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We study the critical collapse of a massless scalar field with angular momentum in spherical symmetry.
In order to mimic the effects of angular momentum we perform a sum of the stress-energy tensors for all
the scalar fields with the same eigenvalue l of the angular momentum operator and calculate the equations
of motion for the radial part of these scalar fields. We have found that the critical solutions for different
values of l are discretely self-similar (as in the original l � 0 case). The value of the discrete, self-similar
period, �l, decreases as l increases in such a way that the critical solution appears to become periodic in
the limit. The mass-scaling exponent, �l, also decreases with l.
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I. INTRODUCTION

Most studies of black-hole critical phenomena (see [1,2]
for reviews) to date (or related phenomena in other sets of
nonlinear evolution equations) have been performed as-
suming spherical symmetry as a simplifying assumption
(exceptions are [3,4] and more recently [5]). This simpli-
fication has been adopted in most cases because accurate
calculation of Type II critical solutions—which exhibit
structure at all scales due to their self-similar nature—
requires great computational resources. Since spherically-
symmetric spacetimes do not allow for angular momen-
tum, very little is currently known about the role of angular
momentum in critical collapse. For a few cases, most
notably the Type II solutions found in spherically-
symmetric collapse of a massless scalar field [6], or certain
types of perfect fluid [7,8], perturbative calculations about
the spherical critical solutions suggest that nonspherical
modes, including those contributing to net angular momen-
tum, are damped as one approaches criticality.1 In particu-
lar in [6–8] using second order perturbation theory it was
predicted that the angular momentum of the black holes
produced should have the following dependence as a func-
tion of the critical parameter p:

 

~L BH � ~L0�p� p?��; (1)

where ~L0 is family-dependent and � is a universal scaling
exponent satisfying �> 2� (� being the scaling exponent
for the black-hole mass). Specifically, it was suggested that
� � 0:76 for the scalar field case, whereas the computa-
tions indicated that � would depend on the equation of
state for perfect fluid collapse. These calculations thus
suggest that, at least for small deviations from spherical
symmetry, the resulting solutions on the verge of black-
hole formation should remain spherically symmetric in
nonsymmetric collapse. We also note that an axisymmetric
numerical relativity code has been developed [9] to study
nonperturbatively some effects of angular momentum in
the critical collapse of a scalar field. Interestingly, the
results found for � and � in the case of a complex scalar
field with principal azimuthal ‘‘quantum number,’’ m � 1,
are very close to the results we find in our model for l � 1,
as described in Sec. III.

Here a different approach is taken. Maintaining spheri-
cal symmetry, the equations of motion for a massless scalar
field are modified by effective terms which mock up some
of the effects of angular momentum. As described below,
the procedure amounts to performing an angular average
over the matter field variables—similar to that done in
[10–12]—and results in an entire family of models, pa-
rametrized by a principal angular ‘‘quantum number,’’ l
(we will generally restrict l to take on non-negative integer
values, although real-valued l’s are also formally possible).
We note that since the models remain spherically symmet-
ric, we cannot use them to address the validity of the
perturbative calculations mentioned above [e.g. Eq. (1)].
Nonetheless, we find interesting results that may shed
some light on the effects of angular momentum near the
black-hole threshold.

Some of the main results that have been found are as
follows. First, each value of the angular momentum pa-
rameter l apparently defines a distinct critical solution. For
l < 10, these solutions are found to be discretely self-
similar, with values of the echoing exponent, �l, that
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rapidly decrease (approximately exponentially) as l in-
creases. As a result, for large values of l, and for the time
scales for which we are able to dynamically evolve near
criticality, the threshold solutions become approximately
periodic. In addition, and as expected for Type II solutions,
we find that for l < 7 the masses of the black holes formed
follow power laws. As with the echoing exponents, for
increasing values of l it is found that the mass-scaling
exponent, �l, rapidly decreases, again approximately ex-
ponentially in l.

The remainder of this paper is structured as follows. In
the following section we describe the recipe used to cal-
culate the effective equations of motion, along with the
regularity and boundary conditions imposed in the solution
of these equations. In Sec. III we briefly describe the
numerical code, the way the solutions have been analyzed,
and then provide a summary of the results obtained for
varying values of l. Throughout this paper we use units
such that the universal gravitational constant, G, and the
speed of light in vacuum, c, are both unity.

II. EQUATIONS OF MOTION

A. Equations

In order to derive equations of motion, scalar fields of
the following form are considered:

 �m
l �t; r; �; �� �  �l��t; r�Qlm��;��;

m � �l;�l� 1; � � � ; l� 1; l;
(2)

where Qlm��;�� are normalized real eigenfunctions of the
angular part of the flatspace Laplacian with eigenvalue
l�l� 1�, and the index m labels the 2l� 1 distinct ortho-
normal eigenfunctions for a given value of l.2 More ex-
plicitly:

 Qlm �

8>><
>>:
Yl0 for m � 0;
1��
2
p �Ylm � ��1�mYl�m� for m> 0;

1
i
��
2
p �Yljmj � ��1�jmjYl�jmj� for m< 0;

(3)

where Ylm��;�� are the regular spherical harmonics. By
construction, the scalar fields �m

l are not, in general,
spherically symmetric and we therefore do not study their
collapse directly. Instead, our strategy is to find effective
equations for the single �t; r�-dependent quantity  �l��t; r�,
which we hereafter denote simply by  . To do so, for a
specific value of l, we consider the stress-energy tensors for
the 2l� 1 fields �m

l :

 T�lm�ab � ra�m
l rb�m

l �
1

2
gab�r

c�m
l rc�

m
l �; (4)

where gab is the metric of the spacetime and ra is the
metric-compatible covariant derivative. Again by construc-

tion, and as is proven in the appendix, the sum of these
stress tensors

 T �l�
ab �

X
m

T�lm�ab; (5)

is spherically symmetric, and thus depends only on  �t; r�,
l, and the metric gab. We can now compute the effective
equation of motion for the field,  �t; r�, using the fact that
the divergence of the total stress-energy tensor is zero, as is
also proven in the appendix:

 gacrcT
�l�
ab � 0: (6)

The equations for the geometric variables are determined
from the 3� 1 decomposition of the Einstein field equa-
tions. For the current study we adopt Schwarzschild-like
(polar-areal) coordinates, in which the metric takes the
form

 ds2 � ��2�t; r�dt2 � a2�t; r�dr2 � r2d�2 � r2sin2�d�2:

(7)

Here ��t; r� is the lapse function and a�t; r� is the only
nontrivial component of the 3-metric (both � and a are
positive functions). Using this metric, the nonzero compo-
nents of the stress-energy tensor for a general value of l are

 T �l�t
t � �

�2l� 1�

8�

�
1

a2 ��
2 ��2� � l�l� 1�

 2

r2

�
; (8)

 T �l�t
r � �

�2l� 1�

8�
2

a�
��; (9)

 T �l�r
r �
�2l� 1�

8�

�
1

a2 ��
2 ��2� � l�l� 1�

 2

r2

�
; (10)

 T �l��
� � T �l��

� �
�2l� 1�

8�a2 ��
2 ��2�; (11)

and the stress-energy trace is

 T �l� � T �l�i
i

�
�2l� 1�

8�

�
2

a2 ��
2 ��2� � 2l�l� 1�

 2

r2

�
: (12)

In the above expressions, we have made use of the auxil-
iary variables, � and �, defined as follows:

 ��t; r� �
@ 
@r
; (13)

 ��t; r� �
a
�
@ 
@t
: (14)

The dynamical equations of motion for these fields, which
follow from the definition of � as well as the wave
equation for  [which in turn can be derived from the
vanishing of the divergence of the total stress tensor (6)],
are then

2Note that, in general, Qlm��;�� will not be eigenfunctions of
the azimuthal rotation operator �@=@�� since they are real.
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@�

@t
�

@
@r

�
�
a

�
�
; (15)

 

@�

@t
�

1

r2

@
@r

�
r2 �
a

�
�
� l�l� 1�a�

 

r2 : (16)

Note that the dependence of these equations on l is only
through the last term in Eq. (16) which is proportional to
l�l� 1�=r2. This term can be thought of as the field-
theoretic extension of an analogous term due to the angular
momentum potential, l2=r2, in the 1-dimensional reduced
problem of a particle moving in a central potential.

As mentioned above, equations for the geometric varia-
bles result from the 3� 1 decomposition of the field
equations, as well as from our choice of coordinates.
Specifically, we have the following:

 

1

a

@a
@r
�
�2l� 1�

2
r
�
�2 ��2 � l�l� 1�

a2

r2  
2

�
�
a2 � 1

2r
;

(17)

 

1

�

@�
@r
�
�2l� 1�

2
r
�
�2 ��2 � l�l� 1�

a2

r2  
2

�

�
a2 � 1

2r
; (18)

 

@a
@t
� �2l� 1�r���: (19)

Equation (17) is the Hamiltonian constraint, which is used
to determine the 3-metric component, a. Similarly, the
slicing condition (18) fixes the lapse function � at each
instant of time, and is often known as the polar slicing
condition. It can be derived from the demand that
Tr�Kab� � Kr

r � K�
� � K

�
� � Kr

r � 2K�
� � 0, for all

times. The Hamiltonian constraint and slicing condition,
with appropriate regularity and boundary conditions, com-
pletely fix the geometric variables in this coordinate sys-
tem. Equation (19) is an extra equation derived from the
definition of Kr

r and the momentum constraint. In our
numerical solutions, it is used as a gauge of the accuracy
of our calculations, as well as to provide a replacement for
the Hamiltonian constraint in certain strong field instances
where the numerical constraint solver fails. In addition, we
compute the mass aspect function, M�t; r�,

 M�t; r� �
r
2

�
1�

1

a2

�
; (20)

which serves as a valuable diagnostic quantity in our
calculations. The value of this function as r! 1 agrees
with the Arnowitt-Deser-Misner mass, and more generally,
in a vacuum region of spacetime, measures the amount of
(gravitating) mass contained within the 2-sphere of radius r
at time t. Moreover, 2M�t; r�=r is useful since its value
approaches 1 when a trapped surface is developing and
hence (modulo cosmic censorship), a black hole would

form in the spacetime being constructed. We note that, as
is the case with the usual Schwarzschild coordinates for a
spherically-symmetric black hole, polar-areal coordinates
cannot penetrate apparent horizons, and in fact become
singular as they come ‘‘close to’’ black-hole regions of
spacetime, where 2M�t; r�=r! 1. This fact does not
present a problem in the study of critical behavior in our
models, since the critical solutions per se have
maxrf2M�t; r�=rg bounded away from 1.

B. Regularity and boundary conditions

In addition to the above equations of motion, appropriate
regularity and boundary conditions are needed. At the
origin, r � 0, regularity is enforced via

 a�t; 0� � 1; (21)

 

@a
@r
�t; 0� � 0; (22)

 

@�
@r
�t; 0� � 0; (23)

  �t; 0� � O�rl�; (24)

 ��t; 0� � O�rl�; (25)

 ��t; 0� �
�
O�rl�1� for l 	 1;
O�r� for l � 0:

(26)

In the continuum, our equations of motion are to be solved
as a pure Cauchy problem, on the domain t 	 0, r 	 0,
with boundary conditions at spatial infinity given by
asymptotic flatness (i.e. that the matter fields vanish, and
that the metric becomes that of Minkowski spacetime, as
r! 1). Computationally, we solve an approximation to
this problem on a finite spatial domain 0 
 r 
 rmax,
where rmax is some arbitrary outer radius chosen suffi-
ciently large that we are confident that the numerical
results do not depend significantly on its precise value.
At the outer boundary, then, the following condition for �
is imposed:

 ��t; rmax�a�t; rmax� � 1: (27)

This can be viewed as simply providing a convenient
normalization for �, since given a solution, �, of the
slicing equation (18), k� is also a solution, where k is an
arbitrary positive constant. We note that although we have
used (27) in order to perform the calculations, a different
normalization convention—i.e. a different, and time de-
pendent, choice of k—has been used in order to perform
the analysis of the solutions. Specifically, in the analysis
we have used central proper time T defined by

 T �
Z T

0
��~t; 0�d~t: (28)
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This definition of time has a natural geometrical interpre-
tation since r � 0 is invariantly defined by the symmetry of
the spacetime. For the scalar field variables, � and �,
approximate outgoing-radiation boundary conditions
(Sommerfeld conditions) are used:

 

@�

@t
�t; rmax� �

@�

@r
�t; rmax� �

��t; rmax�

rmax
� 0; (29)

 

@�

@t
�t; rmax� �

@�

@r
�t; rmax� �

��t; rmax�

rmax
� 0: (30)

An important point in the derivation of the equations of
motion is the fact that the eigenfunctions in (2) are discrete
and the allowable values of l are only non-negative inte-
gers. Once the equations are obtained we have relaxed that
constraint and have allowed l to take non-negative real
values. The solutions corresponding to noninteger values
of l would have some degree of irregularity at the origin
depending on the particular value of l chosen. This implies
that only some finite number of derivatives with respect to
r will be defined at r � 0. In our particular numerical
implementation, which assumes that second derivatives
of the variables are defined, we have been able to study
the evolution of these systems as long as l > 3.

III. RESULTS

A. Numerics

We solve Eqs. (15) and (16), for the scalar field gra-
dients, Eqs. (17) and (18), for the geometry, and use (13) to
reconstruct the field  . The system is approximated using
second order centered finite difference techniques, and
coded using rapid numerical prototyping language [13].
Numerical dissipation of the Kreiss-Oliger [14] variety was
included to damp high frequency modes, and it should be
noted that this particular type of dissipation is added at
subtruncation error order, so does not affect the overall
accuracy of the scheme as the mesh spacing tends to 0. For
the current computations, the damping terms were most
useful in regularizing the truncation error estimation pro-
cedure that occurs when adaptive mesh refinement (AMR)
techniques are used. It was also crucial to impose the
correct leading-order regularity conditions close to the
origin, r � 0 [Eqs. (25) and (26)], in order to keep the
solution regular during the evolutions. Most of the calcu-
lations were done on a fixed uniform spatial grid rj � �j�
1��r, j � 1; 2; � � � ; J, J � 1� rmax=�r with a typical
number of grid points J � 1025, and the outer boundary
of the computational domain typically at rmax � 100. For
small values of the angular momentum parameter—spe-
cifically for l 
 2—an AMR algorithm based on that
described in [15] was used.

B. Families of initial data

Our study involved the evolution of 6 different one
parameter families of initial data, each defined by an initial
profile  �0; r� as listed in Table I, with specific values of
the parameters appearing in the profile definitions as given
in Table II. In addition to  �0; r�, we need to provide
��0; r� to complete the specification of the initial data.
In all cases we chose ��0; r� to produce an approximately
in-going pulse at the initial time:

 ��0; r� � ��0; r� �
@ 
@r
�0; r�: (31)

As previously mentioned, all of the initial data families
listed in Table I have a single free parameter, p, and, as is
the usual case in studies of black-hole critical phenomena,
for any given family we observe two different final states in
the evolution, depending on the value of p. For values of
p > p? the maximum value of 2M�t; r�=r approaches 1
implying that an apparent horizon is about to form. On the
other hand if p < p? the scalar field completely disperses,
and leaves (essentially) flat spacetime in its wake. The
solution that arises as p! p? then represents the threshold
of black-hole formation and, by definition, is the critical
solution. We note that these critical solutions are not t!
1 end-states of evolution; rather they persist for only a
finite amount of time, and, in fact, are unstable, heuristi-
cally representing an infinitely fine-tuned balance between
dispersal and gravitational collapse.

C. Analysis

We have calculated p? for the different families of initial
data described above, and for different values of l, via
bisection (binary search), tuning p in each case to a typical
precision of �p� p?�=p � 10�15 (which is close to ma-
chine precision using 8-byte real floating point arithmetic).

TABLE I. Families of initial data and the parameter p that is
tuned to generate a critical solution.

Family Form of initial data,  �0; r� p

(a) A exp���r� r0�
2=�2� A

(b) �2A�r� r0�=�2 exp���r� r0�
2=�2� A

(c) Ar2�atan�r� r0� � atan�r� r0 � ��� A

TABLE II. Initial data used in our investigations. The family
labels are defined in Table I.

Initial Data (F) Family Parameters

1 (a) r0 � 70:0, � � 5:00
2 (b) r0 � 70:0, � � 5:00
3 (c) r0 � 70:0, � � 5:00
4 (a) r0 � 40:0, � � 10:0
5 (a) r0 � 40:0, � � 5:00
6 (a) r0 � 70:0, � � 10:0
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As in the case for l � 0 (where the equations of motion
reduce to those for a single, noninteracting massless scalar
field, as studied in [15]), the critical solutions for values of
l 
 9:5 are apparently discretely self-similar (DSS). DSS
spacetimes are scale-periodic, meaning that any nondimen-
sional quantity, Z, obeys the following equation for some
specific values of the parameters � and T?:

 Z��T � T?�; r� � Z�en��T � T?�; en�r�; (32)

where T is central proper time as defined by (28), and T? is
the ‘‘accumulation time’’ of the self-similar solution. In
(32) the integer n denotes the ‘‘echo’’ number. We also
note that due to the discrete  ! � invariance that is
exhibited both by the equations of motion as well as the
critical solutions themselves, if � is the echoing exponent
for which formula (32) is satisfied with Z�T; r� �  �T; r�,
then the geometric quantities a�T; r�, ��T; r�, 2M�T; r�=r
obey (32) with an echoing exponent �=2.

In order to extract � from our calculations, we use the
observation that certain geometric quantities will achieve
(locally) extremal values on the spatial domain at discrete
central proper times Tn given by

 Tn � T? � �T0 � T?�en�=2 (33)

where T0 is the time at which one starts counting the
echoes. Specifically, � and T? have been computed by a
least squares fit for the times Tn at which maxrf2M�t; r�=rg
achieves a local maximum in time, i.e. by minimizing

 �2 �
XN
n�1

fTn � T0e
n�=2 � T?�en�=2 � 1�g2: (34)

D. Results

Table III summarizes the values of �l we have estimated
using this procedure; the data are also graphed in Fig. 1.
Again, note that the reported values for �l have been
calculated using central proper time T instead of proper
time at infinity (the parametrization used in the numerical
evolutions per se). Also the reported uncertainties have
been estimated from the deviations in the �l values com-
puted across the six different families of initial data. The
first entry in Table III (l � 0) corresponds to the original
case studied in [15]. The second one (l � 1) is apparently
the same solution found for the self-gravitating collapse of
an SO�3� nonlinear � model, assuming a hedgehog ansatz
[16,17]. Interestingly, the values for �1 and �1 also agree
quite well with the values obtained from the study of the
axisymmetric collapse of a complex-valued scalar field
with azimuthal quantum number m � 1 [9], where values
� � 0:42 and � � 0:11 are quoted. However, in the model
considered in [9], the overall solution is clearly different
because it is not spherically symmetric. The remainder of
the solutions (for the other values of l) are, to the best of
our knowledge, new.

Systems exhibiting type II critical behavior, where the
critical solution is self-similar, generally also exhibit

TABLE III. Summary of the properties of the critical solutions
computed for different values of l. Note that both the echoing
exponents, �l, and the mass-scaling exponents, �l, rapidly
decrease as l increases. Quoted errors have been estimated
from the variation in values computed across the different
families of initial data. Values of �l have been calculated using
central proper time normalization of the lapse function, which is
the natural normalization for type-II critical behavior. For l >
6:5 we have not been able to calculate �l due to lack of
numerical precision. Note that the l � 0 data agree with the
original values calculated in [15], and that the l � 1 data agree
with values calculated in [16,17] using models of completely
different origin.

l �l �l

0 3:43� 0:05 0:376� 0:003
1 0:460� 0:002 0:119� 0:001
2 0:119� 0:003 0:0453� 0:0002
3 0:039� 0:001 0:020� 0:001
3.5 0:0224� 0:0009 0:0127� 0:0008
4 0:0132� 0:0008 0:0082� 0:0008
4.5 0:0077� 0:0007 0:0052� 0:0006
5 0:0044� 0:0007 0:0033� 0:0005
5.5 0:0026� 0:0006 0:0020� 0:0005
6 0:0015� 0:0005 0:0013� 0:0005
6.5 0:0009� 0:0005 0:0008� 0:0005
7 0:0006� 0:0004 � � �

7.5 0:0004� 0:0004 � � �

8 0:0003� 0:0004 � � �

8.5 0:0002� 0:0003 � � �

9 0:0002� 0:0004 � � �

9.5 0:0002� 0:0003 � � �

FIG. 1 (color online). Values of log10��l� versus l. In this
figure we can see that �l decreases almost exponentially with
l. The different lines represent different families of initial data.
Assuming universality, the differences between the values calcu-
lated for the different families provides one measure of error in
our determination of �l.
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power-law scaling of dimensionful quantities in near-
critical evolutions. For example, we can expect the
black-hole mass, MBH, to scale as

 MBH � C�p� p?��l (35)

for supercritical evolutions as p! p?.3 Here C is a con-
stant that depends on the family of initial data while �l is a
universal exponent for each value of l, i.e. independent of
the specific initial data family used to generate the critical
solution. We have observed such scaling in at least some of
our computations, but, following Garfinkle and Duncan
[20] have found it more convenient to extract �l by moni-
toring the maximum value of the trace of the stress tensor,
T , which, from the Einstein equations, is proportional to
the maximum value of the Ricci curvature. On dimensional
grounds T [defined by (12)] and R should both scale with
an exponent �2�. This technique has the advantage of
being more precise than a strategy based directly on (35)
since we can calculate the trace of the stress-energy more
accurately than the mass of the black hole formed, and can
perform the computation using subcritical evolutions,
where the gradients of field variables generally do not
become as large as those in the supercritical cases. The
values of �l as a function of l are listed in Table III and are
plotted in Fig. 2.

As is characteristic of type-II critical solutions exhibit-
ing discrete self-similarity, 2M�t; r�=r oscillates at higher
frequencies and on smaller spatial scales during the course
of an evolution in the critical regime. As has already been
noted, as l increases, the echoing exponent �l decreases

rapidly. This can be observed in Fig. 3 where the evolution
of the maximum in r is shown as a function of time for four
different values of L.

In addition, also in Fig. 3, we observe that the maximum
and minimum values between which the spatial maximum
of 2M�t; r�=r oscillates increase with l (this fact is shown
for all values of l in Fig. 4) indicating that the critical
solutions are becoming increasingly relativistic as the an-
gular momentum barrier becomes more pronounced. The
amplitude of the oscillations between these extremal val-

FIG. 2 (color online). Values of log10��l� versus l, where �l is
the scaling exponent defined by (35). As for the case of the
echoing exponent, �l, �l also decreases approximately exponen-
tially with l. We note that due to lack of numerical precision we
can only reliably compute �l for l 
 6:5.

FIG. 3 (color online). Evolution in time of the maximum in r
of the function 2M�t; r�=r for four different critical solutions
with increasing value of l (l � 0, l � 1, l � 2, and l � 4). The
plot shows the evolution during the period of time when each
solution shows discrete self-similarity. The time coordinate is
rescaled by �l for visualization purposes and is shifted so that
the function values coincide at t � 0. We note how the solutions
tend to periodicity with increasing values of l.

FIG. 4 (color online). maxtfmaxrf2M�t; r�=rgg in the critical
regime as a function of l (solid line) and the same for
mintfmaxrf2M�t; r�=rgg (dashed line). We see how both the
maximum and minimum values of 2M=r increase with l. On
the other hand the amplitude of oscillation, given by their
difference, apparently tends to zero with increasing l.

3In accord with the results in [18,19], we expect small ampli-
tude oscillations with period � to be superimposed on the
scaling law (35). We have, however, made no attempts to
measure this effect in the current work.
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ues decreases since minrf2M�t; r�=rg increases more rap-
idly than maxrf2M�t; r�=rg (see Fig. 4).

The assumption that the critical solutions are indepen-
dent of the initial family of initial data implies that the
spatial profiles at the same moment during the oscillation
for two different families of initial data are the same up to
some rescaling of the radial coordinate. In Fig. 5 we show a
check of the universality of the spatial profile for the
solutions computed with l � 9. Specifically we compare
the spatial profiles at times Tn, times at which the local
maximum in time is achieved during criticality, for differ-
ent families F of initial data F � 1; . . . ; 6 given in Table II.
In order to compare profiles we rescaled the radial coor-
dinate by a constant KF, which depends on the family of
initial data. These constants are chosen in such a way that
the ‘2-norm4 of the difference of the profiles with respect

to the one with F � 1, which is considered to haveK1 � 1,
are minimized. We observed that the maximum of the
relative difference, i.e. the difference divided by the
‘2-norm of the solution, is of the order of a few percent,
providing strong evidence for universality. Similar differ-
ences have been observed for other values of the angular
momentum parameter.

Empirically, we have also found that, as we increase l
within a family of initial data, although �l ! 0 and T?l !
0, the product T?l �l appears to asymptote to a finite value.
Note that ostensibly this product is family dependent (see
Fig. 6), but again that all DSS type-II critical solutions are
universal only up to a global scale transformation �r; t� !
�kr; kt�, with k an arbitrary positive constant. Choosing
k � k�l� for each of the families so that maxrf2M�t; r�=rg
is attained at some fiducial radius r0, and considering the
case l � 10, we find that the normalized asymptotic oscil-
lation frequency, f0, defined by

 f0 � r0=�T?�� � 4:35� 0:01 (36)

agrees for all families to better than 1%. Again, the quoted
uncertainty is estimated from the variation of f0 across the
different families of initial data. We note that for l � 10 the
near-critical solution stays at a near-constant radial posi-
tion; our spatial resolution is insufficient to resolve the
small changes associated with the extremely small value
of �l. The radial location of maxrf2M�t; r�=rg in this
regime is the value of r0 that we have used in (36).

FIG. 6 (color online). T?l �l as a function of l. The fact that
these products remain finite as T?l ! 1 and �l ! 0 is evidence
that the critical solutions tend to a periodic solution in the limit
l! 1.

FIG. 5 (color online). In the top pane we show the spatial
profiles (in the region of self-similarity) of the scalar field  for
different families of initial data, but for fixed angular momentum
parameter l � 9. In particular we show the solutions  F calcu-
lated from initial data types F � 1; . . . ; 6 (see Table II) at times
when  F reaches maximum amplitude. Each solution is shifted
by an amount proportional to its family number for better
visualization, with F � 1 the bottom curve, and F � 6 the
top. The r coordinate is rescaled for each family by a constant
factor KF, which is family dependent, in such a way that the
difference with respect to the profile obtained for the initial data
labeled with F � 1 (for which we consider K1 � 1) is mini-
mized. In the bottom pane we show the differences between the
rescaled profiles for F � 2; . . . ; 6 and the profile for F � 1,
divided by the ‘2 norm of the solution. The maximum relative
difference is of the order of a few percent, providing strong
evidence that the critical solution is universal.

4The ‘2-norm of a vector u is defined as jjujj �
�����������������������PN
i�1 u

2
i =N

q
.
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We also note that the observation that f0 is apparently
well defined and unique (up to the usual rescalings asso-
ciated with type-II critical solutions) is consistent with the
empirical observation that as l increases, the critical solu-
tion becomes ever closer to a periodic solution. In particu-
lar, for a periodic solution we have �! 0, and then

 Tn � T
? � �T0 � T

?�en� � �T0 � T
?��1� n��

� ��T?��n� T?; (37)

where T0 represents the loosely defined time demarking the
onset of the critical regime (and whose precise value is
clearly irrelevant in the limit T? ! 1) which implies that
the maximal value is attained at times Tn:

 Tn � ��T?��n: (38)

As shown in Figs. 7 and 8, from our calculations for l �
10, we cannot ascertain whether the solution is discretely
self-similar with �l very small (< 0:0002), or periodic
with period 	 � T?�.

Naively at least, we expect that for l > 10, distinguish-
ing between discrete self-similarity and periodicity would
become even more difficult. However, it is worth noting
that for l � 20 we have not yet seen evidence for (almost)-
periodicity, with period T?�, but have instead seen a more
complicated structure near criticality that is not yet
understood.

IV. CONCLUSIONS

In this paper, we have discussed the results for a model
that incorporates some of the effects of angular momentum
in the context of critical gravitational collapse. A new
family of spherically-symmetric critical solutions, (black-
hole threshold solutions) labeled by an angular momentum
parameter, l, has been found. These solutions have similar
properties to those for the l � 0 case originally studied in
[15]: specifically, the solutions exhibit discrete self-
similarity, and have scaling laws for the values of dimen-
sionful quantities in evolutions close to criticality. We have
calculated the l-dependence of the echoing exponents �l,
and the mass-scaling exponents �l, finding that both de-
crease rapidly with increasing l, (at least up to l � 10).
Moreover, we have argued that as l increases, the critical
solution approaches a periodic evolution.

Together with the results of [9], our findings suggest that
certain models of collapse may generically admit count-
able infinities of critical solutions, each member of which
can be characterized by distinct near-origin regularity con-
ditions [such as (24)–(26)] that are preserved by dynamical
evolution.

As we explained in the introduction, we expect that �l �
1=
l where 
l is the Lyapunov exponent associated with
the single unstable mode of the critical solution for angular
momentum parameter l. Therefore since �l ! 0 with in-
creasing l, we apparently have 
l ! 1. This has the
interpretation of increased stability of the critical solution
for increasing l, i.e. the period of time that a solution can
remain close to criticality (for a fixed amount of fine-
tuning) increases with l. We believe that this can be inter-
preted as an effect of the angular momentum barrier which
(partially) stabilizes the collapse to black hole formation.
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FIG. 7 (color online). Fit of the times Tn at which
maxrf2M�t; r�=rg reaches its maximum in time (triangles, left
scale) assuming a periodic ansatz. Initial data type F � 1 was
used with angular momentum parameter l � 10. We also plot the
residuals of each data point with respect to the best fit (penta-
gons, right scale).

FIG. 8 (color online). Fit of the times Tn at which
maxrf2M�t; r�=rg reaches its maximum in time (triangles, left
scale) assuming a self-similar ansatz. As in the previous plot,
initial data type F � 1 was used with angular momentum
parameter l � 10. Again, we also plot the residuals of each
data point with respect to the best fit (pentagons, right scale).
Notice that the errors in the fit are of the same order as the errors
in the fit that assumes periodicity (Fig. 7), indicating that from
our numerical results we are unable to distinguish between the
two types of solutions for l 	 10.
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APPENDIX

We wish to show that the stress-energy tensor T �l�a
b �P

mT
�lm�a

b is independent of � and �, where T�lm�
a

b is the
stress-energy tensor associated with the solution
 �l��t; r�Qlm��;��, with the same function  �l��t; r�, for
each value of m. For the scalar field, the tensor Tab can
be written in terms of the solutions to the wave equation,
�, as

 Tab � gac�;c�b �
1

2
�abg

dc�;c�d; (A1)

and if

 

X
m

Ma
b � gac� �l��t; r�Qlm��;���;c� 

�l��t; r�Qlm��;���;b

(A2)

is independent of �, �, then so is T �l�a
b.

Using the definition of the Qlm this can be written in
terms of the Ylm as

 

X
m

Ma
b � gac� �l��t; r�Y
lm��;���;c� 

�l��t; r�Ylm��;���;b:

(A3)

We can write this in terms of the Green’s function

 P��;�; �0; �0� �
X
m

Y
lm��;��Ylm��
0; �0� (A4)

in the limit as �0 ! � and �0 ! �.
In bra-ket notation, this is just the operator

 P �
X
m

jlmihlmj (A5)

which commutes with all of the angular momentum opera-
tors.

 �Lz; P� �
X
m

�Lz; jlmihlmj�

�
X
m

�mjlmihlmj � jlmihlmjm� � 0; (A6)

 

�Lx � iLy; P� �
X
m

�
���������������������������������������
l�l� 1� �m2 �m

q
jlm� 1i

� hlmj � jlmi��Lx � iLy�jlmi�
y�

�
X
m

�
���������������������������������������
l�l� 1� �m2 �m

q
jlm� 1i

� hlmj �
���������������������������������������
l�l� 1� �m2 �m

q
jlmi

� hlm� 1j� � 0: (A7)

Thus
P
mY


lm��;��Ylm��

0; �0� must be a function of the

only rotation invariant function of �, �, �0, �0, which is
the angle � defined by

 cos��� � cos��� cos��0� � sin��� sin��0� cos����0�:

(A8)

� is the angle between the two unit vectors with directions
�,� and �0,�0 respectively. Since P depends only on � we
can choose � � 0 to evaluate it, which gives

 P��;�; �0; �0� �
X
m

Y
lm��;��Ylm��
0; �0�

� Y
l0�0; 0�Yl0��; 0� �
2l� 1

4�
Pl�cos����:

(A9)

The various components of the tensor M are of three
types: ones with no derivatives with respect to � or � (e.g.
Mtt), those with one derivative, (for example Mt�), and
those with two (e.g., M��). The ones with no derivatives
will be functions of lim�0;�0!�;�P �

�����������������������������
�2l� 1�=�4��

p
Pl�1�

which is clearly independent of �,�. The terms with one �,
� derivative will be functions of
 

lim
�!0

@�;�Pl�cos���� � lim
�!0

P0lfsin���; sin2��� sin����0�g

� 0; (A10)

and similarly the term

 M�� / lim
�!0

@�@�0Pl�cos���� / lim
�!�0

sin����0� � 0:

(A11)

Thus the only two terms remaining are

 M�� / lim
�!�0

@�@�0Pl�cos��� �0��

� P0l�cos�0���� cos�0����1� � P0l�1�; (A12)

 M��0 / P0l�1� sin���2: (A13)

Thus the nonzero components of the tensor M are Mtt,
Mtr, Mrr, M�� � sin2���M��, with only M�� having �
dependence. Thus, Ma

b will be independent of �, � and
therefore so will T �l�a

b, as required.
In addition, from the equations of motion for the indi-

vidual fields �lm, each of the energy momentum tensors
for given l, m is conserved in the overall spherically-
symmetric spacetime. Thus, so is their sum over m for
any given l, and we have

 T �l�a
b;a � 0: (A14)
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