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1. Introduction

Our understanding of open bosonic string field theory [1] has deepened following Schnabl’s

analytic solution [2], as can be seen from the papers that followed [3–14]. Specifically,

marginal deformations [15–17] were found in [18,19] and used to study the rolling tachyon

in [20] (for earlier related works see [21–28]). A different approach to generate such solutions

was given in [29]. The added value of the new approach is that the handling of marginal

deformations that correspond to operators with a singular OPE is much easier.

For open superstring field theory [30–32] marginal deformations were found in [33–35].

The purpose of this paper is to generalize the methods of [29] to the supersymmetric theory.

This gives the marginal deformation corresponding to the photon whose OPE is singular.

[18,19,33–35].

There is a similarity between pure gauge solutions to the bosonic Chern-Simon like

theory and the equation of motion of the supersymmetric WZW like theory. This similarity

was recently used to generate superstring marginal deformations [33]. To adapt the method

of [29] from the bosonic string to the superstring, we exploit a different similarity, one which

relates the pure gauge solutions of the two theories.
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The results in [29] rely on the fact that solutions of bosonic string field theory can be

formally written as pure gauge solutions

Ψ = Γ−1(Φ)QΓ(Φ) , (1.1)

where Q is the BRST charge. In the relation above, Φ is a string field from which the

solution is generated and Γ(Φ) is a function of the form

Γ(Φ) = 1 + Φ + O(Φ2) , (1.2)

where the product used is the star product and the “1” represents the identity state, which

guarantees that the function Γ(Φ) is invertible. The first order term generates the linear

gauge transformation QΦ.

The reason that Ψ is a physical solution has to do with the singular nature of Φ. In [29],

the singularity for the photon marginal deformation was due to the linear dependence of

Φ on the zero mode x0. In order for the solution to make sense we require that Ψ is

x0-independent

∂x0
Ψ = ∂x0

(
Γ−1(Φ)QΓ(Φ)

)
= 0 . (1.3)

This resembles the equation of motion of the superstring field

η0

(
G−1QG) = 0 , (1.4)

where η0 is the superstring ghost field zero mode, which behaves as a second BRST charge.

However, this similarity is not the one we wish to exploit. Instead, we wish to compare

the pure gauge solutions of both theories. In the supersymmetric theory the infinitesimal

gauge transformation depends on two gauge fields Λ, Λ̃

δG = −(QΛ̃)G+G(η0Λ) . (1.5)

The integrated form of this infinitesimal gauge transformation is

Gλ = e−λQΛ̃G0e
ληoΛ . (1.6)

The two exponents above may be replaced by any functions of the form (1.2), since this

corresponds to a field redefinition. Because we are interested in pure gauge solutions, G0

is the identity state and G is

G = Γ̃−1(Φ̃)Γ(Φ) , Φ̃ = QΛ̃ , Φ = η0Λ . (1.7)

The gauge field Φ of the bosonic string obviously does not have insertions of the

superstring ghost field ξ. Therefore, it is η0-exact and can be used to define Λ such that Φ

in both theories are the same

Λ = ξ(z)Φbosonic ⇒ ΦSUSY = Φbosonic ≡ Φ , (1.8)

for any z. Φ̃ can also be based on Φ in a similar way. Here, we get a new state since Φ is

not Q-exact

Λ̃ = P (z)Φ ⇒ Φ̃ = Φ − P (z)QΦ , (1.9)
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where P (z) is the inverse operator of Q described in section 4.1.

A short calculation shows that the bosonic solution can be written as

Ψ = G−1QG. (1.10)

Therefore it is clear that if the supersymmetric solution is x0-independent then the bosonic

solution follows suit

∂x0
G = 0 ⇒ ∂x0

Ψ = 0 . (1.11)

This relation does not hold in the other direction, as the x0-independence of Ψ does not

impose any condition on how Φ̃ enters G.

The rest of the paper is organized as follows. We start in section 2 with a summary

of the bosonic marginal deformation [29] and extend the formalism to generate solutions

satisfying the reality condition in 2.2. Next, in section 3, we show how the relation (1.11)

can be inverted, defining a map between bosonic and supersymmetric solutions. In section 4

we present the marginal deformation of the superstring. First, we show in 4.1 that the

photon of the supersymmetric theory can also be written as an exact state. Then, we

generate a solution to all orders in 4.2 and a real solution in 4.3. In section 5 we suggest

that our method can be used to generate the universal superstring solution corresponding

to Schnabl’s solution [2]. We wrap things up with conclusions in 6. In the appendices we

relate our solutions to those of [33,34].

2. Revisiting the bosonic string

2.1 Photon marginal deformation

The bosonic string marginal solution of [29] was based on the fact that the physical photon

state can be written as an exact state

Ψ1 = c∂X(0) |0〉 = QX(0) |0〉 . (2.1)

This means that any pure gauge string field (1.1), which automatically satisfies the equa-

tion of motion, is a candidate solution for the photon marginal solution provided that it

generates the first order state. This only requires Γ(Φ) to be of the form (1.2) and

Φ = λX(0) |0〉 + O(λ2). (2.2)

We refer to different choices of Γ(Φ) as “different schemes” [29]. The solution to linear

order is scheme independent, and we can generate identical solutions to all orders using

different schemes by modifying the higher order terms of Φ.

For a solution to be meaningful, it also has to be x0-independent. This can be achieved

by an appropriate choice of the non-linear terms of Φ. We refer to such terms as counter

terms. For the “left” and “right” schemes

ΓL(Φ) =
1

1 − Φ
⇒ ΨL = (1 − Φ)Q

1

1 − Φ
, (2.3)

ΓR(Φ) = 1 + Φ ⇒ ΨR =
1

1 + Φ
Q(1 + Φ) , (2.4)
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we have an explicit expression for the counter terms that generates such a solution. Concen-

trating on ΨL, it would be x0-independent, provided that Φ satisfies the linear differential

equation

∂x0
Φ = λ(1 − Φ)Ω , (2.5)

where Ω is the vacuum state.

It is the specific form of the function ΓL(Φ), which allows us to easily calculate deriva-

tives despite the fact that we are working with a non-commutative algebra

∂
1

1 − Φ
=

1

1 − Φ
∂Φ

1

1 − Φ
, (2.6)

where ∂ can stand for any derivation. This gives

∂x0
ΨL = −∂x0

ΦQ
1

1 − Φ
+ (1 − Φ)Q

( 1

1 − Φ
∂x0

Φ
1

1 − Φ

)

= −λ(1 − Φ)ΩQ
1

1 − Φ
+ λ(1 − Φ)Q

(

Ω
1

1 − Φ

)

= 0 . (2.7)

To solve (2.5) we expand

Φ =
∞∑

n=1

λnΦn . (2.8)

This reveals that the differential equation (2.5) is actually an infinite set of differential

equations

∂x0
Φ1 = Ω , ∂x0

Φn = −Φn−1Ω . (2.9)

Solving these linear equations order by order is straightforward, but although there are

many possible solutions, we only have one solution in closed form

Φn = −(−1)n

n!
(Xn, 1, . . . , 1

︸ ︷︷ ︸

n−1

) . (2.10)

Here we are using the n-vector notation to represent the wedge state |n+ 1〉 where the

vector elements represent the operator insertions at the n canonical sites of the wedge

state. Normal ordering at each site is implicit and 1 stands for the identity insertion, i.e.

no insertion. Actually, at each order the number of degrees of freedom for generating a

solution is

dim(Φn) =

(
2n− 2

n

)

. (2.11)

These degrees of freedom are in general complex. They correspond to the number of gauge

degrees of freedom within our ansatz.

2.2 The reality condition

Next we would like to find a solution that satisfies the string field reality condition. The

reality condition states that hermitian conjugation and BPZ conjugation agree. In our

vector notation the reality condition translates to the following statement. Write the state

in the opposite orientation, with a factor of (−1) for every X or ∂c insertion and no factors
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for ∂X and c and complex conjugate the coefficients. If this procedure returns the original

state then the state is real. For simplicity, we consider only real coefficients (and real λ),

as it turns out that this is sufficient for constructing a real string field. In particular the

function Γ(Φ) of (1.1) will always be a real function.

Since Φ is built only from X insertions, its reality is simply related to its symmetry.

The component of Φn is imaginary provided it is symmetric under inversion when n is

odd and antisymmetric when n is even. To evaluate the number of degrees of freedom we

consider the space of solutions of the homogeneous equation

∂x0
Φn = 0 . (2.12)

The space of solutions of this equation is given by the quotient of the space of homogeneous

polynomials of degree n in n variables by the space of homogeneous polynomials of degree

n − 1 in n variables. The dimension of this space is given by (2.11). We now divide

both spaces into symmetric and antisymmetric parts. The derivative ∂x0
does not change

the symmetry property and, as we shall soon demonstrate, it is also possible to define

integration in a way that respects the symmetry. Hence, the number of (anti-)symmetric

degrees of freedom is just the dimension of the quotient space of the two (anti-)symmetric

spaces. The combinatorics is different for the cases of n odd/even. The result can be

summarized by

dim(ΦS,A
n ) =

1

2

((
2n− 2

n

)

± 1 + (−1)n

2

(
n− 1

n
2

))

, (2.13)

where the plus sign stands for the symmetric case.

We have only two solutions in a closed form, the one described above in the left-scheme

and a corresponding solution in the right-scheme. It is clear that these solutions are not

real since they have no symmetry. We can, however, generate different solutions. Let us

work in the left-scheme. At level two, imposing the reality condition, and using only real

coefficients the unique solution is

Φ2 = −1

4

(
(X2, 1) + 2(X,X) − (1,X2)

)
. (2.14)

At level three there are two degrees of freedom for choosing a real solution.

Already in the expression for the counter terms at level two we have the term (X,X),

which we interpret as ‘changing the scheme’ [29]. Thus, it may seem beneficial to start

with a scheme where the symmetry is more transparent. We want a systematic procedure

for generating real solutions. From

Ψ∗ = Γ(Φ∗)QΓ−1(Φ∗) , (2.15)

we see that the reality condition can be written as1

Γ(Φ) = Γ−1(Φ∗) . (2.16)

1Expanding Γ(Φ) in λ, this condition fixes the real part of the n
th order in term of the lower orders.
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This condition is generically non-linear in Φ,Φ∗. However for schemes of the form

Γ(Φ) = Γ−1(−Φ) , (2.17)

we get the linear reality condition

Φ∗ = −Φ . (2.18)

It is indeed natural to require that Φ is imaginary since Φ1 is imaginary.

The three other schemes that were specifically considered in [29], i.e., the symmetric

scheme, the exponent scheme and the square root scheme, are given by

ΓS(Φ) =
1 + Φ

2

1 − Φ
2

, ΓE(Φ) = eΦ , ΓR(Φ) =

√

1 + Φ

1 − Φ
. (2.19)

For the symmetric scheme we can use the algebraic relation between the two Φ’s to

obtain a differential equation analog of (2.5),

∂x0
Φ = λ(1 − Φ

2
)Ω(1 +

Φ

2
) . (2.20)

Note that this equation is invariant under conjugation (2.18), since the conjugate of ∂x0
is

−∂x0
. This yields a recursion relation for Φk,

∂x0
Φk =

1

2
ΩΦk−1 −

1

2
Φk−1Ω − 1

4

k−2∑

j=1

ΦjΩΦk−1−j . (2.21)

In order to prove that real solutions exist within our ansatz we provide an explicit

integration recipe that is manifestly imaginary. This not only proves that a real solution

exists, but also gives an easy algorithm to find it order by order. Unfortunately, we have

not yet found a closed form expression for the real solution.

Given a site k, one can define the integration “localized at this site” of a length-n

vector by
∫

k

(Xj1 , ..,Xjk , ..,Xjn) ≡ 1

jk + 1
(Xj1 , ..,Xjk+1, ..,Xjn)

− 1

(jk + 1)(jk + 2)

∑

m6=k

∂Xm(Xj1 , ..,Xjk+2, ..,Xjn) (2.22)

+
1

(jk + 1)(jk + 2)(jk + 3)

∑

m1 6=k

∂Xm1

∑

m2 6=k

∂Xm2
(Xj1 , ..,Xjk+2, ..,Xjn) − . . .

The number of terms is finite, since the total power is finite. What we are doing is basically

an integration by parts, such that the power at the kth site is raised, while the power at

other sites is reduced.

Since the power of X is always raised by one in the integration, the combination
∫

k
+
∫

n−k
is odd. The integration operations are linear and so any combination of the form

∫

~αn

≡
n∑

k=1

αk
n

∫

k

,

n∑

k=1

αk
n = 1 , (2.23)
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yields an integral. Thus, an integration scheme that involves a symmetric choice of ~αn is

well defined and imaginary. Integrating (2.21) with any such scheme gives a solution that

is imaginary by construction. For example, the choice α1
n = αn

n = 1
2 gives at the first few

orders

Φ1 =(X) , (2.24)

Φ2 =
1

4

(

(1,X2) − (X2, 1)
)

, (2.25)

Φ3 =
1

48

(

(X3, 1, 1) + 6(X2,X, 1) − 3(X2, 1,X) − 6(X,X2, 1)

− 3(X, 1,X2) − 6(1,X2,X) + 6(1,X,X2) + (1, 1,X3)
)

, (2.26)

while another choice is αk
n = 1

n
, which differs starting from the third order

Φ3 =
1

72

(

(X3, 1, 1) + 9(X2,X, 1) − 3(X2, 1,X) − 6(X,X2, 1) − 6(X,X,X)

− 3(X, 1,X2) − 2(1,X3, 1) − 6(1,X2,X) + 9(1,X,X2) + (1, 1,X3)
)

. (2.27)

The first choice seems more natural since it does not involve the scheme changing state

(X,X,X). Yet another symmetric integration scheme is to integrate each term of (2.21)

at the Ω-site.

3. A map between bosonic and supersymmetric solutions

In the introduction we saw how an x0-independent solution for the bosonic string can be

built from an x0-independent solution of the superstring (1.10,1.11). To understand how

this procedure works in the other direction it is useful to define

ΞΓ(x0) ≡ (∂x0
Γ)Γ−1 . (3.1)

It is interesting to observe that Γ is the path-ordered exponential of ΞΓ

Γ = P exp

∫ x0

ΞΓ(x)dx ≡ 1 +

∞∑

n=1

∫ x0

ΞΓ(x1)dx1

∫ x1

ΞΓ(x2)dx2 · · ·
∫ xn−1

ΞΓ(xn)dxn .

(3.2)

The freedom in defining the above integration goes beyond setting lower limits to the

integrals, as x0 can be related to X(z) insertions at any point on the boundary, giving

a continuum of degrees of freedom. Restricting the resulting expressions to the form of

our ansatz, leaves us with the same expressions for Γ and the same ambiguity of defining

the integration scheme discussed in the previous section. A similar construction was used

in [35] to generate a real solutions from a real Ξ. The difference is that in [35], one integrates

over the gauge parameter λ rather than over x0.

Our main observation here, is that the condition for x0-independence of Ψ is equivalent

to the condition that ΞΓ is Q-closed, since

∂x0
Ψ = Γ−1(QΞΓ)Γ , (3.3)
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which follows from the definition of Ψ in (1.1).

For a supersymmetric solution of the form (1.7), we can write

∂x0
G = Γ̃−1(ΞΓ − ΞΓ̃)Γ . (3.4)

Thus, x0-independence is equivalent to the condition

ΞΓ̃ = ΞΓ . (3.5)

Now, since Φ̃ is exact

QΦ̃ = 0 ⇒ QΓ̃ = 0 ⇒ QΞΓ̃ = QΞΓ = 0 . (3.6)

We see that x0-independence of G implies that ΞΓ is closed. This proves (1.11) with the

new definitions.

The differential equations of the bosonic solutions in the left, right and symmetric

schemes, all result in the scheme independent expression

ΞΓ = −λΩ . (3.7)

This relation is not modified if we replace Φ by Φ̃. Therefore, all schemes can be used

interchangeably to create supersymmetric solutions.

4. Supersymmetric marginal deformations

It is not a priori clear to which superstring state the bosonic photon marginal deformation

would be mapped. First, in 4.1 we show that the photon state of the supersymmetric

theory can be written as a pure gauge state. This proves that the full superstring photon

marginal deformation can be generated using our methods. Then, we demonstrate how to

get explicit solutions to all orders in 4.2 and real solutions in 4.3.

4.1 The linear solution

Expanding the superstring field

G = 1 + λG1 + O(λ2) , (4.1)

yields the linear order of the superstring field equation of motion (1.4)

η0QG1 = 0 . (4.2)

The photon state

G1 = cξe−φψ(0) |0〉 , (4.3)

solves this equation. Here, ψ has an implicit µ index and is of conformal weight 1
2 . Like

in the bosonic case, we would like to write this state as a pure gauge state generated by

a singular gauge transformation. This will allow us to generate the higher order terms for

this solution. In superstring field theory there are two gauge fields from which pure gauge
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states can be built. Expanding the infinitesimal gauge transformation (1.5) to linear order

in λ gives

G1 = −QΛ̃1 + η0Λ1 . (4.4)

Notice that G1 has the ξ0 operator in it, implying that it lies in the large Hilbert space.

An important property of the large Hilbert space is that the BRST charge

Q =

∮

dzJB(z) =

∮

dz
(

c(Tm + Tξη + Tφ) + c∂cb+ ηeφGm − η∂ηe2φb
)

, (4.5)

has an inverse in this space

{Q,P (z)} = 1 , P (z) ≡ −ξ∂ξe−2φc(z) . (4.6)

To verify this we use the following identities

Tξη = −η∂ξ , ηξ ∼ 1

z
, Tφ = −1

2
∂φ∂φ− ∂2φ , (4.7)

φφ ∼ − log z , φeqφ ∼ −q log zeqφ , eq1φ(z)eq2φ(0) = z−q1q2eq1φ(z)+q2φ(0) . (4.8)

The conformal weight h, ghost number ng and picture number np of the operators we

work with are listed below:

operator h ng np

b 2 -1 0

c -1 1 0

η 1 1 -1

ξ 0 -1 1

eqφ − q(q+2)
2 0 q

β = ∂ξe−φ 3
2 -1 0

γ = ηeφ −1
2 1 0

JB 1 1 0

P 0 -1 0

(4.9)

Some other useful identities include

Q2 = P 2(z) = η2
0 = ξ2(z) = {Q, η0} = 0 , {η0, ξ(z)} = 1 . (4.10)

These relations reveal a duality under exchange of Q with η0 and P (z) with ξ(z).

Like in the bosonic case we have to enlarge the Hilbert space using x0. The ψ operator

will be generated thanks to the γGm factor in the BRST charge2

Gm = i
√

2ψ∂X ⇒ [Q,X] = c∂X − i
√

2ηeφψ . (4.11)

Then it is natural to guess

Λ̃1 = PX(0) |0〉 ⇒ Φ̃1 = QΛ̃1 = X(0) |0〉 − PQX(0) |0〉 . (4.12)

2Note that we use the conventions of [29] for ∂X on the boundary. This differs by a factor of 2 from the

one in Gm.
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The first term is redundant and can be canceled by the other gauge field

Λ1 = ξX(0) |0〉 ⇒ Φ1 = η0Λ1 = X(0) |0〉 . (4.13)

In total we get

G1 = −Φ̃1 + Φ1 = PQX(0) |0〉 = P (c∂X − i
√

2ηeφψ)(0) |0〉 = cξe−φψ(0) |0〉 , (4.14)

which is exactly what we want.

4.2 Higher order terms

To get a solution to the non-linear equation of motion we need to use the integrated gauge

transformation (1.7). Plugging the first order gauge parameters (4.12), (4.13) into (1.7)

produces x0-dependence at higher orders, no matter what functions Γ(Φ), Γ̃(Φ̃) are used.

We therefore need to add counter terms.

We choose to work in the left scheme, for which we have a closed form solution in the

bosonic theory. Relying on the relation between the bosonic and supersymmetric solutions

we write GL in a form similar to ΨL

GL = Γ−1
L (Φ̃)ΓL(Φ) = (1 − Φ̃)

1

1 − Φ
, (4.15)

and assume that both Φ and Φ̃ satisfy equations similar to the bosonic case

∂x0
Φ = λ(1 − Φ)Ω , ∂x0

Φ̃ = λ(1 − Φ̃)Ω . (4.16)

Not surprisingly, this gives an x0-independent solution

∂x0
GL = 0 . (4.17)

It is insufficient to solve (4.16) since these equations are not for the gauge fields. We

therefore need to write similar equations for the gauge fields

∂x0
Λ = λ

(
ξ(0)Ω − ΛΩ

)
, ∂x0

Λ̃ = λ
(
P (0)Ω − Λ̃Ω

)
, (4.18)

from which (4.16) directly follow. The position of the P and ξ operators was explicitly

shown to emphasize that they operate on the vacuum state and not star-multiply it. The

solution for the gauge fields is

Λ =

∞∑

n=1

λnΛn , Λn = −(−1)n

n!
(ξXn, . . . , 1) , (4.19)

Λ̃ =
∞∑

n=1

λnΛ̃n , Λ̃n = −(−1)n

n!
(PXn, . . . , 1) , (4.20)

which yields the string fields

Φ = η0Λ = −
∑ (−1)n

n!
(Xn, . . . , 1) , (4.21)

Φ̃ = QΛ̃ = −
∑ (−1)n

n!
(Xn − nYXn−1 − n(n− 1)ZXn−2, . . . , 1) . (4.22)
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For this calculation we have used the commutation relation

[Q,Xn] = −i
√

2nηeφψXn−1 + nc∂XXn−1 − n(n− 1)∂cXn−2 , (4.23)

and defined

Y ≡ −i
√

2Pηeφψ = −i
√

2cξe−φψ , Z ≡ c∂cξ∂ξe−2φ . (4.24)

The operator Z has the unique property that all its quantum numbers are zero.

As mentioned in the introduction, the field Φ of the superstring looks exactly the same

as the field Φ of the bosonic string. The fact that Φ is η0 closed means that the related

gauge transformation can be simply written as

Λ = ξ0Φ . (4.25)

This state does not obey (4.18), but it only differs from (4.19) by an η0-closed term. Thus,

both states are legitimate.

4.3 Real solutions

We now want to identify a real solution. The reality condition for the superstring field is

G† = G−1 . (4.26)

The fields X and Y are imaginary and Z is real. We assume that Φ and Φ̃ are chosen

such that they keep the imaginary nature of their lowest order. Then for G to be real, the

functions that generate it need to satisfy (2.17) just as in the bosonic case. The next step

is to imitate the bosonic symmetric solution

G = Γ−1
S (Φ̃)ΓS(Φ) =

1 − 1
2 Φ̃

1 + 1
2 Φ̃

1 + 1
2Φ

1 − 1
2Φ

, (4.27)

and require

∂x0
Φ = λ(1 − 1

2
Φ)Ω(1 +

1

2
Φ) , ∂x0

Φ̃ = λ(1 − 1

2
Φ̃)Ω(1 +

1

2
Φ̃) , (4.28)

to get an x0-independent solution. Just like in the left scheme solution, the expression for

the supersymmetric Φ is the same as that of Φ of the bosonic string. For Φ̃ we need to

solve the equation

∂x0
Λ̃ = λ

(

P (0)Ω − 1

2
Λ̃Ω +

1

2
ΩΛ̃ − 1

8
Λ̃Ω(QΛ̃) − 1

8
(QΛ̃)ΩΛ̃

)

, (4.29)

where we have chosen the symmetric form of the equation. We can use the integration

choices from the bosonic string, but they result in unnatural looking expressions. Instead

we choose to integrate only over locations with a P insertion. The second order result is

then

Φ̃2 =
1

4

(

(1,X2 − 2XY − 2Z) − (X2 − 2XY − 2Z, 1)
)

, (4.30)

G2 =
1

2

(

(1,XY ) − (XY, 1) + (Y,X) − (X,Y ) + (Y, Y ) − (Z, 1) + (1, Z)
)

, (4.31)

where we have taken the expression for Φ2 from the bosonic string.
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5. The universal superstring solution

Schnabl’s original solution for the bosonic string [2] can also be written as a gauge trans-

formation [3]

Ψλ = (1 − λΦ)Q
1

1 − λΦ
, Φ =

1

π
B†

0c(0) |0〉 . (5.1)

Φ may also be viewed as a singular gauge transformation since it generates a field which

is both exact and satisfies the Schnabl gauge

B0QΦ = 0 . (5.2)

The Siegel gauge does not seem to permit such states.

Let us define a similarity transformation like the one we used for regularizing the

three-vertex [9]

Bs
0 ≡ s−L0B0s

L0 , Φs ≡ s−L0Φ . (5.3)

For any finite s, states in the Schnabl gauge transform into states in the Bs
0 gauge. In

the limit s→ 0 we reach the Siegel gauge. All physical states transform from the Schnabl

gauge to the Siegel gauge, but the state Φ is singular in this limit, due to the singularity

in this limit of B†
0 (and L†

0).

A conceptual difference between Schnabl’s universal solution and our marginal defor-

mation is that for small λ his solution is indeed a pure gauge solution. Only at the critical

value λ = 1 does it become a physical solution. Still, we can speculate that the relation

between bosonic and superstring solutions also holds for this case. The state

Gλ = (1 − λΦ̃)
1

1 − λΦ
, Φ =

1

π
B†

0c(0) |0〉 , Φ̃ = QP (0)Φ . (5.4)

is clearly a solution to the superstring field equation of motion. Φ was copied from the

bosonic string and since it is built upon the vacuum state, there seems to be no ambiguity

about the location of the P insertion in Φ̃. One can check that Gλ satisfies Schnabl’s gauge

B0(Gλ − 1) = 0 . (5.5)

We suggest that at the critical value of λ this could be the universal solution for the

superstring. Generically, there is no tachyon in superstring field theory, so we should not

think of this state as being the tachyon vacuum. We believe that this solution represents

a state with no D-branes and therefore has an empty cohomology.

Like in the bosonic case, the study of this state should require some kind of regular-

ization. We leave this study for future work.

6. Conclusions

It seems that all known solutions to bosonic and supersymmetric string field theories can

be written as pure gauge solutions. The difference between different solutions and different

approaches is in the choice of the gauge field. The approach of this paper and [29] gives

elegant results that generalize automatically to singular currents, but works only for the
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photon operator. The approach of [18, 19, 33–35] works for all non-singular currents, but

requires complicated counter terms for handling singular currents. The generalization of

our approach to other operators was discussed in [29]. It would be interesting to complete

this program.
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A. Split string formalism

In order to compare our solution to that obtained by other authors it may be useful to

write it using the formalism of [33]. Insertion of Xn will be described by an insertion over

the identity string field,

Xn ≡ Xn |1〉 = X ⋆ . . . ⋆ X
︸ ︷︷ ︸

n times

. (A.1)

Normal ordering in this expression is implicit, therefore the r.h.s. cannot be strictly viewed

as a chain of matrix multiplications.

Then, between any two insertion sites there is a strip of string that can be represented

by F 2 = Ω. For example, the bosonic left solution is given by

1 − Φ = 1 + F

∞∑

k=1

(−λ)k

k!
XkF 2k−1 ≡ F

∞∑

k=0

(−λ)k

k!
XkF 2k−1 . (A.2)

This can be written in short as

1 − Φ = Fe∂α∂βe−αλXeβΩ
∣
∣
∣
α=β=0

F−1 . (A.3)

Using the bosonic part of (4.23) we can write the solution as

Ψ = λFc∂XF−1(1 − Φ)Ω(1 − Φ)−1 + λ2F∂cF−1(1 − Φ)Ω2(1 − Φ)−1 . (A.4)

B. Integrated strip formalism

The marginal deformations in [18,19,34,35] were all based on the fact that the inverse of L0

can be written as an integration over the width of a strip of string. Here, we demonstrate

that these solution can also be viewed as pure gauge solutions.

For the bosonic string, our solution is based on the fact that Ψ1, which is closed

QΨ1 = 0 , (B.1)

can be written as an exact state

Ψ1 = QΦ1 . (B.2)
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Using the integrated strip one can define the state J , which satisfies

QJ = 1 . (B.3)

We can use this state to write

Φ1 = JΨ1 ⇒ QΦ1 = (QJ)Ψ1 − J(QΨ1) = Ψ1 , (B.4)

which is exactly what we need. Then the full solution, ignoring the issue of singular OPE’s

is

Ψn = (QΦ1)Φ
n−1
1 = Ψ1(JΨ1)

n−1 . (B.5)

This is exactly the form of the solution of [34]. The structure of this solution is exactly

like ours, yet the states involved are different. Specifically,

X(0) |0〉 6= Jc∂X(0) |0〉 . (B.6)

The supersymmetric theory requires a different J state. This time J satisfies the

relation

Qη0J = 1 . (B.7)

We can use this state to write

Λ = λ(QG1)J ⇒ Φ = η0Λ = −λ(QG1)(η0J) , (B.8)

Λ̃ = −λG1(η0J) ⇒ Φ̃ = QΛ̃ = −λG1 − λ(QG1)(η0J) , (B.9)

where we used (4.2). This means that every state of the form

G = Γ̃−1(Φ̃)Γ(Φ) , (B.10)

solves the equation of motion, with the right linear term G1, if the functions Γ, Γ̃ are of

the form (1.2). The superstring marginal solution of [34]

G−1 = 1 − λ

1 − λ(QG1)(η0J)
G1 , (B.11)

can be reproduced by choosing

Γ(Φ) = 1 + Φ , Γ̃(Φ̃) = 1 + Φ̃ . (B.12)
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