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Abstract

We present a state sum construction of two-dimensional extended Topological Quantum
Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of
Fukuma–Hosono–Kawai from triangulations of conventional two-dimensional cobordisms to
those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that
have a particular global structure. This construction reveals the topological interpretation
of the associative algebra on which the state sum is based, as the vector space that the
TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from
cobordisms to suitable manifolds with corners therefore makes the relationship between the
global description of the TQFT in terms of a functor into the category of vector spaces and
the local description in terms of a state sum fully transparent. We also illustrate the state
sum construction of an open-closed TQFT with a finite set of D-branes using the example of
the groupoid algebra of a finite groupoid.

Mathematics Subject Classification (2000): 57R56, 57M99, 81T40, 57Q20.

1 Introduction

An n-dimensional Topological Quantum Field Theory (TQFT) [1] is a symmetric monoidal functor
from the category nCob of n-dimensional cobordisms to the category Vectk of vector spaces
over a given field k. The objects of the category nCob are diffeomorphism classes of smooth
compact oriented (n− 1)-manifolds without boundary, and the morphisms are equivalence classes
of smooth compact oriented cobordisms between these, modulo diffeomorphisms that restrict to
the identity on the boundary. An n-dimensional TQFT therefore associates vector spaces with
(n − 1)-manifolds and linear maps with n-dimensional cobordisms. Disjoint unions of manifolds
correspond to tensor products of vector spaces and linear maps, and gluing cobordisms along their
boundaries corresponds to the composition of linear maps. Note that the empty (n− 1)-manifold
plays the role of the unit object for the tensor product and corresponds to the field k.

For n = 2, the category nCob is well understood, and so there are strong results about 2-
dimensional TQFTs. For these classic results, we refer to [2–4] and to the book [5]. It is known,
for example, that 2-dimensional TQFTs are characterized by commutative Frobenius algebras.
The objects of 2Cob are compact 1-manifolds without boundary, i.e. disjoint unions of circles

1email: A.Lauda@dpmms.cam.ac.uk
2email: pfeiffer@aei.mpg.de
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1 INTRODUCTION 2

S1. For the morphisms of 2Cob, one has a description in terms of generators and relations. The
generators are these cobordisms:

µ ∆ η ε

(1.1)

We have drawn them in such a way that their source is at the top and their target at the bottom of
the diagram. The TQFT is a functor Z : 2Cob→ Vectk. If we denote by C := Z(S1) the vector
space associated with the circle, the TQFT assigns linear maps µ : C ⊗ C → C, ∆: C → C ⊗ C,
η : k → C and ε : C → k to the morphisms depicted in (1.1). The relations among the morphisms
of 2Cob then imply that (C, µ, η,∆, ε) forms a commutative Frobenius algebra. Conversely, given
any commutative Frobenius algebra C, there is a functor Z : 2Cob→ Vectk such that Z(S1) = C.
We say that the commutative Frobenius algebra provides a global description of the 2-dimensional
TQFT. The relevant algebraic structure, namely the commutative Frobenius algebra (C, µ, η,∆, ε),
has an immediate topological interpretation in terms of the vector space C associated with the
circle, the linear maps µ, η, ∆, and ε associated with the generators (1.1), and in terms of the
relations among the morphisms of 2Cob.

The state sum of Fukuma–Hosono–Kawai [6] forms a different and a priori independent way
of defining a 2-dimensional TQFT. This construction starts with a finite-dimensional semisimple
algebra A over a field k of characteristic zero. For every 2-dimensional cobordism M : Σ1 → Σ2,
one considers a triangulation of M , and from the data A, µ, η, and from the triangulation, one
computes the linear map Z(M) : Z(Σ1)→ Z(Σ2) as a so-called state sum. In a state sum, roughly
speaking, one colours the simplices of the triangulated manifold M with algebraic data such as
the vector space underlying A or the linear maps µ, η, and then one ‘sums over all colourings’
following certain rules. We present this construction in detail in Section 4 below. In particular,
one can compute the vector space associated with the circle, and it turns out that this is the centre

Z(S1) = Z(A) (1.2)

of the algebra one has started with. The first ‘Z’ in (1.2) refers to the functor Z : 2Cob→ Vectk

whereas the second ‘Z’ means centre. The structure of Z(S1) as a commutative Frobenius algebra
can be computed from the algebra A, too.

While the centre Z(A) has a clear topological interpretation as outlined above, the algebra A
is so far just part of a ‘recipe’ (the state sum construction), but it is far from obvious whether A
itself plays any role in the topology of 2-manifolds.

Given a 2-dimensional TQFT Z : 2Cob→ Vectk where k is a field of characteristic zero, one
can ask the converse question, namely, whether there is a finite-dimensional semisimple algebra A
over k such that one can obtain the given TQFT from the state sum of Fukuma–Hosono–Kawai.
Of course, the algebra structure of A needs to be such that Z(A) = Z(S1), but one also has to
understand which Frobenius algebra structure to choose for A in order to recover the appropriate
one for Z(A). In order to answer this question, a topological interpretation of the algebra A is
clearly desirable.

In the present article, we extend the category 2Cob from ordinary cobordisms to the category
2Cobext of open-closed cobordisms. These are certain smooth 2-manifolds with corners that
can be viewed as cobordisms between compact 1-manifolds with boundary, i.e. between disjoint
unions of circles S1 and unit intervals I = [0, 1]. We generalize the notion of a TQFT and the state
sum of Fukuma–Hosono–Kawai accordingly, and we show that the algebra A for the state sum
construction has a topological interpretation as the vector space associated with the unit interval.

The description of the category 2Cobext in terms of generators and relations goes back to work
on boundary conformal field theory by Cardy and Lewellen [7, 8], Lazaroiu [9], and to the work
of Moore and Segal [10] and Alexeevski and Natanzon [11]. We have shown the sufficiency of the
relations in [12]. In order to get some intuition for the extended cobordism category 2Cobext, we
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1 INTRODUCTION 3

here display the generators for its morphisms:

µA ∆A ηA εA µC ∆C ηC εC ı ı∗

(1.3)

An open-closed TQFT is a symmetric monoidal functor Z : 2Cobext → Vectk. In [12], we have
shown that open-closed TQFTs are characterized by what we call knowledgeable Frobenius alge-

bras (A, C, ı, ı∗) where the vector space C := Z(S1) associated with the circle has the structure of
a commutative Frobenius algebra (C, µC , ηC , ∆C , εC), the vector space A := Z(I) associated with
the interval has the structure of a symmetric Frobenius algebra (A, µA, ηA, ∆A, εA), and there are
linear maps ı : C → A and ı∗ : A→ C subject to certain conditions. For the details, see Section 2.6
below.

In the present article, we show (see Theorem 4.7 below) that for every strongly separable3

algebra A over any field k and for every choice of a symmetric Frobenius algebra structure for
A, there is a knowledgeable Frobenius algebra (A, Z(A), ı, ı∗) and a generalization to 2Cobext

of the state sum of Fukuma–Hosono–Kawai that yields the open-closed TQFT characterized by
(A, Z(A), ı, ı∗). Extending the notion of a 2-dimensional TQFT to suitable manifolds with corners
therefore reveals which topological role is played by the algebra A that enters the state sum
construction.

Why is it important to better understand the role of the algebra A? After all, 2-dimensional
TQFTs are well understood, and the state sum of Fukuma–Hosono–Kawai is just one of several
ways of finding examples. This question has various answers depending on the view point taken.

Open-closed cobordisms have a natural string theoretic interpretation. Indeed, the generators
in (1.3) can be interpreted as the smooth manifolds with corners that underly open and closed
string worldsheets. In the state sum, A therefore turns out to be the algebra associated to the
open string.

The state sum of Fukuma–Hosono–Kawai is also relevant to recent work on boundary conformal
field theory, see, for example [13, 14] where the algebra A already appears in connection with the
boundary conditions, and so the present article is immediately relevant in this context.

Another reason for better understanding the topological significance of the algebra A is given
by attempts to generalize the framework to higher dimensions. For n ≥ 3, the cobordism category
nCob is not fully understood, i.e. n-dimensional cobordisms have not been (or even cannot be)
classified, and in particular one does not have any description of nCob in terms of generators and
relations. This makes a full understanding of n-dimensional TQFTs much harder if not impossible.

On the other hand, there are some generalizations of the state sum construction of Fukuma–
Hosono–Kawai to higher dimensions, notably the 3-dimensional TQFT of Turaev and Viro [15],
extended by Barrett and Westbury [16], which produces a 3-dimensional TQFT for any given
modular category or, more generally, for suitable spherical categories [17]. The step from dimension
2 to 3, i.e. from the state sum of Fukuma–Hosono–Kawai to that of Turaev–Viro, can be understood
as an example of categorification which means replacing algebraic structures based on sets and
maps by analogues that are rather based on categories and functors [18]. The dimensional ladder
of Crane and Frenkel [19] sketches which sort of algebraic structures one would need in order to
construct n-dimensional TQFTs from state sums:

n = 4 trialgebras

BB
BB

BB
BB

B
Hopf categories

||
||

||
||

|

BB
BB

BB
BB

B
monoidal 2-categories

||
||

||
||

|

n = 3 Hopf algebras

BB
BB

BB
BB

B
monoidal categories

||
||

||
||

|

n = 2 associative algebras

(1.4)

3It turns out that for a generic field k, the appropriate class of algebras is that of the strongly separable ones.
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In this diagram, the entry ‘associative algebras’ refers to the state sum of Fukuma–Hosono–Kawai
whereas ‘monoidal categories’ refers to the Turaev–Viro state sum. For n = 2, it should actually
read ‘strongly separable associative algebras’. The appropriate choice of adjectives for the other
cases is in fact not systematically understood. In order to settle this question and in order to
extend the diagram upwards to higher dimension, one can ask whether it is possible to classify the
algebraic structures from which one can construct n-dimensional state sum TQFTs for generic n.

Whereas the algebraic structures of (1.4) that are relevant to the state sum construction, are
closely related to Pachner moves [20] and to the coherence conditions in higher categories, they have
no obvious relationship to the global description of the TQFT as a functor Z : nCob→ Vectk.

By showing that the associative algebra A of the Fukuma–Hosono–Kawai state sum is precisely
the vector space A = Z(I) associated with the unit interval in an appropriately extended notion
of 2-dimensional TQFT, we have revealed such a relationship for the simplest case n = 2 of the
dimensional ladder (1.4). This raises the question of whether one can find topological interpreta-
tions for the other algebraic structures featured in (1.4), presumably by extending the notion of
TQFT from conventional cobordisms to manifolds with corners of higher and higher codimension.
Further evidence for such a relationship is provided by Crane and Yetter’s Hopf algebra objects in
3-dimensional extended TQFTs [21] in connection with Kuperberg’s 3-manifold invariant which
is based on certain Hopf algebras [22].

In the present article, we consider Frobenius algebras not only in the category Vectk of vector
spaces, but in any symmetric monoidal Abelian category C. This extends our results without any
additional work to Frobenius algebras in the category of graded vector spaces or in the category
of chain complexes, etc..

The groupoid algebra k[G] of a finite groupoid G forms an example of a strongly separable
algebra for suitable fields k. We show that our generalized state sum for this algebra yields an
easy example of an open-closed TQFT with D-branes.

The present article is structured as follows. In Section 2, we collect the key definitions and
facts about symmetric Frobenius algebras, strongly separable symmetric Frobenius algebras, and
knowledgeable Frobenius algebras. We also introduce convenient diagrams. In Section 3, we recall
the definition of the category 2Cobext of open-closed cobordisms and how to triangulate these.
The state sum construction of combinatorial open-closed TQFTs is then presented in Section 4.

2 Frobenius Algebras

2.1 Symmetric monoidal categories and string diagrams

In this section, we review the basics of string diagrams in a symmetric monoidal category. The
symmetric monoidal categories of interest will be Abelian symmetric monoidal categories so that
the Hom spaces are Abelian groups and the notion of kernels and cokernels are defined. Such
categories include the categories of vector spaces, graded vector spaces, R-modules for a commu-
tative ring R, and chain complexes of each of these structures. We denote a symmetric monoidal
category C as (C,⊗,1, α, λ, ρ, τ) where C is a category and ⊗ provides C with a monoidal structure
with unit object 1 whose associator is denoted α and whose left and right unit constraints are
given by λ and ρ. The symmetric braiding is denoted τ .

We denote the class of objects of a category C by |C| and for each object X ∈ |C|, the identity
morphism by idX : X → X .

Definition 2.1. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category.

1. An object X of C is called rigid if it has a left-dual (X∗, evX , coevX). This is an object X∗ of
C with morphisms evX : X∗ ⊗X → 1 (evaluation) and coevX : 1→ X ⊗X∗ (coevaluation)
which satisfy the zig-zag identities,

ρX ◦ (idX ⊗ evX) ◦ αX,X∗,X ◦ (coevX ⊗ idX) ◦ λ−1
X = idX

λX∗ ◦ (evX ⊗ idX∗) ◦ α−1
X∗,X,X∗ ◦ (idX∗ ⊗ coevX) ◦ ρ−1

X∗ = idX∗

(2.1)
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2 FROBENIUS ALGEBRAS 5

2. Let X be a rigid object of C and f ∈ Hom(X, X). The categorical trace trX(f) is defined
by,

trX(f) := evX ◦ τX,X∗ ◦ (f ⊗ idX∗) ◦ coevX ∈ Hom(1,1). (2.2)

3. The categorical dimension dimX of a rigid object X of C is defined by,

dimX := trX(idX) ∈ Hom(1,1). (2.3)

4. For rigid objects X and Y of C and f ∈ Hom(X, Y ), the morphism,

f∗ := λX∗◦(evY⊗idX∗)◦((idY ∗⊗f)⊗idX∗)◦α−1
Y ∗,X,X∗◦(idY ∗⊗coevX)◦ρ−1

Y ∗ : Y ∗ → X∗, (2.4)

is called the dual of f .

In the following, we use string diagrams [23, 24] to visualize morphisms of a given symmetric
monoidal category C and the identities between them. The diagrams are read from top to bottom.
For each object X ∈ |C|, the identity morphism idX is denoted by a line labeled ‘X ’ with an arrow
pointing down. The identity morphism idX∗ of the dual object has the arrow pointing up. For
a morphism f : X → Y , we write a disc labeled ‘f ’, called a coupon. This disc has a white side
which always faces the reader and a black side which never does so,

idX = ��

X

, idX∗ = OO

X

, f =

X

Y

f

��

��

. (2.5)

Composition of morphisms is depicted by vertically concatenating the corresponding diagrams;
for example, for morphisms f : X → Y and g : Y → Z,

g ◦ f =

X
f

��

��
Y

Z

g

��

��

=

X

Z

g ◦ f

��

��

. (2.6)

The tensor product of morphisms is visualized by putting diagrams next to each other; for example,
for f : X1 → Y1 and g : X2 → Y2,

idX1⊗X2 = ��

X1 ⊗X2

= ��

X1

��

X2

, f ⊗ g =

X1 ⊗X2

Y1 ⊗ Y2

f ⊗ g

��

��

=

X1

Y1

f

��

��

X2

Y2

g

��

��

. (2.7)

The symmetric braiding is denoted by,

τX,Y =
"" ||X Y

. (2.8)

Mac Lane’s coherence theorem for monoidal categories [25] then ensures that one can unambigu-
ously translate any such string diagram into a morphism of C. One therefore chooses parentheses
for all tensor products that occur in the source and target objects of the morphism and inserts
the structure isomorphisms α, λ, ρ appropriately. The coherence theorem implies that all possible
ways of inserting the structure isomorphisms yield equal morphisms, i.e. that there is a well-defined
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2 FROBENIUS ALGEBRAS 6

morphism of C specified by the diagram. In addition, the coherence theorem allows us to suppress
the lines associated with the unit object 1.

For a rigid object X ∈ C, evaluation and coevaluation are represented by these diagrams:

evX = ��WW
X

, coevX = WW��

X
. (2.9)

The zig-zag identities of (2.1) are represented in string diagrams as:

WW��

��WW��

��
X

=

��
X

��

,
��WW

WW��OO
X

OO

=

OO
X

OO

, (2.10)

and the definitions of trace (2.2), dimension (2.3) and dual morphism (2.4) are:

trX(f) :=

WW��

X

f

��

��

OO

"" <<

��WW

, dim X :=

WW��

X
"" <<

��WW

,

Y ∗

X∗

f∗

��

��

:=

OO

Y
WW��

f

��

��

��WW

OO

X

. (2.11)

If C is locally small, the set Hom(1,1) forms a commutative monoid with multiplication ξ1·ξ2 :=
λ1 ◦ (ξ1⊗ξ2)◦λ

−11 for ξ1, ξ2 ∈ Hom(1,1) and unit id1. The monoid Hom(1,1) acts on Hom(X, Y )
for all X, Y ∈ |C| by ξ · f := λY ◦ (ξ ⊗ f) ◦ λ−1

X where f ∈ Hom(X, Y ) and ξ ∈ Hom(1,1).
The coherence theorem now allows us to view the elements of Hom(1,1) as scalars by which

the entire diagram is multiplied.

2.2 Frobenius algebras

We consider Frobenius algebras not only in the symmetric monoidal category Vectk of vector
spaces over some fixed field k, but in any generic symmetric monoidal category C. The following
definitions and results specialize to the usual notions in the case of C = Vectk.

Definition 2.2. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category.

1. An algebra object (A, µ, η) in C consists of an object A and morphisms µ : A⊗ A→ A and
η : 1→ A of C such that the following equalities are satisfied:

µ ◦ (idA ⊗ µ) = µ ◦ (µ⊗ idA) ◦ αA,A,A (2.12)

and

µ ◦ (η ⊗ idA) = λA, (2.13)

µ ◦ (idA ⊗ η) = ρA. (2.14)

2. A coalgebra object (A, ∆, ε) in C consists of an object A and morphisms ∆: A→ A⊗A and
ε : A→ 1 of C such that:

(idA ⊗∆) ◦∆ = αA,A,A ◦ (∆⊗ idA) ◦∆ (2.15)

and

(ε⊗ idA) ◦∆ = λ−1
A , (2.16)

(idA ⊗ ε) ◦∆ = ρ−1
A . (2.17)

6



2 FROBENIUS ALGEBRAS 7

3. A Frobenius algebra object (A, µ, η,∆, ε) in C consists of an object A and of morphisms µ,
η, ∆, ε of C such that:

(a) (A, µ, η) is an algebra object in C,

(b) (A, ∆, ε) is a coalgebra object in C, and

(c) the following compatibility condition, called the Frobenius relation, holds,

(idA ⊗ µ) ◦ αA,A,A ◦ (∆⊗ idA) = ∆ ◦ µ = (µ⊗ idA) ◦ α−1
A,A,A ◦ (idA ⊗∆). (2.18)

4. A Frobenius algebra object (A, µ, η,∆, ε) in C is called symmetric if

ε ◦ µ = ε ◦ µ ◦ τ. (2.19)

It is called commutative if
µ = µ ◦ τ. (2.20)

5. Let C be locally small. A Frobenius algebra object (A, µ, η,∆, ε) in C is called special (also
see [26]) if

ε ◦ η = ξ1 · id1 and µ ◦∆ = ξA · idA. (2.21)

for some ξ1, ξA ∈ Hom(1,1) that are invertible in the monoid Hom(1,1).
The string diagrams for the operations of a Frobenius algebra (A, µ, η,∆, ε) are as follows:

�� ��

��

A A

A

µ ,

��
A

η ,

�� ��

��

A A

A

∆ ,

�� A

ε . (2.22)

In order to keep the diagrams small, from now on we replace the coupons by vertices and also
drop the label ’A’ wherever it is clear from the context:

µ = •
�� 		

��
, η = •

��
, ∆ = •

�� ��

��

, ε = •
��

(2.23)

It is understood that the vertices have to be replaced by discs in the paper plane with their white
side facing the reader. Furthermore, we drop all labels µ, η, ∆ and ε where these are evident from
the context. For example, we distinguish the operation ∆ from µ by the arrows of the lines.

The axioms of an algebra and those of a coalgebra then read:

•
�� 		

��





•
�� 		

��

=

�� •
�� 		

��

•
�� 		

��

,
•
��

��

•
�� 		

��

=
��

��

=
�� •

��

•
�� 		

��

,
•
�� ��

��

•
�� ��

��
��

=
•
�� ��

��



 •
�� ��

�� ,
•
�� ��

��

•
��

��

=
��

��

=
•
�� ��

��

�� •
�� , (2.24)

and the Frobenius relation, commutativity and symmetry are depicted as follows:

•
�� ��

��

��

�� •
�� 		

��

=
•
�� 		

��

•
�� ��

�� =
�� •

�� ��

��

•
�� 		

��
��

,

�� ��

•
�� 		

��

=
�� ��

•
�� 		

��

,

�� ��

•
�� 		

��

•
��

=

�� ��

•
�� 		

��

•
��

, (2.25)

The conditions for a the Frobenius algebra to be special are these:

•
��

•
�� = ξ1 and

•
�� ��

��

•
�� 		

��

= ξA

��

��

(2.26)

7



2 FROBENIUS ALGEBRAS 8

2.3 Symmetric Frobenius algebras

In this section, we introduce the notion of a non-degenerate symmetric invariant pairing in order to
characterize symmetric Frobenius algebras. In the subsequent sections, we use it to define strongly
separable algebras and to classify all symmetric Frobenius algebra structures of a strongly separable
algebra.

Definition 2.3. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category and (A, µ, η) be an
algebra object in C.

1. A pairing on A is a morphism g : A⊗ A→ 1 of C.

2. A pairing g : A⊗A→ 1 is called non-degenerate if there exists a morphism g∗ : 1→ A⊗A
of C (called the inverse of g) such that the zig-zag identities hold,

ρA ◦ (idA ⊗ g) ◦ αA,A,A ◦ (g∗ ⊗ idA) ◦ λ−1
A = idA,

λA ◦ (g ⊗ idA) ◦ α−1
A,A,A ◦ (idA ⊗ g∗) ◦ ρ−1

A = idA.
(2.27)

3. A pairing g : A⊗A→ 1 is called symmetric if g = g ◦ τA,A.

4. A pairing g : A⊗A→ 1 is called invariant4 if,

g ◦ (idA ⊗ µ) ◦ αA,A,A = g ◦ (µ⊗ idA). (2.28)

The string diagrams for a pairing g : A⊗A→ 1 on an algebra object (A, µ, η) in some symmetric
monoidal category C are as follows:

�� ��
A A

g ,

�� ��
A A

g∗ . (2.29)

Our shorthand notation using blackboard framing then reads:

g = •
�� 		

, g∗ = •
�� ��

. (2.30)

The conditions of non-degeneracy, symmetry and invariance are depicted as follows:

•
�� ��

��

�� •
�� 		 =

��

��

=

�� •
�� ��

��•
�� 		 ,

�� ��

•
�� 		 =

�� ��

•
�� 		 ,

•
�� 		

��





•
�� 		 =

�� •
�� 		

��

•
�� 		 . (2.31)

We also use the following shorthand notation for the ‘trilinear form’ g(3) : (A⊗A)⊗A→ 1 which
is defined by:

g(3) = •
�� �� ��

:=
•
�� 		

��
��

•
�� 		 , (2.32)

and which has the following cyclic symmetry:

  �� ��

•
�� �� �� =

�� �� ��

•
�� �� �� =

~~����

•
�� �� �� . (2.33)

4Some authors use the term associative rather than invariant, see, for example [5].
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2 FROBENIUS ALGEBRAS 9

Lemma 2.4. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. Every symmetric Frobe-
nius algebra object (A, µ, η,∆, ε) in C gives rise to a non-degenerate symmetric invariant pairing
g := ε ◦ µ on A with inverse g∗ := ∆ ◦ η. Conversely, given an algebra object (A, µ, η) in C and a
non-degenerate symmetric invariant pairing g on A, there is a symmetric Frobenius algebra object
(A, µ, η,∆, η) with ∆ := (µ⊗ idA) ◦ (idA ⊗ g∗) ◦ ρ−1

A and ε := g ◦ (idA ⊗ η) ◦ ρ−1
A .

The defining equations used in this lemma can be read diagrammatically as:

•
�� 		

:=
•
�� 		

��

•
�� , •

�� ��
:=
•
��

•
�� ��

�� , and •
�� ��

��

:=
�� •

�� ��

•
�� 		

��
��

, •
��

:=
�� •

��

•
�� 		 . (2.34)

Notice that every symmetric Frobenius algebra object (A, µ, η,∆, ε) in C is a rigid object of C with
left-dual5 (A, ε ◦ µ, ∆ ◦ η).

2.4 Strongly separable algebras

Every rigid algebra object in a symmetric monoidal category is equipped with a canonical pairing.
Recall first the special case of C = Vectk for an arbitrary field k. Let A be a finite-dimensional
algebra over k and denote the left-regular representation by L : A → Endk(A), a 7→ La with
La : A→ A, b 7→ ab. By associativity, Lab = La ◦ Lb for all a, b ∈ A. The trace of the matrices of
the left-regular representation equips A with a canonical bilinear form,

gcan : A⊗A→ k, a⊗ b 7→ trA(Lab), (2.35)

which can be shown to be symmetric and invariant.

Theorem 2.5 (see, for example [27]). Let A be an algebra over any field k. Then the following
are equivalent:

1. A is finite-dimensional over k, and the canonical bilinear form is non-degenerate.

2. A is strongly separable.

Every strongly separable algebra therefore carries a canonical symmetric Frobenius algebra
structure by Lemma 2.4. The following definition of a canonical pairing for generic C reduces to
the canonical bilinear form in the case of C = Vectk.

Proposition 2.6. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category and (A, µ, η) be an
algebra object in C such that the object A is rigid with left-dual (A∗, evA, coevA). Then there is
a symmetric invariant pairing on A given by,

gcan := evA ◦ τA,A∗ ◦ (µ⊗ idA∗) ◦ α−1
A,A,A∗ ◦ (µ⊗ coevA) ◦ ρ−1

A⊗A =

•
�� 		

��
��

•
�� 		

��

JJ

�� FF

[[

. (2.36)

which we call the canonical pairing .

Definition 2.7. A rigid algebra object in a symmetric monoidal category is called strongly sep-

arable if its canonical pairing is non-degenerate.

5It is right-dual at the same time, but we do not refer to this property in the following.
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2 FROBENIUS ALGEBRAS 10

By Theorem 2.5, this notion of a strongly separable algebra object in some symmetric monoidal
category agrees with the usual definition in the case C = Vectk. We are not aware of any such
result for the more general case of modules over a commutative ring. In order to illustrate how
strong the condition of strong separability is, we include the following definitions, results and
examples from [27,28].

Definition 2.8. Let A be an algebra over a commutative ring r. We denote by Aop the opposite
algebra of A, by Ae = A ⊗ Aop its enveloping algebra and by µ : Ae → A, a ⊗ b 7→ ab the
augmentation mapping. A is called separable if there is an element e ∈ Ae (called a separability

idempotent) such that,

1. (a⊗ 1)e = (1 ⊗ a)e holds in Ae for all a ∈ A.

2. µ(e) = 1.

A is called strongly separable if A is separable with a separability idempotent that satisfies
τA,A(e) = e.

Theorem 2.9. Let A be an algebra over some field k.

1. If A is strongly separable, then A is finite-dimensional, separable, and semisimple.

2. If A is separable and commutative, then A is strongly separable.

3. If A is finite-dimensional and semisimple and char k = 0, then A is strongly separable.

4. If A is finite-dimensional and semisimple and k is a perfect field, then A is separable.

Example 2.10. Let k be a field and G be a finite group.

1. If char k does not divide the order of G, then the group algebra k[G] is strongly separable.

2. If char k divides the order of G, then k[G] is neither semisimple nor separable.

Example 2.11. Let k be a field and Mn(k) be the algebra of (n× n)-matrices over k.

1. If char k does not divide n, then Mn(k) is strongly separable.

2. If char k divides n, then Mn(k) is semisimple and separable, but not strongly separable.

In both examples, the non-degeneracy of the canonical bilinear form is a convenient criterion
for strong separability. We explain below why in the Examples 2.10(2) and 2.11(2), the state
sum construction fails. In particular, for a finite field of non-zero characteristic p, the original
Fukuma–Hosono–Kawai state sum [6] cannot be applied to the (p×p)-matrix algebra A := Mp(k)
although k is perfect and Mp(k) is finite-dimensional, separable, and semisimple.

2.5 Strongly separable symmetric Frobenius algebras

In this section, we compare the pairing ε ◦ µ of a generic symmetric Frobenius algebra with the
canonical pairing. They differ by multiplication with a central element which we call the window

element6.
In a generic locally small symmetric monoidal category (C,⊗,1, α, λ, ρ, τ), we use the terminol-

ogy element of A for a morphism a : 1→ A. The set Hom(1, A) of elements of an algebra object
(A, µ, η) in C forms a monoid with respect to convolution a · b := µ ◦ (a ⊗ b) ◦ λ−11 for elements
a, b ∈ Hom(1, A) and with unit η. An element a ∈ Hom(1, A) is called central if it is contained in
the commutative submonoid,

Z(A) := { a ∈ Hom(1, A) : µ ◦ (a⊗ idA) ◦ λ−1
A = µ ◦ (idA ⊗ a) ◦ ρ−1

A }. (2.37)

6This terminology is inspired by the open-closed cobordism [12] that is associated with this element.

10



2 FROBENIUS ALGEBRAS 11

The set of invertible elements of A forms a group Hom(1, A)
× ⊆ Hom(1, A), and the set of

invertible central elements Z(A)
×

:= Z(A)∩Hom(1, A)
× ≤ Hom(1, A)

×
a subgroup. This means

in particular that the inverse of every central element is central, too. Z(A) acts on Hom(A, A) by

Z(A)×Hom(A, A)→ Hom(A, A), (a, f) 7→ a · f := µ ◦ (a⊗ f) ◦ λ−1
A . (2.38)

We also have (a · idA) ◦ η = a and (a · idA) ◦ (b · idA) = (a · b) · idA for all a, b ∈ Z(A) as well as

µ ◦ ((a · idA)⊗ idA) = (a · idA) ◦ µ = µ ◦ (idA ⊗ (a · idA)), (2.39)

and for a Frobenius algebra object (A, µ, η,∆, ε) also,

((a · idA)⊗ idA) ◦∆ = ∆ ◦ (a · idA) = (idA ⊗ (a · idA)) ◦∆. (2.40)

The following diagrams show an element a ∈ Hom(1, A), the morphism a · idA, and the centrality
condition:

a = a

��
, a · idA =

a
��

��

•
�� 		

��

,
a
��

��

•
�� 		

��

=
�� a

��

•
�� 		

��

(2.41)

Definition 2.12. Let (A, µ, η,∆, ε) be a symmetric Frobenius algebra object in a locally small
symmetric monoidal category C. The window element of A is defined by,

a := µ ◦∆ ◦ η =

•
��

•
�� ��

��

•
�� 		

��

(2.42)

The window element is a central element. The comparison between the pairing ε◦µ of a generic
symmetric Frobenius algebra and the canonical pairing can be done as follows.

Proposition 2.13. Let C be a locally small symmetric monoidal category and (A, µ, η,∆, ε) be
a symmetric Frobenius algebra object in C. Then the canonical pairing of A is given by,

gcan = ε ◦ (a · idA) ◦ µ, (2.43)

where a denotes the window element.

Proof. Notice that A is a rigid object of C, and so it makes sense to study the canonical pair-
ing (2.36). We use the diagrams of (2.30) for g := ε ◦ µ and g∗ := ∆ ◦ η:

gcan =

•
�� 		

��
��

•
�� 		

��

JJ

�� FF

[[

=

•
�� 		

��
•
�� ��

•
�� 		

��





�� ��

•
�� 		

=

•
�� 		

��
•
�� ��

•
�� 		

��





•
�� 		 =

•
��

•
�� 		

��
•
�� ��

��

•
�� 		

��
��

•
�� 		

��

•
��

=

•
�� 		

��

a
��

��

•
�� 		

��

•
��

(2.44)

The first equality is the definition; for the second one, we have exploited the fact that A satisfies
the zig-zag identities (2.1) both with (A∗, evA, coevA) and with (A, g, g∗); the third equality is
symmetry; the fourth one follows from the axioms of a Frobenius algebra; and the fifth is the
definition of the window element.

11



2 FROBENIUS ALGEBRAS 12

In the above proposition, the pairing g := ε◦µ is always non-degenerate whereas the canonical
pairing is non-degenerate if and only if the algebra is strongly separable.

Theorem 2.14. Let (C,⊗,1, α, λ, ρ, τ) be a locally small symmetric monoidal category and
(A, µ, η,∆, ε) be a symmetric Frobenius algebra object in C with window element a. Then the
following are equivalent:

1. The algebra object (A, µ, η) is strongly separable.

2. The window element is invertible.

Proof. Let (A, µ, η) be strongly separable. Then the canonical pairing is non-degenerate and
therefore has an inverse g∗can : 1 → A ⊗ A. We denote the pairing g := ε ◦ µ and its inverse
g∗ := ∆ ◦ η by the diagrams of (2.30) and the canonical pairing and its inverse by,

gcan = ∗
�� 		

, g∗can = ∗
�� ��

. (2.45)

Define ã := λA ◦ (ε⊗ idA) ◦ g∗can. Then ã is the inverse of a because,

a

��
ã
��

•
�� ��

��

=

∗
�� ��

•
��

��

a

��

��

•
�� 		

��

=

∗
�� ��

•
��

��

a

��

��

•
�� 		

��
•
�� ��

•
�� 		

��

=

∗
�� ��

•
�� ��

•
��

•
�� 		

��
��

a

��

�� ��

•
�� 		

��
��

•
��

��

=
∗
�� ��

•
�� ��

•
��

∗
�� 		

��

=
•
�� ��

•
��

��

= •
��
. (2.46)

The first equality is the definition of ã; the second one a zig-zag identity for (A, g, g∗); the third
one is a consequence of the axioms of a Frobenius algebra; the fourth one is (2.43); the fifth one
is a zig-zag identity for (A, gcan, g∗can); and the last equation holds by the axioms of a Frobenius
algebra.

Conversely, let the window element a have an inverse a−1. Then a similar computation shows
that the canonical pairing satisfies the zig-zag identities with the inverse g∗can = ∆ ◦ a−1 and is
therefore non-degenerate.

Combined with Proposition 2.13, the preceding theorem implies that the symmetric Frobenius
algebra structures of a given strongly separable algebra are characterized by the invertible central
elements. The proposition below describes the extent to which the notion of a strongly separable
symmetric Frobenius algebra generalizes the notion of a special symmetric Frobenius algebra.

Proposition 2.15. Let C be a locally small symmetric monoidal category and (A, µ, η,∆, ε) be
a symmetric Frobenius algebra object in C such that dimA is invertible in Hom(1,1). Then the
following are equivalent:

1. The Frobenius algebra object (A, µ, η,∆, ε) is special with ε◦η = ξ1 · id1 and µ◦∆ = ξA · idA

for some invertible ξ1, ξA ∈ Hom(1,1).
2. The algebra object (A, µ, η) is strongly separable, and the window element is of the form

a = ζ · η for some invertible ζ ∈ Hom(1,1).
In this case, ξA = ζ and ξ1 = ξ−1

A dim A.

12



2 FROBENIUS ALGEBRAS 13

Proof. If A is special, the window element is a = µ ◦∆ ◦ η = (ξA · idA) ◦ η = ξA · η. It is invertible
with a−1 = ξ−1

A · η, and so (A, µ, η) is strongly separable.
Conversely, if (A, µ, η) is strongly separable with window element a = ζ · η for some invertible

ζ ∈ Hom(1,1), then the second condition of (2.21) holds with invertible ξA = ζ. For a symmetric
Frobenius algebra object in a symmetric monoidal category, the second condition of (2.21) implies
the first one with ξ1 = ξ−1

A dimA:

dimA =

��

�� FF

[[

=

•
�� ��
�� ��

•
�� 		

=
•
�� ��

•
�� 		 =

•
��

•
�� ��

��

•
�� 		

��

•
��

= ξA

•
��

•
�� . (2.47)

Since dimA is invertible by assumption, so is ξ1.
Remark 2.16. Given any strongly separable symmetric Frobenius algebra object (A, µ, η,∆, ε)
with window element a in a locally small symmetric monoidal category C, the identity

(a−1 · idA) ◦ µ ◦∆ =

•
�� ��

��

•
�� 		

��a−1

•
�� 		

��

=
��

��

= idA (2.48)

generalizes the ‘bubble move’ of Fukuma–Hosono–Kawai from the canonical symmetric Frobenius
algebra structure to the case of a generic symmetric Frobenius algebra structure. In Section 4,
we explain why this generalization is needed in order to obtain a sharp invariant of open-closed
cobordisms from the state sum.

For the algebras of Example 2.10(2) and Example 2.11(2) which are not strongly separable,
the morphism µ ◦∆ is zero, and so there is no way of obtaining an analogue of the ‘bubble move’.

2.6 Knowledgeable Frobenius algebras

We have shown in [12] that open-closed TQFTs, i.e. symmetric monoidal functors Z : 2Cobext → C
where C is a symmetric monoidal category, are characterized by knowledgeable Frobenius algebras

in C. Here we just recall the definition. For more details, we refer the reader to [12].

Definition 2.17. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. A homomorphism of

algebras f : A→ A′ between two algebra objects (A, µ, η) and (A′, µ′, η′) in C is a morphism f of
C such that:

f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′. (2.49)

Definition 2.18. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. A knowledgeable

Frobenius algebra (A, C, ı, ı∗) in C consists of,

• a symmetric Frobenius algebra A = (A, µA, ηA, ∆A, εA),

• a commutative Frobenius algebra C = (C, µC , ηC , ∆C , εC),

• morphisms ı : C → A and ı∗ : A→ C of C,

such that ı : C → A is a homomorphism of algebra objects in C and,

µA ◦ (ı⊗ idA) = µA ◦ τA,A ◦ (ı⊗ idA) (knowledge), (2.50)

εC ◦ µC ◦ (idC ⊗ ı∗) = εA ◦ µA ◦ (ı⊗ idA) (duality), (2.51)

µA ◦ τA,A ◦∆A = ı ◦ ı∗ (Cardy condition). (2.52)

13



2 FROBENIUS ALGEBRAS 14

Sometimes the folk theorem on the characterization of open-closed TQFTs is stated in such
a way that it includes the condition C = Z(A). The following example shows that there exist
knowledgeable Frobenius algebras and thereby open-closed TQFTs in which this condition does
not hold.

Example 2.19. Let k be a field, char k 6= 2 and n ∈ N such that char k does not divide n.
Assume that there exists some α ∈ k such that α2 = −1/2 (for example k = C).

Let A = Mn(k) be the n×n-matrix algebra over k. Choose a k-basis (eij)1≤i,j≤n of A such that

the multiplication is given by µA(eij⊗ekℓ) = δjk eiℓ and the unit by ηA(1) =
∑n

i=1 eii. The algebra
A forms a symmetric Frobenius algebra with ∆A(eij) = α−1

∑n
k=1 eik ⊗ ekj and εA(eij) = α δij .

We compute µA ◦∆A = nα−1 · idA and the window element aA = nα−1 · ηA. It is invertible with
a−1

A = n−1α ·ηA, and so A is strongly separable. In fact, A is special with ξA = nα−1 and ξ1 = nα.
Obviously, Z(A) ∼= k.

Let C = k[X ]/(X2 − 1). A k-basis is given by (1, X). C becomes a commutative Frobenius
algebra with ∆C(1) = 1⊗X + X ⊗ 1, ∆C(X) = 1 ⊗ 1 + X ⊗X , εC(1) = 0, and εC(X) = 1. We
compute (µC ◦∆C)(c) = 2X c for all c ∈ C, and the window element is aC = 2X . It is invertible
with a−1

C = X/2, and so C is strongly separable, too, but it is not special.
If we define ı : C → A by ı(1) = ηA(1) and ı(X) = −ηA(1), and ı∗ : A → C by ı∗(eij) =

δij α(X − 1), then (A, C, ı, ı∗) forms a knowledgeable Frobenius algebra. Observe that Z(A) is
1-dimensional over k, but C is 2-dimensional, and so Z(A) 6∼= C.

2.7 Idempotents

In this section, we show that every strongly separable symmetric Frobenius algebra A in an Abelian
symmetric monoidal category C gives rise to a knowledgeable Frobenius algebra (A, C, ı, ı∗) in C.
In Vectk, C is isomorphic to the centre of A. In general, it arises as the image of the following
canonical idempotent.

Proposition 2.20. Let (A, µA, ηA, ∆A, εA) be a strongly separable symmetric Frobenius algebra
object in a locally small symmetric monoidal category C and let a−1 denote the inverse of the
window element of A. Then the morphism

p = p
��

��

:= (a−1 · idA) ◦ µ ◦ τA,A ◦∆ =

•
�� ��

��

a−1 •

•
��

��

�� ��

(2.53)

has the following properties,

1. p2 = p,

2. p ◦ ηA = ηA,

3. εA ◦ p = εA,

4. p ◦ µA ◦ (p⊗ p) = µA ◦ (p⊗ p) = p ◦ µA ◦ (p⊗ idA) = p ◦ µA ◦ (idA ⊗ p),

5. (p⊗ p) ◦∆A ◦ p = (p⊗ p) ◦∆A = (p⊗ idA) ◦∆A ◦ p = (idA ⊗ p) ◦∆A ◦ p,

6. c = p ◦ c for all c ∈ Z(A),

7. (c · idA) ◦ p = p ◦ (c · idA) for all c ∈ Z(A),

8. µ ◦ (p⊗ idA) = µ ◦ τA,A ◦ (p⊗ idA),

14



2 FROBENIUS ALGEBRAS 15

In Vectk, condition (1) states that p is a projector; condition (8) says that its image is contained
in the centre Z(A), and condition (6) says that the centre Z(A) is contained in the image of p, and
so p projects onto the centre Z(A). Whereas this Z(A) arises as a subspace Z(A) = im p ⊆ A,
the centre Z(A) according to (2.37) consists of morphisms 1 → A. In Vectk, one can evaluate
any such morphism a ∈ Z(A) at the unit 1 ∈ k of the field and finds that a(1) ∈ Z(A) ⊆ A.

Note that the idempotent (2.53) is precisely p = µA ◦ τA,A ◦∆
(can)
A where ∆

(can)
A refers to the

canonical symmetric Frobenius algebra structure on A.
In the state sum, the idempotent (2.53) appears whenever a unit interval is closed to a circle,

i.e. it is closely related with the generators ı and ı∗ of (1.3). The image of an idempotent can be
defined in any Abelian category as follows.

Proposition 2.21 (see, for example [29]). Let C be an Abelian category and p : A → A be
an idempotent. The image factorization of p yields an object p(A), called the image of p, which
is unique up to isomorphism, together with morphisms coim p : A → p(A) (called the co-image)
and im p : p(A)→ A (called the image) such that the following diagram commutes:

A
coim p

//

p
##G

GG
GG

GGG
GG

p(A)

im p

��

A

(2.54)

Since C is Abelian, the idempotent p is split. The splitting is given precisely by the two morphisms
of the image factorization, and so we have idp(A) = coim p ◦ im p. Therefore, the short exact
sequence

0 // Np
ker p

// A
coim p

// p(A) //

im p
oo 0 , (2.55)

is split as indicated. Here Np denotes the kernel of p. This determines the structure of A ∼=
Np ⊕ p(A) in terms of the following biproduct:

Np

ker p
// Np ⊕ p(A)

coker p
oo

coim p
// p(A)

im p
oo . (2.56)

The sequence from right to left is split exact, too.

Theorem 2.22. Let C be an Abelian symmetric monoidal category and (A, µ, η,∆, ε) be a strongly
separable symmetric Frobenius algebra object in C with window element a. Then there exists a
knowledgeable Frobenius algebra (A, C, ı, ı∗) where C = p(A) is the image of the idempotent (2.53),
ı = im p, and ı∗ = coim p ◦ (a · idA). The commutative Frobenius algebra structure of C is given
by,

µC = coim p ◦ µA ◦ (im p⊗ im p), (2.57)

ηC = coim p ◦ ηA, (2.58)

∆C = (coim p⊗ coim p) ◦∆A ◦ (a · idA) ◦ im p, (2.59)

εC = εA ◦ (a−1 · idA) ◦ im p. (2.60)

Proof. The proof uses Proposition 2.20 and Proposition 2.21.

We show below in Section 4 that this knowledgeable Frobenius algebra is precisely the one that
is obtained from our generalized state sum for the strongly separable algebra A. The following
proposition introduces two families of morphisms that are needed in order to show that the mor-
phisms associated with triangulated open-closed cobordisms do not depend on the triangulation
of the boundary.

15



3 OPEN-CLOSED COBORDISMS 16

Let (A, µ, η,∆, ε) be a Frobenius algebra object in a locally small symmetric monoidal category
C. For k ∈ N, we denote by

µ(k+1) := µ ◦ (µ(k) ⊗ idA), µ(2) := µ, µ(1) := idA (2.61)

and by
∆(k+1) := (∆(k) ⊗ idA) ◦∆, ∆(2) := ∆, ∆(1) := idA (2.62)

the iterated multiplication and comultiplication. We also write A⊗(k+1) := A⊗k ⊗ A, A⊗1 := A
and A⊗0 := 1, and for a ∈ Z(A), ak+1 · idA := (ak · idA) ◦ (a · idA) and a0 · idA := idA.

Proposition 2.23. Let C be a locally small symmetric monoidal category and (A, µ, η,∆, ε) be
a strongly separable symmetric Frobenius algebra object in C with window element a. Then for
k, ℓ ∈ N, the morphisms

Pkℓ := ∆(k) ◦ (a−(k−1) · idA) ◦ µ(ℓ) : A⊗ℓ → A⊗k, (2.63)

Qkℓ := ∆(k) ◦ (a−(k−1) · idA) ◦ p ◦ µ(ℓ) : A⊗ℓ → A⊗k, (2.64)

satisfy
Pkℓ ◦ Pℓm = Pkm and Qkℓ ◦Qℓm = Qkm (2.65)

for all k, ℓ, m ∈ N. Here p denotes the idempotent of (2.53). In particular, Pkk and Qkk are
idempotents, and we have P11 = idA and Q11 = p.

Proof. In any symmetric Frobenius algebra, we have

µ(k) ◦∆(k) = a(k−1) · idA, (2.66)

which implies both claims.

Corollary 2.24. Let C be an Abelian symmetric monoidal category and (A, µ, η,∆, ε) be a
strongly separable symmetric Frobenius algebra object in C. Then there are isomorphisms

Pkk(A⊗k) ∼= A and Qkk(A⊗k) ∼= p(A) (2.67)

for all k ∈ N.

Proof. The isomorphisms with their inverses are given by

Φk = coim Pkk ◦ Pk1 : A→ Pkk(A⊗k), (2.68)

Φ−1
k = P1k ◦ im Pkk : Pkk(A⊗k)→ A (2.69)

as well as

Ψk = coim Qkk ◦Qk1 ◦ im p : p(A)→ Qkk(A⊗k), (2.70)

Ψ−1
k = coim p ◦Q1k ◦ im Qkk : Qkk(A⊗k)→ p(A). (2.71)

3 Open-closed cobordisms

3.1 Smooth open-closed cobordisms

In this section, we briefly review the definition of the category 2Cobext of open-closed cobordisms.
These are smooth 2-manifolds with corners that have a particular global structure as follows.

Recall that a smooth k-manifold with corners M is a topological k-manifold such that every
point has a neighbourhood homeomorphic to an open subset of Rk

+ := [0,∞)k. The transition

16



3 OPEN-CLOSED COBORDISMS 17

functions are required to be the restrictions to Rk
+ of diffeomorphisms between open subsets ofRk.

For each p ∈M , we define c(p) ∈ N0 to be the number of zero coefficients in local coordinates
ϕ(p) ∈ Rk

+. The result is independent of the chosen coordinate system. A connected face of M
is the closure of a component of { p ∈M : c(p) = 1 }. A face is a free union of connected faces. A
k-dimensional manifold with faces is a smooth k-manifold with corners such that every p ∈ M is
contained in c(p) different connected faces.

A k-dimensional 〈2〉-manifold M is a k-dimensional manifold with faces with a specified pair
(∂0M, ∂1M) of faces of M such that ∂0M ∪ ∂1M = ∂M (the boundary of M as a topological
manifold) and such that ∂0M∩∂1M is a face of both ∂0M and ∂1M . A diffeomorphism f : M → N
between 〈2〉-manifolds M and N is a diffeomorphism of the underlying manifolds with corners that
satisfies f(∂0M) = ∂0N and f(∂1M) = ∂1N .

In the following, we are interested in 2-dimensional 〈2〉-manifolds. The following is a typical
example:

M ∂0M ∂1M ∂0M ∪ ∂1M ∂0M ∩ ∂1M
b b

b b

(3.1)

An open-closed cobordism is a compact oriented 2-dimensional 〈2〉-manifold M whose distin-
guished faces we denote by (∂0M, ∂1M). We call ∂0M the black boundary and ∂1M the coloured

boundary. Two open-closed cobordisms are considered equivalent if there is an orientation pre-
serving diffeomorphism of 〈2〉-manifolds that restricts to the identity on the black boundary.

The black boundary ∂0M of an open-closed cobordism is diffeomorphic to a free union of circles
S1 and unit intervals I = [0, 1]. One can glue open-closed cobordisms along the components of
their black boundary just as one intuitively expects and as it is indicated by the pictures above.
For the details, we refer to Section 3 of [12]. There we have defined the symmetric monoidal
category 2Cobext whose objects are finite sequences ~n = (n1, · · · , nk) with ni ∈ {0, 1} for all i.
The ni = 1 represent the diffeomorphism type of the unit interval, while the ni = 0 represent
the diffeomorphism type of the circle. The morphisms of 2Cobext are equivalence classes of
open-closed cobordisms between these. The tensor product is the free union of manifolds, i.e.

juxtaposition of the corresponding diagrams, and the composition of morphisms is the gluing of
the open-closed cobordisms along their black boundaries. The identity morphisms are cylinders
over the compact oriented 1-manifolds that represent the objects.

For the purpose of the present work, it is sufficient to keep in mind that any morphism of the
category 2Cobext can be obtained from a finite number of copies of the generators (1.3) by taking
tensor products and by taking compositions.

We have also shown in [12] that any two equivalent open-closed cobordisms are related by
a finite sequence of moves. These moves are precisely the defining equations of a knowledge-
able Frobenius algebra (A, C, ı, ı∗) when the operations µA, ∆A, . . . , ı∗ are replaced by the mor-
phisms depicted in (1.3). For example, to the associative law in the symmetric Frobenius algebra
(A, µA, ηA, ∆A, εA), there corresponds the following move:

←→ (3.2)

We can summarize the results of [12] on the structure of the category 2Cobext as follows.

Theorem 3.1. The category 2Cobext of open-closed cobordisms is the strict symmetric monoidal
category freely generated by a knowledgeable Frobenius algebra object (A, C, ı, ı∗). This gener-
ating knowledgeable Frobenius algebra object consists of the diffeomorphism type ~n = (1) of

17



3 OPEN-CLOSED COBORDISMS 18

the unit interval A = I which forms a symmetric Frobenius algebra (A, µA, ηA, ∆A, εA); the dif-
feomorphism type ~n = (0) of the circle C = S1 which forms a commutative Frobenius algebra
(C, µC , ηC , ∆C , εC); together with the morphisms ı and ı∗. The morphisms µA, ηA, . . . , ı∗ are
precisely the equivalence classes of the open-closed cobordisms depicted in (1.3).

3.2 Combinatorial open-closed cobordisms

Open-closed cobordisms can be triangulated as follows. We use the terminology of [30].
Given an open-closed cobordism M , the underlying topological manifold is a compact oriented

2-manifold with boundary. We therefore have a finite simplicial complex K whose underlying
polyhedron we denote by |K| ⊆ Rp for some p, and a homeomorphism TM : |K| → M which we
call a triangulation. The simplicial complex K satisfies the conditions that guarantee that |K|
forms an oriented topological 2-manifold, i.e. the link of each d-simplex is a (1− d)-sphere iff the
simplex is in the interior of |K|, and it is a (1 − d)-ball iff the simplex is in the boundary of |K|.
Furthermore, for each 2-simplex σ, it is specified whether σ or its opposite oriented simplex σ∗

is contained in |K|, and each 1-simplex in the interior of |K| appears as a face of precisely two
2-simplices with opposite induced orientations.

If M and N are equivalent open-closed cobordisms, their underlying topological manifolds
are homeomorphic. If we have triangulations TM : |K| → M and T̃M : |L| → N with simplicial
complexes K and L, Pachner’s theorem [20] says that the simplicial complexes K and L are related
by a finite sequence of moves. These moves are the bistellar moves (called the 1-3 and 2-2 move),

b b

b

←→

b b

b

b
and

b b

bb

b

←→

b b

bb

b

, (3.3)

applicable to all 2-simplices, and the elementary shellings

b

b

b

b

←→

b

b

b

b

b
and

b

b

b

b

b

←→

b

b

b

b

b

, (3.4)

applicable to certain 2-simplices some of whose faces coincide with the boundary. The interior of
the manifold is indicated by the shading in our pictures. Recall that for finite simplicial complexes
which represent compact manifolds with non-empty boundary, each bistellar move can be obtained
from a finite sequence of elementary shellings.

The set of corners ∂0M ∩ ∂1M of every open-closed cobordism M is a finite set. Given some
triangulation TM : |K| → M , we can apply a finite sequence of elementary shellings in order
to subdivide the 1-simplices in the boundary in such a way that to every corner of M , there
corresponds a 0-simplex in K, i.e. that ∂0M ∩ ∂1M ⊆ TM (|K0|) where K0 ⊆ K denotes the
0-skeleton of K. From now on we assume, without loss of generality, that every triangulation has
this property. Given a 1-simplex σ ∈ K in the boundary, we therefore have either TM (|σ|) ⊆ ∂0M
or TM (|σ|) ⊆ ∂1M , i.e. the 1-simplices in the boundary are either black or coloured.

Both elementary shellings of (3.4) replace two boundary 1-simplices (edges) by a single edge
or vice versa. For triangulations with the special property, each of the elementary shellings (3.4)
belongs to one of the following four types:

1. two black edges ←→ one black edge,

2. two coloured edges ←→ one coloured edge,

3. one black and one coloured edge ←→ one black edge,

18



4 STATE SUM CONSTRUCTION 19

4. one black and one coloured edge ←→ one coloured edge.

It is not difficult to see that the elementary shellings of type (3.) and (4.) can be obtained from
a finite sequence of bistellar moves and elementary shellings of type (1.) and (2.).

When we construct open-closed TQFTs in Section 4 below, we consider triangulations of the
open-closed cobordisms and then show that the linear map associated with every given cobordism
is invariant under the bistellar moves (3.3) and under elementary shellings of type (1.) and (2.).
Then this linear map is independent of the choice of the triangulation.

3.3 Smoothing theory

When one studies smooth manifolds by combinatorial techniques, the relation between combina-
torial and smooth manifolds is described by two types of theorems:

• Triangulation: Every compact smooth manifold (with boundary) admits a Whitehead tri-
angulation. If two such manifolds are diffeomorphic, then their triangulations are related by
a finite sequence of the appropriate Pachner moves.

• Smoothing: Given a finite simplicial complex K that satisfies the conditions which ensure
that its underlying polyhedron |K| forms a topological manifold (with boundary), one needs
to know (a) under which conditions there exists a smooth manifold that has |K| as its
triangulation and (b) whether the resulting smooth manifold is unique up to diffeomorphism.

Such theorems are available in order to compare smooth manifolds with boundary and combina-
torial manifolds with boundary, but we are not aware of any systematic treatment for manifolds
with corners, manifolds with faces, or 〈2〉-manifolds.

In the preceding section, we have solved the triangulation problem for open-closed cobordisms
by resorting to the underlying topological manifold which is just a topological 2-manifold with
boundary. It admits a triangulation, and this triangulation is unique up to combinatorial equiva-
lence, i.e. Pachner moves, by the validity of the Combinatorial Triangulation Conjecture and the
Hauptvermutung for 2-dimensional manifolds, see, for example [31]. We have then dealt with the
corner points ‘by hand’.

The other direction, a solution to the smoothing problem, is not needed if one is just interested
in a combinatorial construction of open-closed TQFTs. For completeness, we nevertheless sketch
how one can obtain the corresponding smoothing theorem: Let K be a finite simplicial complex
that triangulates an open-closed cobordism. Then every 1-simplex in the boundary is either
black or coloured as we have explained above. The underlying polyhedron |K| together with this
partitioning of the boundary is already sufficient to read off the topological invariants defined in
Section 3.2.4 of [12]. By the normal form of open-closed cobordisms of Definition 3.18 of [12],
there exists an open-closed cobordism with the given invariants, and by Corollary 3.24 of [12], it
is unique up to equivalence.

4 State Sum Construction

We begin this section with an overview of the state sum construction in informal language.
Given a strongly separable symmetric Frobenius algebra object (A, µA, ηA, ∆A, εA) in an

Abelian symmetric monoidal category C and a connected open-closed cobordism M with tri-
angulation TM : |K| →M , we construct a morphism Z(M) in C.

19



4 STATE SUM CONSTRUCTION 20

Figure 1: ~n = (1, 0), ~n′ =
(1), h1 = 2, h2 = 5, h3 = 4,
m1 = 7, and m2 = 4.

For the duration of this section let M be a connected open-
closed cobordism with source ∂0M

in := ~n = (n1, · · · , nk) and target
∂0M

out := ~n′ = (n′
1, · · · , n

′
k′). Let j enumerate the black boundary

components of M so that hj denotes the number of 1-simplices in the
triangulation of the component nj for 1 ≤ j ≤ k or the component
n′

j for k + 1 ≤ j ≤ k + k′. The number of 1-simplices of ∂0M
in is

given by the sum m1 :=
∑k

j=1 hj , and the number of 1-simplices of

∂0M
out by the sum m2 :=

∑k+k′

j=k+1 hj.
As a first step to constructing the morphism Z(M), we construct

a morphism ZTM
(M) : A⊗m1 → A⊗m2 . These morphisms depend

on the triangulation of the black boundary, but they are already
invariant under bistellar moves and under elementary shellings of
type (2.), i.e. those in which all the involved boundary edges are
coloured.

Define the symbol A(nj) corresponding to the boundary component nj to be A if nj = 1 and

p(A) if nj = 0 and define A⊗~n to be the ordered tensor product
⊗k

j=1 A(nj). Likewise, we set

A⊗~n′

equal to the ordered tensor product
⊗k+k′

j=k+1 A(n′
j).

In Section 4.3, we show that the isomorphisms Pkk(A⊗k) ∼= A and Qkk(A⊗k) ∼= p(A) of Corol-
lary 2.24 correspond to triangulated cylinders over I or S1. We construct a map Z(M) : A⊗~n →

A⊗~n′

using these isomorphisms and the morphism ZTM
(M). Since the claim of Corollary 2.24 is

independent of k, and since the isomorphisms used in that corollary correspond to triangulated
cylinders over I or S1, the invariance under bistellar moves and elementary shellings of type (2.)
can be used to show independence of the boundary triangulation. The morphism Z(M) is then also
invariant under elementary shellings of type (1.), i.e. those involving the black boundary. Z(M)
is therefore independent of the triangulation and thus well-defined for the open-closed cobordism
M .

One can verify explicitly that composition and disjoint union work as required, and so the
state sum defines an open-closed TQFT Z : 2Cobext → C. The objects of C associated with the
interval and the circle are A and p(A), respectively, by construction. What is the knowledgeable
Frobenius algebra that characterizes this TQFT?

In order to answer this question, we compute the morphisms of C associated with the gener-
ating open-closed cobordisms (1.3) and show that the open-closed TQFT is characterized by the
knowledgeable Frobenius algebra of Theorem 2.22.

4.1 Defining the state sum

We first describe how to construct the morphism ZTM
(M) : A⊗m1 → A⊗m2 . It is defined by a

string diagram in C obtained from the graph Poincaré dual to the triangulation, see Figure 2. By
the coherence theorem for symmetric monoidal categories, it does not matter how one projects
the Poincaré dual graph onto the drawing plane.

For every 2-simplex (triangle), we put a ‘trilinear form’ g(3) (c.f. (2.32)), and for every edge in
the interior, we have an inverse bilinear form g∗ = ∆A ◦ ηA. Note that g(3) has a symmetry under
the cyclic group C3, but not in general under the symmetric group S3, and so this assignment
depends on the orientation.

For every edge on the coloured boundary ∂1M , we put a unit ηA. For every interior 0-simplex
(vertex), we multiply the resulting morphism by the inverse a−1 of the window element. Since
a−1 is central and the cobordism connected, it does not matter where in the diagram we do this.

At this stage, we have a morphism A⊗(m1+m2) → 1 of C. Finally, for every edge in the black
out-boundary ∂0M

out, we put a g∗, too, in order to turn this into a morphism A⊗m1 → A⊗m2 .
Then, for every vertex in the black out-boundary that is not a corner, we multiply by a−1.
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Figure 2: This figure illustrates the state sum for an open-closed cobordisms M .

The terminology sum in ‘state sum’ is justified by the following point of view: If C = Vectk

and if one chooses a basis of A and expands all linear maps in this basis, the state sum contains
a sum over the basis vectors for each edge in the interior of M . This is the sum involved in the
state sum.

The morphisms specified by the string diagram have two important properties.

• Gluing triangulated open-closed cobordisms along a common black boundary that is trian-
gulated with the same number of edges, corresponds to the composition of morphisms.

• The disjoint union of open-closed cobordisms gives the tensor product of morphisms.

The definition reads in detail as follows.

Definition 4.1. Let (A, µA, ηA, ∆A, εA) be a strongly separable symmetric Frobenius algebra in
an Abelian symmetric monoidal category C. Let M be an open-closed cobordism with triangulation
TM : |K| →M . Let K(j) ⊆ K denote the set of j-simplices, j ∈ {0, 1, 2}.

We characterize the edges, i.e. the elements σ{i,j} ∈ K(1), by two-element sets {i, j} ⊆ K(0),

i 6= j, of vertices. The oriented triangles σ(i,j,k) ∈ K(2) are characterized by triples (i, j, k) ∈

K(0) ×K(0) ×K(0) of vertices, modulo a permutation by a 3-cycle.
We define the morphism ZTM

(M) : A⊗m1 → A⊗m2 as a composition

ZTM
(M) := Z

(2)
TM
◦ (a−k · idA⊗N ) ◦ τ ◦ Z

(1)
TM

. (4.1)

where N = m2 + |{ σ ∈ K(1) : σ ⊆ ∂M }| + 2|{ σ ∈ K(1) : σ ⊆ M\∂M }| = m2 + 3|K(2)|. The
power of the inverse window element in (4.1) is k = |{ σ ∈ K(0) : σ ⊆M\∂M }|+ |{ σ ∈ K(0) : σ ⊆
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4 STATE SUM CONSTRUCTION 22

∂0M
out\(∂0M ∩ ∂1M) }| — the number of interior vertices plus the number of vertices on the

outgoing edge that are not corners. We exploit the coherence theorem for monoidal categories and
suppress the associativity and unit constraints of C and define

Z
(1)
TM

:=

( m1⊗

j=1

idA

)
⊗

( m2⊗

j=1

g∗
)
⊗

( ⊗

σ∈K(1) :
σ⊆M\∂M

g∗
)
⊗

( ⊗

σ∈K(1) :
σ⊆∂1M

ηA

)
: A⊗m1 → A⊗N . (4.2)

and

Z
(2)
TM

:=

( m2⊗

j=1

idA

)
⊗

( ⊗

σ∈K(2)

g(3)

)
: A⊗N → A⊗m2 , (4.3)

The morphism τ : A⊗N → A⊗N permutes the tensor factors. In order to specify this permutation,
we associate the factors of the target of (4.2) and those of the domain of (4.3) with the edges
σ{i,j} ∈ K(1). This is denoted by superscripts such as A{i,j}. The permutation τ is specified by

requiring that it maps each factor A{i,j} to one whose superscript is the same edge.
The superscripts for the A’s in the target of (4.2) are as follows. We go through the factors

of (4.2) from left to right.

• For every edge σ{i,j} in the black in-boundary ∂0M
in, we have idA : A → A{i,j}. There are

m1 edges of this sort.

• For every edge σ{i,j} in the black out-boundary ∂0M
out, we have g∗ : 1 → A{i,j} ⊗ A{i,j}.

This edge therefore appears twice as a superscript, but due to the symmetry of g∗, we need
not distinguish the two. There are m2 edges of this sort.

• For every edge σ{i,j} ⊆ M\∂M in the interior, we have g∗ : 1 → A{i,j} ⊗ A{i,j}. Again the
superscript occurs twice, and we do not distinguish.

• For every edge σ{i,j} ⊆ ∂1M in the coloured boundary, we have ηA : 1→ A{i,j}.

The superscripts for the A’s in the domain of (4.3) are as follows.

• For every edge σ{i,j} in the black out-boundary ∂0M
out, we have idA : A{i,j} → A.

• For every oriented triangle σ(i,j,k) ∈ K(2), we have g(3) : A{i,j} ⊗ A{j,k} ⊗ A{k,i} → 1.
Due to the cyclic symmetry of the ‘trilinear form’ g(3), this morphism is invariant under
permutations of the triple (i, j, k) by a 3-cycle.

Notice that the edges that appear as superscripts in the target of (4.2) and those in the domain
of (4.3) agree including their multiplicities, and that the permutation τ is well defined.

See (4.7) for an example of the diagram produced by the state sum.

4.2 Invariance under Pachner moves

Proposition 4.2. For a connected open-closed cobordism M with triangulation TM , the state
sum ZTM

(M) is invariant under the 1-3 and 2-2 Pachner move and under the elementary shellings
of type (2.).

Proof. The 2-2 Pachner move follows from the cyclic symmetry of the ‘trilinear form’ g(3).

b

b

b

b b b b

i

j

l

k

=
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��
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b

b

i

j

l

k

(4.4)
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The 1-3 Pachner move is slightly more difficult because it involves subdividing a triangle which
inserts an additional internal vertex. It makes use of the bubble move (2.48):

b b
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(4.5)

b

b

b

!

b

b

b

There are two elementary shellings (3.4) of type (2.). Recall
that the state sum assigns to each edge of the coloured boundary
the algebra unit ηA : 1→ A. The first move of (3.4) follows directly
from the unit axioms. The second move turns an interior vertex
into an exterior vertex (featured to the right). This move follows from the bubble move (2.48):

a−1

•
�� 		

��

•
�� 		

��
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��
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��

=
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��
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��

•
��

(4.6)

Note that the bubble move (2.48) is required to prove the above proposition. This is the reason
why we cannot define the state sum for the non strongly separable algebras of Example 2.10(2)
and 2.11(2).

For convenience, we sometimes use degenerate triangulations in which the two vertices in the
boundary of an edge agree. In this case it is always understood that we apply bistellar moves and
elementary shellings in order to turn them into proper simplicial complexes.

An example showing the diagram produced by the state sum on the torus T 2 is depicted below:
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(4.7)

Here we have used the triangulation of the torus as a rectangle where the dotted and dashed lines
are identified in the usual way. After the identifications this triangulation has a single interior
vertex and hence the single factor of a−1 that appears in the string diagram on the right.

4.3 Independence of the triangulation of black boundaries

We now define a morphism Z(M) from the morphism ZTM
(M) which does not depend on the

choice of triangulation of the black boundary. Observe that to each black boundary component
nj triangulated with hj edges, we have associated the vector space A⊗hj .
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Proposition 4.3. For the triangulations T kℓ
I×I and T kℓ

S1×I of the flat strip I × I and the cylinder

S1 × I with ℓ incoming edges and k outgoing edges in their black boundaries, the state sum of
Definition 4.1 yields the morphisms Pkℓ : A⊗ℓ → A⊗k and Qkℓ : A⊗ℓ → A⊗k of Proposition 2.23.
That is,

ZT kℓ
I×I

(I × I) = Pkℓ, (4.8)

ZT kℓ

S1×I

(S1 × I) = Qkℓ. (4.9)

Proof. Write down the string diagram defining the state sum, c.f. Figure 2, and use the bubble
move and the axioms of a symmetric Frobenius algebra.

We here include the simplest triangulations of S1× I and I × I and the associated morphisms
for k = ℓ = 1:

ZT 11
S1×I

( ) =

b b

bb

bb

b

b

b = •

•
��

��

�� ��

a−1

•
�� 		

��

(4.10)

ZT 11
I×I

( ) =

b b

bb

bb

b

b

b = �� (4.11)

P44

M

Given any triangulated open-closed cobordism M with a black boundary com-
ponent homeomorphic to I and triangulated with ℓ edges, one can now glue a
suitably triangulated cylinder I × I to that boundary. By Proposition 4.2, this
yields the same morphism ZTM

(M). Similarly, for every black boundary compo-
nent homeomorphic to S1 and triangulated with ℓ edges, one can glue a suitably
triangulated S1 × I to that boundary, again leaving ZTM

(M) unchanged. It is
therefore sufficient to consider the restriction of ZTM

(M) to the appropriate im-
ages of the idempotents Pℓℓ and Qℓℓ, respectively. We therefore define:

Definition 4.4. For every open-closed cobordism M with triangulation TM , we define the state
sum Z̃TM

(M) by subsequently pre- and post-composing ZTM
(M) with the following morphisms:

For each nj ∈ ~n = ∂0M
in triangulated with hj edges, pre-composition with im Phjhj

if nj = 1 and
pre-composition with im Qhjhj

if nj = 0; For each n′
j ∈ ~n′ = ∂0M

out triangulated with hj edges,
post-composition with coim Phjhj

if nj = 1 and post-composition with coim Qhjhj
if nj = 0.

If we write R
(0)
kℓ := Pkℓ and R

(1)
kℓ := Qkℓ, then the above composite is the morphism

Z̃TM
(M) =

( k+k′⊗

j=k+1

coim R
(nj)
hjhj

)
◦ ZTM

(M) ◦
( k⊗

j=1

im R
(nj)
hjhj

)
:

k⊗

j=1

R
(nj)
hjhj

(A⊗hj )→
k+k′⊗

j=k+1

R
(nj)
hjhj

(A⊗hj ). (4.12)

One can now use the isomorphisms of Corollary 2.24 in order to relate the Z̃TM
(M) for different

triangulations of the black boundary as follows. The morphism Z̃TM
(M) is completely determined

by the triangulation of the boundary ∂0M by Proposition 4.2. Hence, the morphism Z̃TM
(M)

associated to a triangulation TM is related to the morphism Z̃T ′
M

(M) obtained from a different
triangulation T ′

M by gluing on cylinders whose boundaries are appropriately triangulated. These
cylinders yield precisely the morphisms Pkℓ and Qkℓ.
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Definition 4.5. For every open-closed cobordism M , we choose a triangulation TM . We define the
state sum Z(M) by subsequently pre- and post-composing Z̃TM

(M) with the following morphisms:
For each nj ∈ ~n = ∂0M

in triangulated with hj edges, pre-composition with Φhj
if nj = 1 and

pre-composition with Ψhj
if nj = 0; For each n′

j ∈ ~n′ = ∂0M
out triangulated with hj edges,

post-composition with Φ−1
hj

if nj = 1 and post-composition with Ψ−1
hj

if nj = 0. This yields the
morphism

Z(M) =
( k+k′⊗

j=k+1

(Ξ
(nj)
hj

)
−1)
◦ Z̃TM

(M) ◦
( k⊗

j=1

Ξ
(nj)
hj

)
: A⊗~n → A⊗~n′

, (4.13)

where we write Ξ
(0)
hj

:= Ψhj
and Ξ

(1)
hj

:= Φhj
.

The definition of Z(M) is illustrated below:

Z ///o/o/o

A⊗ p(A)

P22

(
A⊗2

)
⊗Q55

(
A⊗5

)

P44

(
A⊗4

)

A

Φ2⊗Ψ5
��

Z̃TM
(M)

��

Φ−1
4

��

(4.14)

Theorem 4.6. The morphism (4.13) is well defined, i.e. it does not depend on the triangulation
TM of M . In particular, it is independent of the numbers hj of edges in Definition 4.4 and
Definition 4.5.

Proof. Insert (4.12) into (4.13) and draw the cylinders over I and over S1 whose triangulations
are given by im Phjhj

◦Φhj
= Phj1, etc. and glue them to the triangulation used in the state sum

ZTM
(M) of Definition 4.1. The invariance under bistellar moves and elementary shellings of type

(2.) of Proposition 4.2 then implies the theorem.

4.4 Open-closed Topological Quantum Field Theories

From Definition 4.1, it is obvious that the state sum Z(M) associates with the composition of
open-closed cobordisms the composition of morphisms of C and with the disjoint union of open-
closed cobordisms the tensor product of morphisms in C. It is not difficult to see that we get a
symmetric monoidal functor Z : 2Cobext → C, i.e. an open-closed TQFT.

In this section, we show that this open-closed TQFT is the one characterized by the knowl-
edgeable Frobenius algebra of Theorem 2.22.
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4.4.1 Generators via the state sum construction

Below we provide a choice of triangulation for some of the generators in 2Cobext.

b b

b

b b

bb

a−1

a−1

b b

b

a−1

a−1

b

b

b b

b

b b b

b

a−1bb

b bb

(4.15)

Those edges with matching arrow heads on the triangulations are to be identified. The black
boundaries are depicted slightly thicker than the coloured boundaries. A choice of triangulation
for the remaining generators is immediate from those above. The factors of a−1 are meant to
remind the reader which vertices in the triangulation contribute factors of a−1.

Using these triangulations we can compute the morphisms ZTM
(M) associated to the open-

closed cobordisms M generating 2Cobext. For completeness, we include the triangulation of the
cylinders S1 × I and I × I as well.

ZTM

( )
=

•
�� ��

��a−2

•
�� 



��

•

•
��

��

�� ��

•

•
��

��

�� ��

=

•
�� ��

��

p
��

��

p
��

��

ZTM

( )
=

•
��a−1

•
�� 		

��

(4.16)

ZTM

( )
=

•
�� ��

��

a−3

•
�� 



��
��

•

•
��

��

�� ��

•

•
��

��

�� ��
=

•
�� ��

��

a−1

•
�� 



��
��

p
��

��

p
��

��

ZTM

( )
= •

��
(4.17)

ZTM

( )
= •

�� 		

��
ZTM

( )
=
•
�� ZTM

( )
= •

�� ��

��

ZTM

( )
= •

��

(4.18)

ZTM

( )
=

•

•
��

��

�� ��
=

p
��

��

a

•
�� 		

��

ZTM

( )
= •

•
��

��

�� ��

a−1

•
�� 		

��

= p
��

��

(4.19)

ZTM

( )
= •

•
��

��

�� ��

a−1

•
�� 		

��

= p
��

��

ZTM

( )
= �� (4.20)

Theorem 4.7. Let C be an Abelian symmetric monoidal category and A be a rigid and strongly
separable algebra object in C that is equipped with the structure of a symmetric Frobenius algebra.
Then the state sum (4.1) defines an open-closed TQFT Z : 2Cobext → C. It is characterized by
the knowledgeable Frobenius algebra constructed from A in Theorem 2.22.
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Proof. Using the triangulations of the generators given in (4.16)-(4.20), compute the morphisms
ZTM

(M) for each generator of 2Cobext. Pre and post composing with the relevant maps specified
in Definitions 4.4 and 4.5 produces the knowledgeable Frobenius algebra (A, Z(A), ı, ı∗) defined

in Theorem 2.22. For example, ZTM
( ) = µA ◦ (p ⊗ p) so that Z̃TM

( ) = coim Q11 ◦ µA ◦
(p ⊗ p) ◦ (im Q11 ⊗ im Q11). Noting that Q11 = p and using the image factorization of p (2.54)
together with the idempotent property p2 = p it is easy to check that

Z ( ) = coim p ◦ µA ◦ (im p⊗ im p) (4.21)

as specified in Theorem 2.22.
Since 2Cobext is the strict symmetric monoidal category freely generated by a knowledgeable

Frobenius algebra object, this uniquely determines a symmetric monoidal functor Z : 2Cobext →
C.

Recall that given an open-closed TQFT, the algebra object A := Z(I) does not necessarily
determine the object C := Z(S1). Consider, for example, the knowledgeable Frobenius algebra
(A, C, ı, ı∗) of Example 2.19 in which C 6∼= Z(A), and secondly the knowledgeable Frobenius
algebra (A, Z(A), ı′, ı′∗) constructed in Theorem 2.22 based on the same A. Both characterize an
open-closed TQFT, but only the latter one can be obtained from the state sum.

Conversely, in an open-closed TQFT, the object Z(S1) does not determine the object Z(I).
This can be easily seen from Example 4.8 below.

4.5 Examples

In [12] it was shown that connected open-closed cobordisms are determined up to orientation-
preserving diffeomorphism preserving the black boundary by a set of topological invariants defined
in the work of Baas, Cohen, and Ramı́rez [32]. These topological invariants are the genus (defined
as the genus of the underlying topological 2-manifold), the window number, defined as the number
of components of ∂1M diffeomorphic to S1, and the boundary permutation. For a surface M
(∂0M = ∅) only the genus and window number are relevant. In this context we will refer to the
window number as the number of punctures in M .

Let (A, C, ı, ı∗) be a knowledgeable Frobenius algebra in a symmetric monoidal category C.
We call µC ◦∆C : C → C the genus-one operator and ı∗ ◦ ı : C → C the window operator. The
invariant associated to the connected surface M ℓ

k of genus ℓ with k punctures is determined by
evaluating the morphism

Z(M ℓ
k) = εC ◦

(
ı∗ ◦ ı

)k
◦

(
µC ◦∆C

)ℓ
◦ ηC : 1→ 1 (4.22)

in C.
In this section, we provide several examples of strongly separable symmetric Frobenius algebras

and use the genus-one operator and the window operator to compute the state sum invariant
Z

(
M ℓ

k

)
.

Example 4.8. Let k be a field, n ∈ N, and m1, . . . , mn ∈ N, and consider the direct product7

A :=

n⊕

j=1

Mmj
(k) (4.23)

of matrix algebras. We choose a basis {e
(j)
pq }1≤p,q≤mj ,1≤j≤n of A such that the multiplication

reads µA(e
(j)
pq ⊗ e

(ℓ)
rs ) = δjℓδrqe

(j)
ps with unit ηA(1) =

∑n
j=1

∑mj

p=1 e
(j)
pp . The k-algebra (A, µA, ηA)

is strongly separable if and only if for all j, char k does not divide mj . From now on we assume
that this condition holds.

7We write ⊕ because this is actually the biproduct in the Abelian category Vectk.
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The centre Z(A) of A has a basis {zj}1≤j≤n of orthogonal idempotents zj :=
∑mj

p=1 e
(j)
pp ,

i.e. µA(zj ⊗ zℓ) = δjℓzj . The symmetric Frobenius algebra structures (A, µA, ηA, ∆A, εA) are
characterized by the invertible central elements a =

∑n
j=1 ajzj , i.e. aj ∈ k\{0} for all j, as follows:

∆A(e(j)
pq ) = ajm

−1
j

mj∑

r=1

e(j)
pr ⊗ e(j)

rq , (4.24)

εA(e(j)
pq ) = δpqmja

−1
j , (4.25)

and indeed one finds (µA ◦∆A ◦ ηA)(1) = a for the window element. This illustrates further the
distinction between special Frobenius algebras and strongly separable Frobenius algebras. A is
special if and only if ai = aj for all i, j. We compute the idempotent p of (2.53) as follows:

p(e(j)
pq ) = δpqm

−1
j

mj∑

r=1

e(j)
rr , (4.26)

and indeed the image is p(A) ∼= Z(A) with the splitting

im p : p(A)→ A, zj 7→

mj∑

p=1

e(j)
pp , (4.27)

coim p : A→ p(A), e(j)
pq 7→ δpqm

−1
j zj. (4.28)

The knowledgeable Frobenius algebra (A, C, ı, ı∗) of Theorem 2.22 for this algebra A is given by
the following commutative Frobenius algebra structure (C, µC , ηC , ∆C , εC) on C := Z(A):

µC(zj ⊗ zℓ) = δjℓzj , (4.29)

ηC(1) =

n∑

j=1

zj , (4.30)

∆C(zj) = a2
jm

−2
j zj ⊗ zj, (4.31)

εC(zj) = m2
ja

−2
j , (4.32)

together with

ı : C→A, zj 7→

mj∑

p=1

e(j)
pp , (4.33)

ı∗ : A→C, e(j)
pq 7→ajm

−1
j δpqzj . (4.34)

We finally compute the genus-one operator (µC ◦∆C)(zj) = a2
jm

−2
j zj and the window operator

(ı∗◦ı)(zj) = ajzj, and so the invariant (4.35) associated with the genus ℓ-surface with k punctures,
k, ℓ ∈ N0, is

Z(M ℓ
k)(1) = (εC ◦ (ı∗ ◦ ı)

k ◦ (µC ◦∆C)
ℓ ◦ ηC)(1) =

n∑

j=1

a
k+2(ℓ−1)
j m

−2(ℓ−1)
j . (4.35)

Fukuma–Hosono–Kawai [6] choose the canonical Frobenius algebra structure on A, i.e. a = η
and therefore aj = 1 for all j. In this case, the invariant is blind to the window number k. With
a generic symmetric Frobenius algebra structure, however, one can easily obtain an invariant that
can distinguish any two inequivalent connected surfaces.

Example 4.9. Let G be a finite group, k a field, and A := k[G] be the group algebra. We choose
the basis {g}g∈G for A and have µA(g ⊗ h) = gh for g, h ∈ G and ηA(1) = e. The k-algebra
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(A, µA, ηA) is strongly separable if and only if char k does not divide the order |G| of G. We now
assume that this condition holds.

We denote by [g] := { hgh−1 : h ∈ G } ⊆ G the conjugacy class of g ∈ G and by G/ ∼:=
{ [g] : g ∈ G} the set of classes. Then the centre Z(A) has the basis {z[g]}[g]∈G/∼

where z[g] :=∑
h∈[g] h denotes the class sum. We have the unit ηA(1) =

∑
[g]∈G/∼ z[g] and µA(z[g] ⊗ z[h]) =

∑
[ℓ]∈G/∼ µ

[ℓ]
[g],[h]z[ℓ] for all g, h ∈ G with some µ

[ℓ]
[g],[h] ∈ k.

The z[g] are in general not orthogonal idempotents. Working with a generic invertible cen-
tral element in the basis {z[g]}[g]∈G/∼

is not very instructive. If k is algebraically closed, the

irreducible characters χρ : G → k provide us with a basis {zρ}ρ of orthogonal idempotents zρ :=

dρ|G|
−1 ∑

g∈G χρ(g)g, dρ = χρ(e), for Z(A). We then get the same results as for a direct product
of dρ × dρ-matrix algebras.

In the following, we restrict ourselves to the symmetric Frobenius algebra structure

∆A(g) =
∑

h∈G

h⊗ h−1g, (4.36)

εA(g) =

{
1, if g = e

0, else
(4.37)

which is characterized by the window element (µA◦∆a◦ηA)(1) = |G|e = |G|ηA(1). The symmetric
Frobenius algebra (A, µA, ηA, ∆A, εA) is therefore special in the sense of (2.21). In this case

g∗(1) = (∆A ◦ µA)(1) =
∑

h∈G

h⊗ h−1, (4.38)

g(3)((g ⊗ h)⊗ ℓ) = (εA ◦ µA ◦ (µA ⊗ idA))((g ⊗ h)⊗ ℓ) =

{
1, if ghℓ = e

0, else
(4.39)

The state sum Z(M) then agrees with the partition function of a topological gauge theory with
gauge group G or, in other words, with the volume of the moduli space of flat G-bundles on M .
In the state sum of Definition 4.1, the window element |G| is divided out for every vertex in the
interior of M (this prefactor of Z(M) is sometimes called the anomaly). In the closed TQFT, the
meaning of this factor is somewhat mysterious — the factor is merely needed in order to make
the 1-3 Pachner move work — but in our extension to the open-closed TQFT, the factor |G| is
directly related to the symmetric Frobenius algebra structure of A and thereby to topology.

Remark 4.10. Although our state sum of Definition 4.1 requires an oriented 2-manifold, the
previous example with the group algebra A = k[G] makes sense even for unoriented manifolds
(without boundary). This is possible because A also has the structure of an involutory Hopf

algebra (A, µA, ηA, ∆Hopf
A , εHopf

A , SA) with

∆Hopf
A (g) = g ⊗ g, (4.40)

εHopf
A (g) = 1, (4.41)

SA(g) = g−1, (4.42)

with a co-integral
∑

g∈G g and an integral g 7→ δG(g) where δG(e) = 1 and δG(g) = 0 for all g 6= e.
For this involutory Hopf algebra, one can evaluate Kuperberg’s 3-manifold invariant [22] which
does not refer to the 3-simplices and therefore makes sense for (unoriented) 2-manifolds, too. In
the oriented case, it agrees with our state sum. The unoriented case is treated in more generality
in [11].

5 State sums with D-branes

Our next example, the groupoid algebra of a finite groupoid, also yields the state sum of an
open-closed TQFT in a straightforward way, but in addition it provides us with an example of an
S-coloured open-closed TQFT, c.f. Section 5 of [12].

29



5 STATE SUMS WITH D-BRANES 30

A groupoid G = (X, G, s, t, ı, ◦,−1) consists of sets X (objects) and G (morphisms) and maps
s : G → X (source), t : G → X (target), ı : X → G (identity), ◦ : Gt×s G := { (h1, h2) ∈ G ×
G : t(h1) = s(h2) } → G (composition, written from left to right) and −1 : G→ G (inversion) such
that the following conditions are satisfied,

1. s(ı(x)) = x and t(ı(x)) = x for all x ∈ X ,

2. s(h1 ◦ h2) = s(h1) and t(h1 ◦ h2) = t(h2) for all (h1, h2) ∈ Xt×s X ,

3. (h1 ◦h2)◦h3 = h1 ◦ (h2 ◦h3) for all h1, h2, h3 ∈ G for which t(h1) = s(h2) and t(h2) = s(h3),

4. ı(s(h)) ◦ h = h = h ◦ ı(t(h)) for all h ∈ G,

5. s(h−1) = t(h) and t(h−1) = s(h) for all h ∈ G,

6. h−1 ◦ h = ı(t(h)) and h ◦ h−1 = ı(s(h)) for all h ∈ G.

The groupoid is called finite if G is a finite set. For every x ∈ X , we denote its connected
component by [x] := { t(h) : h ∈ G, s(h) = x }. The groupoid is called connected if X = [x] for
some x ∈ X . For x ∈ X , the star of G at x is the set,

stG(x) = { g ∈ G : s(g) = x }. (5.1)

We denote the order of the star of G at x ∈ X by N[x] := |stG(x)|. It depends only on the connected
component [x] of x ∈ X .

Given a finite groupoid G = (X, G, s, t, ı, ◦,−1) and a field k, the groupoid algebra (k[G], µ, η)
is the free vector space k[G] on the set of morphisms with the operations,

µ(h1 ⊗ h2) =

{
h1 ◦ h2, if t(h1) = s(h2)

0, else
(5.2)

η(1) =
∑

x∈X

ı(x), (5.3)

where h1, h2 ∈ G.

Example 5.1. Let (G) = (X, G, s, t, ı, ◦,−1) be a finite groupoid and consider the groupoid
algebra A := k[G]. The k-algebra A is strongly separable if and only of char k does not divide
N[x] for any x ∈ X . From now on, we assume that this is the case.

We denote by G(0) := { g ∈ G : s(g) = t(g) } ⊆ G the set of automorphisms, by [g] :=
{ h ◦ g ◦ h−1 : h ∈ G, t(h) = t(g) } the conjugacy class of the automorphism g ∈ G(0), and by
G(0)/ ∼:= { [g] : g ∈ G(0) } the set of conjugacy classes. Choose the basis {h}h∈G of A. We find

the centre Z(A) ∼= k[G(0)/ ∼] with a basis {z[g]}g∈G(0)/∼
where z[g] :=

∑
h∈[g] h denotes the class

sum.
The canonical symmetric Frobenius algebra structure (A, µA, ηA, ∆A, εA) is given by

εA(g) =

{
N[s(g)], if g = ı(s(g))

0, else
(5.4)

∆A(g) =
1

N[t(g)]

∑

h∈G : s(h)=s(g)

h⊗ (h−1 ◦ g), (5.5)

from which we obtain the canonical idempotent (2.53)

p(g) =

{
z[g]/N[t(g)], if t(g) = s(g)

0, else
(5.6)
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with the image decomposition

im p : Z(A)→A, z[g] 7→
∑

h∈[g]

h, (5.7)

coim p : A →Z(A), g 7→

{
z[g]/N[t(g)], if s(g) = t(g)

0, else.
(5.8)

From these data, one can compute the knowledgeable Frobenius algebra (A, Z(A), ı, ı∗) that ap-
pears in Theorem 2.22 with ı = im p and ı∗ = coim p. The state sum construction therefore yields
the corresponding open-closed TQFT.

There is, however, another point of view according to which the groupoid algebra gives rise
to an X-coloured knowledgeable Frobenius algebra (Section 5 of [12]). Although this example is
rather trivial, it nicely illustrates where the various structures appear.

Example 5.2. Let G = (X, G, s, t, ı, ◦,−1) be a finite groupoid and k be a field such that char k
does not divide N[x] for any x ∈ X . Denote by Hom(x, y) = { g ∈ G : s(g) = x, t(g) = y } the
morphisms from x to y. Then there is a family of vector spaces Axy := k[Hom(x, y)]. By restricting
the operations of the groupoid algebra A = k[G] to the Axy, we obtain the following linear maps:

µxyz : Axy ⊗Ayz → Axz , g1 ⊗ g2 7→ g1 ◦ g2, (5.9)

ηx(1) : k → Axx, 1 7→ ı(x), (5.10)

∆xyz : Axz → Axy ⊗Ayz , g 7→
1

N[t(g)]

∑

h∈G : s(h)=x

h⊗ h−1 ◦ g, (5.11)

εx : Axx → k, g 7→

{
N[s(g)], if g = ı(x)

0, else
(5.12)

for x, y, z ∈ X . Similarly by restricting ı and ı∗, we find for all x ∈ X :

ıx : Z(A)→Axx, z[g] 7→
∑

h∈[g] : h∈Gx

h, (5.13)

ı∗ : Axx →Z(A), g 7→
1

N[x]
z[g]. (5.14)

Then we have an X-coloured knowledgeable Frobenius algebra

({Axy}, {µxyz}, {ηx}, {∆xyz}, {εx}, Z(A), {ıx}, {ı
∗
x}). (5.15)

The commutative Frobenius algebra structure of Z(A) is as in Theorem 2.22. In particular, each
Axx, x ∈ X , forms a symmetric Frobenius algebra, the ıx : Z(A) → Axx are algebra homomor-
phisms, and each Axy forms an (Axx, Ayy)-bimodule with dual Ayx. Observe that the state sum
can be evaluated directly for the full groupoid algebra

A =
⊕

x,y∈X

Axy, (5.16)

and so the vector space associated with the unit interval is precisely this direct sum. If one restricts
it to the subspaces Axy corresponding to the boundary colours x, y ∈ X of a given interval, one
obtains an X-coloured open-closed TQFT. The full state sum with A, however, contains more
than just these homogeneous elements. It includes their linear combinations as well.

This last example is especially relevant in the context where the open-closed cobordisms are
interpreted as open and closed string worldsheets. In this case, the colours of an X-coloured
knowledgeable Frobenius algebra are interpreted as the set of boundary conditions, or D-branes,
for the open strings. The decomposition of the finite groupoid algebra then allows the state sum
to compute topological invariants of open and closed string worldsheets equipped with D-brane
labels from the set of objects X of the groupoid G.
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