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Abstract
A new definition of quasi-local angular momentum of non-axisymmetric
marginally outer trapped surfaces is proposed. It is based on conformal
decomposition of the two-dimensional metric and the action of the group of
conformal symmetries. The definition is completely general and agrees with
the standard one in axisymmetric surfaces.

PACS numbers: 04.70.Bw, 04.70.−s, 04.30.Nk

Introduction

The quasi-local theory of black hole boundaries is based on the notion of marginally outer
trapped surfaces (MOTSs), i.e. two-dimensional spacelike surfaces of spherical topology, for
which the expansion of one of the null normals, say lµ, vanishes. The tubes made of such
surfaces are called isolated, dynamical, trapping or slowly evolving horizons depending on
a number of additional assumptions [1–4]. Although the theory is now at a mature stage
and has already found a broad scope of applications [5], there remains an important gap in
the formalism. Namely, there is no unique definition of black hole angular momentum on
horizons which do not admit any symmetries. Definitions based on approximate symmetry
vectors either fail in certain special cases, like the one presented in [6], or involve solving
variational problems [7]. Lack of a universal definition of angular momentum J is an important
caveat, because Smarr’s formula, which is the best candidate for the quasi-local black hole
mass definition [8], explicitly involves the value of J .

Marginally outer trapped surfaces are equipped with a positive definite metric tensor
which we will denote by q, an area form ε compatible with the metric and the rotation 1-form,
which is the pullback of the derivative of one null normal contracted with the other one

ωA = −(∇Alµ)kµ = (∇Akµ)lµ (1)
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with the normalization condition lµkµ = −1 imposed. (The capital Latin index denotes here
a geometric object defined on the MOTS as opposed to spacetime objects for which Greek
indices are used.) We note here that in contrast to the metric, the rotation form is not gauge
invariant: any renormalization of the null normals lµ → Clµ, kµ → C−1kµ and, in the case
of an isolated horizon, any change of the horizon foliation result in adding a gradient to the
rotation form [3, 9].

All definitions of quasi-local angular momentum of a MOTS, denoted here by �, are
equivalent to a single integral formula

Jφ = − 1

8πG

∫
�

ω(φ)ε, (2)

involving a vector field φ on � (for a review, see [6]).
In the Hamiltonian formalism, every expression of this type is the Hamiltonian generator

of diffeomorphisms generated by φ [10]. In physics, however, we associate angular momentum
only with rotations and if φ is supposed to generate anything of that type, it must be an axial
vector, i.e. have exactly two poles, closed integral curves and be normalized in such a way that
each integral curve closes when the affine parameter attains 2π .

If the MOTS admits an axial symmetry, there exists a Killing vector field X of desired
properties which one can plug into (2). However if no such vector exists, we are left with a
wide range of possible choices and consequently with a large room for arbitrariness. In fact,
the freedom of choice is governed by the whole group of diffeomorphisms of �. Thus, the
problem of assigning angular momentum to a non-symmetric isolated or dynamical horizon
is in fact the problem of picking up an appropriate vector field which one would substitute
in (2), rather than deriving from scratch an expression for J .

We postulate that a reasonable proposition for the choice for φ and J should satisfy four
mild, physically motivated conditions:

(i) φ and J must be defined unambiguously for all possible horizon geometries, with or
without symmetries;

(ii) φ must always be an axial vector in the sense defined above;
(iii) if the MOTS admits an axial symmetry vector X of both metric q and 1-form ω, the

prescribed φ must agree with X and J with JX, perhaps up to sign;
(iv) the definition should be simple and natural, involving only the two main ingredients of

the MOTS geometry, i.e. q and ω.

The first condition demands that we provide a construction that always works. The third,
among other things, assures us that the definition will yield the expected result when applied
to a Schwarzschild or Kerr–Newman black hole boundary. The fourth one is to some extent an
aesthetic requirement, but it is nevertheless useful as a guiding principle in what is essentially
an open problem, where many possible solutions exist.

In this paper we will provide a general formula for J which satisfies all these conditions.
We will describe a construction of the corresponding axial vector φ, which works for all
horizons except a rather narrow class. We will also provide a way to fix the gauge freedom of
the rotation form using the Hodge decomposition. This gauge fixing removes the last ambiguity
in the angular momentum definition and, among other things, ensures that the expression for
J will yield the correct value in Kerr horizons even if we choose a non-standard, tilted MOTS.

The mathematical framework of the paper is based on a global decomposition of the
metric to the ‘round’ spherical metric and the conformal factor. This kind of decomposition
has been used in the context of the black hole boundaries [11, 12], though without any
formal justification of the method or discussing its invariance. In [11] it is only applied to
axisymmetric black holes and without any attempts of providing an invariant definition of
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angular momentum. The authors of [12] on the other hand, while constructing initial data for
binary black holes using the conformal thin-sandwich decomposition, make use of the three
Killing vectors of the flat conformal metric on the time slice to define a measure the spin of a
black hole. Their method is equivalent to ours in many special cases, but not in general. The
dependence on the choice of the conformal decomposition is not considered in their paper and
therefore their prescription, when applied without modifications, may yield different results
for the same MOTS. Moreover, no mathematical or physical argument is provided for the
validity of the conformal approach.

In this work, we also aim to give a more rigorous treatment of the conformal decomposition
method in the context of black hole spin definition. In particular, we explain how one can
make the definition completely insensitive to various gauge choices which must be made when
describing the geometry of MOTSs.

The application of the framework is confined to two-dimensional surfaces of S2 topology
and cannot be generalized to other dimensions and topologies.

Conformal decomposition and transformations

On any oriented manifold of topology S2, equipped with a positive definite metric q, there
exist coordinates (θ, ϕ) for which the metric takes globally the conformally spherical form

q = F(dθ2 + sin2 θ dϕ2),

F (θ, ϕ) being a positive function, and preserving the orientation [11, 13]. (For a modern
approach to constructing such systems using the Ricci flow techniques see [14, 15], the latter
paper is in [16].) The choice of the conformally spherical coordinate system (CSCS) is by no
means unique. However, any two such systems are related to each other by a global conformal
transformation of the ‘round’ sphere metric q0 = dθ2 + sin2 θ dϕ2. Such transformations
are known to constitute a six-parameter group, isomorphic to the connected component of
SO(1, 3) [17]. In the context of the Riemann sphere, it is also called the Möbius group.

The group consists of the SO(3) subgroup of ‘standard’ rotations, preserving q0, and the
so-called proper conformal transformations [17]. Its action on � is generated by six vector
fields, three of them generating the rotations about the three orthogonal axes:

φ1 = −sin ϕ ∂θ − cotanθ cos ϕ ∂ϕ

φ2 = cos ϕ ∂θ − cotanθ sin ϕ ∂ϕ

φ3 = ∂ϕ,

and three generating the proper conformal transformations along the three axes:

ξ1 = −cos θ cos ϕ∂θ +
sin ϕ

sin θ
∂ϕ

ξ2 = −cos θ sin ϕ∂θ − cos ϕ

sin θ
∂ϕ

ξ3 = sin θ∂θ .

Any combination of the form of niφi with ninj δ
ij = 1 is an axial vector field in the terminology

of the previous section, while no linear combination of ξi’s is axial. Together these vector
fields constitute the Lie algebra of so(1, 3) with commutation relations

[φi, φj ] = −εijkφk (3)

[ξi, ξj ] = εijkφk (4)

[ξi, φj ] = [φi, ξj ] = −εijk ξk (5)
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(εijk is the Levi-Civita antisymmetric symbol). The vector fields have been defined in the
language of the CSCS, and therefore any transformation of the coordinates affects them as
well. Namely, the action of infinitesimal transformations θ̇ = LP θ, ϕ̇ = LP ϕ is given by

φ̇i = [P, φi] (6)

ξ̇i = [P, ξi] (7)

(the vector field P is any linear combination of φi and ξi). It easily follows that under
the rotation given by a matrix �

j

i ∈ SO(3), the vector fields defined above transform
according to

φ̃i = �
j

iφj (8)

ξ̃i = �
j

iξj . (9)

The integrated action of a proper conformal transformation generated by niξi , with ninj δ
ij = 1,

is given by

φ̃i = ni(nkφk) + cosh λ(φi − ni(nkφk)) + sinh λ(εijknj ξk) (10)

ξ̃i = ni(nkξk) + cosh λ(ξi − ni(nkξk)) − sinh λ(εijknjφk), (11)

where λ is the group additive parameter. Note that in our convention the action of the conformal
group is passive, i.e. it acts only on the coordinate systems and not on ω or q.

We introduce two triples of integrals:

Ji = − 1

8πG

∫
�

ω(φi)ε (12)

Ki = − 1

8πG

∫
�

ω(ξi)ε. (13)

From (8), (9) and (12), (13) we see that under the action of the rotation subgroup SO(3) these
triples transform like standard three-dimensional vectors, so it is legitimate to consider them
as vectors in a three-dimensional Euclidean space and denote by �J and �K .

It would be tempting to use the length of �J as a measure of angular momentum (as was
effectively done in [12]), but we must keep in mind that from the beginning we have a freedom
of choosing the CSCS, which affects the values of the integrals (12) and (13). Although
| �J | is invariant under rotations, the proper conformal transformations in general mix �J and
�K and do not preserve their norms. Namely, the integrated version of the proper conformal

transformations (10) and (11), combined with (12) and (13), yields

�J ′ = γ ( �J + �β × �K) − γ 2

γ + 1
�β( �β · �J ) (14)

�K ′ = γ ( �K − �β × �J ) − γ 2

γ + 1
�β( �β · �K), (15)

where we have introduced for convenience

�β = tanh λ · �n, | �β| < 1

γ = (1 − �β2)−1/2

(scalar and vector products are defined in a standard way).
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Note that equations (14) and (15) are exactly the same as the transformation laws for the
electric and magnetic field vectors �E and �B, respectively, under the Lorentz boosts [18]. Since
the action of rotations is also identical, we conclude that under all (orthochronal) SO(1, 3)

transformations �J and �K transform exactly like the electric and magnetic fields. We will
explore this unexpected analogy in the rest of the paper, as for now noting only that that these
transformations have two well-known polynomial invariants of second degree [18]:

A = | �J |2 − | �K|2 (16)

B = �K · �J . (17)

As invariants, they do not depend on the initial choice of the CSCS and are therefore well-
defined quantities on any MOTS.

Definition of the axial vector and angular momentum

If �J and �K are not parallel in a given CSCS and the invariants A and B do not vanish
simultaneously, there exists a proper conformal transformation which makes them parallel or
causes one of them to vanish [18]. It is given by (14) and (15) with

�β = β
�J × �K

| �J × �K| ,

where β is the only root of

1 − | �J |2 + | �K|2
| �J × �K| β + β2 = 0

satisfying 0 < β < 1. Once it has been applied, the only transformations preserving the
parallelness of �J and �K are the rotations and the proper conformal transformations with �β
parallel to �J and �K respectively. It is straightforward to check that they do not affect | �J | and
| �K|. Moreover, the axial vector field φ given by

φ = Ji

| �J |φi = ± Ki

| �K|φi (18)

is also invariant and substituted into (2) yields exactly | �J |. All these observations justify the
following definition.

Definition. For any MOTS for which A2+B2 > 0, we define the value of angular momentum as

J = | �J |
calculated in any conformally spherical coordinate system in which �J × �K = 0. The
corresponding axial vector field φ is defined in the same coordinates as

φ = Ji

| �J |φi

if �J �= 0, or

φ = Ki

| �K|φi

otherwise.

The definition obviously satisfies the requirements 2 and 4. We will now prove that J and φ

coincide with the ‘standard’ ones on an axisymmetric MOTS (condition 3).
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One can easily prove that if the MOTS admits an axial symmetry of both the metric and
the rotation 1-form, i.e. there exists an axial vector X such that LXω = 0,LXq = 0, then it is
possible to find an adapted CSCS (θ, ϕ) in which X = ∂ϕ and consequently the metric and
the rotation form take a particularly simple form

q = F(θ)(dθ2 + sin2 θ dϕ2) ω = ωθ(θ) dθ + ωϕ(θ) dϕ. (19)

In this case, all integrals in (12) and (13) vanish except

J3 = − 1

8πG

∫
�

ωϕ(θ)ε K3 = − 1

8πG

∫
�

sin θωθ (θ)ε, (20)

and we see that �J and �K are both parallel to the symmetry axis and in consequence J = | �J |.
The symmetry vector X is now equal to the axial vector field ∂ϕ , which in turn is equal up to
sign to Ji

| �J |φi and Ki

| �K|φi , whenever the latter two are defined. Consequently J = ±J3, which is
again equal up to sign to JX, as expected. This completes the proof.

The value of J can be conveniently expressed in terms of the two invariants A and B.
Namely, assuming that �J and �K are parallel we can respectively solve (16) and (17) for J ,
obtaining

J =
√

A +
√

A2 + 4B2

2
. (21)

We may regard (21) as another definition of the angular momentum which, in contrast to the
previous one, is manifestly SO(1, 3)-invariant and therefore applicable to any conformally
spherical coordinates. This fact makes it much more useful from the computational point of
view.

Note that formula (21) is perfectly valid even in the ‘plane wave’ case, when both A and
B vanish. Thus, the value of angular momentum continues to be well defined despite the fact
that the axial vector field is not. The inapplicability of the previous, geometric definition to
the ‘plane wave’ MOTSs seems less surprising if we consider that in that case (21) identically
yields 0. Obviously if the angular momentum vanishes, the axis of rotation, and consequently
the axial vector field φ, is undefined.

This introduces a slight complication, because without a vector field one cannot put (21)
in the form of (2), which is crucial to apply the Hamiltonian formulation in order to prove that
J is the generator of the horizon rotations. Therefore if A = B = 0, formula (21) for angular
momentum can only be justified by a continuity argument.

Gauge invariance

As we mentioned in the introduction, renormalizing the null normals or changing the foliation
of an isolated horizon results in adding the gradient of a complete function on � to the rotation
form [3, 9]. If the vector field φ preserves the area form, formula (21) is insensitive to such
changes [19]. In our construction, however, the axial vector field need not be divergence-free
and adding a gradient to the rotation form usually affects the value of J .

One could possibly modify the vector field φ in such a way that it becomes divergence-
free, for example by an appropriate pointwise rescaling. Namely, one can verify that the vector
field φ̂ given by

φ̂ = C(θ)

F (θ, ϕ)
φ C(θ) = 1

2π

∫ 2π

0
F(θ, ϕ) dϕ,

calculated in the CSCS with �J × �K = 0, is both axial and divergence-free (the coordinate
system is assumed to have been rotated so that φ = ∂ϕ). This rescaling however makes
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the definition of angular momentum more complicated. In particular, since φ̂ need not be a
combination of the Möbius group generators, we lose the simple way to evaluate J offered by
equation (21). Therefore, we will follow another path here.

Another way around the problem of gauge dependence would be to take into account
only the gauge-invariant part of ω in the definition. This can be easily achieved and without
violating (2) by appropriate fixing of the normalization of the null normals. Namely, one
should require that in the Hodge decomposition ω = �df + dg the gradient part dg vanishes,
or equivalently that

d � ω = 0. (22)

It is straightforward to verify that it is always possible to gauge lµ and kµ in such a way
that (22) holds. Since the Hodge operator acting on 1-forms is conformally invariant, it does
not matter whether it is taken with respect to the original metric q or the ‘round’ one. Note
that on an axisymmetric horizon, (22) is equivalent to setting the first term in (19) to 0. This
term does not contribute to the value of J , as we can see in (20), so the proposed gauge fixing
does not matter in axisymmetric surfaces. In particular, it does not spoil the compliance of the
presented definition with condition 3.

Fixing the null normals by (22) has yet another nice consequence. In a Kerr or
Kerr–Newman horizon, or in any axisymmetric horizon, if we change the foliation from the
standard one to one with arbitrarily tilted or waived leaves, the rotation form will also acquire
a gradient of a function of both coordinates h(θ, ϕ). This destroys the rotation invariance of
ω with respect to ∂ϕ and potentially changes the value of J . However, condition (22) imposes
renormalization of the null normals which exactly cancels with dh. Thus, equation (21) with
the described gauge fixing yields the expected value of angular momentum when applied to
any section of the Kerr or Kerr–Newman horizon.

Of course in practical calculations, it is not necessary to actually rescale the null normals.
It suffices to perform the Hodge decomposition of the rotation form and substitute only �df

as the rotation form into any of the definitions.

Properties

We will now briefly discuss several properties of the proposed definition of angular momentum.
First, if �K and �J turn out to be perpendicular in a particular CSCS, (21) can be simplified to

J =
⎧⎨⎩

√
| �J |2 − | �K|2 if | �J | > | �K|,

0 otherwise.
(23)

Thus, the relationship between J and �J turns out to be non-differentiable. Moreover, angular
momentum vanishes identically whenever | �J | � | �K|. This is slightly surprising, but perfectly
consistent with the first definition of J . Namely, if | �K| > | �J | or | �K| < | �J |, one can pass to the
CSCS with �J × �K = 0 where it turns out that �J = 0 or �K = 0 respectively. The intermediate
case of both vectors being of equal norms is exactly the ‘plane wave’ case when we cannot
apply the first definition.

Note that something similar happens even if �J and �K are not perpendicular, though not
parallel either: if we increase the length of �K keeping �J fixed, the value of angular momentum
tends to 0, although no discontinuity of the first derivative is present.

None of these peculiarities appears in axisymmetric horizons. As we noted in the previous
section, imposing (22) ensures that both vectors are always parallel and therefore changing
| �K| does not affect J .
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Physical motivation behind the parallelness condition

One may ask whether there exists a physical motivation behind the requirement of �J and �K
being parallel, other than the correct behaviour of J in known and obvious cases. In fact, a
simple analogy may be drawn between the MOTSs and relativistic systems of non-interacting
particles in a Minkowski background. If x

µ

N denotes the spacetime coordinates of particle N
and p

µ

N its 4-momentum, we can define two vectors

Ki =
∑
N

(
pi

Nx0
N − p0

Nxi
N

)
Ji =

∑
N

εijkx
j

Npk
N,

where the summation over all particles is done at a given instant of coordinate time x0. These
vectors are the non-vanishing components of the antisymmetric angular momentum 4-tensor
[20]. They generate the action of the Lorentz group on the phase space in the same way (12)
and (13) generate the action of the Möbius group on a MOTS. Assume that in a given reference
frame, we have shifted the origin to the momentary position of the system’s centroid calculated
in that frame, i.e. we have∑

N

p0
Nxi

N = 0.

Now one can verify that if �J is parallel to �K, then the norm of �J is equal to the value of
system’s total angular momentum evaluated in the centre-of-mass frame. The latter is the
‘true’ intrinsic angular momentum given by the norm of the Pauli–Lubański vector [21].

Summary and further developments

We will now briefly summarize the main result of the paper. Basing on the action of the
conformal group on a MOTS, we have presented a new definition of angular momentum J ,
applicable to both axisymmetric and non-symmetric surfaces, along with a construction of
the corresponding axial vector field whose flow is generated by the angular momentum as a
Hamiltonian generator. The construction of the vector field works for all surfaces except a
narrow class in which the value of angular momentum vanishes.

Having noted that the value of J depends on the choice of null normals, we have proposed
a simple gauge condition which removes this ambiguity. The resulting definition yields the
expected answer when applied to axisymmetric horizons, even when the choice of foliation or
normalization is not compatible with the symmetry.

In the next paper [22], apart from discussing another proposition for the angular
momentum definition, we will derive the angular momentum flux law and the first law of
black hole mechanics in non-axisymmetric horizons.
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