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We study in spherical symmetry the conformal compactification for hyperboloidal folia-

tions with nonvanishing constant mean curvature. The conformal factor and the coordi-

nates are chosen such that null infinity is at a fixed radial coordinate location.

Hyperboloidal surfaces in asymptotically flat spacetimes have first been used for

an initial value formulation of the Einstein equations by Friedrich.4 Instead of ap-

proaching spatial infinity as Cauchy surfaces do, they reach null infinity, I , which

makes them suitable for radiation extraction. Contrary to characteristic surfaces,

these spacelike surfaces are as flexible as Cauchy surfaces and they can be used

in numerical calculations with the 3+1 approach based on a hyperboloidal initial

value problem.3,5–7 We want to study the conformal compactification11 of hyper-

boloidal foliations in spherical symmetry. It has been suggested1,2,8 that conformal

compactifications in which I is kept at a fixed spatial coordinate location might

be useful for testing new ideas in numerical calculations. Here we explicitly discuss

the simplest cases, namely the Minkowski and Schwarzschild spacetimes.

The physical line element in spherical symmetry can be written as

g̃ = (−α̃2 + h̃2β̃2) dt2 + 2h̃2β̃ dt dr̃ + h̃2 dr̃2 + r̃2 dσ2. (1)

dσ2 is the standard metric on S2 and the lapse α̃, the shift β̃, and the spatial metric

function h̃ are functions of the coordinates (t, r̃) only. We assume that the metric (1)

admits a regular conformal compactification and that the time coordinate t is such

that t=const. hypersurfaces are hyperboloidal hypersurfaces. We do not compactify

the time direction. The conformal compactification, g = Ω2g̃, can be done such that

Ω2(h̃2dr̃2 + r̃2dσ2) = h2 dr2 + r2 dσ2 (2)

with respect to a compactifying radial coordinate r. Note that we have some freedom

here. One can require for example h = 1 which leads to r being the proper distance,

however, then the radial coordinate transformation can not, in general, be written in

explicit form.10 By keeping h, we have the freedom to prescribe the conformal factor

in terms of a compactifying radial coordinate r and the coordinate tranformation

is explicit. The relation (2) implies for a given conformal factor Ω(r) a coordinate
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transformation r̃ = Ω−1 r so that dr̃ = (Ω − r Ω′)Ω−2 dr. Then the spatial metric

function transforms as h = (Ω − r Ω′)Ω−1h̃. For the regularity of this conformal

compactification, h̃(t, r̃) needs to have a specific asymptotic fall-off behaviour for

r̃ → ∞ on the hyperboloidal surfaces of constant t. A simple choice for the conformal

factor that we will study is Ω = (1− r), which implies h = Ω−1h̃. This is not a good

choice at the origin, but we are interested in the asymptotic region.

A simple example for hyperboloidal foliations are constant mean curvature

(CMC) foliations. We write the line element in Minkowski spacetime with standard

coordinates (t̃, r̃) as η̃ = −dt̃2 + dr̃2 + r̃2 dσ2. We introduce t(t̃, r̃) = t̃ −
√

a2 + r̃2

as a new time coordinate. The constant a ∈ R is related to the constant mean

extrinsic curvature K of the level sets of t(t̃, r̃) by a = 3/K. We use the convention

in which positive K means increasing volume to the future. The sign of K deter-

mines whether the surfaces reach I + or I −. To get a feeling for these surfaces, we

analyse them in the familiar compactification of the Minkowski spacetime given by

the transformation3

t̃(V, U) =
1

2
(tanV + tanU), r̃(V, U) =

1

2
(tanV − tan U).

The subsequent rescaling with the conformal factor Ω = cosV cosU leads to

η = Ω2η̃ = −dUdV +
sin2(V − U)

4
dσ2.

I + is at V = π/2 in these coordinates. Embedding our hyperboloidal surfaces into

the conformally extended Minkowski spacetime leads to

t(V, U) =
1

2
(tanV + tanU) −

√

a2 +
1

4
(tan V − tan U)2.

Writing a series expansion in cotV near I +,

t(V, U) ≈ tan U − a2 cotV − a2 tan U cot2 V + O(cot3 V ), for V → π/2,

we see that the cut at I + depends on the value of t via U(t, V )
∣

∣

I + = arctan t, but

does not depend on the mean extrinsic curvature which determines the angle of the

cut. Fig. 1 shows three foliations in the Penrose diagram of Minkowski spacetime

for the same set of values of t, but different values of K. Null surfaces in a Penrose

diagram have an angle of 45 degrees to the horizontal. As each plotted surface is

spacelike, their angle is smaller. By the choice of the mean extrinsic curvature, we

can control the behaviour of the surfaces in the interior without changing their

asymptotics. For example, by choosing |K| small, we can make the hyperboloidal

surfaces behave, in a certain sense, more similar to Cauchy slices.

In Penrose diagrams of Minkowski and Schwarzschild, the null generators of I +

converge. To avoid the corresponging loss of resolution in numerical calculations,

we would like to fix the radial coordinate location of I +. The Minkowski metric in

the time coordinate t of a CMC-foliation reads

η̃ = −dt2 − 2r̃√
a2 + r̃2

dtdr̃ +
a2

a2 + r̃2
dr̃2 + r̃2 dσ2.
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Fig. 1. CMC-foliations of the Minkowski spacetime for K = 15, 3, 1.5

Conformal compactification, η = Ω2η̃, using (2) with Ω = 1 − r results in

η = −(1 − r)2dt2 − 2r
√

a2(1 − r)2 + r2
dtdr +

a2

a2(1 − r)2 + r2
dr2 + r2dσ2. (3)

For the Schwarzschild spacetime g̃s, the general family of spherically symmetric

constant mean curvature surfaces has been constructed in.9 Conformal compactifi-

cation, gs = Ω2g̃s, with Ω = 1 − r results in

gs = −
(

1 − 2m(1 − r)

r

)

(1−r)2dt2−2
(

C(1 − r)3 − Kr3/3
)

P (r)
dtdr+

r4

P 2(r)
dr2+r2dσ2,

(4)

where m, K, and C are constants and

P (r) :=

(

(

C(1 − r)3 − Kr3/3)
)2

+

(

1 − 2m(1 − r)

r

)

(1 − r)2r4

)
1
2

.

As seen in the examples (3,4), to keep I + at a fixed radial coordinate location we

need an inward pointing shift vector in the asymptotic region.
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