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Significant advances in numerical simulations of black-hole binaries have recently been achieved using
the puncture method. We examine how and why this method works by evolving a single black hole. The
coordinate singularity and hence the geometry at the puncture are found to change during evolution, from
representing an asymptotically flat end to being a cylinder. We construct an analytic solution for the
stationary state of a black hole in spherical symmetry that matches the numerical result and demonstrates
that the evolution is not dominated by artefacts at the puncture but indeed finds the analytical result.
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Recent breakthroughs in numerical relativity have made
it possible to simulate the evolution of black-hole binaries
through several orbits, inspiral, merger, and ringdown [1–
4]. It is now possible, after over forty years of research,
to study black-hole mergers in full general relativity and
to calculate the resulting gravitational-radiation wave-
forms. These advances represent a major step forward for
all of black-hole and gravitational-wave astronomy and
astrophysics.

Although these methods have met with spectacular suc-
cess, it is not yet clear how and why they work. In this
Letter we focus on the most popular method, called ‘‘mov-
ing punctures’’ [2,3], and use simple geometrical consid-
erations to address this question. In the moving-puncture
method the black holes are conveniently described in the
initial data in coordinates that do not reach the black holes’
physical singularities; as the coordinates approach each
singularity they instead follow a wormhole through to
another copy of the asymptotically flat exterior spacetime.
These extra copies are compactified so that their infinities
are represented by single points on a numerical grid, which
are called ‘‘punctures’’ [5,6]. In this construction, the
wormhole topology is captured by a single function, a
conformal factor  , which diverges at each puncture.
Early ‘‘fixed puncture’’ evolutions [7,8] factored the sin-
gularity into an analytically prescribed conformal factor,
and the gauge conditions prohibited the punctures from
moving across the grid. The moving puncture approach
manages to evolve the full conformal factor,  , and the
punctures are allowed to move. This seemingly minor
modification proved to be the last piece of the black-hole
binary puzzle, and it has made long-term stable simulations
routine for many research groups.

However, the dynamical behavior of the punctures in
this method is entirely unknown. Do they continue to
represent compactified infinities? Does the evolution reach
a final, stationary state, or do gauge dynamics persist? And,
crucially, does the method accurately describe the space-
time, or does it rely on numerical errors near an under-
resolved puncture, implying that it may fail when probed at

higher resolutions or for longer evolutions? Finally, why do
our coordinate conditions accurately reproduce angular
velocities as would be measured in an asymptotic rest
frame (see, e.g., [9] )?

In this Letter we address these questions in three stages.
First, we argue that the evolution of the punctures can be
split approximately into advection across the hyper-
surface plus a gauge that locally produces black holes in
a stationary state. Second, we assume existence of a sta-
tionary solution and show that a local expansion for a
Schwarzschild puncture matches the numerical data. And
third, we explicitly construct stationary slices for
Schwarzschild and discuss their global geometry, to which
the numerical evolution asymptotes.

Most significantly, we find that the puncture changes
character: the slice no longer approaches the other asymp-
totically flat end, but ends on a cylinder of finite areal
radius. This suggests an elegant new way to represent black
holes, with asymptotically cylindrical data.

Let r be the distance to one of the punctures. Internal
asymptotically flat ends are characterized by 3-metrics of
the form gij �  4 ~gij, where ~gij is finite and the conformal
factor  diverges as  � 1=r. The method of [2] introduces
a regular conformal factor � �  �4 while [3] uses � �
log . Ignoring the logr singularity, standard finite-
differencing is used near the punctures. The evolution
method is based on the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation [10,11]. For the lapse we
consider ‘‘1� log’’ slicing, �@t � �i@i�� � �2�K, and
for the shift the ‘‘Gamma-freezing’’ condition, @2

t �
i �

3
4@t

~�i � �@t�
i [2,12–14].

Puncture evolutions use the standard 3� 1 decomposi-
tion, and the equations can be brought into the form �@t �
L��u � F, where u is a state vector and F a source term
independent of the shift. In this context we do not have to
consider the BSSN variable ~�i since it is derived from ~gij.
Of special importance is the motion of the puncture itself,
which is marked by a logr pole in � or equivalently a zero
in � [2], which are advected by the shift like all other
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variables. As noted in [2,3,8,12], since the shift can de-
scribe arbitrary coordinate motion, any shift vector that
does not vanish at the puncture can generate motion of the
puncture.

The Gamma-freezing shift manages two feats: stabiliz-
ing the black holes against slice stretching and moving the
punctures. Considering that in actual runs those two effects
appear to happen independently of each other, we propose
that the shift can be split as �i � �iadv � �

i
sls, where �isls

counters slice stretching and �iadv is responsible for punc-
ture motion. If we have exact stationarity, then �@t �
L�adv

�u � 0, L�sls
u� F � 0. Note that in the early phase

of a binary inspiral simulation the vector � @@t�
a should be an

approximate helical Killing vector, up to a rigid rotation.
We can choose either corotation, or vanishing rotation at
infinity, which would imply that the punctures’ coordinate
speeds equal their physical speeds as seen from infinity.

In general, this shift decomposition will hold only ap-
proximately, but it should be an excellent approximation in
the immediate vicinity of the punctures. Furthermore, if the
shift is regular at a puncture with a leading constant plus
higher order terms, �i � bi0 �O�r�, �iadvjr�0 � bi0,
�islsjr�0 � 0, then we obtain trivial advection of the punc-
ture without further approximation, i.e., u � u�x� b0t�,
since Lb0

u � bi0@iu.
We conclude that, assuming approximate stationarity,

the question of numerical stability of the moving-puncture
process can be approached by splitting it into a standard
advection problem and a stability analysis of a stationary
puncture solution. The main open issue is whether there
exists a regular stationary solution for a single puncture
that the method can find. Since the key novel features of
this stationary solution already occur for a nonmoving
spherically symmetric puncture (computed with the
moving-puncture method), we focus on this case here
and leave the general case to future work.

Consider initial data for a single puncture with mass M
at t � 0, with � � 1, �i � 0, ~gij � �ij, ~Aij � 0, K � 0,
and �0 � log�1� M

2r�. When inserted into the BSSN and
gauge equations, the data evolve and develop certain
powers of r at the puncture [12]. If a regular stationary
state is reached, then all variables should possess power
series expansions at r � 0 that satisfy L�slsu� F � 0. We
make the following ansatz for the single, nonmoving-
puncture case in spherical symmetry:

  �2 � e�2� � p1r� p2r
2 �O�r3�; (1)

 ~g ij � �ij �O�r
2�; (2)

 

~A ij � �A0 � A1r���ij � 3ninj� �O�r2�; (3)

 K � K0 � K1r�O�r2�; (4)

 � � a0 � a1r�O�r2�; (5)

 �i � �b1r� b2r2�ni �O�r3�: (6)

Here r � �x2 � y2 � z2�1=2 is the coordinate radius of

quasi-isotropic Cartesian coordinates (x, y, z). Note that r
is continuous but not differentiable, the radial vector ni �
xi=r is discontinuous at r � 0, and @iO�r0� � O�r�1�. The
evolution equations and the constraints result in 8 indepen-
dent equations for the 10 coefficients (p1, p2, A0, A1, K0,
K1, a0, a1, b1, b2), with M and � free parameters. The
Gamma-freezing shift condition does not give an addi-
tional condition for a stationary solution. A first result is
that a1 � 0 and K0 � 0 are required for nontrivial statio-
narity; a more regular solution is not consistent with the
equations. For consistency a0 � 0, that is, the lapse has
collapsed at the puncture. Further simple relations are b1 �
2K0 and b2 � �3A0a1 from the evolution equations for
the lapse and the metric.

Therefore, assuming existence of a stationary solution
with some minimal regularity at the puncture implies
specific predictions for kinks and discontinuities in our
variables. We now compare the ansatz to numerical results
for a Schwarzschild puncture evolved to t � 50M, at
which time the data appear to have reached a stationary
state to within a few percent in all variables. The runs were
performed with the BAM code, using fixed-mesh refinement
and fourth-order accurate finite-difference stencils [15].
For a central resolution of M=128 the run is well within
the convergent regime. When zooming into the data at this
resolution, Fig. 1, we do find the kinks and discontinuities
consistent with the ansatz. Although closer inspection
shows some numerical artefacts near the puncture (in
particular, in ~Aij and the derivatives), they remain localized
and comparatively small, and the numerical data are ap-
proximated well by the ansatz.

The most intriguing implication of the power series
expansion is that the singularity in the conformal factor
changes during evolution. With a0 � 0,

 @t� � �i@i��
1

6
@i�i �O�r� ’ b1r@r��

b1

2
: (7)

For the conformal factor of the initial data, we have
r@r�0 ’ �1, and @t�0 ’ �b1=2. With b1 � 0 we must
conclude that the evolution of the conformal factor will
stop only when r@r� ’ �1=2. In other words,

  0 � O�1=r� evolves into  � O�1=
���
r
p
�; (8)

which is built into (1). The puncture still marks a coordi-
nate singularity, but since the areal radius of the sphere r �
0 is R0 � limr!0r 2 � 1=p1, the slice no longer reaches
the other asymptotically flat end of the Brill-Lindquist
wormhole, but ends at a finite areal radius, R0 � 1:3M,
with p1 determined numerically. Figure 2 illustrates the
evolution of a Schwarzschild black hole. We have plotted
Schwarzschild R versus proper distance from the horizon.
The initial slice connects two asymptotically flat regions,
but during a 1� log=�-driver evolution the numerical
slice loses contact with the second asymptotically flat
end. It eventually reaches a stationary state and terminates
at R � 1:3M.
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We now show by explicit construction in the proper
distance gauge (which is regular through the horizon)
that such stationary slices exist globally. Stationary 1�
log slices of Schwarzschild are also considered in a differ-
ent context in [16]. The proper distance coordinate is
denoted as l, @lf � f0, � is the Killing lapse, � the
Killing radial shift component, and R the areal radius
(the Schwarzschild radial coordinate). On any spherical
slice through the Schwarzschild solution one finds R0 � �
and �2 � �2 � 1� 2M=R, and using these, the equation
for the stationary 1� log slices of Schwarzschild, ��0 �
2�K, becomes (using, for example, [17] )

 R00 �
2R0

R

3M
R � 2� 2R02

2M
R � 1� R02 � 2R0

: (9)

It is clear that the right-hand side of (9) is singular when-
ever 2M=R� 1� R02 � 2R0 � 0. It can also be shown that
any solution of (9) that is suitably asymptotically flat, i.e.,
R � l, must pass through such a singular point. The only
way of resolving this difficulty is for the numerator of (9)
to simultaneously vanish at the ‘‘singular’’ point. We have
two options: either (a) R0 � 0 or (b) 3M=R� 2�
2R02 � 0. Let us discuss them separately. In the case (a),
we have R0 � 0, R � 2M. Therefore, the slice passes
through the bifurcation sphere. This is the standard mo-
ment of time symmetry slice through the Schwarzschild
solution, which obviously satisfies the stationary 1� log
equation because � � 0 and K � 0. In case (b), the case in
which we are really interested, we can solve the pair of
simultaneous equations to give R0 �

������
10
p

� 3, R �
1:54M. This solution corresponds to two slices in the
Schwarzschild solution. These are mirror images of each
other: one in the upper half plane, one in the lower. These
slices do not continue into the left quadrant of the extended
Schwarzschild solution. Rather they asymptote to a cylin-
der in the upper (lower) quadrant of fixed radius. This
agrees with the numerical observation that the singularity
in the conformal factor changes from 1=r to 1=

���
r
p

. These

three are the only asymptotically regular solutions of the
stationary 1� log equation, up to isometries. It is easy to
show that the actual slice exponentially approaches a cyl-
inder of radius R0, i.e., R � R0 � A exp�Bl� as l! �1,
where

 B � 2R�1
0 �3M� 2R0��2M� R0�

�1:

The value of the lapse at the horizon, which can be used as
a simple horizon-finding or merger-time criterion, evalu-
ates to ��R � 2M� � 0:376. It is also possible to produce
an algebraic solution in terms of an implicit equation for �
and R, determining R0 � 1:31241M from

 3sinh�1�3�� log
�

128
�
2�

R0

M

��
�3log

�
R0

M

�
�

������
10
p
�3:

For comparison we have also studied harmonic and
maximal slicing. With harmonic slicing (which can be
generalized to the Kerr spacetime [18,19] ), one again finds
a moment of time symmetry slice and two mirror copies of
a slice that puncture evolutions driven toward stationarity
should approach. The slices hit the singularity at R � 0, K
blows up as R! 0, and at the horizon ��R � 2M� � 1=2.
Fixed-puncture evolutions have used 1� log slicing with-
out shift term. Stationary slices must then be maximal [20–
22], of the ‘‘odd lapse’’ type, �2 � 1� 2M

R �
C2

R4 . For C �
3
���
3
p
M2=4 such slices will again approach a cylinder, of

constant R0 � 3M=2.
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FIG. 1. Numerical evolutions of a spherically symmetric punc-
ture result in specific kinks at the puncture (left). The figure on
the right represents a true numerical experiment. We compare
two spherical slices by plotting � as a function of K. The dots are
the data from the 3D numerical evolution; the solid line was
obtained by independently integrating up Eq. (9). At the punc-
ture, � � 0:0 and K � 0:3.
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FIG. 2. Schwarzschild coordinate R vs proper distance from
the (outer) horizon. The upper panel shows the slices at t �
0; 1; 2; 3M, and the lower panel shows the slice at t � 50M. The
final numerical slice terminates at R � 1:3M. The vertical line
indicates the horizon at R � 2M, and the six points represent
x=M � 1=40; 1=20; 1=8; 2; 5; 8 on each slice.
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Discussion.—Moving-puncture evolutions of a
Schwarzschild black hole approach a stationary slice that
neither reaches an internal asymptotically flat end nor hits
the physical singularity, as might be expected for a sta-
tionary slice with non-negative lapse [23]. Rather, the slice
ends at a throat at finite Schwarzschild radius, but infinite
proper distance from the apparent horizon. This changes
the singularity structure of the ‘‘puncture.’’ It is still a
puncture in that there is a coordinate singularity at a single
point in the numerical coordinates, but it does not corre-
spond to an asymptotically flat end. In the course of
Schwarzschild evolutions we have found that the throat
does collapse to the origin. Where one would have ex-
pected an inner and an outer horizon, we find only one zero
in the norm of � @@t�

a, corresponding to the outer horizon. An
under-resolved region does develop in the spacetime (it is
the region between the throat and the interior spacelike
infinity), but we are pushed out of causal contact with it.
The throat itself has receded to infinite proper distance
from the outer horizon. Matter fields or gravitational ra-
diation will be trapped between the inner horizon and the
throat, because unlike the gauge their propagation is lim-
ited by the speed of light; this issue is left to future work.

The main result about regularity is contained in the
specific kinks and discontinuities discovered in both the
power series and the numerical data, which are implied by
our stationary solution. The construction of an explicit
power series solution in r for a single Schwarzschild
puncture can be repeated for a single puncture with
Bowen-York linear momentum. Preliminary results indi-
cate that the shift can acquire the constant leading term
responsible for the motion of the punctures and that
there are no new fundamental regularity issues. The power
series ansatz matches nicely the numerical data for a
Schwarzschild puncture. The fourth-order schemes (both
centered and upwind) in use have been seen to be reason-
ably successful in this context, the lack of differentiability
not withstanding [2,3]. Incidentally, the introduction of �
results in O�r2� terms and not O�r4� as expected, but this
still results in significantly cleaner data than the logr
method. Perhaps most importantly, our analysis suggests
a concrete remedy if the remaining numerical issues at the
puncture create problems in simulations of black-hole
binaries, namely, to resort to finite differencing that is
expertly adapted to the discontinuities at hand.

Our results suggest several directions for future research
directly relevant to the black-hole binary problem, such as
perturbations of the stationary solutions (including con-
straint violating perturbations to check constraint stability
of evolution systems), the clarification of numerical issues
at the discontinuities, and the construction of initial data
adapted to stationarity, e.g., of asymptotically cylindrical
data. In the Schwarzschild case local properties of the

stationary solution allow one to directly read off spacetime
properties from a numerical solution, e.g., the puncture
value of K determines the mass; an extension to two
moving, spinning black holes would be very valuable in
numerical evolutions.
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[8] B. Brügmann, Int. J. Mod. Phys. D 8, 85 (1999).
[9] P. Diener et al., Phys. Rev. Lett. 96, 121101 (2006).

[10] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[11] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998).
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