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1. Introduction

Our understanding of open bosonic string field theory [1] has deepened following Schnabl’s

analytic solution [2], as can be seen from the papers that followed [3 – 14]. Specifically,

marginal deformations [15 – 17] were found in [18, 19] and used to study the rolling tachyon

in [20] (for earlier related works see [21 – 28]). A different approach to generate such

solutions was given in [29]. The added value of the new approach is that the handling of

marginal deformations that correspond to operators with a singular OPE is much easier.

For open superstring field theory [30 – 32] marginal deformation solutions were found

in [33 – 35]. The purpose of this paper is to generalize the methods of [29] to the supersym-

metric theory. This gives the marginal deformation solution corresponding to the photon

whose OPE is singular.

There is a similarity between pure gauge solutions to the bosonic Chern-Simon-like

theory and the equation of motion of the supersymmetric WZW-like theory. This similarity

was recently used to generate superstring marginal deformations [33]. To adapt the method
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of [29] from the bosonic string to the superstring, we exploit a different similarity, one which

relates the pure gauge solutions of the two theories.

The results in [29] rely on the fact that solutions of bosonic string field theory can be

formally written as pure gauge solutions

Ψ = Γ(Φ)−1QΓ(Φ) , (1.1)

where Q is the BRST charge. In the relation above, Φ is a string field from which the

solution is generated and Γ(Φ) is a function of the form

Γ(Φ) = 1 + Φ + O(Φ2) , (1.2)

where the product used is the star product and the “1” represents the identity state, which

guarantees that the function Γ(Φ) is invertible. The first order term generates the linear

gauge transformation QΦ.

The reason that Ψ is a physical solution has to do with the singular nature of Φ. In [29],

the singularity for the photon marginal deformation was due to the linear dependence of

Φ on x0, which is the zero mode of the scalar field X (space-time indices are not explicitly

mentioned throughout the paper as we always work with a single space-like scalar field).

In order for the solution to make sense we require that Ψ is x0-independent

∂x0
Ψ = ∂x0

(
Γ(Φ)−1QΓ(Φ)

)
= 0 . (1.3)

This resembles the equation of motion of the superstring field [30, 31]

η0

(
G−1QG) = 0 , (1.4)

where η0 is the superstring ghost field zero mode, which behaves as a second BRST charge

(more details on the superstring field theory we are using are given in section 1.1). However,

this similarity is not the one we wish to exploit. Instead, we wish to compare the pure

gauge solutions of both theories. In the supersymmetric theory the infinitesimal gauge

transformation depends on two gauge fields Λ, Λ̃

δG = −(QΛ̃)G + G(η0Λ) . (1.5)

The integrated form of this infinitesimal gauge transformation is

Gλ = e−λQΛ̃G0e
ληoΛ . (1.6)

The two exponents above may be replaced by any functions of the form (1.2), since this

corresponds to a field redefinition. Because we are interested in pure gauge solutions, G0

is the identity state and G is

G = Γ̃(Φ̃)−1Γ(Φ) , Φ̃ ≡ QΛ̃ , Φ ≡ η0Λ . (1.7)

The gauge field Φ of the bosonic string obviously does not have insertions of the

superstring ghost field ξ, which is the conjugate of the η ghost. Therefore, it is η0-exact

and can be used to define Λ such that Φ in both theories are the same

Λ = ξ(z)Φbosonic ⇒ ΦSUSY = Φbosonic ≡ Φ , (1.8)
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for any z. Φ̃ can also be based on Φ in a similar way. Here, we get a new state since Φ is

not Q-exact

Λ̃ = P (z)Φ ⇒ Φ̃ = Φ − P (z)QΦ , (1.9)

where P (z) is the inverse operator of Q described in section 1.1. This gives a mapping of

bosonic solutions to supersymmetric ones. One gets

G = 1 + PΨ + . . . , (1.10)

where the ellipsis stand for corrections, such as higher order λ corrections in the marginal

deformation case. This mapping seems to be a natural one, since up to higher order

corrections the ghost number zero superstring field is obtained from the ghost number one

bosonic string field by the action of the P operator. For the marginal deformation this

canonical choice does not work because of the additional constrain of x0-independence.

A short calculation shows that the bosonic solution can be written as

Ψ(G) = G−1QG. (1.11)

Therefore it is clear that if the supersymmetric solution is x0-independent then the bosonic

solution follows suit

∂x0
G = 0 ⇒ ∂x0

Ψ = 0 . (1.12)

The relation (1.11) between solutions of the bosonic and supersymmetric theories, is not

one-to-one, different G’s can result in the same Ψ. Thus, (1.12) does not hold in the

other direction. The x0-independence of Ψ does not impose any condition on how Φ̃

enters G. However, as we will see, for any Ψ one can find a corresponding G that is x0-

independent. We find a map G(Ψ) satisfying ∂x0
G(Ψ) = 0, such that (1.11) is obeyed, that

is Ψ(G(Ψ)) = Ψ.

The rest of the paper is organized as follows. We end this introduction by presenting the

superstring field theory that we use. Then, in section 2 we summaries the bosonic marginal

deformation solutions [29] and extend the formalism to generate solutions satisfying the

reality condition in 2.2. Next, in section 3, we find the condition for x0-independence for

solutions of the supersymmetric theory. In section 4 we present the marginal deformation

of the superstring. First, we show in 4.1 that the photon of the supersymmetric theory

can also be written as an exact state. Then, we generate a solution to all orders in 4.2 and

a real solution in 4.3. In section 5 we suggest that our method can be used to generate

the universal superstring solution corresponding to Schnabl’s solution [2]. In this case it

is possible to use (1.9). We wrap things up with conclusions in 6. In the appendices we

relate our solutions to those of [33, 34].

1.1 Superstring field theory

There are two main versions of supersymmetric open string field theory. It was shown that

the one introduced in [36] suffers from singularities due to collision of picture-changing

operators [37]. While it is plausible that a modification of this theory of the form presented

in [38 – 40] can save the day, we prefer to use the more established superstring field theory,

due to Berkovits [30 – 32].
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The action in the NS sector is a generalization of WZW theory, where the two differ-

entials ∂, ∂̄ are replaced by Q, η0. The action can be extended to include also the Ramond

sector, albeit not in a Lorentz-covariant way. Only fields in the NS sector get a vev. The

equation of motion for the NS sector is (1.4). The string field G in this equation depends on

the variables Xµ, ψµ, as well as on the b, c ghosts and on the “bosonized” superghosts [41].

The bosonization is given by

β = ∂ξe−φ , γ = ηeφ , (1.13)

where ξ, η are a conjugate pair of fermions and φ is a scalar field, such that the solitons e±φ

are fermions. It is clear that the superghosts do not depend on the zero mode of ξ. Thus,

the physical space is in the “small Hilbert space”, not including the zero mode, while the

“large Hilbert space” contains one more copy of the small one with ξ0 acting on it.

An important peculiarity of the RNS string is the existence of an infinity of vertex

operators for any given physical state. The various “pictures” of the vertex operators are

easy to understand using the ξ, η, φ variables. Each operator is assigned a picture-number

as in table 1.

Now, given a vertex operator V , another ver-
operator h ng np

b 2 -1 0

c -1 1 0

η 1 1 -1

ξ 0 -1 1

eqφ − q(q+2)
2 0 q

β = ∂ξe−φ 3
2 -1 0

γ = ηeφ −1
2 1 0

JB 1 1 0

P 0 -1 0

Table 1: The conformal weight h, ghost

number ng and picture number np of

the superstring field theory operators we

work with.

tex operator describing the same state, but in a

different picture, is obtained by [41]

Ṽ = [Q, ξV ] . (1.14)

While this state is exact in the large Hilbert space,

it is only closed in the small Hilbert space, due to

the appearance of ξ0 in its definition. Scattering

amplitudes can be calculated with any set of rep-

resentatives from the equivalence classes of vertex

operators, as long as the picture number is exactly

saturated, as shown in [41].

In Berkovits’ string field theory, the states live

in the large hilbert space. However, since η0 acts

as a generator of gauge transformation (in the lin-

earized theory), the whole small hilbert space is composed of gauge degrees of freedom.

Since the other part of the space is just ξ0 times the small hilbert space, it has exactly the

correct amount of degrees of freedom to represent the string with Q as the BRST opera-

tor. In this way the theory is described without the need to use explicit picture changing

operators. Thus avoiding the potential problems of other formulations.

An important property of the large Hilbert space is that the BRST charge

Q =

∮

dzJB(z) =

∮

dz
(

c(Tm + Tξη + Tφ) + c∂cb + ηeφGm − η∂ηe2φb
)

, (1.15)

has an inverse in this space

{Q,P (z)} = 1 , P (z) ≡ −ξ∂ξe−2φc(z) . (1.16)

– 4 –



J
H
E
P
1
1
(
2
0
0
7
)
0
0
5

To verify this we use the following identities

Tξη = −η∂ξ , η(z)ξ(0) ∼ 1

z
, (1.17)

Tφ = −1

2
∂φ∂φ − ∂2φ , φ(z)φ(0) ∼ − log z ,

φ(z)eqφ(0) ∼ −q log zeqφ(0) , eq1φ(z)eq2φ(0) = z−q1q2eq1φ(z)+q2φ(0) . (1.18)

Some other useful identities include

Q2 = P 2(z) = η2
0 = ξ2(z) = {Q, η0} = 0 , {η0, ξ(z)} = 1 . (1.19)

These relations reveal a duality under exchange of Q with η0 and P (z) with ξ(z).

2. Revisiting the bosonic string

2.1 Photon marginal deformation

The bosonic string marginal solution of [29] was based on the fact that the physical photon

state can be written as an exact state

Ψ1 = c∂X(0) |0〉 = QX(0) |0〉 . (2.1)

This means that any pure gauge string field (1.1), which automatically satisfies the equation

of motion, is a candidate photon marginal solution provided that it generates the first order

state. This only requires Γ(Φ) to be of the form (1.2) and

Φ = λX(0) |0〉 + O(λ2). (2.2)

We refer to different choices of Γ(Φ) as “different schemes” [29]. The solution to linear

order is scheme independent, and we can generate identical solutions to all orders using

different schemes by modifying the higher order terms of Φ.

For a solution to be meaningful, it also has to be x0-independent. This can be achieved

by an appropriate choice of the non-linear terms of Φ. We refer to such terms as counter

terms. For the “left” and “right” schemes

ΓL(Φ) =
1

1 − Φ
⇒ ΨL = (1 − Φ)Q

1

1 − Φ
, (2.3)

ΓR(Φ) = 1 + Φ ⇒ ΨR =
1

1 + Φ
Q(1 + Φ) , (2.4)

we have an explicit expression for the counter terms that generates such a solution. Concen-

trating on ΨL, it would be x0-independent, provided that Φ satisfies the linear differential

equation

∂x0
Φ = λ(1 − Φ)Ω , (2.5)

where Ω is the vacuum state.
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It is the specific form of the function ΓL(Φ), which allows us to easily calculate deriva-

tives despite the fact that we are working with a non-commutative algebra

∂
1

1 − Φ
=

1

1 − Φ
∂Φ

1

1 − Φ
, (2.6)

where ∂ can stand for any derivation. This gives

∂x0
ΨL = −∂x0

ΦQ
1

1 − Φ
+ (1 − Φ)Q

(
1

1 − Φ
∂x0

Φ
1

1 − Φ

)

= −λ(1 − Φ)ΩQ
1

1 − Φ
+ λ(1 − Φ)Q

(

Ω
1

1 − Φ

)

= 0 . (2.7)

To solve (2.5) we expand

Φ =

∞∑

n=1

λnΦn . (2.8)

This reveals that the differential equation (2.5) is actually an infinite set of differential

equations

∂x0
Φ1 = Ω , ∂x0

Φn = −Φn−1Ω . (2.9)

Solving these linear equations order by order is straightforward, but although there are

many possible solutions, we only have one solution in closed form

Φn = −(−1)n

n!
(Xn, 1, . . . , 1

︸ ︷︷ ︸

n−1

) . (2.10)

Here we are using the n-vector notation to represent the wedge state |n + 1〉 [42 – 44], where

the vector elements represent the operator insertions at the n canonical sites of the wedge

state. Normal ordering at each site is implicit and 1 stands for the identity insertion, i.e.

no insertion. This is illustrated in figure 1.

Actually, at each order the number of degrees of freedom for generating a solution is

dim(Φn) =

(
2n − 2

n

)

. (2.11)

These degrees of freedom are in general complex. They correspond to the number of gauge

degrees of freedom within our ansatz.

2.2 The reality condition

Next we would like to find a solution that satisfies the string field reality condition. The

reality condition states that hermitian conjugation and BPZ conjugation agree [1]. In our

vector notation the reality condition translates to the following statement. Write the state

in the opposite orientation, with a factor of (−1) for every ∂X or ∂c insertion and no

factors for X and c and complex conjugate the coefficients. If this procedure returns the

original state then the state is real. For simplicity, we consider only real coefficients, as it

turns out that this is sufficient for constructing a real string field. In particular we choose

the function Γ(Φ) of (1.1) to be a real function. As we will see the reality of Ψ implies

– 6 –
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X
n

1− (n+1)π
4 1

(n+1)π
4

π
2

Figure 1: Graphical representation of the state Φn (2.10). The worldsheet is a semi-infinite

cylinder (the double-arrowed lines are identified with each other) of circumference (n+1)π
2 , where

the coordinate patch is marked in gray. The canonical upper-half-plane coordinate ξ is mapped to

this cylinder using the transformation z = n+1
2 arctan( 2

n+1ξ). The operator Xn is a product of n

scalar fields X(z) in the cylinder coordinates, where normal ordering is implicit. The 1’s stand for

no operator insertion and in this sense they are redundant. They are only presented to clarify the

relation to the n-vector notation in (2.10).

that Φ should be imaginary and this implies that the deformation parameter λ should be

imaginary.

Since Φ is built only from X insertions the reality of Φ is simply related to its symmetry.

The component λnΦn is imaginary provided it is symmetric under inversion when n is odd

and antisymmetric when n is even. To evaluate the number of degrees of freedom we

consider the space of solutions of the homogeneous equation

∂x0
Φn = 0 . (2.12)

The space of solutions of this equation is given by the quotient of the space of homogeneous

polynomials of degree n in n variables by the space of homogeneous polynomials of degree

n − 1 in n variables. The dimension of this space is given by (2.11). We now divide

both spaces into symmetric and antisymmetric parts. The derivative ∂x0
does not change

the symmetry property and, as we shall soon demonstrate, it is also possible to define

integration in a way that respects the symmetry. Hence, the number of (anti-)symmetric

degrees of freedom is just the dimension of the quotient space of the two (anti-)symmetric

spaces. The combinatorics is different for the cases of n odd/even. The result can be

summarized by

dim(ΦS,A
n ) =

1

2

((
2n − 2

n

)

± 1 + (−1)n

2

(
n − 1

n
2

))

, (2.13)

where the plus sign stands for the symmetric case.

We have only two solutions in a closed form, the one described above in the left-scheme

and a corresponding solution in the right-scheme. It is easy to see that these solutions are

– 7 –
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not real. We can, however, generate different solutions. Let us work in the left-scheme.

At level two, imposing the reality condition, and using only real coefficients the unique

solution is

Φ2 = −1

4

(
(X2, 1) + 2(X,X) − (1,X2)

)
. (2.14)

At level three there are two degrees of freedom for choosing a real solution.

Already in the expression for the counter terms at level two we have the term (X,X),

which we interpret as ‘changing the scheme’ [29]. Thus, it may seem beneficial to start

with a scheme where the symmetry is more transparent. We want a systematic procedure

for generating real solutions. We define Φ∗ to be the string field obtained from Φ by a

combination of hermitian and BPZ conjugations. From

Ψ∗ = Γ(Φ∗)QΓ(Φ∗)−1 , (2.15)

we see that the reality condition can be written as1

Γ(Φ) = Γ(Φ∗)−1 . (2.16)

This condition is generically non-linear in Φ,Φ∗. However for schemes of the form

Γ(Φ) = Γ(−Φ)−1 , (2.17)

we get that the reality condition on Ψ gives the linear condition

Φ∗ = −Φ . (2.18)

It is indeed natural to require that Φ is imaginary since λΦ1 is imaginary. The three other

schemes that were specifically considered in [29], i.e., the symmetric scheme, the exponent

scheme and the square root scheme, are given by

ΓS(Φ) =
1 + Φ

2

1 − Φ
2

, ΓE(Φ) = eΦ , ΓR(Φ) =

√

1 + Φ

1 − Φ
. (2.19)

They all obey (2.18).

For the symmetric scheme we can use the algebraic relation between the two Φ’s to

obtain a differential equation analogous to (2.5),

∂x0
Φ = λ

(

1 − Φ

2

)

Ω

(

1 +
Φ

2

)

. (2.20)

Note that this equation is invariant under conjugation (2.18), since the conjugate of ∂x0
is

−∂x0
. This yields a recursion relation for Φk,

∂x0
Φk =

1

2
ΩΦk−1 −

1

2
Φk−1Ω − 1

4

k−2∑

j=1

ΦjΩΦk−1−j . (2.21)

1Expanding Γ(Φ) in λ, this condition fixes the real part of the n
th order in term of the lower orders.
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We prove that real solutions to the above equation exist within our ansatz by providing

an explicit integration recipe that is manifestly imaginary. This not only proves that a real

solution exists, but also gives an easy algorithm to find it order by order. In fact, one can

define explicitly infinitely many different recursion relations leading to real solutions. We

provide explicit results for the first few coefficients one gets using some of these algorithms.

We also give a closed form expression for one of the possible recursion relations.

Given a site k, one can define the integration “localized at this site” of a length-n

vector by

∫

k
(Xj1 , ..,Xjk , ..,Xjn) ≡ 1

jk+1
(Xj1 , ..,Xjk+1, ..,Xjn)

− 1

(jk+1)(jk+2)

∑

m6=k

∂Xm(Xj1 , ..,Xjk+2, ..,Xjn) (2.22)

+
1

(jk+1)(jk+2)(jk+3)

∑

m1 6=k

∂Xm1

∑

m2 6=k

∂Xm2
(Xj1 , ..,Xjk+2, ..,Xjn)−. . .

The number of terms is finite, since the total power is finite. The result of applying more

than
∑

m6=k jm derivatives is zero. We are performing an integration by parts, such that

the power at the kth site is raised, while the power at other sites is reduced.

Since the power of X is always raised by one in the integration, the combination

λ(
∫

k +
∫

n−k) is imaginary (recall that the number of X’s equals the number of the λ’s in

Φ and that λ is imaginary). The integration operations are linear and so any combination

of the form

∫

~αn

≡
n∑

k=1

αk
n

∫

k
,

n∑

k=1

αk
n = 1 , ak

n = an+1−k
n , (2.23)

yields an imaginary integration prescription, which leads to a well defined recursion relation.

Integrating (2.21) using such a recursion relation gives a solution that is imaginary by

construction.

For example, the choice α1
n = αn

n = 1
2 , α

k/∈{1,n}
n = 0, gives at the first few orders

Φ1 =(X) , (2.24)

Φ2 =
1

4

(

(1,X2) − (X2, 1)
)

, (2.25)

Φ3 =
1

48

(

(X3, 1, 1) + 6(X2,X, 1) − 3(X2, 1,X) − 6(X,X2, 1)

− 3(X, 1,X2) − 6(1,X2,X) + 6(1,X,X2) + (1, 1,X3)
)

. (2.26)

Another simple choice is αk
n = 1

n . This gives another real solution that differs starting from

the third order

Φ3 =
1

72

(

(X3, 1, 1) + 9(X2,X, 1) − 3(X2, 1,X) − 6(X,X2, 1) − 6(X,X,X)

− 3(X, 1,X2) − 2(1,X3, 1) − 6(1,X2,X) + 9(1,X,X2) + (1, 1,X3)
)

. (2.27)
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The first choice seems more natural since it does not involve the scheme changing state

(X,X,X).

Yet another possible integration scheme is to integrate each term of (2.21) at the Ω-site.

This is not given by a choice of ~αn’s, but it is easy to see that it also leads to a symmetric

integration prescription and therefore to a real solution. The recursion relation can be

written explicitly in this case as

Φk =

k∑

n=1

(−1)n

2n!

(

(∂n−1
x0

Φk−1,X
n) − (Xn, ∂n−1

x0
Φk−1)

)

+

k∑

n=1

n∑

l=1

k−2∑

j=1

(−1)n

4(l − 1)!(n − l)!n
(∂l−1

x0
Φj,X

n, ∂n−l
x0

Φk−1−j) .

(2.28)

The third order term in this case is

Φ3 =
1

24

(
3(1,X,X2) + 3(X2,X, 1) − 2(1,X3, 1) − 6(X,X,X)

)
, (2.29)

while the fourth order term is

Φ4 =
1

96

(
(X4, 1, 1, 1) − (1, 1, 1,X4)

)
+

1

24

(
(1,X, 1,X3) + (1,X3,X, 1) − (X3, 1,X, 1)

− (1,X,X3, 1)
)
+

1

32

(
(1, 1,X2,X2) + (X2, 1,X2, 1) − (X2,X2, 1, 1) − (1,X2, 1,X2)

)

+
1

16

(
(X,X,X2, 1) + (X,X2, 1,X) + (X2, 1,X,X) (2.30)

− (1,X2,X,X) − (X, 1,X2,X) − (X,X, 1,X2)
)
.

The closed form expression for the recursion relations (2.28) allows us to calculate higher

order terms. The number of terms in Φn seems to grow exponentially fast. For n = 1..9

there are (1, 2, 4, 16, 43, 152, 521, 1812, 6521) summands respectively.

3. A map between bosonic and supersymmetric solutions

In this section we show how an x0-independent solution for the superstring can be built

from an x0-independent solution of the bosonic string, such that (1.11) holds. To that end

it is useful to define

ΞΓ(x0) ≡ (∂x0
Γ)Γ−1 . (3.1)

It is interesting to observe that Γ is the path-ordered exponential of ΞΓ

Γ = P exp

∫ x0

ΞΓ(x)dx ≡ 1 +

∞∑

n=1

∫ x0

ΞΓ(x1)dx1

∫ x1

ΞΓ(x2)dx2 · · ·
∫ xn−1

ΞΓ(xn)dxn .

(3.2)

The freedom in defining the above integration goes beyond setting lower limits to the

integrals, as x0 can be related to X(z) insertions at any point on the boundary, giving

a continuum of degrees of freedom. Restricting the resulting expressions to the form of

our ansatz, leaves us with the same expressions for Γ and the same ambiguity of defining

– 10 –
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the integration scheme discussed in the previous section. A similar construction was used

in [35] to generate a real solutions from a real Ξ. The difference is that in [35], one integrates

over the gauge parameter λ rather than over x0.

The condition for x0-independence of Ψ is equivalent to the condition that ΞΓ is

Q-closed, since the definition of Ψ (1.1), implies

QΞΓ = Γ(∂x0
Ψ)Γ−1 = 0 . (3.3)

For a supersymmetric solution of the form (1.7), x0-independence implies

ΞΓ − ΞΓ̃ = Γ̃(∂x0
G)Γ−1 = 0 . (3.4)

Thus, the condition we were after can be written as

∂x0
ΓΓ−1 = ∂x0

Γ̃Γ̃−1 = Ξ , (3.5)

where Ξ is arbitrary.

Now, since Φ̃ is exact

QΦ̃ = 0 ⇒ QΓ̃ = 0 ⇒ QΞΓ̃ = QΞΓ = 0 . (3.6)

Thus, the x0-independence of G results in a closed ΞΓ. Meaning that the bosonic condi-

tion (3.3) follows from the supersymmetric condition (3.4), in accordance with (1.12).

The solutions representing the photon marginal deformation in the bosonic theory in

the left, right and symmetric schemes, all result in the expression

ΞΓ = λΩ . (3.7)

This relation is not modified if we replace Φ by Φ̃. Therefore, all schemes can be used

interchangeably to create supersymmetric solutions.

4. Supersymmetric marginal deformations

It is not a priori clear to which superstring state the bosonic photon marginal deformation

would be mapped. First, in 4.1 we show that the photon state of the supersymmetric

theory can be written as a pure gauge state. This proves that the full superstring photon

marginal deformation can be generated using our methods. Then, we demonstrate how to

get explicit solutions to all orders in 4.2 and real solutions in 4.3.

4.1 The linear solution

Expanding the superstring field

G = 1 + λG1 + O(λ2) , (4.1)

yields the linear order of the superstring field equation of motion (1.4)

η0QG1 = 0 . (4.2)
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The photon state

G1 = cξe−φψ(0) |0〉 , (4.3)

solves this equation. Here, ψ has an implicit µ index and is of conformal weight 1
2 . Like

in the bosonic case, we would like to write this state as a pure gauge state generated by

a singular gauge transformation. This will allow us to generate the higher order terms for

this solution. In superstring field theory there are two gauge fields from which pure gauge

states can be built. Expanding the infinitesimal gauge transformation (1.5) to linear order

in λ gives

G1 = −QΛ̃1 + η0Λ1 . (4.4)

Notice that G1 has the ξ0 operator in it, implying that it lies in the large Hilbert space.

Like in the bosonic case we have to enlarge the Hilbert space using x0. The ψ operator

will be generated thanks to the γGm factor in the BRST charge2

Gm = i
√

2ψ∂zX ⇒ [Q,X] = c∂X − i
√

2ηeφψ . (4.5)

Then it is natural to guess

Λ̃1 = PX(0) |0〉 ⇒ Φ̃1 = QΛ̃1 = X(0) |0〉 − PQX(0) |0〉 . (4.6)

The first term is redundant and can be canceled by the other gauge field

Λ1 = ξX(0) |0〉 ⇒ Φ1 = η0Λ1 = X(0) |0〉 . (4.7)

In total we get

G1 = −Φ̃1 + Φ1 = PQX(0) |0〉 = P (c∂X − i
√

2ηeφψ)(0) |0〉 = cξe−φψ(0) |0〉 , (4.8)

which is exactly what we want.

4.2 Higher order terms

To get a solution to the non-linear equation of motion we need to use the integrated gauge

transformation (1.7). Plugging the first order gauge parameters (4.6), (4.7) into (1.7)

produces x0-dependence at higher orders, no matter what functions Γ(Φ), Γ̃(Φ̃) are used.

We therefore need to add counter terms.

One could try to use the bosonic Φ, where the counter terms are known (for exam-

ple the left scheme solution (2.10)) together with the Φ̃ defined by (1.9). This gives an

x0-dependent solution, as can be seen by a direct calculation. Alternatively, we can find

and solve a set of differential equations analogous to the ones of the bosonic case. This is

presented below.

2Note that we use the conventions of [29] for ∂X on the boundary (eq. 2.5 there), where ∂ denotes

derivation with respect to the boundary coordinate z+z̄

2
. This convention results in simple expressions, so

we continue to follow it. This is what we mean by ∂X everywhere, except in the definition of Gm, where

we write explicitly ∂zX. ∂zX and ∂X differ by a factor of 2. For the other operators there is no such issue,

because they are holomorphic.
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We choose to work in the left scheme, for which we have a closed form solution in the

bosonic theory. Relying on the relation between the bosonic and supersymmetric solutions

we write GL in a form similar to ΨL

GL = ΓL(Φ̃)−1ΓL(Φ) = (1 − Φ̃)
1

1 − Φ
. (4.9)

In accordance with section 3, we require that both Φ and Φ̃ satisfy equations similar to

the bosonic case

∂x0
Φ = λ(1 − Φ)Ω , ∂x0

Φ̃ = λ(1 − Φ̃)Ω . (4.10)

Not surprisingly, this gives an x0-independent solution

∂x0
GL = 0 . (4.11)

It is insufficient to solve (4.10), since these equations do not by themselves imply the

equation of motion (1.4). We want to find gauge fields Λ, Λ̃ generating these Φ, Φ̃ and a

solution as in (1.7). We can write the following equations for the gauge fields

∂x0
Λ = λ

(
ξ(0)Ω − ΛΩ

)
, ∂x0

Λ̃ = λ
(
P (0)Ω − Λ̃Ω

)
, (4.12)

from which (4.10) directly follow. The position of the P and ξ operators was explicitly

shown to emphasize that they operate on the vacuum state and not star-multiply it. The

solution for the gauge fields is

Λ =

∞∑

n=1

λnΛn , Λn = −(−1)n

n!
(ξXn, . . . , 1) , (4.13)

Λ̃ =

∞∑

n=1

λnΛ̃n , Λ̃n = −(−1)n

n!
(PXn, . . . , 1) , (4.14)

which yields the string fields

Φ = η0Λ = −
∞∑

n=1

(−λ)n

n!
(Xn, . . . , 1) , (4.15)

Φ̃ = QΛ̃ = −
∞∑

n=1

(−λ)n

n!
(Xn − nY Xn−1 − n(n − 1)ZXn−2, . . . , 1) . (4.16)

For this calculation we have used the commutation relation

[Q,Xn] = −i
√

2nηeφψXn−1 + nc∂XXn−1 − n(n − 1)∂cXn−2 , (4.17)

and defined

Y ≡ −i
√

2Pηeφψ = −i
√

2cξe−φψ , Z ≡ c∂cξ∂ξe−2φ . (4.18)

The operator Z has the unique property that all its quantum numbers are zero.

The field Φ of the superstring looks exactly the same as the field Φ of the bosonic

string. The fact that Φ is η0 closed means that the related gauge transformation can be

simply written as in (1.8),

Λ = ξ0Φ . (4.19)

This state does not obey (4.12), but it only differs from (4.13) by an η0-closed term. Thus,

both gauge fields result in exactly the same solution.
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4.3 Real solutions

We now want to identify a real solution. The reality condition for the superstring field is

G∗ = G−1 . (4.20)

The fields X, Y and Z are all real. We assume that Φ and Φ̃ are chosen such that they

keep the imaginary nature of their lowest order. Then for G to be real, the functions that

generate it need to satisfy (2.17) just as in the bosonic case. The next step is to imitate

the bosonic symmetric solution

G = ΓS(Φ̃)−1ΓS(Φ) =
1 − 1

2Φ̃

1 + 1
2Φ̃

1 + 1
2Φ

1 − 1
2Φ

, (4.21)

and require

∂x0
Φ = λ

(

1 − 1

2
Φ

)

Ω

(

1 +
1

2
Φ

)

, ∂x0
Φ̃ = λ

(

1 − 1

2
Φ̃

)

Ω

(

1 +
1

2
Φ̃

)

, (4.22)

to get an x0-independent solution. Just like in the left scheme solution, the expression for

the supersymmetric Φ is the same as that of Φ of the bosonic string. For Φ̃ we need to

solve the equation

∂x0
Λ̃ = λ

(

P (0)Ω − 1

2
Λ̃Ω +

1

2
ΩΛ̃ − 1

8
Λ̃Ω(QΛ̃) − 1

8
(QΛ̃)ΩΛ̃

)

, (4.23)

where we have chosen the symmetric form of the equation.

We can use an integration choice analogous to that of the bosonic case (2.28) of inte-

grating at the Ω site. This can be explicitly written as

Λ̃k =
k∑

n=1

(−1)n

2n!

(

(∂n−1
x0

Λ̃k−1,X
n) − (Xn, ∂n−1

x0
Λ̃k−1)

)

+
k∑

n=1

n∑

l=1

k−2∑

j=1

(−1)n

8(l − 1)!(n − l)!n
·

·
(

(∂l−1
x0

QΛ̃j,X
n, ∂n−l

x0
Λ̃k−1−j) + (∂l−1

x0
Λ̃j ,X

n, ∂n−l
x0

QΛ̃k−1−j)
)

. (4.24)

This results in

Λ̃2 =
1

4

(

(P,X2) − (X2, P )
)

+
1

2

(

(X,PX) − (PX,X)
)

. (4.25)

Note that unlike for the bosonic case, there is a freedom in choosing a real solution already

at the second order since the location of the P insertion should be specified.

It is possible to simplify the expressions by choosing a different integration prescription,

namely to integrate in the location of the P insertion. It should be understood that the P ’s

appearing in expressions that result from QΛ̃ in (4.23) are not the ones where integration

should be performed, since a Q is acting on them. With this understanding, every Φk has

exactly one site with a P insertion and our algorithm is well-defined. The second order

result is then

Λ̃2 =
1

4

(

(1, PX2) − (PX2, 1)
)

, (4.26)

Φ̃2 =
1

4

(

(1,X2 − 2XY − 2Z) − (X2 − 2XY − 2Z, 1)
)

, (4.27)

G2 =
1

2

(

(1,XY ) − (XY, 1) + (Y,X) − (X,Y ) + (Y, Y ) − (Z, 1) + (1, Z)
)

, (4.28)
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where for the evaluation of G2 we have taken the expression for Φ2 from the bosonic string.

Calculating higher order terms is straightforward, but not very illuminating.

5. The universal superstring solution

Schnabl’s original solution for the bosonic string [2] can also be written as a gauge trans-

formation [3]

Ψλ = (1 − Φ)Q
1

1 − Φ
, Φ =

λ

π
B†

0c(0) |0〉 . (5.1)

Φ may also be viewed as a singular gauge transformation since it generates a field which

is both exact and satisfies the Schnabl gauge

B0QΦ = 0 . (5.2)

The Siegel gauge does not seem to permit such states.

Let us define a similarity transformation like the one we used for regularizing the

three-vertex [9]

Bs
0 ≡ s−L0B0s

L0 , Φs ≡ s−L0Φ . (5.3)

For any finite s, states in the Schnabl gauge transform into states in the Bs
0 gauge. In

the limit s → 0 we reach the Siegel gauge. All physical states transform from the Schnabl

gauge to the Siegel gauge, but the state Φ is singular in this limit, due to the singularity

in this limit of B†
0 (and L†

0).

A conceptual difference between Schnabl’s universal solution and our marginal defor-

mation is that for small λ his solution is indeed a pure gauge solution. Only at the critical

value λ = 1 does it become a physical solution. Still, we can speculate that the relation

between bosonic and superstring solutions also holds for this case. The state

Gλ = (1 − Φ̃)
1

1 − Φ
, Φ =

λ

π
B†

0c(0) |0〉 , Φ̃ = QP (0)Φ . (5.4)

is clearly a solution to the superstring field equation of motion. Φ was copied from the

bosonic string and since it is built upon the vacuum state, there seems to be no ambiguity

about the location of the P insertion in Φ̃. One can check that Gλ satisfies Schnabl’s gauge

B0(Gλ − 1) = 0 . (5.5)

We suggest that at the critical value of λ this could be the universal solution for the

superstring. Generically, there is no tachyon in superstring field theory, so we should not

think of this state as being the tachyon vacuum. We believe that this solution represents

a state with no D-branes and therefore has an empty cohomology.

Like in the bosonic case, the study of this state should require some kind of regular-

ization. We leave this study for future work.
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6. Conclusions

It seems that all known solutions to bosonic and supersymmetric string field theories can

be written as pure gauge solutions. The difference between different solutions and different

approaches is in the choice of the gauge field. The approach of this paper and [29] gives

elegant results that generalize automatically to singular currents, but works only for the

photon operator. The approach of [18, 19, 33 – 35] works for all non-singular currents, but

requires complicated counter terms for handling singular currents. The generalization of

our approach to other operators was discussed in [29]. It would be interesting to complete

this program.
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A. Split string formalism

In order to compare our solution to that obtained by other authors it may be useful to

write it using the formalism of [33]. Insertion of Xn will be described by an insertion over

the identity string field,

Xn ≡ Xn |1〉 = X ⋆ . . . ⋆ X
︸ ︷︷ ︸

n times

. (A.1)

Normal ordering in this expression is implicit, therefore the r.h.s. cannot be strictly viewed

as a chain of matrix multiplications.

Then, between any two insertion sites there is a strip of string that can be represented

by F 2 = Ω. For example, the bosonic left solution is given by

1 − Φ = 1 + F

∞∑

k=1

(−λ)k

k!
XkF 2k−1 ≡ F

∞∑

k=0

(−λ)k

k!
XkF 2k−1 . (A.2)

This can be written in short as

1 − Φ = Fe∂α∂βe−αλXeβΩ
∣
∣
∣
α=β=0

F−1 . (A.3)

Using the bosonic part of (4.17) we can write the solution as

Ψ = λFc∂XF−1(1 − Φ)Ω(1 − Φ)−1 + λ2F∂cF−1(1 − Φ)Ω2(1 − Φ)−1 . (A.4)

B. Integrated strip formalism

The marginal deformations in [18, 19, 34, 35] were all based on the fact that the inverse of

L0 can be written as an integration over the width of a strip of string. Here, we demonstrate

that these solution can also be viewed as pure gauge solutions.
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For the bosonic string, our solution is based on the fact that Ψ1, which is closed

QΨ1 = 0 , (B.1)

can be written as an exact state

Ψ1 = QΦ1 . (B.2)

Using the integrated strip one can define the state J , which satisfies

QJ = 1 . (B.3)

This state is defined as an integral of a wedge state with length varying between zero and
π
2 . Since π

2 is the length of the local coordinate patch, the integral is over states which

remove string strips and as such, are not generally defined. The expression we get for the

physical state is, however, well defined. We can use this state to write

Φ1 = JΨ1 ⇒ QΦ1 = (QJ)Ψ1 − J(QΨ1) = Ψ1 , (B.4)

which is exactly what we need. It is a formal gauge field, not strictly existing due to

the appearance of J in its definition and its gauge variation gives the correct first order

solution. These are also the properties of our gauge field x0 |0〉.
The full solution, ignoring the issue of singular OPE’s is

Ψn = (QΦ1)Φ
n−1
1 = Ψ1(JΨ1)

n−1 . (B.5)

This is exactly the form of the solution of [34]. The structure of this solution is like ours,

yet the states involved are different. Specifically,

X(0) |0〉 6= Jc∂X(0) |0〉 , (B.6)

and the solutions differ, but are presumably gauge equivalent.

The supersymmetric theory requires a different J state. This time J satisfies the

relation

Qη0J = 1 . (B.7)

We can use this state to write

Λ = λ(QG1)J ⇒ Φ = η0Λ = −λ(QG1)(η0J) , (B.8)

Λ̃ = −λG1(η0J) ⇒ Φ̃ = QΛ̃ = −λG1 − λ(QG1)(η0J) , (B.9)

where we used (4.2). This means that every state of the form

G = Γ̃(Φ̃)−1Γ(Φ) , (B.10)

solves the equation of motion, with the right linear term G1, if the functions Γ, Γ̃ are of

the form (1.2). The superstring marginal solution of [34],

G−1 = 1 − λ

1 − λ(QG1)(η0J)
G1 , (B.11)

is reproduced by choosing

Γ(Φ) = 1 + Φ , Γ̃(Φ̃) = 1 + Φ̃ . (B.12)
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