notation t(ij) = 1

2 (tij+tji)
for the symmetrization of a tensor. In particular, hij 7→ Rij−∇(iVj) is a quasilinear
elliptic operator, while hij 7→ Rij fails to be elliptic. This failure is essentially due
to the covariance of Rij . It follows that also the system (3.6) fails to be elliptic. In
order to construct solutions to (3.6), we will replace equation (3.6c) by the reduced
system which results from replacing Rij by Rij − ∇(iVj). The modified system
which we will consider is of the form

− 1

2
∆hhij +Qij(h, ∂h) = 2∇iU∇jU − 8πGeU (σij − hij σl

l)χf−1(B) (3.12)

3.2. Field equations in material form. In the Eulerian formulation above, the
elasticity equation (3.6a) is a nonlinear system with Neumann type boundary con-
ditions on the domain f−1(B) which depends on the unknown configuration f . We
will avoid dealing directly with this “free boundary” aspect of the system (3.6)
by passing to the material, or Lagrangian form of the system. In this picture the
configurations f : M → B are replaced by deformations, i.e maps φ : B → M
satisfying φ = f−1 on B. Recall that the body B is a bounded open domain in RB,
the extended body, and that B is assumed to have a smooth boundary ∂B. We will
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assume throughout the rest of this paper that B is connected. See remark 4.1 for
discussion on this point.

We assume given a diffeomorphism i : R3
B → R3

S , which is an isometry, i∗δ̂ = δB.

In Cartesian coordinate systems XA on R3
B and xi on R3

S where δB and δ̂ have
components δAB and δij respectively, i can be assumed to have the form ii(X) =
δi
AX

A, so that ∂Aii = δi
A. Since B has smooth boundary, functions on B can

be extended to the whole space, and in particular, given φ, there is an extension

φ̂ : R3
B → R3

S , depending smoothly on φ, such that φ̂(X) = i(X) for X outside
some large ball.

In the material picture, the dependent variables f, U, hij are replaced by the

fields φ, Ū , hij which we now introduce. As mentioned above, φ is assumed to be

a diffeomorphism B → φ(B) ⊂ R3
S , and the extension φ̂ of φ, which depends real

analytically on φ, is used to define the fields Ū = U ◦ φ̂, a function on R3
B, and

hij = hij◦φ̂, a metric on R3
B. We will use the same symbols for these fields restricted

to B.

Remark 3.1. It is important to note that hij 6= φ̂∗hij , since we are only pulling
back the components of hij in the coordinate system (xi), not the tensor itself. In

particular, hij does not transform as a tensor and is more propertly viewed as a
collection of scalars. See appendix A for discussion.

The equation (3.2) defining n can be written in the form f∗V = nµh. where µh

is the volume element of h. Defining J = n−1, we have φ∗µh = JV . The Piola
transform of σi

j can now be written in the form

σ̄i
A = J(fA

,jσi
j) ◦ φ

With this notation we have in particular the relation ∇Aσ̄i
A = J(∇iσi

j) ◦ φ. To
derive the material version of (3.6a) one may use this relation directly, or proceed
by first pulling back the matter Lagrangian to B and then applying the variational
principle, see [8]. One finds

∇A(eŪ σ̄j
A) = eŪ [ǭ− σ̄l

l

n̄
] ∂iU in B, σ̄i

AnA|∂B = 0 (3.13)

Here ∇A(eŪ σ̄i
A) is defined in terms of the volume element V and does not involve

a choice of metric on B. We have

∇A(eŪ σ̄j
A) =

1

V
∂A(V eŪ σ̄j

A) − eŪφj
,AΓk

ij σ̄k
A

The bars in Eq.(3.13) correspond to the convention that fA
,i be replaced by ψA

i

defined as a functional of φ by

ψA
i(X)φ̂i

,B(X) = δA
B (3.14)

and HAB be changed into

H̄AB = ψA
iψ

B
jhij , (3.15)

thus H̄AB is the inverse of φ̂∗hij . Note ψA
i is defined on R3

B. With ǭ = ǭ(X, e2ŪH̄AB)
and H̄AB understood in this sense, we have the identity

σ̄i
A =

∂ǭ

∂φi
,A
. (3.16)
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In particular, σ̄i
A = ψB

iσ̄BCH̄
CA, and hence (3.13) is a second order equation for

φ. For barred quantities the corresponding rule for bars of derivatives gives for U

∂iU = ψA
i ∂AU (3.17)

For equations (3.6b) and (3.12) we simply replace each term by its barred version,
i.e.

∆hU = 4πGeŪ (n̄ǭ− σ̄l
l)χB in R3

B (3.18)

Further, the covariance of the Laplacian implies ∆hU = (∆hU) ◦ φ̂ = ∆bφ∗h(U ◦ φ̂),

so that in this expression, the pullback φ̂∗h appears. This tensor is given by the

inverse of H̄AB. It follows that ∆hU involves second derivatives of φ̂. An analogous
remark applies to

− 1

2
∆hhij +Qij(h, ∂h) = 2(∇iU)(∇jU) − 8πGeŪ (σ̄ij − hij σ̄l

l)χB. (3.19)

3.3. Constitutive conditions. We shall need assume the existence of a relaxed
reference state for the elastic body under consideration. Further, the stored energy
function ǫ must be such that the linearized elasticity operator is elliptic. In fact, we
shall assume the pointwise stability condition. The constitutive conditions for ǫ are
formulated as follows. There should exist a Euclidean metric δB = δAB dX

AdXB

on B (we will use the same symbol for this metric extended to R3
B) such that

ǫ̊(X) = ǫ|(U=0,H=δB) ≥ C,

(
∂ǫ

∂HAB

)
|(U=0,H=δB) = 0 in B (3.20)

and

L̊ABCD NABNCD ≥ C′(δCAδBD + δCBδAD)NABNCD in B, (3.21)

where

L̊ABCD(X) :=

(
∂2ǫ

∂HAB∂HCD

)
|(U=0,H=δB) . (3.22)

and C, C′ are positive constants. The condition (3.21) is just the pointwise stability
condition (2.1) discussed in section 2.2. The quantity ǫ̊ appearing in (3.20) is the
rest mass term in the relativistic stored energy function, as discussed above. For
physical reasons, and in fact for hyperbolicity of the time dependent theory, it is
necessary to assume that C is positive. However, for the purposes of the present
paper, this condition could be dropped. We shall assume, for simplicity, that VABC

is the volume form associated with δB (i.e. that V123 = 1 in Euclidean coordinates),

so that n
√
h = det(∂f).

4. Analytical setting

We will use the implicit function theorem to construct, for small values of New-
ton’s constant G, static self-gravitating elastic bodies near the reference state de-
scribed in section 3.3. We will use the field equations in the material form given by
(3.13), (3.18) and (3.19).

We will now introduce the analytical setting where this work will be carried out.
Fix a weight δ ∈ (−1, 1/2). This choice of δ determines the weighted Sobolev spaces
which will be used in the implicit function theorem argument below. The range of
weights for which the isomorphism property for ∆ holds is (−1, 0) but we shall need
δ ∈ (−1, 1/2) later on. Further, we fix p > 3 to be used in setting up the function
spaces which will appear in our argument. The body B is a bounded open domain
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in RB, the extended body, with smooth boundary ∂B. Under these conditions, the
trace to the boundary tr∂B is a continuous linear map W 1,p(B) → B1−1/p,p(∂B),

and there is a bounded, linear extension operator E : W 2,p(B) → W 2,p
loc (R3

B), see
the discussion in section 2.1 or [1]. The spaces which will be used in the implicit

function theorem argument are B1 = W 2,p(B)×W 2,p
δ ×E2,p

δ , and let B2 = [Lp(B)×
B1−1/p,p(∂B)]×Lp

δ−2 ×Lp
δ−2. Thus, B1 is a Banach manifold, and B2 is a Banach

space.
The residuals of equations (3.13), (3.18) and (3.19) define a map F : R ×B1 →

B2, F = F(G,Z), where we use Z = (φ, Ū , hij) to denote a general element of B1.
Thus, F has components F = (Fφ,FU ,Fh), corresponding to the components of
B2, given by

Fφ =

(
∇A(eŪ σ̄j

A) − eŪ [ǭ− σ̄l
l

n̄
] ∂iU, tr∂B(σ̄i

A)nA

)
(4.1a)

FU = ∆hU − 4πGeŪ (n̄ǭ− σ̄l
l)χB (4.1b)

Fh = −1

2
∆hhij +Qij(h, ∂h) − 2∇iU∇jU + 8πGeŪ (σ̄ij − hij σ̄l

l)χB (4.1c)

Recall from the discussion in section 3.2 that the extension φ̂ is needed in the
definition of F . The proof of the following Lemma is a straightforward construction
involving the use of the extension operator E and a cutoff function, and is left to
the reader.

Lemma 4.1. Fix some X0 ∈ B. There are constants µ > 0, R such that for each

φ : B → R3
S , ||φ − i||W 2,p

B

≤ µ, there is an extension φ̂ : R3
B → R3

S , which depends

real analytically on φ. The extension φ̂ can be chosen such that the map φ 7→ φ̂ is

given by a continuous linear map from W 2,p(B) to W 2,p(BR(X0)), φ̂(X) = i(X)

for X ∈ R3
B \BR(X0), and φ̂−1 ∈W 2,p

loc (R3
S).

The equation to be solved is F(G,Z) = 0. The material form of the reference
state is given by

Z0 = (i, 0, δ̂ij ◦ i) ∈ B1.

The map F defined by (4.1) is easily verified to satisfy F(0, Z0) = 0 and to map
B1 → B2 locally near the reference state Z0.

4.1. Differentiability of F . In order to apply the implicit function theorem, we
must verify that F is C1 as a map B1 → B2, in the arguments (G,Z), Z =

(φ, Ū , hij), near (0, Z0). In fact, F is real analytic if the stored energy function ǫ
is real analytic) near Z0. It is clear the dependence on G is smooth. We will freely
make use of the standard fact that if f is a smooth function, and u ∈ W 1,p(B),
p > 3, then u 7→ f(u) is a smooth mapping W 1,p(B) → W 1,p(B), as well as
the corresponding statement which holds for weighted Sobolev spaces. The map
u 7→ f(u) is sometimes called a Nemytskii operator. We consider the dependence
on Z for each term separately.

It is straightforward to see that ψA
i depends smoothly on φ. This means that

in view of (3.16) and the smoothness of the stored energy function, for Fφ, we note
that σ̄i

A depends smoothly on Z. Expanding the definition of Fφ it is clear this
depends smoothly on Z.

Next consider FU . Note that ∆hU is the covariant Laplacian in the metric H̄AB,
where H̄AB is the inverse of H̄AB given by (3.15), and thus ∆hU depends smoothly
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on Z. Using the fact that σ̄i
j = n̄σ̄i

Aφj
,A, the lower order terms in FU are seen to

be smooth in Z
Finally, we consider Fh. The discussion above of ∆hU applies also to ∆hhij .

The quadratic term Qij(h, ∂h) is evaluated by replacing each occurrence of hij by

hij and ∂khij by

ψA
k∂Ahij

In view of the regularity assumptions we find that Qij(h, ∂h) is smooth in Z. It is
straighforward to analyze the remaining terms in Fh in the same manner. We have
now proved

Lemma 4.2. The map F : B1 → B2 is C1 near (0, Z0).

4.2. The Frechet derivative D2F(0, Z0). Next we calculate the Frechet deriv-
ative D2F(0, Z0) and consider its properties. As we shall see, this derivative is
not an isomorphism TZ0

B1 → B2, and therefore it will be necessary to modify the
system of equations by applying a projection before applying the implicit function
theorem.

We will denote by ψ, v, k the infinitesimal variations of the fields φ, Ū , hij . Using
the notation of section 3.3, let

S̊ A B
i j (X) = δAEδBF δC

iδ
D

jL̊CEDF (X).

The tensor S̊ A B
i j corresponds to the tensor Ai

j
k

l of section 2.2. A calculation
shows

Dφσ̄
A

i (0, Z0).ψ = S̊ A B
i j ∂Bψ

j

DŪ σ̄
A

i (0, Z0).v = 2S̊i
A

j
Bδj

Bv

Dh̄σ̄
A

i (0, Z0).k = S̊i
A

j
Bδlmδn

Bkmn

Let ξi be a Killing field in the reference metric δ̂ij , in Euclidean coordinates ξi(x) =

αi + βi
jx

j , with αi, βi
j constants, βi

j = −βj
i, and define ξi(X) = ξi(i(X)). Then

we have ∂Aξ
i = βi

kδ
k
A, and hence due to the antisymmetry of βi

k,

∂Aξ
iS̊i

A
j
B ≡ 0 (4.2)

Let now δσ̄ A
i denote any combination of the Frechet derivatives of σ̄ A

i , evaluated
at (0, Z0). Assuming we use a coordinate system XA where V123 = 1, we have due
to (4.2), and Stokes’ theorem, the important relation

0 =

∫

B

ξi∂A(δσ A
i ) −

∫

∂B

ξi(δσ A
i )nA,

where nA is the outward normal. This can be interpreted as saying that due to
the natural boundary conditions, the linearized elasticity operator is automatically
equilibrated at the reference configuration (0, Z0). It follows from the constitutive
conditions stated in section 3.3, that ψ 7→ DφFφ(0, Z0) is elliptic, cf. the discussion
in section 2.2. Therefore, the operator

DφFφ(0, Z0) : W 2,p(B) → [Lp(B) ×B1−1/p,p(∂B)]

is Fredholm with kernel consisting of the Killing fields on B, and cokernel (in the
sense of the natural L2 pairing) consisting of the Killing fields on i(B), as above.
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The only nonzero contribution from the Frechet derivative of the first order term

−eŪ [ǭ− σ̄l
l

n̄
] ∂iU

in Fφ is

DŪ

(
−eŪ [ǭ− σ̄l

l

n̄
] ∂iU

) ∣∣∣∣
(0,Z0)

.v = −ǫ̊∂iv

This is a lower order term which cannot affect the Fredholm property of D2F , but
it should be noted that it is not a priori equilibrated, and therefore in general does
not take values in the range of DφFφ. By the above discussion we have

D2Fφ(0, Z0) =
(
∂A(δσ̄i

A) − ǫ̊∂iv, tr∂B(δσ̄i
A)nA

)

Considering the other components of D2F , the only nonzero terms are the diagonal
entries DŪFU and Dh̄Fh. These are given by

DŪFU .v = ∆v

and

(Dh̄Fh.k)ij = −1

2
∆kij

where ∆ = δAB∂A∂B is the Laplacian in the Euclidean background metric on R3
B.

The operator ∆ is an isomorphism W 2,p
δ → Lp

δ−2 for δ ∈ (−1, 0), cf. [3].
It follows from the above discussion that the Frechet derivative D2F(0, Z0) can

be represented as the matrix of operators



DφFφ DUFφ DhFφ

0 ∆ 0
0 0 − 1

2∆





(where the entries are evaluated at (0, Z0)). In particular, the matrix is up-
per triangular, and the diagonal entries are isomorphisms, with the exception for
DφFφ(0, Z0) which is Fredholm with nontrivial kernel and cokernel, cf. the dis-
cussion above. The off diagonal terms are bounded operators. Therefore, if we
compose F with a projection which in the first component maps onto the range
of DφFφ(0, Z0), and restrict the domain of definition of F to a subspace trans-
verse to its kernel, the resulting map will have Frechet derivative at (0, Z0) which
is an isomorphism, which will allow us to apply the implicit function theorem. The
projection which will be used is introduced in the next section.

4.3. Projection. Introduce the projection operator PB : B2 → B2, which acts as
the identity in the second and third components of B2 and is defined in the first
component of B2 as the unique projection along the cokernel of DφFφ(0, Z0) onto
the range of DφFφ(0, Z0), which leaves the boundary data in the first component
of B2 unchanged. We use the the label B to indicate that PB operates on fields on
the body and the extended body. We shall later need to transport the projection
operator to fields on R3

S .
In order to give the explicit form of the action of PB in the first component of B2,

let (bi, τi) denote pairs of elements in W 2,p(B) ×W 1−1/p,p(∂B). By a slight abuse
of notation, denote this operator too by PB. We require that PB(bi, τi) = (b′i, τi),
satisfying ∫

B

ξib′i =

∫

∂B

ξiτi (4.3)
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for all Killing fields ξi. Pairs (b′i, τi) satisfying this condition will be called equili-
brated. Since PB is a projection along the cokernel, b′i must be of the form

b′i = bi − ηiχB

where ηi = αi + βijX
j, with αi, βij constants satisfying βij = −βji. We remark

that the bilinear pairing (ξ, η) 7→
∫
B ξ

iηi is nondegenerate, it is simply the L2(B)
inner product on the space of Killing fields. Further, the map

ξ 7→
∫

B

ξibi −
∫

∂B

ξiτi

defines a linear functional on the space of killing fields, for each pair (bi, τi). There-
fore, there is a unique ηi of the form given above such that b′i = bi − ηiχB satisfies
(4.3) for all Killing fields ξi.

4.4. Existence of solutions to the projected system. We are now in a position
to apply the implicit function theorem to prove

Proposition 4.3. Let F : B1 → B2 be map defined by (4.1) and let PB be defined
as in section 4.3. Then, for sufficiently small values of Newton’s constant G, there
is a solution Z = Z(G), where Z = (φ, Ū , hij), to the reduced, projected equation
for self-gravitating elastostatics given by

PBF(G,Z) = 0. (4.4)

In particular, for any ǫ > 0, there is a G > 0, such that Z(G) satisfies the inequality

||φ− i||W 2,p(B) + ||hij − δij ||W 2,p
δ

+ ||Ū ||W 2,p
δ

< ǫ. (4.5)

Proof. Let Y denote the range of PB and let X be the subspace of TZ0
B1, which has

the 1-jet of the first component equal to the 1-jet of i at some point X0 ∈ B. We
have already shown that F : R ×B1 → B2 is C1 and it follows from the definition
of PB that PBF : R × X → Y is C1. Since F(0, Z0) = 0, the Frechet derivative of
PBF(G,Z) with respect to Z, evaluated at (0, Z0) is PBD2F(0, Z0) which we will
denote by A. It is clear from the discussion above that A is Fredholm with trivial
cokernel. Therefore all that remains to be checked is that kerA is trivial. To see
this, note that kerDφFφ consists of Killing fields, by the discussion in section 2.2.
Prescribing the 1-jet of a Killing field at one point determines the Killing field in
all of B. This implies that A : X → Y has trivial kernel, and it is therefore an
isomorphism. Thus, the implicit function theorem for Banach spaces [18] applies to
prove the existence of solutions to the equation PBF(G,Z) = 0, for small values of
G. Since Z(G) depends continuously on G in B2, the inequality (4.5) follows. �

Remark 4.1. Up to this stage, the connectedness of the body B has not played at
role in our arguments. In particular, in the case of a body with N > 1 connected
components, there is a collection of N elastic fields φ and an extension common to
all of them. The equilibration argument of section 5 below fails, however, for the
simple reason that we have one equation, namely (5.15), but N elastic fields.

In the next section, we study the solutions provided by Proposition 4.3 and prove
that they in fact represent solutions of the full system (3.6).
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5. Equilibration

Let (φ, Ū , hij) ∈ B1 be a solution to the reduced, projected system (4.4) as in

Proposition 4.3, and let φ̂ be the extension of φ provided by Lemma 4.1. Define U ,

hij by U = Ū ◦ φ̂−1 and hij = hij ◦ φ̂−1. Then U and hij are elements of W 2,p
δ (R3

S)

and E2,p
δ (R3

S), respectively. Further, we set f = φ̂−1. Then f ∈ W 2,p
loc and f = i−1

outside a large ball.

Let φ̂ be the extension of φ provided by Lemma 4.1, and let U, hij be defined

by U = Ū ◦ φ̂−1, hij = hij ◦ φ̂−1. The following corollary to Proposition 4.3 is
immediate in view of the composition properties of Sobolev functions.

Corollary 5.1. For any ǫ > 0, there is a G > 0 such that the inequality

||φ− i||W 2,p(B) + ||hij − δij ||W 2,p
δ

+ ||U ||W 2,p
δ

< ǫ. (5.1)

holds.

5.1. Eulerian form of the projected system. Next we introduce the projec-
tion operator in space which corresponds to PB. From this point on, we are only
interested in the action of PB in the first component of B1. We will be dealing with
solutions to the projected system PBF = 0, in particular this means that the bound-
ary condition σ̄i

AnA

∣∣
∂B

= 0 will be satisfied, due to the nature of the projection

operator defined in section 4.3. Therefore it is convenient to write PBb = PB(b, 0).
Recall the change of variables formula

∫

B

u(X)dV (X) =

∫

f−1(B)

u ◦ f(x)n(x)dµh(x)

which results from the definition of n in equation (3.2). This implies
∫

B

ξi(X)bi(X)dV (X) =

∫

f−1(B)

ξi ◦ f(x)n(x)bi ◦ f(x)dµh

Letting bi = ∇A(eŪ σ̄j
A) − eŪ (ǭ − σ̄l

l

n̄ ) ∂jU , we have, using the properties of the
Piola transform,

nbi ◦ f = ∇j(e
Uσi

j) − eU (nǫ− σl
l)∂iU

Based on this, we define the space version Pf−1(B) of the projection PB by

Pf−1(B)(n · (b ◦ f)) = n(PBb) ◦ f
PB is a projection by construction, and it follows from the definition of P that
it also is a projection. Due to this definition, the equation PBFφ = 0 implies
Pf−1(B)(nFφ ◦ f) = 0. This relation is written more explicitely as equation (5.2a)
below. Summarizing, the triple (φ,U, hij) we have constructed satisfies the following
set of equations,

Pf−1(B)

(
∇j(e

Uσi
j) − eU (nǫ− σl

l)∂iU
)

= 0 in f−1(B), (5.2a)

σi
jnj|∂f−1(B) = 0 in ∂f−1(B) (5.2b)

∆hU = 4πGeU (nǫ− σl
l)χf−1(B) inR3

S (5.2c)

Gij − (∇(iVj) −
1

2
hij∇lV

l) = 8πG(Θij − eUσij χf−1(B)) in R3
S

(5.2d)
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Recall that equation (5.2d) is equivalent to the space version of equation (3.19),

− 1

2
∆hhij +Qij(h, ∂h) = 2∇iU∇jU − 8πGeU (σij − hijσl

l)χf−1(B). (5.3)

Since the body is bounded, the right hand sides of equation (5.2c) and the contri-
bution from the stress in equation (5.3) have compact support, and hence U, hij

satisfy the reduced vacuum static Einstein equations near spatial infinity. This
implies that we can get more information about their asymptotic behavior than is
a priori given from the implicit function theorem argument.

Lemma 5.2. U, hij are of the form

U =
mU

r
+ U(2) (5.4)

hij = δij +
γij

r
+ h(2) ij (5.5)

for constants mU , γij, with h(2) ij , U(2) ∈ W 2,p
2δ . Further, for sufficiently small G,

we have the estimates

||U(2)||W 2,p
2δ

+ |mU | ≤ C(||hij − δij ||W 2,p
δ

+ ||φ− i||W 2,p(B)) (5.6)

||h(2) ij ||W 2,p
2δ

+ ||γ|| ≤ C(||hij − δij ||W 2,p
δ

+ ||φ− i||W 2,p(B)) (5.7)

where ||γ|| = (
∑

i,j γ
2
ij)

1/2.

Remark 5.1. If hij , U were solutions of the full static vacuum Einstein equations
near infinity, with the same falloff conditions, one could conclude by that the O(1/r)
term in hij vanishes, following the argument in [15], see also [4]. However, in our
situation U, hij satisfies the reduced static vacuum Einstein equations near infinity
and this argument does not apply directly.

Proof. By construction, we have hij − δij ∈ W 2,p
δ and U ∈ W 2,p

δ , with δ ∈
(−1,−1/2). This, together with equation (5.2c) implies using the product esti-
mates (2.9) to expand ∆hU , that

∆eU = f ∈ Lp
2δ−2

with

||f ||Lp
2δ−2

≤ C(||hij − δij ||W 2,p
δ

+ ||nǫ− σl
l||Lp(f−1(B))

≤ C(||hij − δij ||W 2,p
δ

+ ||φ− i||W 2,p(B)),

where in the last step we estimated nǫ− σl
l in terms of hij , φ− i.

We follow the proof of [3, Theorem 17], see also the discussion in section 2.3.
Let u satisfy

∆eu = f ∈ Lp
2δ−2

By the isomorphism property of ∆e : W 2,p
δ → Lp

δ−2, and the inclusion Lp
2δ−2 ⊂

Lp
δ−2, we have

||u||W 2,p
δ

≤ C||f ||Lp
2δ−2

Fix some large radius R, and a point x0 ∈ R3. Let BR = BR(x0), and let ER =
R3 − BR. By assumption, δ ∈ (−1,−1/2), so that −2 < 2δ < −1. In particular

2δ is nonexceptional, and hence ∆e : W 2,p
2δ → Lp

2δ−2 is Fredholm. Hence there is a

v ∈W 2,p
2δ such that

∆e(u− v) = 0 in ER
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It follows that u− v satisfies

u− v =
m

r
+O(1/r2) in ER

for some constant m. Here the term O(1/r2) comes from the expansion of harmonic

functions, and is in W 2,p
2δ . Let ζ be a cutoff function such that ζ = 1 in E2R, ζ = 0

in BR(x0) and with |∂ζ| ≤ C/R. Set

w = u− m

r
ζ ∈W 2,p

2δ

Then we have w = u in BR(x0). Further, we have

∆ew = f − ∆e(
m

r
ζ)

where ∆e(
m
r ζ) has compact support and we can estimate

||∆e(
m

r
ζ)||L2

2δ−2
≤ C|m|

Since

u = Γ ⋆ f

where Γ = 1/r is the fundamental solution of ∆e we have

|m| ≤ C||f ||L1(R3) ≤ C||f ||Lp
2δ−2

Here we used the inclusion Lp
2δ−2 ⊂ L1

2δ−2 ⊂ L1
−3, and the fact that L1 = L1

−3 in 3
dimensions. Thus we have

||∆ew||Lp
2δ−2

≤ C||f ||Lp
2δ−2

Using the fact that ker∆e is trivial in W 2,p
2δ together with the Fredholm property,

we now have

||w||W 2,p
2δ

≤ C||f ||Lp
2δ−2

This argument proves (5.4) and (5.6). Applying the same argument to hij shows

hij = δij +
γij

r
+ h(2) ij

with γij is constant and h(2) ij ∈ W 2,p
2δ , and gives an estimate for h(2) ij , γij in terms

of hij − δij , U , and φ− i. This gives (5.7), since we have an estimate for U in terms
of hij − δij , φ− i from (5.6). �

5.2. The tension field. The next three lemmas state the properties of the tension
field V k, defined by (3.10), which we shall need. We may assume Γ̂i

jk = 0. Let the
operator L be defined by

LV k = ∆hV
k +Rk

jV
j

where ∆h, Rij are the covariant Laplacian and the Ricci tensor of hij , respectively.

Lemma 5.3. Assume we are in a Cartesian coordinate system so that δ̂ij = δij
and Γ̂k

ij = 0. Let r = |x| and set θi = xi/r. Let hij, γij be as in (5.5). Suppose

LV ∈ Lp
δ−3, where V is the tension field of h. Then if G is sufficiently small,

V ∈W 2,p
δ−1 and the estimate

||V ||W 2,p
δ−1

≤ C||LV ||Lp
δ−3

(5.8)
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holds. Further, V is of the form

V k = − 1

2r2
(
γk

jθ
j − γm

mθ
k
)

+ V k
(3) (5.9)

where V k
(3) ∈W 2,p

2δ−1, and γi
j = δikγkj.

Proof. The operator L is an elliptic system, which is of diagonal type. Therefore
the results discussed in section 2.3 apply to L. In particular, L is asymptotic to ∆
with rate δ. Thus, L : W 2,p

δ−1 → Lp
δ−3 is Fredholm. It follows from the definition of

V and the assumptions on h that V ∈ W 1,p
δ−1. If LV ∈ Lp

δ−3, then elliptic regularity

gives V ∈ W 2,p
δ−1. For small data L has trivial kernel in this range of spaces, since

L is then a small perturbation of ∆e which has trivial kernel in W 2,p
τ , τ < 0.

By Corollary 5.1, for G sufficiently small, the required condition on L will hold.
Therefore, if G is sufficiently small, an estimate of the form (5.8) holds.

Recall from Lemma 5.2 that

hij = δij +
γij

r
+ h(2) ij

with h(2) ij ∈ W 2,p
2δ . Let

Hk = − 1

2r2
(
γk

jθ
j − γm

mθ
k
)
. (5.10)

Under our assumptions, Γ̂k
ij = 0. From the definition of V k, a calculation shows

V k −Hk ∈ W 1,p
2δ−1,

in particular V k −Hk = o(1/r2δ−1). The operator L is asymptotic to ∆e with rate
δ, see section 2.3 for this notion. It follows by an argument along the lines of the
proof of Lemma 5.2 that

V k = Hk + V k
(3)

with V k
(3) ∈ W 2,p

2δ−1. This completes the proof of the Lemma. �

Let ξ be a Euclidean Killing field of the form ξi(X) = ξi(i(X)) with ξi(x) =
αi + βi

jx
j for αi, βi

j constants such that βi
j = −βj

i.

Lemma 5.4. Let V be as in (5.9). Then the identity
∫
ξi ◦ fLVidµh =

∫
L(ξi ◦ f)Vidµh (5.11)

holds.

Proof. First note that both sides of equation (5.11) are well defined. The integrand
on the left hand side has compact support by equation (5.15). Recall that f equals
the identity map outside of a compact set. We have

L(ξ ◦ f) ∈ Lp
δ−1

and
Vi = O(1/r2)

Therefore the integrand in the right hand side is an element of Lp
δ−3 ⊂ L1. In order

to justify the partial integration, let BR = {|x| ≤ R} and SR = {|x| = R}. Then
(5.11) is equivalent to

lim
R→∞

∫

BR

ξi ◦ fLVidµh = lim
R→∞

∫

BR

L(ξi ◦ f)Vidµh.
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Gauss law applied to the integral over BR gives
∫

BR

ξi ◦ fLVidµh =

∫

BR

L(ξi ◦ f)Vidµh

+

∫

SR

ξi ◦ f∇kV
inkdAh −

∫

SR

∇k(ξi ◦ f)nkVidAh (5.12)

Let θk = xk/r. With the asymptotic behavior of hij from Lemma 5.2 we have
nk = θk+O(1/r) and Γi

jk = O(1/r2). Further, the area element induced on SR from

hij differs from the standard area element of SR by a term of order O(1/R). Recall

that by Lemma 5.3, V k = Hk + V k
(3) with Hk given by (5.10) and V k

(3) ∈ W 2,p
2δ−1.

Since we are interested in the integral over SR in the limit R → ∞, this shows that
the only important terms in the boundary integrals in (5.12) are

∫

SR

βk
ix

i∂lHkθ
ldAR −

∫

SR

βi
kH

iθkdAR (5.13)

We consider the first of these terms. Thus let Z = βk
ix

i∂lHkθ
l, the integrand in

the first boundary integral above. At this point, we will be doing all calculations in
the background metric δij , and therefore it is convenient to lower all indices using
δij and sum over repeated indices. A calculation shows

∂lHk = − 1

2r3
[2γlk − γmmδlk − 3(2γjkθlθj − γmmθlθk)]

This gives using θkθk = 1,

Z = βkixi∂lHkθl = − 1

2r2
βkiθi(−4γjkθj + 2γmmθk)

Note that the second term in the right hand side vanishes due to the fact that
βki = −βik, but not the first. To show this vanishes we proceed as follows. We
have dAR = R2dA where dA is the area element of the unit sphere S, so we can
write

∫
SR
ZdAR = R2

∫
S
ZdA. Recall the identity

∫

S

θkθldA =
4π

3
δkl .

This gives ∫

SR

ZdAR = −2π

3
βki(−4γjkδij + 2γmmδik) = 0

due to the fact that βki = −βik. The integrand in the second term in (5.13) is

− 1

2r2
βik(γijθj − γmmθi)θk

which can be handled using the same method. It follows that

lim
R→∞

(∫

SR

ξi ◦ f∇kV
inkdAh −

∫

SR

∇k(ξi ◦ f)nkVidAh

)
= 0

which completes the proof of the Lemma. �

Lemma 5.5. For sufficiently small G, there is a constant C such that the inequality

|
∫

(ξi ◦ f)LVidµh| ≤ C
(
||hij − δij ||W 2,p

δ
+ ||φ− i||W 2,p(B)

)
|ξ|||V ||W 2,p

δ−1

holds, where for ξi = αi + βi
jx

j, we write |ξ| = |α| + |β|.



24 L. ANDERSSON, R. BEIG, AND B. SCHMIDT

Proof. Using Lemma 5.4 we consider
∫
L(ξi ◦ f)Vidµh

We need to estimate ||L(ξi◦f)Vi||L1 . We expand out L(ξ◦f), dropping the reference
to f for brevity, and writing ⋆ to denote a general contraction

Lξ = h ⋆ ∂2ξ + Γ ⋆ ∂ξ + ∂Γ ⋆ ξ + R ⋆ ξ.

Using the form of hij given in equation (5.5), we have

Γ = O(1/r2) + v, with v ∈ Lp
2δ−1

∂Γ = O(1/r3) + z, with z ∈ Lp
2δ−2

R = O(1/r3) + w, with w ∈ Lp
2δ−2

Further, using the estimates from Lemma 5.2, the coefficients in the O(1/r2) and
O(1/r3) terms can be estimated in terms of |γ|, where γij is the constant metric
in (5.5), and the lower order terms can be estimated in terms of h(2) ij . The term

involving ∂2ξ has compact support and can be estimated in terms of φ− i. Multi-
plying Lξ ◦ f by V , using ξ = O(r) and V ∈ W 2,p

δ−1, we find the result gives terms in

Lp
δ−3 and Lp

3δ−2 coming from the O(1/r2), O(1/r3) terms and the Sobolev terms,

respectively. Since Lp
3δ−2 ⊂ Lp

δ−3 and Lp
δ−3 ⊂ L1, this means that using Lemma

5.2 we have an estimate of the form

||L(ξ ◦ f)V ||L1 ≤ C
(
|γ| + ||h(2) ij ||W 2,p

2δ
+ ||φ− i||W 2,p

B

)
|ξ| ||V ||W 2,p

δ−1

≤ C
(
||hij − δij ||W 2,p

δ
+ ||φ− i||W 2,p(B)

)
|ξ| ||V ||W 2,p

δ−1

This completes the proof. �

We now take, in the sense of distributions, the divergence of equation (5.2d), i.e.
the equation

Gij − (∇(iVj) −
1

2
hij∇lV

l) = 8πG(Θij − eUσij χf−1(B)) , (5.14)

which holds in R3
S . For the first term on the left in equation (5.14) we use the

Bianchi identity from Lemma 2.1 to conclude ∇iGij = 0 in the sense of distribu-
tions. In order to take the divergence of the second term on the left, note that it
follows from the definition of V that V ∈W 1,p

δ−1. The regularity assumptions on hij

imply that the identity

∇j(∇(iVj) −
1

2
hij∇lV

l) = ∆hVi +RijV
j

holds in the sense of distributions. For the first term on the right of (5.14), we use
equation (5.2c). In the second term on the right in (5.14), using that the boundary
condition (5.2b) is satisfied, we apply Lemma 2.2 to get the identity

∇i(Θij − eUσijχf−1(B)) =
[
∇j(e

Uσi
j) − eU (nǫ− σl

l)∂iU
]
χf−1(B)

In view of the projected elastic equation (5.2a), this is equivalent to

∇i(Θij−eUσijχf−1(B)) = (If−1(B)−Pf−1(B))
[
∇j(e

Uσi
j) − eU (nǫ− σl

l)∂iU
]
χf−1(B)

where If−1(B) is the identity operator in the space Lp(f−1(B)). Thus, defining the
operator L by

LVi = ∆hVi +RijV
j ,
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we finally conclude that the equation

LVi = 16πG(If−1(B) − Pf−1(B))
[
∇j(e

Uσi
j) − eU (nǫ− σl

l)∂iU
]
χf−1(B) (5.15)

holds in R3
S .

We observe that equation (5.15) implies that LV is supported in f−1(B). Fur-
ther, in view of the fact that Pf−1(B) is a projection, we have

Pf−1(B)LV = 0. (5.16)

Recall from section 4 that PB was defined in terms of the Killing fields ξi(X) =
ξi(i(X)) with ξi(x) = αi + βi

jx
j for αi, βi

j constants such that βi
j = −βj

i. It
follows from the definition of Pf−1(B), that we have

0 =

∫

R
3
S

(ξi ◦ f(x))Pf−1(B)ziχf−1(B)dµh

for any ξi of the above form and any zi ∈ Lp
loc(R

3
S). Now define the linear mapping

Q : Lp
δ−3(R

3
S) → R6, by setting

Qκ(zi) =

∫

R
3
S

(ξi
(κ) ◦ f)zidµh, κ = 1, . . . , 6

where {ξ(κ)}6
κ=1 forms a basis for the space of Killing fields. We have the estimate

Lemma 5.6. There is a constant, depending on f and hij such that the inequality

||z||Lp(f−1(B)) ≤ C(||Pf−1(B)z||Lp(f−1(B)) + ||Qzχf−1(B)||R6) (5.17)

holds.

Proof. From the definition of Pf−1(B), we have

zχf−1(B) = Pf−1(B)zχf−1(B) + n(ζ ◦ f)χf−1(B)

where ζ is a Killing field, and from the definition of Q, we have

Q(κ)zχf−1(B) =

∫

R
3
S

(ξi
(κ) ◦ f)n(ζ ◦ f)χf−1(B)dµh

=

∫

B

ξi
(κ)ζidV

for a basis of Killing fields {ξ(κ)}6
κ=1. In view of the non-degeneracy of the L2

pairing on the space of Killing fields on B, this means that there is a constant C
such that ||n(ζ ◦ f)||Lp(f−1(B)) ≤ C||Qn(ζ ◦ f)χf−1(B)||R6 . The inequality (5.17)
now follows after an application of the triangle inequality. �

Proposition 5.7. For sufficiently small G, there is a constant C such that the
estimate

||V ||W 2,p
δ−1

≤ C||QLV ||R6 (5.18)

holds.

Proof. Due to the boundedness of B and f−1(B), there is a constant C such that

||zχf−1(B)||Lp
δ−3

≤ C||z||Lp(f−1(B))

Since V solves (5.15), LV is supported in f−1(B) so the above inequality applies to
LV . Now making use of (5.16), the estimate (5.17), together with the estimate (5.8)
from Lemma 5.3, we find that for hij sufficiently close to δij , i.e. for G suffiently
close to 0, the estimate (5.18) holds. �
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5.3. The main theorem. We are now able to prove

Theorem 5.8. For sufficiently small values of G, the solution to the reduced, pro-
jected, system of equations for a static, elastic, self-gravitating body, equations (5.2)
is a solution to the full system (3.6) of equations for a static, elastic, self-gravitating
body.

Proof. Recall the definition of Q. We have

Q(κ)LV =

∫
(ξi

(κ) ◦ f)LVidµh

For small data, i.e. for sufficiently small G, ξ is an approximate Killing field for
hij . Therefore by Lemma 5.5, there is for sufficiently small G a constant C such
that

||QLV ||R6 ≤ C
(
||hij − δij ||W 2,p

δ
+ ||φ− i||W 2,p(B)

)
||V ||W 2,p

δ−1

By (5.18), this implies that after possibly decreasing G, there is a constant C such
that

||V ||W 2,p
δ−1

≤ C
(
||hij − δij ||W 2,p

δ
+ ||φ− i||W 2,p(B)

)
||V ||W 2,p

δ−1

Hence, by Corollary 5.1, for sufficiently small values of G, we have

||V ||W 2,p
δ−1

≤ 1

2
||V ||W 2,p

δ−1

Thus, in fact V = 0. Hence equation (5.2d) implies the full Einstein equation (3.6c).
Further, by (5.15) we have that

(If−1(B) − Pf−1(B))
[
∇j(e

Uσi
j) − eU (nǫ− σl

l)∂iU
]
χf−1(B) = 0

while by equation (5.2a),

Pf−1(B)

(
eU (nǫ− σl

l)∂iU
)

= 0 in f−1(B)

It follows that in fact equation (3.6a) is satisfied, and hence that the solution
(φ,U, hij) to the projected, reduced system, which was constructed using the im-
plicit function theorem, is a solution to the full system (3.6). �

Appendix A.

The way the spatial metric hij is treated in section 4 may seem surprising at
first. We start by reducing the Einstein equation (3.9c) using harmonic gauge, and
then pull back the components of hij in that gauge. Geometrically it might seem

much more natural to start by pulling back the metric itself under φ̂. Doing this
would result in replacing (3.6c) by

ḠAB = 8πG(Θ̄AB − e−Ū σ̄ABχB) in R3
B,

where ḠAB is the Einstein tensor of H̄AB. Furthermore, we have that

Θ̄AB =
1

8πG
[DAŪDBŪ − 1

2
H̄ABH̄

CDDCŪDDŪ ]

and σ̄AB is the extension of σAB . But then the quantity σ̄i
A in equation (3.16)

depends on φ only through ψ̂A
i, since the remaining factors in

σ̄A
i = ψ̂B

iJσ̄BCH̄
AC (A.1)

depend only on H̄AB. Let us now look at the nature of Eq. (3.13), when (φ, Ū , H̄AB)
are used as the basic variables rather than (φ, Ū , h̄ij). There are potentially two
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terms depending on second derivatives of φ. One comes from taking a derivative of

ψ̂A
i in equation (A.1) above. The other comes from writing the Christoffel symbols

of hij entering the left hand side of (3.13) in terms of φ. Remarkably, both these
terms cancel! For the linearization of the residual of equation (3.13) at (φ = i, Ū =
0, H̄AB = δAB) the only surviving term will involve first partial derivatives of H̄AB,
i.e., terms which break diffeomorphism invariance on R3

B. However note that the
very presence of the a priori given domain B (which of course is the reason why this
whole manoeuvre was performed) breaks diffeomorphism invariance. It is thus no
wonder, that, after going over to the material picture in the sense of using the full
pull-back of hij , the elastic equation gives us terms which break diffeomorphism
invariance.
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