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Abstract We will pick up the concepts of partial and complete observables
introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhäuser,
Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002);
Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct
Dirac observables in gauge systems. We will generalize these ideas to an arbitrary num-
ber of gauge degrees of freedom. Different methods to calculate such Dirac observables
are developed. For background independent field theories we will show that partial
and complete observables can be related to Kuchař’s Bubble-Time Formalism (J Math
Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space
of complete observables and also state the Poisson brackets of these functions. Additio-
nally we will investigate, whether it is possible to calculate Dirac observables starting
with partially invariant partial observables, for instance functions, which are invariant
under the spatial diffeomorphism group.

1 Introduction

This work is concerned with Hamiltonian systems with first class constraints, or in
other words systems with gauge degrees of freedom. Examples for such systems are
provided by background independent theories, such as general relativity. For such sys-
tems one has not only to solve the constraints but also to find the gauge independent
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degrees of freedom, that is Dirac observables. These Dirac observables are crucial for
the canonical quantization of first class systems, since only Dirac operators can be
promoted into operators on the physical Hilbert space. Moreover one can see quanti-
zation as a process to look for a representation of the observable algebra on a Hilbert
space. Hence it is important to know the properties of the observable algebra.

One of the outstanding problems towards a quantum theory of gravity is, that there
are no explicit Dirac observables known (with the exception of the ten ADM charges
for the asymptotic flat case and a Dirac observable which assumes only a few discrete
values, see [7,10]). Furthermore the connection between (spacetime-) diffeomorphism
invariant functions and Dirac observables is not very clear. This coheres with the
problem to represent the diffeomorphism group on the canonical phase space, see [9].
There are some attempts to bypass these problems by enlarging the phase space in
order to obtain a representation of the diffeomorphism group and a theory which is
explicitly covariant with respect to this group, see for instance [22,23,11].

In this work we will adhere to the canonical phase space and pick up an idea of
Rovelli in [18–21] for the construction of Dirac observables. For systems with one
constraint the idea works in the following way: Assume that the system is totally
constrained so that the constraint generates the time evolution (which is then consi-
dered as a gauge transformation). Use a phase space function T , which is not a Dirac
observable, as a clock which “measures” the time flow, i.e. the gauge transformation.
Consider another phase space function f and calculate the value of f “at the time” at
which T assumes the value τ . Since the value of f at a fixed time τ does not change with
time, the result will be time independent, i.e. a Dirac observable. Moreover varying τ
gives a one-parameter family of Dirac observables. Following Rovelli we will call T
and f partial observables and the one-parameter family of Dirac observables complete
observables.

In Sect. 2 we summarize the aspects of first class constraint systems important for
this work and explain our notations.

Section 3 reviews partial and complete observables for systems with one constraint
and proves that complete observables are Dirac observables ( if certain assumptions
are satisfied).

We will develop the concepts of complete observables for canonical systems with
an arbitrary (finite) number of constraints in Sect. 4. In Sect. 5 we write down a
system of partial differential equations for complete observables and give a formal
solution as a series in powers of the form (τ − T ). Section 6 shows, that a key point
in the construction is to introduce a set of new constraints, where the associated flows
commute at least on the constraint hypersurface.

In Sect. 8 we show that the concepts of partial and complete observables can also
be understood as the gauge invariant extensions of gauge restricted functions, see
[8]. This viewpoint enables us to calculate the Poisson brackets between complete
observables. Moreover we can define a non-trivial action of gauge transformations on
the set of complete observables (acting on the parameters τ ).

Section 10 considers (canonical) field theories, having infinitely many constraints.
It will turn out (Sect. 7) that the concepts of complete and partial observables are related
to Kuchar’s Bubble-Time formalism [13]: To define a complete observable we will
need infinitely many clocks which describe the embedding of the spatial hypersurface
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into the space–time manifold. A complete observable is then a phase space function
evaluated on an embedding which is fixed by prescribing certain values for the infinitely
many clock variables. Moreover it is possible to define an (non-trivial) action of gauge
transformations on complete observables.

Furthermore we will discuss whether it is possible to calculate complete observables
starting from spatially diffeomorphism invariant partial observables. More generally
we will consider in Sect. 9 partial observables, which are invariant under a subalgebra
of the constraints. As will be shown, this reduces the number of equations to solve,
considerably.

We will end with a discussion in Sect. 11.

2 Preliminaries and notation

In all sections but Sect. 10 we will consider finite dimensional phase spaces. Here a
phase space is a 2p-dimensional smooth manifold M with a non-degenerate
Poissonbracket {·, ·}, such that there are canonical coordinates (qa, pa, a = 1, . . . , p)
with

{qa, pb} = δab. (2.1)

C∞(M) is the space of smooth phase space functions and throughout this article we
will work in the category of smooth function, also if this is not explicitly mentioned.
(However, this is not always the case in the examples.) We will denote phase space
points by x = (qa, pa).

The subject of this article are systems with first class constraints or in other words
gauge systems. In this section we will just mention the facts relevant for this article,
a more detailed introduction can be found for example in [8].

First class constrained systems are characterized by the fact that the admissible
initial data are restricted to a submanifold of the phase space M which is called the
constraint hypersurface C. This hypersurface is described by the vanishing of n < p
constraints C j , j = 1, . . . , n, which are functions on M.

We will always assume that the constraints are algebraically independent, i.e.
that the maximal submanifold on which they vanish simultaneously is (2p − n)-
dimensional, where 2p is the dimension of the phase space M.

The first class property means that

{Ci ,C j } = fi jk Ck (2.2)

where the fi jk are called structure constants if they are independent from the canonical
variables and otherwise structure functions. For such first class systems the canonical
analysis results in a Hamiltonian H which is only uniquely defined on the constraint
hypersurface C:

H = h +
n∑

j=1

λ j C j (2.3)
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whereλ j are arbitrary (smooth) phase space functions. Here h is a function which either
does not identically vanish on C or is identical to zero. In the latter case the Hamiltonian
is a sum of constraints and the system is therefore called totally constrained.

Because of the arbitrariness of the functions λ j in the Hamiltonian (2.3) the dyna-
mics of the system cannot be unique. To account for this non-uniqueness one postu-
lates that different phase space points x1, x2 describe the same physical state if they
are connected by a gauge transformation.

Here a gauge transformation is a transformation which is generated by the
constraints C j . To explain this in more detail we will introduce the notion of a phase
space flow αt

C generated by a smooth phase space function C . Firstly we note that to
every phase space function C one can associate a so called Hamiltonian vector field
χC defined by the condition

{C, f } = χC ( f ) (2.4)

which has to be satisfied for arbitrary smooth function f . Here = χC ( f ) denotes the
action of the vector field χC on the function f . Then we can define the flow αt

C (x) of
a phase space point x by demanding that for the tangent of the curve c : R � t �→
αt

C (x) ∈ M the following holds:

d

dt
αt

C (x) = χC
(
αt

C (x)
)
. (2.5)

The flow satisfies the group property αs
C ◦ αt

C = α
(s+t)
C . It also acts on phase space

functions, that is we have a map at
C : C∞ � f �→ αt

C ( f ) ∈ C∞. The value of the
function αt

C ( f ) at the point x is given by

αt
C ( f )(x) = f

(
αt

C (x)
)
. (2.6)

It can be calculated with the help of the series

αt
C ( f )(x) =

∞∑

r=0

tr

r ! {C, f }r (x) (2.7)

where {C, f }0 := f and {C, f }r+1 = {C, {C, f }r }.
Now a gauge transformation g : M � x �→ g(x) ∈ M is a transformation which

can be written as a composition of flows generated by the constraints C j , j = 1, . . . , n.
The first class property (2.2) guarantees that for x ∈ C the set {g(x) | g is a gauge
transformation} is an n-dimensional submanifold of the constraint hypersurface C—
the gauge orbit through x , which we will denote by Gx . (For constraint algebras with
structure constants a gauge orbit can also be defined for points not contained in the
constaint hypersurface C.)

A physical (classical) state is an equivalence class of phase space points, where
the point x is equivalent to y if y ∈ Gx . Hence a physical state can be identified
with an n-dimensional gauge orbit. Moreover physical states are restricted to the
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(2p−n)-dimensional constraint hypersurfaceC, which shows that the space of physical
states is (2p − 2n)-dimensional.

From an physical observable F (i.e. a phase space function) one would expect that
its value is well defined by the physical state, i.e. that it does not give different values
on gauge equivalent phase space point. This translates into the condition

{C j , F} = 0 for j = 1, . . . , n (2.8)

which has to be fulfilled on the constraint hypersurface C. Such functions are called
strong Dirac observables, if (2.8) is satisfied everywhere on M, otherwise weak Dirac
observables. On the other hand since admissible physical states are restricted to C one
can identify functions f, f ′ which coincide on C but differ elsewhere. In such a case
we will write f � f ′ and call f, f ′ weakly equal. This defines an equivalence relation
on the space of phase space functions. Hence the space of physical observables is the
space of equivalence classes of Dirac observables. For this space the Poisson bracket
is well defined, i.e. does not depend on the representatives of the equivalence classes.

Finally we would like to mention that one can replace the set of constraints
{C1, . . . ,Cn} by another set of constraints {C̃1, . . . , C̃n} as long as the constraint
hypersurfaces defined by these two sets coincide. This is guaranteed if one can write
C̃ j = ∑

k A jkCk where (A jk)
n
j,k=1 is a matrix of phase space functions with non-

vanishing determinant on C. The two sets of constraints lead also to the same gauge
orbits Gx if x ∈ C. Moreover weak Dirac observables with respect to the first set are
also weak Dirac observables with respect to the second and vice versa. This does not
hold for strong Dirac observables.

3 Complete and partial observables for systems with one constraint

The concepts of partial observables and complete observables were introduced by
Rovelli in [18–21]. A partial observable is understood as “a physical quantity to
which we can associate a (measuring) procedure leading to a number” [18–21]. We
will assume here, that one can associate to an arbitrary phase space function such a
measuring procedure. A partial observable is then a phase space function, which does
not need to be a Dirac observable, i.e. it does not have to commute with the constraints.

A complete observable is “a quantity whose value can be predicted by the theory (in
classical theory)”. We will understand here under a complete observable phase space
functions which commute (weakly) with the constraints, i.e. phase space functions,
that are invariant under gauge transformations generated by the constraints.

As outlined in [18–21] if one has a system with one constraint C(x), one can asso-
ciate to two partial observables (that is phase space functions) f (x), T (x) a family of
complete observables F[ f,T ](τ, x) labeled by a parameter τ . This complete observable
is defined in the following way: Consider the flow αt

C (x) generated by the constraint
C starting from the phase space point x . The function F[ f,T ](τ, x) gives the value that
the function fx (t) := f (αt

C (x)) assumes if the function Tx (t) := T (αt
C (x)) assumes
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the value τ . Hence the definition is

F[ f,T ](τ, x) = αt
C ( f )(x)|αt

C (T )(x)=τ (3.1)

One can interprete T as a kind of clock, whose values parametrize the gauge orbit of
C . The complete observable F[ f,T ](τ, x) predicts the value of f for the “time” τ . Here
we can already see the conditions under which F is well defined: The function T has
to provide a good parametrization of the gauge orbit through x , that is the function
Tx (t) := αt

C (T )(x) has to be invertible. Now, locally this will be the case as long as

d

dt
αt

C (T )(x) = αt
C ({C, T }) (x) 	= 0. (3.2)

However, Tx (t) does not have to be globally invertible, it suffices that the function
fx (t) := αt

C ( f )(x) fulfils fx (t) = fx (s) for all s, t for which Tx (t) = Tx (s).
One can get a still weaker condition by considering a fixed value of τ . Then fx (ti )

has to be the same for all values ti in the preimage (Tx )
−1(τ ).

We will now prove that F[ f,T ](τ, x) is indeed a Dirac observable. To this end we
have to show that αεC (F[ f,T ](τ, ·)) = F[ f,T ](τ, ·):

αεC
(
F[ f,T ](τ, ·)

)
(x) = F[ f,T ]

(
τ, αεC (x)

) = αt
C ( f )

(
αεC (x)

)
|αt

C (T )(α
ε
C (x))=τ

= αεC ◦ αt
C ( f )(x)|αεC ◦αt

C (T )(x)=τ
= αt+ε

C ( f )(x)|αt+ε
C (T )(x)=τ (3.3)

In the last expression, s = t+ε is just a dummy variable—one has to solveαs
C (T )(x) =

τ for s and then to replace s in αs
C (x). This term is therefore equal to F[ f,T ](τ, x) and

we have proved the theorem:

Theorem 3.1 Let f, T be two phase space functions and x ∈ M a phase space point,
fulfilling the condition: αt

C ( f )(x) = αs
C ( f )(x) for all values s, t ∈ R for which

αt
C (T )(x) = αs

C (T )(x). Then F[ f,T ](τ, x) is invariant under the flow generated by C.

Example 1 We will consider the constraint

C = q1 p2 − q2 p1 (3.4)

on phase space M = R
2
q × R

2
p. We will choose f = q2 and T = q1 as partial

observables. To calculate the associated complete observable, we have to evolve both
partial observables under the flow of C :

αt
C (T )(q1, q2, p1, p2) = q1 cos(t)+ q2 sin(t) =

√
q2

1 + q2
2 sin (t + arctan(q1/q2))

αt
C ( f )(q1, q2, p1, p2) = q2 cos(t)− q1 sin(t) =

√
q2

1 + q2
2 cos (t + arctan(q1/q2)) .

(3.5)
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Now we have to invert Tx (t) := αt
C (T )(x) and to find all values in the preimage

of τ . Since Tx (t) is a periodic function the inverse will be a multivalued function.

The equation Tx (t) = τ is uniquely solvable on the interval t ∈
[
−π

2 − arctan( q1
q2
),

π
2 − arctan( q1

q2
)
]
, where the solution is given by

t10 = arcsin

⎛

⎝ τ√
q2

1 + q2
2

⎞

⎠ − arctan

(
q1

q2

)
. (3.6)

(If not otherwise specified, we will always take the positive branch of the square root.)
All other solutions are given by

t1k = t10 + 2πk

(3.7)
t2k = π − t10 − 2 arctan

(
q1

q2

)
+ 2πk, k ∈ Z.

Evaluating fx (t) := αt
C ( f )(x) at these points gives

fx (t1k) =
√

q2
1 + q2

2 − τ 2 and fx (t2k) = −
√

q2
1 + q2

2 − τ 2, (3.8)

hence F[ f =q2,T =q1](τ, x) = ±
√

q2
1 + q2

2 − τ 2 is a double valued function. Even
thought the condition in Theorem 3.1 is not exactly fulfilled both branches of
F[q2,q1](τ, x) are Dirac observables, i.e. commute with the constraint C .

This example suggests to introduce a two-dimensional configuration space of partial
observables N , which is coordinatized by values of the partial observables T and
f .1 That is, we have a map P : M → N given by x �→ (T (x), f (x)). Fix a
point x ∈ M. Then the flow αt

C (x) of the point x in M induces a flow of the point
P(x) = (T (x), f (x)) by αt

C (T (x), f (x)) := P(αt
C (x)) = (T (αt

C (x)), f (αt
C (x))).

One has to keep in mind that this flow in N is not necessarily uniquely determined by
the initial point (T (x), f (x)) ∈ N but it is determined by the initial point in x ∈ M
(see next example).

In this way each point in M defines a gauge orbit in N , namely the set {P(αt
C (x))|t ∈ R}. (Of course, gauge equivalent points in M define the same gauge orbit in N . It

may also happen, that gauge inequivalent points in M define the same gauge orbit in N
as is the case in Example 1, where the gauge orbits do not depend on the momenta.) The
functions (Tx (t) = T (αt

C (x)), fx (t) = f (αt
C (X)) provide a parameter description of

this gauge orbit. One can interpret the complete observable F[ f,T ](x, ·) as a function
of the first coordinate of N , whose graph (·, F[ f,T ](x, ·)) coincides with the gauge
orbit. Of course, it is in general not possible to describe a curve (namely the gauge
orbit) by a graph of a single valued function—exactly this is the case in Example 1,
where one needs a double valued function. Another way to describe a surface or curve

1 The topology of N should be determined by the properties of the partial observables.
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is as a level set of a function from N to R. In Example 1 this description is given by
T (x)2 + f (x)2 = q2

1 + q2
2 = const.

Example 2 Here we will consider the constraint

C = 1

2

(
p2

1 + ω1q2
1

) − 1

2

(
p2

2 + ω2q2
2

)
(3.9)

whereω1, ω2 are (constant) frequencies. The phase space is again M = R
2
q ×R

2
p. The

clock variable T will be T (x) = q1, and the other partial observable is f (x) = q2.
The evolution of these partial observables under the flow of C is again periodic:

αt
C (T )(q1, q2, p1, p2) = q1 cos(ω1t)− p1 sin(ω1t)

=
√

q2
1 + (p1/ω1)2 sin (ω1t − arctan(ω1q1/p1))

(3.10)
αt

C ( f )(q1, q2, p1, p2) = q2 cos(ω2t)− p2 sin(ω2t)

=
√

q2
2 + (p2/ω2)2 sin (ω2t + arctan(ω2q2/p2)) .

The function Tx (t) = αt
C (T )(x) is uniquely invertible on the interval [− π

2ω1
+

arctan(ω1q1/p1),
π

2ω1
+ arctan(ω1q1/p1)] (and all intervals which one can get by

translating the first interval by an amount kπ, k ∈ Z). The solutions of Tx (t) = τ are
given by

t1k = 1

ω1

⎛

⎝arcsin

⎛

⎝ ω1τ√
ω2

1q2
1 + p2

1

⎞

⎠ + arctan

(
ω1q1

p1

)
+ 2πk

⎞

⎠

(3.11)

t2k = 1

ω1

⎛

⎝π − arcsin

⎛

⎝ ω1τ√
ω2

1q2
1 + p2

1

⎞

⎠ + arctan

(
ω1q1

p1

)
+ 2πk

⎞

⎠ k ∈ Z.

Applying the function fx (·) = αt
C ( f )(x) to these values we will get the complete

observable F[ f,T ](τ, x), which in general will be multi-valued. We will label these
multiple values by {i, k}, i = 1, 2; k ∈ Z:

F[ f,T ](τ, x)1k =
√

q2
2 +

(
p2

ω2

)2

sin

(
ω2

ω1

⎛

⎝arcsin

⎛

⎝ ω1τ√
ω2

1q2
1 + p2

1

⎞

⎠

+ arctan

(
ω1q1

p1

)
+ 2πk

)
+ arctan

(
ω2q2

p2

) )
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F[ f,T ](τ, x)2k =
√

q2
2 +

(
p2

ω2

)2

sin

⎛

⎝ω2

ω1

⎛

⎝π − arcsin

⎛

⎝ ω1τ√
ω2

1q2
1 + p2

1

⎞

⎠

+ arctan

(
ω1q1

p1

)
+ 2πk

)
+ arctan

(
ω2q2

p2

))
. (3.12)

In spite of the multi-valuedness of F[ f,T ](τ, x) all the phase space functions
F[ f,T ](τ, x)i,k commute with the constraint C . (All the functions in (3.12) are combi-
nations of h j (x) := q2

j + (p j/ω j )
2, j = 1, 2 and

g(x) := ω2

ω1
arctan

(
ω1q1

p1

)
+ arctan

(
ω2q2

p2

)
(3.13)

and C commutes with h j and g.)
In the projected phase space N = R

2 the gauge orbits of C are Lissajous figures. If
the frequencies ω1 and ω2 are non-commensurable these curves fill densely the rec-

tangle
[−

√
q2

1+(p1/ω1)2,

√
q2

1+(p1/ω1)2
] × [−

√
q2

2+(p2/ω j )2,

√
q2

2+(p2/ω2)2
]
.

Therefore it is not astonishing that the prediction of fx (t) given the value of Tx (t) is
highly ambiguous. Nevertheless it is possible to obtain in this way a Dirac observable.

In practice it will not be possible to obtain such global information on the behavior
of the partial observables T, f as is needed for the proof of the Theorem 3.1. In the
above example we could have done the following: To invert the flow of the clock
variable only on some suitable small interval and to calculate the complete observable
just for parameter values in this interval. We would have obtained not all values of
the multi-valued complete observable but just one of them. Nevertheless in the above
example this value turns out to be a Dirac observable.

The questions arises whether this argumentation works also in more complicated
or chaotic system. Of course one could take the viewpoint that one can at least try
to calculate complete observables and then check afterwards whether the complete
observables obtained are Dirac observables, i.e. commute with the constraints. We
will proceed in this way in some examples for practical reasons. The next example
gives a glimpse of what might happen in chaotic systems.

Example 3 The Partial Observable Method promises to give a Dirac observable (or
constant of motion if one identifies the constraint with the Hamiltonian) for arbitrary
pairs of phase space functions satisfying the conditions mentioned in Theorem 3.1.
But we know that in ergodic systems there do not exist analytic constants of motions
(see [1]). It would be therefore interesting to know how the method applies to such
systems. Since it is very difficult to perform explicit calculations for such systems,
we will leave this question open for further research and consider here a very simple
ergodic systems, which evolves in discrete steps.

We will investigate the so called Baker transformation, see for instance [17]. This
system is defined on the phase space M = [0, 1]x1 × [0, 1]x2 (identified to a torus)
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and evolves in discrete steps in the following way

α1((x1, x2)) =
{(

2x1,
1
2 x2

)
if 0 ≤ x1 <

1
2(

2x1 − 1, 1
2 x2 + 1

2

)
if 1

2 ≤ x1 < 1.
(3.14)

where αK (·) denotes the evolution after K steps.
As partial observables we choose T = x1 and f = x2, i.e the phase space coordi-

nates. Now one has to consider the flow of these functions.
Assume that x1 < 2−N for some number N ∈ N. Then αK (T )(x) = 2K x1 for

K ≤ N and we can invert the function Tx (K ) := αK (T )(x)on the interval K ∈ [0, N ]:
The solution of the equation Tx (K ) = τ in this interval is

K0 = log2(τ/x1). (3.15)

Inserting this solution into the function fx (K ) := αK ( f )(x) = 2−K x2 gives

F[ f,T ](τ, x) = fx (K0) = x1 · x2

τ
. (3.16)

Now, assuming x1 < 2−N , F[ f,T ](τ, x) is not invariant under the flow αJ (·) for
arbitrary J ∈ N, but it is invariant for J ≤ N . Hence these J ’s lie exactly in the
interval, on which we inverted the function Tx (K ).

Beginning with the assumption 1 > x1 ≥ 1 − 2−N one can invert the function
Tx (K ) on the interval K ∈ [0, N ] and one finds the complete observable

F ′[ f,T ](τ, x) = 1 − (1 − x)(1 − y)

1 − τ
. (3.17)

Again, assuming x1 ≥ 1 − 2−N , this phase space function is invariant under the flow
αJ (·) for J ∈ [0, N ].

The complete observable F[ f,T ](τ, x) for x1 < 2−N corresponds to the fact that
the phase space function g(x) = x1 · x2 is invariant under the evolution law which
applies in the region x1 <

1
2 , whereas F ′[ f, T ](τ, x) corresponds to the phase space

function g′(x) = (1 − x1)(1 − x2) which is invariant under the evolution law which
applies in the region x1 ≥ 1

2 .
Because the above model evolves in discrete steps it is difficult to draw conclusions

for continuous models. It is possible to show that for certain models there do not
exist analytic single-valued constants of motion, see [1]. So if one would calculate
complete observables for those models the result may be still a Dirac observable, but
a non-analytic and multi-valued one.

4 Complete and partial observables for systems with several constraints

The aim of this chapter is to define complete observables for systems with several
constraints. For systems with one constraint we had the following geometrical pic-
ture: The constraint C generates a one-dimensional gauge orbit. We used the “clock”
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variable T to parametrize this gauge orbit. In the ideal case each point of the gauge
orbit was uniquely specified by a value τ of the phase space function T . We then
evaluated the function f (·) at the phase space point labeled by τ .

Now for a system with n independent (first class) constraints the gauge orbits
generated by these constraints will be n-dimensional.2 Hence we need n clock variables
(i.e. phase space functions) Tj , j = 1, . . . , n to parametrize a gauge orbit. Ideally each
point of a (fixed) gauge orbit should be uniquely specified by the values (τ1, . . . , τn)

of the clock variables (T1, . . . , Tn). It is then non-ambiguous to evaluate a phase space
function f at that point of a (fixed) gauge orbit, on which the functions (T1, . . . , Tn)

give the values (τ1, . . . , τn). Locally this amounts to the condition

det
({C j , Ti }n

i, j=1

) 	= 0 (4.1)

which has to be satisfied on the gauge orbit through x .
Again, the above procedure is still well defined, if to the values (τ1, . . . , τn) corres-

pond several points of the gauge orbit but if f evaluated at these points gives always
the same number. Otherwise the result will be (possibly extremely) multi-valued.

Analogously to the previous section we therefore define the complete observable
F[ f,T1,...,Tn ] associated to the partial observables f, T1, . . . , Tn as

F[ f,T1,...,Tn ](τ1, . . . , τn, x) = αβ j C j ( f )(x)|αβ j C j (Ti )(x)=τi . (4.2)

Here αβ j C j (·) is defined to be αt=1∑
j β j C j

(·), that is the flow generated by the phase space

function
∑

j β j C j evaluated at the parameter value t = 1. Here and in the following
we will assume that all points of the gauge orbit Gx can be reached by transformations
of the form {αβ j C j (x); β j ∈ R}. (We defined Gx to be the set which can be reached
by all forms of compositions of flows of the form αβ j C j (x).)

The complete observable F[ f,T1,...,Tn ](τ1, . . . , τn, x) is not defined for those parame-
ter values τi for which the intersection of the level set {x |Ti (x) = τi for i = 1, . . . , n}
and the gauge orbit through x is empty.

To calculate the complete observable F[ f,T1,...,Tn ] one has at first to solve the system
of equations

αβ j C j (Ti )(x) = τi , i = 1, . . . , n (4.3)

for β1, . . . , βn . Next one has to plug in these solutions βk = Bk(τi , x) into the
function fx (β1, . . . , βn) := αβ j C j ( f )(x). This gives the complete observable
F[ f,T1,...,Tn ](τ1, . . . , τn, x) = fx (B1(τi , x), . . . , Bn(τi , x)).

2 The first class property of the constraints guarantees, that the flow of the constraints is integrable to an
n-dimensional surface—the gauge orbit. For constraint algebras with structure functions the integrability
conditions are only fulfilled on the constraint hypersurface, hence one can only expect on the constraint
hypersurface well defined gauge orbits. In this case the method following below will work only for points
x on the constraint hypersurface. Moreover if one replaces the constraints by another equivalent set of
constraints, as was mentioned in Sect. 2, the new constraints will only generate the same gauge orbits as
the old constraints on the constraint hypersurface.
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Different solutions βk = Bk(τi , x) of (4.3) may correspond to the same phase space
point on the gauge orbit in question or to different points of this gauge orbit. In the
latter case F[ f,T1,...,Tn ](τi , x) is still well defined, if f (·) evaluated at these points gives
always the same number. Otherwise F[ f,T1,...,Tn ](τi , x) will be multi-valued.

We will now verify that F[ f,T1,...,Tn ](τi , x) is indeed an n-parameter family of Dirac
Observables. To this end we have to show that F remains constant under the flow of
αε j C j (·) = αt=1∑

j ε j C j
(·), where ε j , j = 1, . . . , n are arbitrary fixed numbers:

αε j C j (F[ f,Tk ](τm, ·))(x) = F[ f,Tk ](τm, αε j C j (x))

= αβ j C j ( f )(αεl Cl (x))|αβ j C j (Ti )(αεl Cl (x))=τi

= αεl Cl ◦ αβ j C j ( f )(x)|αεl Cl ◦αβ j C j (Ti )(x)=τi . (4.4)

The key point in the last expression is that αεl Cl ◦αβ j C j (x) is still a point on the gauge
orbit Gx through x . (For constraint algebras with structure functions this holds only on
the constraint hypersurface.) Hence solutions of αεl Cl ◦αβ j C j (Ti )(x) = τi correspond
to the same points on the gauge orbit as solutions of αβ j C j (Ti )(x) = τi (namely to

the intersection of the level sets {T −1
i (τi )}n

i=1 and Gx ). Both expressions in (4.4) and
(4.3) prescribe to evaluate the phase space function f (·) at exactly these points. If f (·)
gives always the same value at these points the expressions in (4.4) and (4.3) are well
defined and coincide. Thus we have the theorem:

Theorem 4.1 Let C j , j = 1, . . . , n be n independent first class constraint and x ∈ M
a phase space point on the constraint hypersurface. Given n phase space functions
Ti , i = 1, . . . , n and a phase space function f , assume that f evaluated at the points
in the intersection of the level set {x |Ti (x) = τi for i = 1, . . . , n} and the gauge orbit
through x gives always the same result. Then the complete observable F[ f,Ti ](τi , x)
is well defined and is invariant under the flow generated by the constraints.

Analogously to the last section we can introduce a configuration space of partial
observables, which is an (n + 1)-dimensional manifold coordinatized by values of
the partial observables (T1, . . . , Tn, f ). The “projection” P : M → N is defined by
P : x �→ (T1(x), . . . , Tn(x), f (x)).

Fix a point x . Then the flow αβ j C j (x) induces a flow of the point (T1(x), . . . , Tn(x),
f (x)) in N by αβ j C j ((T1(x), . . . , Tn(x), f (x))) = P(αβ j C j (x)). Again one has to
keep in mind that this flow needs not to be uniquely determined by the initial point
(T1(x), . . . , Tn(x), f (x)) ∈ N , but it is uniquely determined by the point x ∈ M.
Since in M the flow generated by the constraints integrates to a hypersurface, namely
the gauge orbit (at least on the constraint hypersurface), this is also the case in the
space N . This gauge orbit can be described in a parametric way, i.e. as the set
{P(αβ j C j (x)) |β j ∈ R}. The complete observable F[ f,Ti ](τi , x) provides a descrip-
tion of the gauge orbit as the graph of a function depending on n variables, i.e. the
gauge orbit is the set {(τ1, . . . , τn, F[ f,Ti ](τ1, . . . , τn, x)) |τ1, . . . , τn ∈ R}.
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5 A system of partial differential equations for complete observables

In many examples with non-Abelian constraint algebra it will be very difficult to invert
the flow of the clock variables Ti in order to find the complete observable F[ f,Ti ].
In this section we will derive a system of (first order) partial differential equations
for F[ f,Ti ](τ j , x) as a function of the τ j ’s.3 To this end we will make the following
assumptions: Consider a phase space point x ∈ M and the gauge orbit Gx through x
in M. We define the map

Tx : Gx → Tx (Gx ) ⊂ R
n

(5.1)
y �→ (T1(y), . . . , Tn(x)).

The index x in Tx represents the gauge orbit Gx through x . Our assumption is, that Tx

is uniquely invertible as a function from Gx to Tx (Gx ). In other words, to each point
(τ1, . . . τn) ∈ Tx (Gx ) there exists a unique point y ∈ Gx which solves Tk(y) = τk for
k = 1, . . . , n. We will denote this point by y = T−1

x (τi ).
We defined the complete observable F[ f,Ti ] as

F[ f,Ti ](τi , x) = αβkCk ( f )(x)|αβk Ck (Ti )(x)=τi . (5.2)

The value of F[ f,Ti ] at the slightly displaced point (τ1 + ε1, . . . , τn + εn) is

F[ f,Ti ](τi + εi , x) = αβkCk ( f )(x)|αβk Ck (Ti )(x)=τi +εi . (5.3)

Now we know that F[ f,Ti ] is gauge invariant, therefore we can replace x by the point
T−1

x (τi ) ∈ Gx on the right hand side of (5.3):

F[ f,Ti ](τi + εi , x) = αβkCk ( f )
(
T−1

x (τi )
)
|αβk Ck (Tj )(T

−1
x (τi ))=τ j +ε j

(5.4)

As by definition Tj (T−1
x (τi )) = τ j , we can solve the equations

αβkCk (Tj )
(
T−1

x (τi )
) = τ j +

∑

k

βk{Ck, Tj }
(
T−1

x (τi )
) + O

(
ε2) = τ j + ε j (5.5)

for the βk’s to the first order in the εi ’s. (Here O(ε2) denotes terms of higher than first
order in the εi ’s.) To this end we define the matrix of phase space functions

Akj := {Ck, Tj } (5.6)

and its inverse A−1
jm by Akj A−1

jm = δkm = A−1
k j A jm . (The inverse exists at least on the

gauge orbit Gx because of the assumptions we made for the map Tx .) The solution to

3 For systems with one constraint such a differential equation for a complete observable appeared in [14].
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the equations (5.5) can then be written as

βk =
∑

j

ε j A−1
jk

(
T−1

x (τi )
) + O

(
ε2). (5.7)

Inserting these values into

αβkCk ( f )
(
T−1

x (τi )
) = f

(
T−1

x (τi )
) +

∑

k

βk {Ck, f }(T−1
x (τi )

) + O(β2) (5.8)

we arrive at

F[ f,Ti ](τi + εi , x) = f
(
T−1

x (τi )
) +

∑

j,k

ε j

(
A−1

jk {Ck, f }
) (

T−1
x (τi )

) + O(ε2)

= F[ f,Ti ](τi , x)+
∑

j,k

ε j

(
A−1

jk {Ck, f }
) (

T−1
x (τi )

)+O(ε2). (5.9)

This gives for the partial derivative of F[ f,Ti ] with respect to τm

∂

∂τm
F[ f,Ti ](τi , x) =

(
∑

k

A−1
mk{Ck, f }

)
(
T−1

x (τi )
) =: gm

(
T−1

x (τi )
)
. (5.10)

The function gm(T−1
x (τi )) on the right hand side of (5.10) can again be written as

a complete observable associated to the partial observable gm(x) = ∑
k A−1

mk{Ck, f }
(and T1(x), . . . , Tn(x)):

gm
(
T−1

x (τi )
) = gm(αβkCk (x))|Ti (αβk Ck (x))= τi = F[g,Ti ](τi , x). (5.11)

Therefore the partial derivatives with respect to the parameters τm of complete obser-
vables are again complete observables (which is not surprising, since a complete
observable is a Dirac observable for all values of the parameters τm). Now the pro-
blem is, that in general the complete observables F[gm ,Ti ](τi , x) are unknown functions.
In this case one has to add the partial differential equations (PDE’s) for the F[gm ,Ti ].
Again, it may happen, that these involve unknown functions. In this case one has to
iterate the procedure until one obtains a closed system of PDE’s for a set of functions
F[ f,Ti ], F[gm ,Ti ], F[gmm′ ,Ti ], . . .. Using this system it may be possible to derive a higher
order PDE for the primary function F[ f,Ti ].

However, one can limit the number of necessary iterations if one realizes that if
a function g is composed from m phase space functions fh the associated complete
observable is

F[g( f1,..., fm ),Ti ](τi , x) = αβ j C j (g( f1, . . . , fm))(x)|αβ j C j (Ti )(x)=τi

= g(αβ j C j ( f1), . . . , αβ j C j ( fm))(x)|αβ j C j (Ti )(x)=τi

= g(F[ f1,Ti ](τi , x), . . . , F[ fm ,Ti ](τi , x)). (5.12)
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(That is F[Ti ](τi ) : f �→ F[ f,Ti ](τ, x) is an algebra homomorphism with respect to
multiplication and addition.)

Hence we just need to choose dim(M) = 2p algebraically independent phase
space functions fh (for instance the canonical coordinates) and to consider the PDE’s
(5.10) for the associated complete observables. The right hand side of these PDE’s
will then be expressible through the complete observables associated to the fh, h =
1, . . . , 2p. Therefore putting the PDE’s for the complete observables associated to
the fh’s together one obtains a closed system of partial differential equations for 2p
unknown functions. Moreover if n of the functions fh coincide with the constraints
and another set of n functions coincides with the clock variables Ti , the associated
complete observables vanish weakly or are constants, respectively:

F[Ck ,T1,...,Tn ](τ, x) � 0

(5.13)
F[Tk ,T1,...,Tn ](τ, x) = τk .

and one is left with a set of (2p − 2n) unknown functions.
The property (5.12) shows also that the set

{
F[qa ,T1,...,Tn ](τ1, . . . , τn, ·), F[pa ,T1,...,Tn ](τ1, . . . , τn, ·) | a = 1, . . . , p

}
(5.14)

provides an over-complete basis of the space of Dirac observables: If d is a Dirac
observable then

F[d,Ti ](τi , x) � d(x = (qa, pa)) � d(F[qa ,Ti ](τi , x), F[pa ,Ti ](τi , x)). (5.15)

Hence d can be expressed as a combination of the complete observables associated to
the canonical coordinates. The above mentioned over-completeness is described by

F[Ck ,Ti ](τi , x) � 0 � Ck(F[qa ,Ti ](τi , x), F[pa ,Ti ](τi , x))

(5.16)
F[Tk ,Ti ](τi , x) � τk � Tk(F[qa ,Ti ](τi , x), F[pa ,Ti ](τi , x)),

that is we have 2n relations between the 2p complete observables.
In Appendix we prove that the PDE’s (5.10) are consistent, i.e. satisfy the integra-

bility conditions

∂2

∂τl∂τm
F[ f,Ti ](τi , x) = ∂2

∂τm∂τl
F[ f,Ti ](τi , x) (5.17)

at least on the constraint hypersurface. As will turn out in the next section this is related
to the fact, that we achieved a so called weak Abelianization of the constraint algebra.

This enables us to give a (formal) solution to the PDE’s (5.10) as a power series.
To this end consider the (formal) power series of F[ f,Ti ](τi , x) in the τi ’s around the
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point τi = Ti (y) where y is a point in the gauge orbit Gx through x :

F[ f,Ti ](τi , x) =
∞∑

k1,...,kn=0

1

k1! · · · kn !
∂k1···kn

∂k1τ1 · · · ∂knτn

× F[ f,Ti ](Ti (y), x) (τ1 − T1(y))
k1 · · · (τn − Tn(y))

kn (5.18)

We know that all the partial derivatives appearing in (5.18) can be written as complete
observables associated to some phase space function g(k1,...,kn)

∂k1···kn

∂k1τ1 · · · ∂knτn
F[ f,Ti ] =: F[gk1,...,kn ,Ti ]. (5.19)

Furthermore we have by definition of a complete observable

F[gk1,...,kn ,Ti ](Ti (y), x) = g(k1,...,kn)(y) (5.20)

so that we can replace the partial derivatives in (5.18) by g(k1,...,kn)(y). Because of
Eq. (5.10) these functions are given by

g(k1,...,kn) = (S1)
k1 ◦ · · · ◦ (Sn)

kn ( f ) (5.21)

where S j is the map

S j : C∞(M) → C∞(M)

h �→ A−1
jl {Cl , h}. (5.22)

(Here we made the assumption that A−1
jl has smooth matrix entries.) The order of the

operators S j in (5.21) does not matter (at least on the constraint hypersurface) because
of the consistency conditions (A.1).

Therefore the formal solution to the PDE’s (5.10) can be written as

F[ f,Ti ](τi , x) =
∞∑

k1,...,kn=0

1

k1! · · · kn ! g(k1,...,kn)(y) (τ1 − T1(y))
k1 · · · (τn − Tn(y))

kn

(5.23)

where the functions g(k1,...,kn)(y) are defined in (5.21, 5.22) and y is a point on the
gauge orbit Gx through x .

Assume that the sum (5.23) converges for fixed values of the parameters τ0i in
some neighbourhood of a phase space point x0. Furthermore assume that one can
permute differentiation with respect to phase space variables and summation. Then
it is straightforward to show directly, that (5.23) poisson commutes (weakly) with
the constraints. [Act on (5.23) with the (differential) operator S j and use that they
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commute up to terms proportional to the constraints (which follows from the proof of
the consistency conditions (A.1))

S j ◦ Sk(h)(x) = Sk ◦ S j (h)(x)+ λ j (x)C j (x) (5.24)

as well as S j (Ti ) = δi j . The result

A−1
jk {Ck, F[ f,Ti ](τ0i , x)} �

∞∑

k1,...,kn=0

1

k1! · · · kn ! Sk1
1 ◦ · · · ◦ S

k j +1
j ◦ Skn

n ( f )(y)

× (τ1 − T1(y))
k1 · · · (τn − Tn(y))

kn

−
∞∑

k1,...,k j =1,...,kn=0

k j

k1! · · · kn ! Sk1
1 ◦ · · · ◦ Skn

n ( f )(y)

× (τ1 − T1(y))
k1 · · · (τ j − Tj (y))

k j −1 · · · (τn − Tn(y))
kn

(5.25)

vanishes weakly, which can be seen by relabelling the index k j in the last sum to
k′

j = k j − 1.]
Hence, if the above mentioned convergence conditions are satisfied, (5.23) provides

a local definition of a complete observable (in contrast to Theorem 4.1 where we made
global assumptions on the properties of the partial observables with respect to the
constraint flow).

We will close this section with an example, which illustrate how to compute Dirac
observables using the PDE’s 5.10.

Example 4 Here we will consider a kind of deformed SO(3) algebra given on the
phase space R

3
q × R

3
p by

C1 = qn2
2 pm3

3 − qn3
3 pm2

2

C2 = qn3
3 pm1

1 − qn1
1 pm3

3 (5.26)

C3 = qn1
1 pm2

2 − qn2
2 pm1

1

that is Ci = ∑
jk εi jkq

n j
j p

m j
k . A special case of this example was quantized in [6].

The constraint algebra is given by

{Ci ,C j } =
∑

k

εi jk nkmk qnk−1
k pnk−1

k Ck, (5.27)

hence it is a first class algebra with structure functions. The set {C1,C2,C3} is not
an independent set of constraints: because of the anti-symmetry of εi jk we have the
relations

qn1
1 C1 + qn2

2 C2 + qn3
3 C3 = pm1

1 C1 + pm2
2 C2 + pm3

3 C3 = 0. (5.28)

We will therefore choose as a set of independent constraints {C1,C2}.
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Now we choose as clock variables the functions T1 = q1 and T2 = q2. The PDE’s
(5.10) for q3(τ1, τ2) = F[q3,T1,T2](τ1, τ2, ·) are

∂

∂τ1
q3(τ1, τ2) = −m3 pm3−1

3 qn1
1

m1 pm1−1
1 qn3

3

(τ1, τ2)
∂

∂τ2
q3(τ1, τ2) = − m3 pk3−1

3 qn2
2

m2 pm2−1
2 qn3

3

(τ1, τ2)

(5.29)

where we abbreviated xi (τ1, τ2) = F[xi ,T1,T2](τ1, τ2, ·)with either xi = qi or xi = pi .
Since q1, q2 are the clock variables we have q1(τ1, τ2) = τ1 and q2(τ1, τ2) = τ2.
This leaves us with the unknown functions pi (τ1, τ2) in the PDE’s (5.29). Hence we
consider also the partial derivatives of these functions:

∂

∂τ1
p1(τ1, τ2) = n1 qn1−1

1 pm3
3

m1 pm1−1
1 qn3

3

(τ1, τ2)
∂

∂τ2
p1(τ1, τ2) = 0

∂

∂τ1
p2(τ1, τ2) = 0

∂

∂τ2
p2(τ1, τ2) = n2 qn2−1

2 pm3
3

m2 pm2−1
2 qn3

3

(τ1, τ2)

(5.30)

∂

∂τ1
p3(τ1, τ2) = − n3 p1

m1 q3
(τ1, τ2)

∂

∂τ2
p3(τ1, τ2) = − n3 p2

m2 q3
(τ1, τ2).

On the constraint surface we have

pm3
3

qn3
3

� pm2
2

qn2
2

� pm1
1

qn1
1

, (5.31)

hence we can replace in (5.30) the term pm3
3 /qn3

3 according to (5.31). Using also
q1(τ1, τ2) = τ1 and q2(τ1, τ2) = τ2 we obtain

∂

∂τ1
p1(τ1, τ2) � n1 p1

m1 τ1
(τ1, τ2)

∂

∂τ2
p1(τ1, τ2) = 0

∂

∂τ1
p2(τ1, τ2) = 0

∂

∂τ2
p2(τ1, τ2) � n2 p2

m2 τ2
(τ1, τ2) (5.32)

These equations are easily integrable to

pm1
1

qn1
1

(τ1, τ2) = pm1
1 (τ1, τ2)

τ
n1
1

� pm1
1 (τ10, τ20)

τ
n1
10

pm2
2

qn2
2

(τ1, τ2) = pm2
2 (τ1, τ2)

τ
n2
2

� pm2
2 (τ10, t20)

τ
n2
20

. (5.33)

Hence F1 := pm2
2 /qn2

2 � pm1
1 /qn1

1 � pm3
3 /qn3

3 is conserved and indeed it commutes
weakly with the constraints. Using the relations (5.30) and the solutions (5.33) the
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equations (5.29) can be written as

∂

∂τ1
q3(τ1, τ2) = −m3 p1

m1 p3
(τ1, τ2) = −m3

m1

p1(τ10, τ20)

p3(τ10, τ20)

τ
n1/m1
1

τ
n1/m1
10

qn3/m3
3 (τ10, τ20)

qn3/m3
3 (τ1, τ2)

∂

∂τ2
q3(τ1, τ2) = −m3 p2

m2 p3
(τ1, τ2) = −m3

m2

p2(τ10, τ20)

p3(τ10, τ20)

τ
n2/m2
2

τ
n2/m2
10

qn3/m3
3 (τ10, τ20)

qn3/m3
3 (τ1, τ2)

.

(5.34)

The equations can be integrated to

q(n3/m3)+1
3 (τ1, τ2)

(n3 + m3)q
n3/m3
3 (τ10, τ20)

p2(τ10, τ20)

� q3(τ10, τ20)p3(τ10, τ20)

n3 + m3
− τ

(n1/m1)+1
1

(n1 + m1)τ
n1/m1
10

p1(τ10, τ20)

− τ
(n2/m2)+1
2

(n2 + m2)τ
n2/m2
20

p2(τ10, τ20) (5.35)

From here and (5.33) we obtain that

F2 := q1 p1

n1 + m1
+ q2 p2

n2 + m2
+ q3 p3

n3 + m3
. (5.36)

is a Dirac observable. Hence we found two (independent) Dirac observables F1, F2
which describe the two-dimensional reduced phase space.

6 Weak abelianization of the constraint algebra

In this section we will remark, that one can understand the result (5.23) also from
another viewpoint: The proof for the consistency conditions (A.1) in Appendix
proceeds by showing that

A−1
l j

{
C j , A−1

mk{Ck, f }} − A−1
mj

{
C j , A−1

lk {Ck, f }} (6.1)

vanishes weakly for an arbitrary phase space function f . Therefore the flows generated
by the vector fields χ̃m := A−1

mjχC j commute weakly. Since we have

{
A−1

mj C j , f
} � A−1

mj {C j , f } (6.2)

the flows generated by χ̃m and the flows generated by χC̃m
where

C̃m := A−1
mj C j (6.3)
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coincide on the constraint hypersurface. Hence also the flows generated by the C̃m

commute on the constraint hypersurface and indeed one can calculate directly that
{C̃m, C̃ j } contains only terms which are at least quadratic in the constraints. We will
call this property of the constraint set {C̃m; m = 1, . . . , n} weakly abelian. (That is, a
constraint set is weakly abelian if the associated structure functions vanish weakly.)

Moreover the evolution of the clock variables Tj with respect to these new
constraints is linear in the evolution parameters (again restricted to the constraint
hypersurface):

α
β j C̃ j

(Tk)(x) � Tk(x)+ δk jβ j . (6.4)

Now we can equally well use the constraints C̃m in the definition of a complete
observable:

F̃[ f ;T1,...,Tn ] = α
β j C̃ j

( f )|α
β j C̃ j

(Tk )(x)=τk . (6.5)

Then the complete observables F̃[ f ;T1,...,Tn ] and F[ f ;T1,...,Tn ] coincide weakly. The
advantage in using the constraints C̃m is that now the solution of the equations

α
β j C̃ j

(Tk)(x) = τk (6.6)

is very easy, namely given by β j = τ j − T (x) for x on the constraint hypersurface.
From this we can conclude

F̃[ f,T1,...,Tn ](τi , x) = α
β j C̃ j

( f )(x)|β j =τ j −T (x)

� α
β1C̃1

◦ · · · ◦ α
βnC̃n

( f )(x)|β j =τ j −T (x)

=
∞∑

k1,...,kn=0

1

k1! · · · kn !S̃
k1
1 ◦ · · · ◦ S̃kn

n ( f )(x)

× (τ1 − T1(x))
k1 · · · (τn − Tn(x))

kn (6.7)

where

S̃ j : C∞(M) → C∞(M)

(6.8)
h �→ {A−1

jl Cl , h} = {C̃ j , h}.

Indeed formulas (6.7) and (5.18) for the power series of F̃[ f,Ti ] and F[ f,Ti ], respectively,
coincide on the constraint hypersurface.

More generally, assume that one has found a set of constraints {Ĉ j , j = 1, . . . , n}
which has the property, that it evolves the clock variables linearly on the constraint
hypersurface, i.e.

{Ĉ j , Tk} = δ jk + λ jkmĈm (6.9)
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where λ jkm are smooth phase space functions.4 For such a constraint set one can prove
that it is weakly abelian: One either uses that the matrix Â jk := {Ĉ j , Tk} coincides
weakly with the identity matrix and hence also its inverse coincides weakly with the
identity matrix. Therefore

˜̂C j := Â−1
jk Ĉl = Ĉ j + λ′

jkl ĈkĈl (6.10)

for certain phase space functions λ′
jkl . Since we know that ˜̂C j are weakly abelian, we

can conclude that the Ĉ j ’s are also weakly abelian. An alternative proof proceeds by
calculating {Ĉ j , {Ĉi , Tk}} firstly directly and then by using the Jacobi identity. One
then compares the two results and concludes that the structure functions f̂i jk defined
by {Ĉi , Ĉ j } = f̂i jk Ĉk vanish weakly.

On the other hand we can also argue that if there exist a set of phase space variables
{T1, . . . , Tn} such that (6.9) holds with respect to a constraint set {Ĉ1, . . . , Ĉn}, then
the constraints have to be weakly abelian.

The arguments made above show that in the formal power series of a complete
observable (6.7) one can replace the constraints C̃ j by the constraints Ĉ j as long as
the latter have the property (6.9) with respect to the clock variables. The resulting
complete observable will at least weakly coincide with the original [(6.7) or (5.18)]
one.

Applying the inverse of the matrix A jk = {C j , Tk} to the constraints C j provides
one way to obtain such a set of constraints. Another way is to construct (strongly)
abelian constraints in a way which is explained in [8]. We will repeat this construction
here for completeness: To obtain abelian constraints is locally always possible and
proceeds in the following way. Assume that the clock variables commute.5 Then it is
possible to use these clock variables Tj as a part of a new set of canonical coordinates,
such that � j are the momenta conjugated to Tj . Call the remaining new canonical
coordinates Ym,m = 1, . . . 2p − 2n.

If det(A jk) = det({C j , Tk}) 	= 0 it is in principle possible to solve the constraints
locally for the momenta � j , that is the vanishing of the constraints is equivalent to

� j = E j (Tk,Ym). (6.11)

Hence an equivalent set of constraints is given by

Ĉ j = E j (Tk,Ym)−� j . (6.12)

Obviously we have {Ĉ j , Tk} = δ jk (strongly) and one can also show that the Ĉ j

Poisson commute strongly: Since Ĉ j are first class constraints their Poisson brackets

4 That a function g which vanishes on the constraint hypersurface can always be written as λ jkmĈm is
proven in [8].
5 In [8] the abelianization is obtained in a slightly more general setting, in which the Tj ’s are just part of
a new set of canonical coordinates, that is the Tj ’s may also contain conjugated variables: {Tj , Tj ′ } = ±1
or {Tj , Tj ′ } = 0.
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vanishes on the constraint hypersurface. But

{
Ĉi , Ĉ j

} = {Ei (Tk,Ym), E j (Tk,Ym)} − {Ei (Tk,Ym),� j } − {Pi , E j (Tk,Ym)}
(6.13)

does not depend on the values of the momenta �k . Hence the Poisson bracket (6.13)
has to vanish not only on the constraint hypersurface C but on the whole phase space
M.

As we will see in the next section, such a constraint set {Ĉ j , j = 1, . . . , n} was
used before by Kuchař in the construction of the Bubble-Time Canonical Formalism
[13].

7 Bubble-time formalism

In this section we will explain how the theory of partial observables connects to
the Bubble-Time Canonical Formalism introduced by Kuchař in [13]. There the
Bubble-Time Formalism was introduced for General Relativity, i.e. a field theory
with a totally constrained Hamiltonian. However, it is straightforward to apply this
formalism to other first class constraint systems.

Given a system on a 2p-dimensional phase space M with n constraints the
Bubble-Time Formalism starts from the following assumption: There exists canonical
coordinates (Q1, . . . , Q(p−n), P1, . . . , P(p−n); T1, . . . , Tn,�1, . . . ,�n) such that

the pairs (Ti ,�i ) and (Qk, Pk) are canonically conjugate;
the determinant of ({C j , Ti })nj,i=1 does not vanish on the constraint hypersurface;
the constraint equations C j = 0; j = 1, . . . , n can be solved for the momenta
�k; k = 1, . . . , n.

Since according to the last assumptions the constraints can be solved for the
momenta �i = Ei (Qk, Pk, Tj ) such that

C j (Qk, Pk, Ti ,�h = Eh(Qk, Pk, Tj )) ≡ 0 (7.1)

we can replace the set {C j , j = 1, . . . , n} by an equivalent set of constraints defined
by

Ĉ j = E j (Qk, Pk, Ti )−� j . (7.2)

As explained in the last section the flow generated by these constraints commutes
(strongly) and the clock variables Tj evolve linearly with respect to these flows:

α
β j Ĉ j

(Th) = Th + βh . (7.3)
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Consider the flow of the constraint H := β j Ĉ j . For either Xl = Ql or Xl = Pl we
have the equations

d

dt
αt

H (Xl) = β j α
t
H

({Ĉ j , Xl}
) = β j α

t
H ({E j , Xl}) (7.4)

d

dt
αt

H (Tk) = β j α
t
H

({Ĉ j , Tk}
) = βk . (7.5)

That is we can write

d

dt
αt

H (Xl) = αt
H ({E j , Xl}) d

dt
αt

H (Tk). (7.6)

In [13] Kuchař introduces a new Poissonbracket [·, ·], which is defined by using
(Qk, Pk), k = 1, . . . , p − n as a complete set of canonical variables. One can then
replace {E j , Xl} with [E j , Xl ].

Varying the β j in H = β j Ĉ j one can evolve the phase space functions Xl from
the initial data, Qk, Pk, Ti (fulfilling the constraint equations) until one reaches Th =
τh, h = 1, . . . , n. By definition the result will be equal to our complete observables

F[Xl ,Th ](τh, x = (Qk, Pk, Ti ,�i = Ei )) = α
β j Ĉ j

(Xk)(x)|β j =Tj (x)−τ j . (7.7)

Hence the Bubble-Time Formalism can be reinterpreted using the concepts of complete
and partial observables. From Eq. (7.6) one can again conclude that the complete
observables have to satisfy the partial differential equations

∂

∂τ j
F[Xl ,Th ] = F[{E j ,Xl },Th ]. (7.8)

As already mentioned one can replace the brackets {·, ·} in (7.8) by the new Poisson
brackets [·, ·] and this is how Eq. (7.8) appears in [13]. (Also there, the integrability
conditions for (7.8) are proven.) However, if one replaces there Xl by a function f ,
Eq. (7.8) is in general only valid (with the new Poisson brackets) if f does not depend
on Tk or�k . Otherwise one has to use instead of [El , f ] the function {Ĉl , f }. On the
other hand since F[ f,Ti ](τi , x) gives the value of f at that point in the gauge orbit of x
(on the constraint hypersurface) at which the functions Ti give the values τi we have

F[ f,Ti ](τi , ·) � F[ f ′,Ti ](τi , ·) (7.9)

where f ′(Qk, Pk) = f (Qk, Pk, Tj = τ j ,� j = E j (Qk, Pk, τh)). Hence it is not
necessary to consider functions which depend on Ti or �i .

In [28] Torre realized that F[Xl ,Th ](τ j , ·) is a Dirac observable for arbitrary values of
τ j . He chooses τ j = 0 and calculates a complete set of Dirac observables F[Xl ,Th ](τ j =
0, ·) for the example of cylindrical symmetric waves.

The assumptions we started with in this section enable us to define so called
Shanmugadhasan canonical coordinates [24,15]. These are coordinates were n of
the momenta coincide with the constraints.
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Indeed we can define canonical coordinates (Q̃1, . . . , Q̃ p−n, P̃1, . . . , P̃p−n;
T̃1, . . . , T̃n, �̃1, . . . , �̃n) by setting

Q̃k := F[Qk ,Ti ](τi , ·), P̃k := F[Pk ,Ti ](τi , ·), T̃i = Ti , �̃i = Ĉi (7.10)

where {τi }n
i=1 is some fixed set of parameters. Using the power series (5.23) with the

constraints Ĉi one can see that the complete observables Poisson commute with the
clocks Ti and Poisson commute (strongly) with the new momenta P̃i . Furthermore with
the methods in the next section one can see that the new variables (Q̃1, . . . , Q̃ p−n,

P̃1, . . . , P̃p−n) are canonically conjugate.

8 Gauge fixing and Dirac brackets

The complete observables F[ f,Tj ](τ j , ·) can also be understood using Tj (x) − τ j �
0, j = 1, . . . , n as gauge fixings. For this the clock variables Tj have to satisfy the
following conditions (taken from [8]), describing good gauges:

The chosen gauge must be accessible from an arbitrary point on the constraint
hypersurface. That is to each point x on the constraint hypersurface there exists
a flow of the form αβ1

j C j
◦ · · · ◦ αβl

j C j
with l arbitrary, that maps x to a point y

satisfying Ti (y) = τi for i = 1, . . . , n.
The conditions Ti (x) � τi must fix the gauge completely, that is there is no gauge
transformation other than the identity, that preserves Ti (x) = τi . Locally this
means that

ε j {C j , Tk − τk} = ε j A jk � 0 for k = 1, . . . , n (8.1)

have the unique solutions ε j = 0, j = 1, . . . , n. Hence det(A jk) has to be non-
vanishing on the constraint hypersurface.

Obviously we have, that

F[ f,Tj ](τ j , x)|Tj (x)=τ j � f (x)|Tj (x)=τ j , (8.2)

that is the partial observable f and the associated complete observable F[ f,Tj ](τ j , x)
coincide on the hypersurface defined by the constraints and the gauge conditions. Now,
given a gauge satisfying the above mentioned conditions, one can find to each gauge
restricted phase space function f|Tj =τ j a gauge-invariant extension F away from the
gauge conditions, which is uniquely defined at least on the constraint hypersurface
(see [8,25] where this idea is expressed).

This extension is (weakly) unique, since through each point x of the constraint
hypersurface there is given a gauge orbit Gx and on each gauge orbit Gx there exits
exactly one point y with Ti (y) = τi , i.e. which satisfies the gauge conditions. We will
call this point y = T−1

x (τ j ). Since the extension has to be gauge-invariant, it has to
be constant along each of the gauge-orbits Gx . The value of F on such a gauge orbit
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is determined by the gauge restriction f, that is

F(x) = f
(
T−1

x (τ j )
)
. (8.3)

Again, we recognize our complete observable F(x) � F[ f,Ti ](τi , x). Hence complete
observables are simply gauge invariant extensions of gauge restricted functions, as
expressed in [8]. This shows also that

F[ f,Tj ](τ j , x) � F[g,Tj ](τ j , x) (8.4)

if the gauge restrictions of f and g coincide because the gauge invariant extension is
unique if the above assumptions hold.

As is well known, the symplectic structure induced on the hypersurface {C j =
0, Ti = 0; j, i = 1, . . . , n} from the symplectic structure of the phase space M is
given by the Dirac bracket {·, ·}∗. Interestingly the Dirac brackets also appear if one cal-
culates the Poisson bracket of two complete observables F[ f,Ti ](τi , ·) and F[g,Ti ](τi , ·).
(This has been stated in [8] but an explicit proof is not available in the literature to the
best knowledge of the author.) To explain this in more detail, we will firstly define the
Dirac bracket (following [8]).

Consider the matrix (B jk)
2n
j,k=1 defined by

B jk := {χ j , χk} with χ j :=
{

C j for 1 ≤ j ≤ n

(Tj−n − τ j−n) for n ≤ j ≤ 2n.
(8.5)

On the constraint hypersurface the inverse of B jk is given by

(B−1)hl �
n∑

i,m=1

A−1
ih A−1

ml {Ti , Tm} (B−1)h(n+l)) � −A−1
lh

(8.6)
(B−1)(h+n)l � A−1

hl (B−1)(h+n)(n+l) � 0

where 1 ≤ h, l ≤ n and Ahl = {Ch, Tl}. The Dirac bracket is then given by

{ f, g}∗ = { f, g} −
2n∑

j,k=1

{ f, χ j }
(
B−1)

jk{χk, g}

� { f, g} −
n∑

h,l=1

{ f, C̃h}{Th, Tl}{C̃l , g}

+
n∑

h=1

{ f, C̃h}{Th, g} −
n∑

h=1

{ f, Th}{C̃h, g}. (8.7)

However, there is an alternative way to define the Dirac bracket on the gauge fixed
surface (see [8]): For f an arbitrary phase space function define

f ∗ = f − { f, χ j }
(
B−1)

jk χk . (8.8)
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Then we have that

{Ci , f ∗}|Tl=τl � 0 and {Ti , f ∗}|Tl=τl � 0. (8.9)

The first of these equations means that f ∗ Poisson commutes with the constraints
to the zeroth order in (Tj − τ j ). Moreover f ∗ and F[ f,Ti ](τi , x) coincide weakly on
the gauge fixed surface, hence f ∗ and F[ f,Ti ](τi , x) coincide up to the first order in
(Tj −τ j ). (The functions have the same zeroth order and commute with the constraints
at least to the zeroth order. One can also calculate (8.8) explicitly and compare it to
the power series of F[ f,Ti ] in (5.23).) From this one can conclude that

{ f ∗, g}|Tl=τl � {F[ f,Ti ](τi , ·), g}|Tl=τl (8.10)

for an arbitrary phase space function g.
Now it is straightforward to compute that

{ f ∗, g}|Tl=τl � { f ∗, g∗}|Tl=τl � { f, g}∗|Tl=τl . (8.11)

Therefore the Poisson and Dirac bracket between two complete observables on the
gauge fixed surface is given by

{F[ f,Ti ](τi , ·), F[g,Ti ](τi , ·)}|Tl=τl � { f, g}∗|Tl=τl � {F[ f,Ti ](τi , ·), F[g,Ti ](τi , ·)}∗|Tl=τl .
(8.12)

Because we know that the Poisson bracket of two gauge invariant functions is again
gauge invariant, we can conclude that the Poisson bracket of two complete observables
associated to the functions f and g, respectively, is the gauge invariant extension of the
gauge restricted result, that is the complete observable associated to { f, g}∗. Moreover,
as one can directly verify using formula (8.7), the Dirac bracket of two gauge invariant
functions is weakly equal to their Poisson bracket. Hence

{F[ f,Ti ](τi , ·), F[g,Ti ](τi , ·)}(x) � {F[ f,Ti ](τi , ·), F[g,Ti ](τi , ·)}∗(x)
� F[{ f,g}∗,Ti ](τi , x). (8.13)

That is the map F[Ti ](τi ) defined by

F[Ti ](τi ) : (C∞(M)/I(M), {·, ·}∗) → (D(M)/I(M), {·, ·})
f �→ F[ f,Ti ](τi , ·) (8.14)

where D((M)) is the space of gauge invariant functions on M and I(M) the ideal
of smooth functions vanishing on the constraint hypersurface, is a Poisson algebra
homomorphism. ( That F[Ti ](τi ) is a homomorphism with respect to multiplication
and addition was proved in (5.12). The space C∞(M)/I(M) has a well defined Dirac
bracket since { f,Ch}∗ = 0 for arbitrary phase space functions f . )

123



Partial and complete observables for Hamiltonian constrained systems 1917

The appearance of the Dirac bracket in the Poisson bracket of two complete
observables is natural since a complete observable F[ f,Ti ](τi , ·) is determined by the
values of f on the submanifold T := {Ti (x) = τi , Ci = 0 for i = 1, . . . , n}. That is,
the complete observable is determined by the gauge restriction of f . Hence also the
Poisson bracket of two complete observables associated to f and g, respectively, must
be determined by the restriction of f and g to T . But the induced Poisson bracket on
the submanifold T is given by the Dirac bracket (see [8]).

Furthermore we want to note that one can define a non-trivial action of gauge
transformations on the space of complete observables. This will generalize the idea of
‘evolving constants of motion’ (see [18–21]) to constraint systems with an arbitrary
number of constraints. We will denote this action of αγ j C j by α̂γ j C j :

α̂γ j C j : D(M) � F[ f ;Ti ](τi ; ·) �→ F[αγ j C j ( f );Ti ](τi ; ·) ∈ D(M). (8.15)

The term on the right hand side can also be written as

F[αγ j C j ( f );Ti ](τi ; x) = αβ j C j ◦ αγkCk ( f )(x)|αβ j C j (Ti )(x)=τi

= αβ ′
j C j
( f )(x)|αβ′

j C j
◦α−γk Ck (Ti )(x)=τi

= F[ f ;α(−γ j C j )(Ti )](τi ; x) (8.16)

where the second equation holds because if B j = β j solves αβ j C j (Ti )(x) = τi then
αβ ′

j C j
= αB j C j ◦ αγkCk solves αβ ′

j C j
◦ α−(γkCk )(Ti )(x) = τi . Therefore the action

α̂β j C j of a gauge transformation on a complete observable (that is the gauge invariant
extension of a gauge restricted function) changes the gauge restriction from Ti (x) = τi

to α−β j C j (Ti )(x) = τi .
Moreover

F[αγ j C j ( f );Ti ](τi ; x) = aγ j C j ( f )(T−1
x (τi ))

= F[ f ;Ti ](τ ′
i ; x) with

τ ′
i = αγ j C j (Ti )(T−1

x (τl)). (8.17)

If we choose to work with the constraints C̃ j (see 6.3) we obtain

F[α
γ j C̃ j

( f );Ti ](τi ; x) � F[ f ;Ti ](τi + γi ; x). (8.18)

Hence we can conclude that for a Poisson bracket between complete observables
with differing values of the parameters τi we have

{F[ f ;Ti ](τi ; ·), F[g;Ti ](τ ′
i ; ·)} � F[{ f,α

(τk−τ ′k )C̃k
(g)}∗;Ti ](τi ; ·). (8.19)

Equation (8.17) shows that the gauge transformation act merely on the parameters
τ in a complete observable. For instance if we rewrite a Dirac observable d as a
complete observable as is done in (5.15) the complete observable does not depend
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on the parameters τi . Therefore the action of a gauge transformation on a complete
observable associated to a Dirac observable is trivial. Hence it is also not surprising
that the action of a gauge transformation respects the Poisson brackets between two
complete observables:

{
α̂γ j C j

[
F[ f ;Ti ](τi ; ·)], α̂γ j C j

[
F[g;Ti ](τi ; ·)]}

= {
F[αγ j C j ( f );Ti ](τi ; ·), F[αγ j C j (g);Ti ](τi ; ·)}

= {
F[ f ;Ti ](τ ′

i ; ·), F[g;Ti ](τ ′
i ; ·)}

= F[{ f,g}∗;Ti ](τ ′
i ; ·)

= F[αγ j C j ({ f,g}∗);Ti ](τi ; ·)

= α̂γ j C j

[{
F[ f ;Ti ](τi ; ·), F[g;Ti ](τi ; ·)}] (8.20)

where τ ′
i is the same as in the last line in Eq. (8.17). Here it does not matter for which

values of τi one calculates the Dirac bracket { f, g}∗ since according to formula (8.7)
the Dirac bracket is independent from the choice of the τi ’s.

9 Partially invariant partial observables

Here we will examine the following question. Assume that we already found phase
space functions which are (weakly, i.e. on the constaint hypersurface) invariant under
a subalgebra C1 := {Cm,Cm+1, . . . ,Cn} of the constraint algebra. Is it then pos-
sible to take these partially invariant functions as partial observables and to calcu-
late the associated complete observable with respect to the remaining constraints
C2 = {C1, . . . ,Cm}?

There are two potential obstacles for this procedure. Firstly, the set C2 does not
need to be a subalgebra, i.e. it may happen, that Poisson brackets of constraints taken
from this set do involve constraints from the set C1. Hence there is no guarantee that
the Hamiltonian vector fields associated to the constraints from C2 integrate to an
m-dimensional hypersurface.

Secondly, if the subalgebra C1 is not an ideal, the flow αt
Ck
( f ) of a C1-invariant

function f generated by a constraint Ck ∈ C2 needs not to be C1-invariant. Hence
it is not clear, whether the complete observable associated to C1-invariant partial
observables is still invariant under C1.

There are two ways to investigate this question, the first is to consider the system of
PDE’s (5.10), the second is to start from the definition (3.1) of complete observables.
We will begin with the examination of the PDE’s (5.10).

Assume that we have chosen n clock variables Ti , i = 1, . . . , n in such a way that the
first m clock variables Tj , j = 1, . . . ,m are invariant under C1 but that the determinant
of Akl = ({Ck, Tl})nk,l=1 is nowhere vanishing (on the constraint hypersurface). Then
we have Ai j = 0 for i = m + 1, . . . , n and j = 1, . . . ,m. Moreover the determinant
of the submatrices A′

kl = ({Ck, Tl})mk,l=1 and A′′
kl = ({Ck, Tl})nk,l=m is also nowhere
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vanishing. Now we choose another C1-invariant partial observable f and consider the
PDE’s (5.10)

n∑

j=1

Akj
(
T−1

x (τi )
) ∂

∂τ j
F[ f,Ti ](τi , x) = {Ck, f }(T−1

x (τi )
) = 0 for k =m+1, . . . , n.

(9.1)

Since we have Akj = 0 for j = 1, . . . ,m the summation on the left hand side of the
equation reduces to the entries of the submatrix A′′

k j . Since the determinant of A′′
k j is

nowhere vanishing the unique solution to the Eq. (9.1) is

∂

∂τ j
F[ f,Ti ](τi , x) = 0 for j = m + 1, . . . , n. (9.2)

Hence the complete observable F[ f,Ti ] does not depend on the last (n − m) of the
parameters τ j . In the remaining PDE’s

n∑

j=1

Akj
(
T−1

x (τi )
) ∂

∂τ j
F[ f,Ti ](τi , x) = {Ck, f }(T−1

x (τi )
)

for k = 1, . . . ,m (9.3)

the summation on the left hand side reduces to the entries of the submatrix A′
k j (because

we know that (∂/∂τ j )F[ f,Ti ] = 0 for j > m). Since the determinant of this submatrix
is non-vanishing we have

∂

∂τ j
F[ f,Ti ](τi , x) =

(
m∑

k=1

A′−1
jk {Ck, f }

)
(
T−1

x (τi )
)

for j = 1, . . . ,m (9.4)

where A′−1
jk is the inverse of A′

kl . Now it could a priori happen, that the right hand
side of (9.4) depends on the parameters {τl; l = m + 1, . . . , n} through the argu-
ment (T−1

x (τi )). However, this is excluded through the consistency conditions (A.1).
Another way to see this, is to remember that the right hand side of (9.4) is again a com-
plete observable F[g j ,Ti ](τi , x) associated to the partial observable g j = A′−1

jk {Ck, f }
(where here and in the following we sum over repeated indices with summation
range k = 1, . . . ,m). We will now show that g j is again a (weakly) C1-invariant
phase space function. From this it follows that F[g j ,Ti ](τi , x) does not depend on
{τl; l = m + 1, . . . , n}.

The proof for the C1-invariance of g j is similar to the proof for the consistency
conditions (A.1). We have to show that

{Ch, g j } = {
Ch, A′−1

jk {Ck, f }}

= A′−1
jk {Ch, {Ck, f }} + {

Ch, A′−1
jk

}{Ck, f } (9.5)
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vanishes for h = m + 1, . . . , n. Multiplying both sides of this equation with A′
l j and

using the Jacobi identity and the definition A′
l j = {Cl , Tj } gives

A′
l j {Ch, g j } = A′

l j A′−1
jk {Ch, {Ck, f }} + A′

l j

{
Ch, A′−1

jk

}{Ck, f }
= {Ch, {Cl , f }} − A′−1

jk {Ch, A′
l j }{Ck, f }

= −{ f, {Ch,Cl}} − {Cl , { f,Ch}} − A′−1
jk {Ch, {Cl , Tj }}{Ck, f }

= −{ f, {Ch,Cl}} − {Cl , { f,Ch}} + A′−1
jk

( {Tj , {Ch,Cl}}
+ {Cl , {Tj ,Ch}} ) {Ck, f } (9.6)

Since f and Tj , j = 1, . . . ,m are C1-invariant functions the second and last term in
the last line of (9.6) vanishes (at least weakly). The other terms contain the Poisson
brackets

{Ch,Cl} =
m∑

i=1

fhli Ci +
n∑

i=m

fhli Ci . (9.7)

Inserting these two sums into the last line of (9.6) and using again the C1-invariance
of f and Tj , j = 1, . . . ,m the second sum vanishes weakly. Hence we are left with

A′
l j {Ch, g j } � −{ f, fhli Ci } + A′−1

jk {Tj , fhli Ci }{Ck, f }
� − fhli { f,Ci } + A′−1

jk fhli {Tj ,Ci }{Ck, f }
� − fhli { f,Ci } − fhli {Ci , f }
� 0 (9.8)

where in third line we used {Tj ,Ci } = −A′
i j . Hence g j is weakly C1-invariant.

Iterating the argument we find, that all the functions g(k1,...,kn) defined in (5.21) are
weakly C1-invariant.

This also shows that the complete observable F[ f,Ti ](τi , x) is C1-invariant (The
(non)-invariance of F[ f,Ti ] was our second potential obstacle from the beginning of
this section): Concerning this we use the formal power series (5.23) of F[ f,Ti ] in the τ ′

i s.
Firstly we know that every function g(k1,...,kn) with some k j > 0 for j = m +1, . . . , n
vanishes at least weakly. Hence all the monomials including powers of τ j with j =
m + 1, . . . , n disappear in the sum (5.23). Secondly all the g(k1,...,kn) are weakly
C1-invariant. Hence the whole formal power series (5.23) is weakly C1-invariant. The
invariance under the C2 constraints follows from the construction.

The partially invariant observables provide an example for the fact, that it is possible
to define a complete observable, also if the set of clock variables does not provide a
perfect parametrization of the gauge orbit, as long as the partial observable f does not
need such a perfect parametrization. In our case the clock variables {T1, . . . , Tm} are
constant along the orbits of the subgroup C1, hence they do not provide a parametri-
zation of these suborbits. But also f is constant along these suborbits.
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10 Field theories

Here we will make some comments on partial and complete observables for constrai-
ned field theories.

The phase space M is some Banach space of fields given on a spatial manifold
� and subject to some boundary conditions. The symplectic structure is defined via
canonical coordinates (φa(σ ), πa(σ ); σ ∈ �) where a is from some finite index set
A. The non-vanishing Poisson brackets are given by

{φa(σ ), πb(σ
′)} = δab δ(σ, σ

′) (10.1)

where δ(σ, σ ′) is the delta function on �.
Constraint field theories have an infinite set of constraints Cµ(σ ), labeled by an

index µ from some finite index set I and by the points σ of �. Hence we need
infinitely many clock variables Tµ(σ ), that is |I| fields built from the canonical fields
(φa(σ ), πa(σ )). These fields can also be seen as functionals labeled by µ, σ , which
map a phase space configuration (φa, πa) ∈ M to the value Tµ(σ ).

The equivalent to the partial observable f may be the value of some field f at a
certain point σ0 or more generally some functional f : M � (φa, πa) �→ f [φa, πa]
∈ R.

Then the interpretation of the complete observable F[ f ;Tµ(σ)](τµ(σ ); (φa, πa)) is
the following: Consider a phase space configuration (φa, πa) and apply arbitrary
gauge transformations to it. If a gauge transformation is chosen in such a way that
the fields Tµ(σ ) coincide with the fields τµ(σ ) the functional f assumes the value
F[ f ;Tµ](τµ(σ ); (φa, πa)).

This definition of complete observables for field theories differs drastically from
the one used in [18–21] for the (covariant formalism) of field theories. Whereas we
remain strictly in a canonical picture (i.e. we are working with fields given on the
spatial manifold �), the definition in [18–21] works with space–time entities, i.e.
fields on the space–time manifold. Using our definition one can reformulate Kuchař’s
Bubble-Time Formalism (for instance for cylindrically gravitational waves [12,28])
into the framework of partial and complete observables.

In background independent field theories on a d-dimensional spatial manifold �
the constraint set includes d ×∞d diffeormorphism constraints C D

i (σ ), i = 1, . . . , d
and 1 × ∞d Hamiltonian constraint C H . We will assume in the following that there
are no other constraints (or that one already managed to reduce the theory with respect
to the other constraints). The Hamiltonian in background independent theories is just
the sum of the constraints6 smeared with arbitrary parameters, called lapse (for the

6 Strictly speaking this is only true for compact space-times. In the case for asymptotically flat space-times
(with appropriate boundary conditions) the Hamiltonian includes a boundary term (the ADM energy), that
in general does not vanish on the constraint hypersurface. This boundary term generates translations at
spacelike infinity and the proper time flow at spacelike infinity can be understood as a global clock. For
more details on complete observables in the case of asymptotically flat space-times, see [5].
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Hamiltonian constraint) and shift functions (for the diffeomorphism constraint):

H(N , Ni ) =
∫

�

(
N (σ )C H (σ )+

d∑

i=1

Ni (σ )C
D
i (σ )

)
ddσ. (10.2)

Now we will sketch how one could apply the ideas developed in Sect. 9 to back-
ground independent field theories. Here it is natural to try to work with partial obser-
vables which are invariant under spatial diffeomorphisms. This would leave us with
the gauge transformations generated by the Hamiltonian constraints. Since these are
still 1 × ∞d constraints we also need 1 × ∞d spatial-diffeomorphism invariant clock
variables. Hence we need a spatial-diffeomorphism invariant partial observable for
each point σ in the spatial hypersurface. One could construct those by using for
instance a material reference system, see [3,2]. That is, one would construct spatial-
diffeomorphism invariant phase space functions as complete observables associated to
(d +1) scalar fieldsψ1, . . . ψd with respect to the spatial-diffeomorphism constraints.

More concretely one chooses d scalar fields of clock variables Ti (σ ) = ψi (σ )

and as the partial observable f = ψd+1(σ
∗), another scalar field evaluated at a point

σ ∗ ∈ �. One then computes the complete observable F[ f,Ti (σ )](τi (σ ), (φa, πa)) with
respect to the diffeomorphism constraints C D(σ ). Consider the definition of such a
complete observable:

F[ f,Ti (σ )](τi (σ ), (φa, πa)) = αC D(β j )

(
ψd+1(σ

∗)
) [φa, πa]|αC D (β j )

(ψi (σ ))[φa ,πa ]=τi (σ )

(10.3)

where αC D(β j )
is the flow generated by the constraint C D(β j ) = ∫

β j (σ )C D
j (σ )d

dσ .

Now it is known, that the transformation generated by C D(β j ) is simply given by the
action of an appropriate spatial diffeomorphism ϕ(β j ) : � → � on the fields. Since
the ψk, k = 1, . . . , d + 1 are scalar fields, the diffeomorphism ϕβ j acts as a pull back,
that is we have

F[ψd+1(σ
∗);Ti (σ )](τi (σ ), (φa, πa))=ψd+1(ϕ(β j )(σ

∗))[φa, πa]|ψi (ϕ(β j )(σ ))[φa ,πa ]=τi (σ ).

(10.4)

The meaning of (10.4) is the following: Evaluate the scalar fieldψd+1 at the point σ ∗∗
which is specified by the conditionψi (σ

∗∗) = τi (σ
∗) =: vi . Varying of the parameters

v1, . . . , vd gives the right number of diffeomorphism invariant observables. So for the
spatial diffeomorphism group we recover the complete observables used in [18–21].

To construct a Dirac observable with respect to all the constraints C H ,C D we
have to find another spatial diffeomorphism invariant observable g and to compute
the complete observable associated to g and to the spatial diffeomorphism inva-
riant clock variables ψd+1(v1, . . . , vd) with respect to the Hamiltonian constraints
C H (σ ); σ ∈�. Further investigations into this proposal can be found in [4]. For an
alternative viewpoint on complete observables in generally covariant field theories,
see [16].
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11 Discussion

Our aim was, to give a construction principle for Dirac observables via the concepts
of partial and complete observables, suggested in [18–21], for canonical systems with
an arbitrary number of constraints. As has been shown, some of the ideas involved
here have already appeared earlier, for instance in Kuchar’s Bubble-Time Formalism
[13], Torre’s work [28] or as the concept of a gauge invariant extension of a gauge
restricted functions [8,25].

Throughout this work we made global and local assumption on the clock variables
and their properties under a general gauge transformation. Of course such assumptions
are very difficult to verify in more complicated systems. It may also happen that there
do not exist clock variables satisfying these assumptions. For instance, the choice of
clock variables corresponds to a choice of a gauge and there exist in some systems
obstructions to find a gauge satisfying the conditions mentioned at the beginning of
Sect. 8. Also, Kuchar’s work [13] was motivated by the hope to find a canonical
transformation for the gravitational phase space variables, such that gravity can be
seen as an already parametrized theory. But Torre showed that this is at least globally
not possible, see [26].

So one of the future tasks will be, to weaken the global assumptions. A starting point
for this could be the investigation of the convergence properties of the formal series
(5.23). If this series converges (which has to be checked case by case), it would give a
definition of Dirac observables, which involves only local information. In connection
with these questions it would be interesting to know how the methods developed here
apply to chaotic systems.

Moreover we showed in Sect. 9 that it is possible to work with a “degenerate” set of
clock variables, which does not provide a perfect parametrization of the gauge orbit,
as long as the partial observable f has the same kind of degeneracy along the gauge
orbit. So it might be not necessary to find clock variables, which lead to good gauges
in the sense of [8].

A crucial point in our methods is, that it is possible to obtain a weak abelianization
of the constraints, moreover the clock variables evolve linearly with respect to these
abelianized constraints. Effectively we have choosen a very convenient basis of the
constraint set. This might be also helpful for the quantization of constraint systems,
see [29] for a related idea.

One of the advantages of this approach is that at least locally one has lots of
freedom to choose the clock variables. Different choice of clock variables could be
understood as different experimental setups for the measurements described by the
complete observables. However, different clock variables might be more or less ame-
nable for calculating clock variables. Here the task is to find clock variables which
would minimize the calculational efforts, to this end it might be helpful to consider
the structure of the constraint algebra [24,15].

Since there is not much hope to obtain exact expressions for Dirac observables
(for gravity), we think that it is important to develop a perturbative treatment. For
instance in [27] (and references therein) it is explained, that Dirac observables for
general relativity necessarily contain spatial derivatives of infinitely high order. For the
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complete observables, these will be generated through the iterated Poisson brackets,
that appear in the formal power series for a complete observable.

One starting point for a perturbative treatment for Dirac observables could be the
formal solution (5.23). Moreover one can hope to apply the perturbation theory for
one constraint (i.e. the perturbation theory for ordinary “classical mechanics” systems,
where the Hamiltonian is viewed as a constraint), if one uses the weakly abelianized
constraints. Here the first difficulty one has to solve is to invert the matrix A jk . To
facilitate this task, it is important to make a clever choice of the clock variables.

The concepts of partial and complete observables show, that Dirac observables
involve the dynamical information of the system (if the constraints describe also the
dynamics, as is the case for general relativity). Hence to obtain Dirac observables, it is
necessary to solve certain (or in some cases all) aspects of the dynamics of the theory.
Here we hope that the direct physical interpretation of the complete observables in
terms of the partial observables facilitates the choice of the partial observables, one
wants to begin with in the construction of Dirac observables.

The main reason for the search of Dirac observables in gravity is, that they are
needed as a crucial input in a canonical quantization. Here it is important to know the
Poisson algebra of the Dirac observables, since during quantization one seeks for a
representation of this Poisson algebra on a physical Hilbert space. First steps to obtain
this Poisson algebra were undertaken in Sect. 8. Of course, it is important to clarify at
least the existence of Dirac observables.

Moreover, since complete observables are gauge invariant extensions of gauge res-
tricted functions, one can compare the quantization based on gauging with a constraint
quantization of the ungauged theory. This could clarify, to which extend we can rely
on quantization schemes based on gauging.

Acknowledgments I thank Thomas Thiemann for many helpful comments and discussions and for pro-
posing the issue of Dirac observables as the topic of my PhD-thesis. This work was supported by a grant
from the German National Merit Foundation and by a grant from NSERC of Canada to the Perimeter
Institute for Theoretical Physics.

Appendix: Integrability conditions for the PDE’s

Here we will prove that the PDE’s (5.10) are consistent, i.e. satisfy the integrability
conditions

∂2

∂τl∂τm
F[ f,Ti ](τi , x) = ∂2

∂τm∂τl
F[ f,Ti ](τi , x) (A.1)

at least on the constraint hypersurface.
Since the partial derivative of F[ f,Ti ](τi , x) is again a complete observable, we can

apply Eq. (5.10) to obtain the second partial derivatives of F[ f,Ti ](τi , x):

∂2

∂τl∂τm
F[ f,Ti ](τi , x)

= ∂

∂τl
F[gm ,Ti ](τi , x)
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= A−1
l j

{
C j , A−1

mk{Ck, f }}(T−1
x (τi )

)

=
(

A−1
l j

{
C j , A−1

mk

}{Ck, f } + A−1
l j A−1

mk{C j , {Ck, f }}
)
(T−1

x (τi )) (A.2)

where here and in the following we sum over repeated indices. Multiplying both sides
of this equation with Ail Ahm gives

Ail Ahm
∂2

∂τl∂τm
F[ f,Ti ](τi , x)

=
(

Ahm
{
Ci , A−1

mk}
{
Ck, f } + {Ci , {Ch, f }}

) (
T−1

x (τi )
)

=
(
−A−1

mk

{
Ci , Ahm

}{Ck, f } + {Ci , {Ch, f }}
) (

T−1
x (τi )

)
(A.3)

where we used that

0 = {Ci , δhm} = {
Ci , Ahm A−1

mk

} = A−1
mk

{
Ci , Ahm

} + Ahm
{
Ci , A−1

mk

}
. (A.4)

The anti-symmetrization of Eq. (A.3) in the indices i, h is

A[i | l | Ah]m
∂2

∂τl∂τm
F[ f,Ti ](τi , x)

= 1

2

( − A−1
mk{Ci , Ahm}{Ck, f } − A−1

mk{Ch, Aim}{Ck, f }

+ {Ci , {Ch, f }} + {Ch, {Ci , f }})(T−1
x (τi )

)

= 1

2

( − A−1
mk{Ck, f } ( {Ci , {Ch, Tm}} − {Ch, {Ci , Tm}} )

+ {Ci , {Ch, f }} − {Ch, {Ci , f }})(T−1
x (τi ))

= 1

2

( − A−1
mk{Ck, f }{Tm, {Ch,Ci }} + { f, {Ch,Ci }}

)(
T−1

x (τi )
)

(A.5)

where in the second line we used A jm = {C j , Tm} and in the last line we used the
Jacobi identity for the Poisson brackets.

Now we apply the first class property of the constraints, i.e. that their algebra
closes (on the constraint hypersurface): {Ch,Ci } = fhi j C j and use again that A jm =
{C j , Tm}
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A[i | l | Ah]m
∂2

∂τl∂τm
F[ f,Ti ](τi , x)

= ( − A−1
mk{Ck, f } (

fhi j {Tm,C j } + C j {Tm, fhi j }
)

+ fhi j { f,C j } + C j { f, fhi j }
)(

T−1
x (τi )

)

= (
A−1

mk{Ck, f }A jm fhi j − A−1
mk{Ck, f }C j {Tm, fhi j }

+ fhi j { f,C j } + C j { f, fhi j }
)(

T−1
x (τi )

)

=
(

C j

(
−A−1

mk{Ck, f }{Tm, fhi j } + { f, fhi j }
) ) (

T−1
x (τi )

)

� 0. (A.6)

Hence (since from our assumption it follows that Ahm is an invertible matrix) the inte-
grability condition for the PDE’s (5.10) are satisfied everywhere in M for constraint
algebras with structure constants and at least on the constraint hypersurface for
constraint algebras with structure functions.
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