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1 Introduction

In many respects, the Taub–NUT solution [1] appears to be dual to the Schwarzschild

solution in a fashion similar to the way a magnetic monopole is the dual of an electric

charge in Maxwell theory. The Taub–NUT space-time admits closed time-like geodesics

[2] and, moreover, its analytic extension beyond the horizon turns out to be non Hausdorff

[3]. The horizon covers an orbifold singularity which is homeomorphic to a two-sphere,

although the Riemann tensor is bounded in its vicinity. These pathologies lead to the

view that the Taub–NUT solution is not physical.

Nonetheless, despite the fact that no magnetic monopole has yet been found in our

universe, such magnetic dual solutions play an important rôle in quantum electrodynam-

ics and especially in its non-abelian generalisation, namely Yang–Mills theory. Moreover,

the stationary solutions of the Maxwell–Einstein equations admit a non-linearly realised

SU(2, 1) symmetry group [4] which generalises the Ehlers group and which mixes to-

gether the electromagnetic and the gravity degrees of freedom. This generalises to a

large class of theories, and in particular to ones that can be embedded into supergravity

theories. Despite the fact that this has not been proven so far, these symmetry groups are

believed to act on the non-stationary solutions as well. The major difficulty in formulat-

ing such symmetries comes from the fact that Einstein’s theory is highly non-linear and

consequently its dualities are poorly understood beyond the linearised level. The aim of

this letter is to understand more closely the duality relations within Einstein theory by

exhibiting their similarities with the example of Maxwell theory, and more specifically

the similarities between NUT sources and magnetic monopoles.

While a magnetic charge can be expressed in terms of a current associated to a vector

field dual to the standard Maxwell potential, its expression as a function of the standard

vector potential corresponds to a topological invariant of the associated fibre-bundle

geometry. In this letter, we define the NUT charge, in a similar way, as a topological

invariant associated to time-like three-cycles. We also generalise the Komar mass to the

case where there is no space-like slice with compact boundary in the asymptotic region.

These definitions involve a fibre-bundle construction which is very reminiscent of the

one appearing in Maxwell theory. In this case the U(1) fibres are orbits of the time-like

isometry.

We exhibit the similarities between the Komar NUT charge and magnetic charge

through a consideration of explicit solutions involving several NUT sources. Indeed, we

will give an infinite set of new regular solutions of the Einstein equations with an arbitrary
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odd number of NUT sources. We obtain these by acting with the U(1) duality group for

stationary solutions on multi-black hole solutions with both negative and positive masses.

We define a coordinate patch that permits us to avoid Dirac–Misner string singularities.

Then we show how one can avoid the conical singularities usually appearing in multi-

black hole solutions by choosing adjacent NUT charges to be opposite in sign. Since both

negative and positive NUT charge singularities are covered by horizons, these solutions

define space-times which have no more (albeit also no less) pathology than the ordinary

Taub–NUT space-time.

The resolution of the Dirac–Misner string singularities requires the quantisation of

NUT charge. The Chern class of an associated fibre-bundle geometry is understood

to count the relative number of fundamental NUT charges of a given spacetime. The

timelike three-cycles surrounding several NUT charges turn out to be diffeomorphic to

Lens spaces L(|N |, 1) ∼= S3/Z|N |, where N is the relative number of fundamental NUT

charges that lie inside the interior of the corresponding three-cycle.

We discuss in a final section the Euclidean analogues of these multi-NUT solutions

which are slight generalisations of the instantons described in [5]

2 Komar NUT charge

A. Komar defined the mass for asymptotically Minkowski solutions of the Einstein equa-

tions through an integral over the boundary of an asymptotically space-like hypersurface

V in spacetime [6]. Given an asymptotically Killing time-like vector κ = κµ∂µ, the metric

permits one to define the 1-form g(κ) ≡ gµνκ
µdxν , and the Komar mass is then given as

a function of the 2-form K ≡ dg(κ) by1

m ≡ 1

8π

∫

∂V

⋆K (1)

where ⋆ is the Hodge star operator. Comparing then this formula to the ones defining

the electric and the magnetic charges

q ≡ 1

2π

∫

∂V

⋆F p ≡ 1

2π

∫

∂V

F (2)

1Komar proved in [7] that if κ is chosen to be orthogonal to a family of minimal hypersurfaces,

then the Komar mass will be positive if V is chosen to be one of these hypersurfaces. However, Misner

then showed in [8] that this prescription is either inconsistent or impossible to achieve in some relevant

examples. Here we will not insist on this orthogonality prescription and the Komar mass consequently

will not be necessarily positive.
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it seems natural to define the dual mass as the integral

n ≡ 1

8π

∫

∂V

K . (3)

However this integral is trivially zero because of Stokes theorem, as also would näıvely

be the one defining magnetic charge. Nevertheless, not all asymptotically flat space-

times admit a well-defined asymptotically space-like hypersurface. This is the case for

instance for the Taub–NUT space-time, for which the r = const slices of any space-like

hypersurfaces are not closed manifolds [2].

Let M be an asymptotically flat space-time. Strictly speaking, we assume that M

admits a function r which goes to infinity at spatial infinity and which defines a proper

distance in this limit, gµν∂µr∂νr → 1, and we assume that all the components of the

Riemann tensor in any vierbein frame go to zero as O(r−3) as r → +∞. We consider

stationary solutions; κ is then a Killing vector and the second-order components of the

Einstein equations can be written as

d ⋆ K = 2 ⋆ dxµRµνκ
ν = 16πG ⋆ dxµ

(

Tµν − 1

2
gµνT

)

κν (4)

which is very similar to the Maxwell equation. We choose the function r to be invariant

under the action of the time-like isometry, and choose the squared norm of the time-like

Killing vector gµνκ
µκν ≡ −H to tend to −1 + O(r−1) as r → +∞. We assume that

the action of the time-like isometry is free and proper on the domain of M where the

function H is positively defined. This implies that M admits an Abelian principal bundle

structure over a Riemannian three-fold V on this domain.

If this principal bundle is trivial, it admits a global section s which defines an em-

bedding of V into a space-like hypersurface of M (outside the zeros of H). Otherwise it

only admits a patch of local sections defined on each open set of an atlas of V , which

we denote collectively by s as well. A natural generalisation of the Komar mass formula

thus consists in defining it as the integral of the pull back s∗ ⋆ K of the 2-form ⋆K

over ∂V . In order for this integral not to depend on the local trivialisation, ⋆K must

be horizontal and invariant in the asymptotic region. It is trivially invariant since it is

built from the metric and the Killing vector, and the horizontality condition is given by

asymptotic hypersurface orthogonality, i.e. iκ ⋆K → 0 as r → +∞. Because of equation

(4), d iκ ⋆ K = 0 in the vacuum and if space-time is simply-connected, there exists a

function B such that iκ ⋆K = dB. The horizontality condition for ⋆K in the asymptotic

region is then equivalent to the fact that B tends to zero as O(r−1) as r → +∞. The
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2-form K is also trivially invariant and its horizontality condition iκK = dH → 0 is

satisfied because the function H tends to unity as r → +∞.

We accordingly define the mass m and its dual, the NUT charge n, by the following

integrals

m ≡ 1

8π

∫

∂V

s∗ ⋆ K n ≡ 1

8π

∫

∂V

s∗K . (5)

By construction, the 1-form g(κ) is invariant under the action of the time-like isom-

etry, and since iκg(κ) = −H → −1 as r → +∞, it defines a connection on the principal

bundle in the asymptotic region. The NUT charge is proportional to the Chern class

of the principal bundle over ∂V , and is thus non-zero only in the case where the latter

is non-trivial. Real line bundles over a compact surface always have a vanishing Chern

class, and a non-zero NUT charge implies therefore that time-like orbits are compact.

One defines electric and magnetic charges in the same way by requiring both the

Maxwell potential and its dual to be invariant under the covariant action of the time-like

isometry in the asymptotic region, i.e. iκF ∼ iκ ⋆ F ∼ O(r−2). The whole construction

can be generalised to non-stationary space-times, as long as Lκgµν tends sufficiently fast

to zero as r → +∞.

Let us now express the mass and its dual in a more explicit way. We choose coordinates

for which κ = ∂t, in such a way that the metric is given as follows

ds2 = −H
(

dt+ B̂idx
i
)2

+H−1γij dx
idxj . (6)

The vacuum Einstein equations then give d iκ ⋆ K = 0 and

iκ ⋆ K = −H2
√
γεi

jk∂jB̂k dx
i = dxi∂iB (7)

where Latin indices are raised and lowered with the three-dimensional metric γij . The

asymptotic horizontality conditions for K and ⋆K are satisfied if

H = 1 − 2m

r
+ O(r−2) B = −2n

r
+ O(r−2) . (8)

Then ⋆K and K have the following behaviour in the asymptotic region

⋆K ∼
√
γ

2
εij

kH−1∂kHdx
i ∧ dxj K ∼ −∂iB̂j dx

i ∧ dxj . (9)

If we assume furthermore that γij is asymptotically Euclidean, one may verify that the

parameters m and n appearing in (8) are truly the mass and NUT charges defined by

(5).
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One obtains s∗K = 2n sin θdθ ∧ dϕ in polar coordinates on ∂V ∼= S2. B̂i is thus only

globally defined up to a constant, and the time coordinate also is not globally defined over

the two-sphere. One defines t+ and t− on the north and the south pole of the two-sphere

respectively. These coordinates are related by

t+ = t− − 4nϕ . (10)

Since ϕ is a periodic coordinate of period 2π, the time coordinates t± must be periodic

of period 8πn0, such that N = n
n0

is an integer. The integer N parametrizes the Chern

class of the principal bundle over S2, and the r = const slices for r sufficiently large are

diffeomorphic to the Lens space S3/Z|N |.

The Lens spaces are usually studied as Riemannian three-folds, but they also admit a

pseudo-Riemannian metric, as does any U(1) principal bundle over a Riemannian mani-

fold. If we define a connection ω on to the principal bundle, as well as the pull-back of

the metric γ on the base by the bundle projection π, then ω⊗ω+π∗γ gives a natural Rie-

mannian metric on the principal bundle, and −ω⊗ω+π∗γ a natural pseudo-Riemannian

metric.

S. Ramaswamy and A. Sen obtained a similar result in [9], where they defined the

NUT charge as a dual of the Bondi mass instead of the Komar mass. The Bondi mass

and its dual are defined using integrals involving respectively the Weyl tensor and its

Hodge dual.

The U(1) principal bundles over S2 are classified by their first Chern class, which is

unity in the case of the Hopf fibration of S3. By analogy with the case of the Maxwell

theory for which the Chern class determines the relative number of fundamental Dirac

monopoles, we will wish to interpret this integer as the relative number of fundamental

NUT sources in General Relativity. This interpretation turns out to be right, as we shall

see in the following.

3 Multi-Taub–NUT solutions

We now want to consider axisymmetric stationary solutions of the Einstein equations

with several NUT sources on the axial symmetry axis. We use Weyl coordinates in which

ds2 = H−1e2σ
(

dz2 + dρ2
)

+ ρ2H−1dϕ2 −H(dt+ B̂dϕ)2 . (11)
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For example, in the case of the Taub–NUT solution of mass m and NUT charge n, the

Weyl coordinates are related to the Schwarzschild ones by2

ρ =
√
r̃2 − 2mr̃ − n2 sin θ z = (r̃ −m) cos θ , (12)

in terms of which the metric is

ds2 = −H
(

dt± + 2n(±1 − cos θ)dϕ
)2

+H−1dr̃2 +
(

r̃2 + n2
)(

dθ2 + sin2 θdϕ2
)

(13)

with

H =
r̃2 − 2mr̃ − n2

r̃2 + n2
. (14)

In Weyl coordinates, equation (7) reduces to

ρ−1H2∂ρB̂ = −∂zB ρ−1H2∂zB̂ = ∂ρB (15)

and B is the imaginary part of the so-called Ernst potential, E ≡ H + iB. This latter

satisfies the Ernst equation

(

E + E∗
)

(

∂z
2 + ∂ρ

2 +
1

ρ
∂ρ

)

E = 2∂zE∂zE + 2∂ρE∂ρE . (16)

For static solutions, the Ernst potential is real and the Ernst equation reduces to the

linear differential equation

(

∂z
2 + ∂ρ

2 +
1

ρ
∂ρ

)

ln E = 0 . (17)

The product of several real Ernst potentials thus gives a new solution. This permits one

to obtain the Ernst potential of multi-black holes solutions as

E =
h
∏

i=1

ri − ci
ri + ci

(18)

where 2ri = ri + + ri− with

ri± ≡
√

(z − zi ± ci)2 + ρ2 (19)

and where zi and ci define respectively the position and the (possibly negative) mass of

each of the h black holes. When all masses are positive, these solutions are always known

2Note that the radius r that is commonly introduced in Weyl coordinates is not the Schwarzschild

radius r̃, but is related to it by r = r̃ − m.

6



to suffer from conical singularities unless one considers an infinite chain of black holes

[10].

A nice way to interpret the NUT charge as a dual mass comes from the fact that

the stationary solutions of Einstein’s equations admit a nonlinearly realised U(1) Ehlers

symmetry [11] which rotates the mass into the NUT charge in the case of the Taub–NUT

solutions. This U(1) acts trivially on the conformal factor σ and modifies the Ernst

potential as follows

E(α) =
cosα E − i sinα

cosα− i sinα E . (20)

Acting this way on the Ernst potential (18), one gets

E =
cosα

∏

(ri − ci) − i sinα
∏

(ri + ci)

cosα
∏

(ri + ci) − i sinα
∏

(ri − ci)
(21)

where e2iαci = mi + ini. We then derive the potentials for the metric3

H =

∏

(ri
2 − ci

2)

cos2 α
∏

(ri + ci)2 + sin2 α
∏

(ri − ci)2
B̂ = b− 2

h
∑

i=1

ni

z − zi

ri

(22)

where b is an undetermined integration constant coming from the duality relation (15).

Note that the potential B̂ is a sum of potentials for ordinary Taub–NUT solutions indi-

vidually centred at zi. There is one horizon on each segment ρ = 0, zi−|ci| ≤ z ≤ zi+|ci|.
Let us consider that they are all separated, i.e. that

zi−1 + |ci−1| < zi − |ci| . (23)

Between each adjacent pair of horizons, there is a Dirac–Misner string singularity related

to the fact that the 1-form dϕ diverges on the symmetry axis ρ = 0. The Dirac–Misner

string singularities are located on h+ 1 segments Di, on which ρ = 0 and zi−1 + |ci−1| ≤
z ≤ zi − |ci|, where we understand −∞ < z ≤ z1 − |c1| and zh + |ch| ≤ z < +∞ for D1

and Dh+1 respectively. In order to avoid such a singularity, the potential B̂ must vanish

identically on each of these segments. On the segment Di, rj = z − zj for j < i and

rj = −z + zj for j ≥ i, so one has

B̂|Di
= bi − 2

i−1
∑

j=1

nj + 2
h
∑

j=i

nj = 0 . (24)

3 To derive the formula for B̂ we observe that H−2dB = −2
∑

nidri

ri
2−ci

2 , and we make use of the

identities ρ2

ri
2−ci

2 + (z−zi)
2

ri
2 = 1 and ri± = ri ± ci

z−zi

ri

to show that

ρ ∂zri

ri
2 − ci

2
= −∂ρ

z − zi

ri

ρ ∂ρri

ri
2 − ci

2
= ∂z

z − zi

ri

.
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Exactly in the same way as for the ordinary Taub–NUT solution [2], in order to avoid

Dirac–Misner string singularities, one must define h + 1 open sets Ui, such that ∪h+1

i=1
Ui

covers space-time outside the horizons. We define each Ui as the complement of the

domain ∪j 6=iDj in M . At the intersection between Ui and Ui+1, the corresponding time

coordinates are related by

ti+1 = ti − 4niϕ (25)

and B̂ is given by

B̂|Ui
= 2

i−1
∑

j=1

nj − 2

h
∑

j=i

nj − 2

h
∑

j=1

nj

z − zj

rj

(26)

on Ui, in such a way that dti + B̂|Ui
dϕ is globally defined on M .

Since ϕ is a periodic coordinate, ϕ ≈ ϕ+2π, consistency requires the time coordinate

also to be periodic, that is tj ≈ tj + 8πni for all ni. In order for the manifold to be well

defined, all the NUT charges ni must thus be integral multiples of a given fundamental

charge n0, so ti ≈ ti + 8πn0.

We thus conclude that, even on a purely classical level, the existence of more than

one NUT charge on a manifold implies the quantisation of these charges. In fact, this

quantisation already occurs in Maxwell theory if one considers that its solutions are the

connections of U(1) principal bundles over space-time for which the curvature verifies

the equation d ⋆ F = 0. Indeed, the global definition of the Maxwell connection on the

principal bundle similarly requires all magnetic charges to be integral multiples of a given

fundamental charge.

The one-form ω ≡ 1

4n0

(dti+B̂|Ui
dϕ) defines a connection on the U(1) principal bundle

over V . For any two-cycle of V surrounding a subset I of the NUT charges, one computes

that associated Chern class to be

NI =
1

n0

∑

i∈I

ni . (27)

The time-like three-folds that surround the NUT charges within I are thus diffeomorphic

to the quotient of S3 by Z|NI | acting as a discrete subgroup of U(1), yielding a Lens

space. We thus interpret the Chern class NI of a two-cycle as the relative number of

fundamental NUT charges inside its interior.

As for multi-black hole solutions, the multi-NUT solutions generically possess conical

singularities. In order to avoid such singularities, the following function must go to unity

on the symmetry axis
∂µX∂µX

4X
→ 1 (28)

8



where X is the squared norm of the axisymmetric Killing vector. In Weyl coordinates

this function behaves like e−2σ as ρ → 0. The condition (28) is thus equivalent to the

requirement that the function σ tend to zero in this limit. Since σ is invariant under the

duality transformation (11), one can simply compute it for the multi-black hole solutions.

One gets, as a direct generalisation of the case of two positive mass black holes given in

[12], that

2σ =

h
∑

i=1

ln
ri

2 − ci
2

ri+ri−
+
∑

i<j

ln
E+−

i j E
−+

i j

E−−
i j E

++

i j

(29)

where

E±±
i j = ri±rj ± + (z − zi ± ci)(z − zj ± cj) + ρ2 . (30)

On the segment Dk, the function σ is thus constant and is equal to

σ|Dk
=

k−1
∑

i=1

h
∑

j=k

ln
(zi − zj)

2 − (ci + cj)
2

(zi − zj)2 − (ci − cj)2

=

k−1
∑

i=1

h
∑

j=k

sign (cicj) ln

(

1 − 4|ci|[cj|
(

2|ci| + Lij

)(

2|cj| + Lij

)

)

(31)

where Lij ≡ |zi − zj | − |ci| − |cj | is the distance between the two horizons of the black

holes centred at z = zi and z = zj respectively. Since we require the horizons not to

overlap, all the Lij are strictly positive and one sees that σ can only be zero on each

segment Dk if some of the masses ci are negative.

Our multi-NUT solution defines thus a perfectly smooth space-time outside the hori-

zons if and only if
k−1
∏

i=1

h
∏

j=k

(zi − zj)
2 − (ci + cj)

2

(zi − zj)2 − (ci − cj)2
= 1 (32)

for all k between 2 and h. These h− 1 equations determine the relative positions of the

NUT sources as functions of their charges.

4 Some examples

Let us consider a simple class of examples with three NUT sources, with charges n1 =

n3 = pn0 and n2 = −qn0 for two integers p and q. We also fix z3 = −z2 = z0 and z1 = 0.

The absence of a conical singularity requires that
(

z0
2 − (p− q)2n0

2
)(

(2z0)
2 − (2pn0)

2
)

(

z02 − (p+ q)2n0
2
)

(2z0)2
= 1 . (33)

9



This equation can be solved for p > 4q, by

z0 =
p− q
√

1 − 4q

p

n0 (34)

and the horizons are disjoint for any value of p and q.

The asymptotic r = const slices are then diffeomorphic to a Lens space S3/ZN with

N ≡ 2p− q. The value of the Chern class in these examples is N = 2r + 7q for strictly

positive integers r and q.

Since 1

4n0

B̂dϕ defines the pullback of a U(1) connection on each Ui of V , we can com-

pute the Chern class of the two-cycles in V from it. We define the partitions of various

two-cycles over the atlas of V as depicted in the following figures

ρ

Sδ
1

z

S
γ
1

Sα
1

Partition on the open set U1.

ρ

z

Sα
2 S

β
2

Partition on the open set U2.

ρ

z

S
β
3

S
γ
3

Partition on the open set U3.

ρ

z

Sδ
4

Partition on the open set U4.

The Chern class of the cycle Sα is given by

Nα =
1

8πn0

∫

Sα

2

dB̂|U2
∧dϕ+

1

8πn0

∫

Sα

1

dB̂|U1
∧dϕ =

1

8πn0

∫

∂Sα

2

(

B̂|U2
− B̂|U1

)

dϕ = p (35)

and one computes in the same way that Nβ = −q, Nγ = p− q and Nδ = 2p− q.
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5 Gravitational instantons

We recall that the quantum mechanics of a particle in a Taub–NUT space-time requires

the quantisation of the product of its mass with the NUT charge of space-time [13], ex-

actly as in the case of a magnetic monopole. Moreover, the NUT charge as defined in [14]

for not necessarily stationary space-times is shown to be preserved by small deformations

of the solutions through the introduction of gravitational waves.

The Euclidean self-dual Taub–NUT solutions might play a rôle in quantum gravity

very similar to the one played by instantons in gauge theories [15]. The analogue of the

instanton number would then be given by the Chern class of the asymptotic Lens space,

in the sense that the action evaluated for such a solution is proportional to |N |. The

index of the Dirac operator is however given by the Pontryagin number.

The solitons we have described in this letter are the Minkowski analogues of the

instantons described in [5] with the slight generalisation of considering both positive

and negative mass. However, the singularities associated with negative masses are not

removed by the effects of the NUT charges in the Euclidean case.

One can Wick rotate the Minkowskian solitons to Euclidean-signature solutions by

choosing a complex pure imaginary parameter for the duality transformation (20). In-

deed, for the Riemannian metric in Weyl coordinates,

ds2 = H−1e2σ
(

dz2 + dρ2
)

+ ρ2H−1dϕ2 +H(dψ + B̂dϕ)2 (36)

the Euclidean Ernst equation is

(

E+ + E−
)

(

∂z
2 + ∂ρ

2 +
1

ρ
∂ρ

)

E± = 2∂zE±∂zE± + 2∂ρE±∂ρE± (37)

where the real Ernst potentials are E± ≡ H ± B, with B derived from B̂ using equation

(15). For a static Ernst potential, i.e. one satisfying E+ = E−, the Euclidean Ernst

equation is identical to the Minkowski one, and the multi-black hole solutions are thus

solutions of the Euclidean theory as well. The Euclidean Ernst equation is the equation

of motion of an SL(2,R)/SO(1, 1) non-linear sigma model, and it is left invariant by the

SO(1, 1) Ehlers transformation

E±(α) =
coshα E± ∓ sinhα

coshα∓ sinhα E±
. (38)

Applying this transformation, we obtain the following potentials for the Riemannian
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metric (36)4

H =

∏

(ri
2 − ci

2)

cosh2 α
∏

(ri + ci)2 − sinh2 α
∏

(ri − ci)2
B̂ = bi − 2

h
∑

i=1

ni

z − zi

ri

(39)

where ri is defined as in the Minkowski case and the mass and the NUT charges are

given by mi ≡ cosh 2α ci and ni ≡ sinh 2α ci. The resolution of the Dirac–Misner string

singularities goes the same way. All the NUT charges are thus required to be integral

multiples of a fundamental NUT charge n0, and the imaginary time coordinate ψ is again

periodic, with period 8πn0.

However one can not get rid of the conical singularities in the Euclidean case without

introducing singularities associated with negative masses. The only regular instantons

left over are thus the single instanton with m = 5

4
|n| and the self-dual instantons for

which ci = 0 [5].

The (anti)self-dual gravitational instantons with mi = ±ni [16] can be obtained by

taking the limit ci → 0, α→ ±∞ while holding cosh 2α ci fixed and equal to mi. In this

limit, the Ernst potentials behave as

E± =
1 − e±2α

∑

ci

ri

1 + e±2α
∑

ci

ri

+ O(ci
2) (40)

and one computes that the function ri becomes
√

ρ2 + (z − zi)2 and

H−1 = 1 + 2
h
∑

i=1

mi

ri

. (41)

The Ernst potentials then verify E∓ = 1 for ni = ±mi respectively, and the Ernst equation

reduces to the linear differential equation
(

∂z
2 + ∂ρ

2 +
1

ρ
∂ρ

)

(

E+ + E−
)−1

= 0 . (42)

For (anti)self-dual instantons E∓ = const, σ = 0 and equation (32) turns out to be

satisfied independently of the position of the sources on the axis. However, the absence

of Euclidean NUT singularities nevertheless requires all masses to be equal to n0.
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