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In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit
for a system, various resummation methods have been used to improve the standard post-Newtonian
waveforms. In this work we present a new family of templates for the detection of gravitational waves
from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on
reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of
shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as
they display the fastest convergence of any of the orthogonal polynomials. In this case they are also
particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The
Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-
Newtonian templates which only have information at full integer orders. In this work, we compare both
the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is
constructed from a hybrid method of using the test-mass results combined with the mass dependent parts
of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the
Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide
excellent parameter extraction. We also show that this new template family has a faster Cauchy
convergence, gives a better prediction of the position of the last stable orbit and in general recovers
higher Signal-to-Noise ratios than the post-Newtonian templates.
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I. INTRODUCTION

It is believed that stellar mass compact binaries consist-
ing of double neutron stars (NS-NS), double black holes
(BH-BH) or a mixed binary consisting of a neutron star and
a black hole (BH-NS), are the primary targets for a direct
first detection of gravitational waves (GW) by the ground-
based interferometers, LIGO [1], VIRGO [2], GEO600 [3],
and TAMA [4]. It is also believed that the inspiral of
comparable-mass Supermassive BHs during the merger
of galaxies will be a major source of GWs for the proposed
space-based detector LISA [5]. Under radiation reaction
the orbit of a binary slowly decays, emitting a signal whose
amplitude and frequency increases with time and is termed
a ‘‘chirp’’ signal. While stellar models predict that there is
a greater population of NS-NS binaries [6–10], it is be-
lieved that BH-BH binaries will be the strongest candidates
for detection since they can be seen within a greater
volume, about two orders-of-magnitude greater than that
for NS-NS binaries [6,11]. A quick calculation shows that
the idealized signal-to-noise ratio (SNR) at 100 Mpc is
�2:5 for a NS-NS binary,�5 for a BH-NS binary and�12
for a BH-BH binary, assuming the LIGO ground-based
detector has a low frequency cutoff of 40 Hz. For LISA,
it has been shown that we should, theoretically, be able to
view the merger of supermassive BHs out to cosmological
distances of z� 10 [12,13].

At present, the best proposed method to detect these
sources is the method of matched filtering [14]. In this
method, a set of waveforms or templates, that depend on a
number of parameters of the source and its location and

orientation relative to the detector, are created. These
templates are then cross correlated with the detector output
weighted by the inverse of the noise spectral density. If a
signal, whose parameters are close to one of the template
waveforms, is present in the detector output then the cross
correlation builds up. In the case of a sufficiently strong
signal, the correlation will be much larger than the root-
mean-squared (rms) correlation in the absence of any
signal. The success of matched filtering depends on how
well we understand the phase evolution of the waveform. A
tiny instantaneous difference, as low as one part in 103,
between the phase of the true signal in the detector output
and the search template, could lead to a cumulative differ-
ence of several radians as we integrate over several hun-
dred to several thousand cycles. With the aim of improving
the detection ratio for binary inspirals, there has been a
considerable effort in accurately computing the dynamics
of a compact binary and the emitted waveform.

There have been a number of parallel efforts using
different schemes to accurately describe the phase.
Firstly, there is the post-Newtonian (PN) expansion of
Einstein’s equations which has been used to treat the
dynamics of two bodies of comparable masses, with and
without spin, in orbit around each other. This approxima-
tion is applicable when the velocities involved in the
system are small but there is no restriction on the ratio of
the masses [15–21]. Next, black hole perturbation theory
has been used to compute the dynamics of a test particle in
orbit around a Schwarzschild or Kerr BH. Black hole
perturbation theory does not make any assumptions on
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the velocity of the components, but is valid only in the limit
when the mass of one of the bodies is much less than the
other [22–27]. Finally, there has been some very promising
progress made in the field of numerical relativity [28]. It is
now possible to start numerical simulations a few orbits
before merger, and evolve the black holes through the
merger and into the ringdown phase. The goal is to take
adiabatic inspiral templates and match them to the numeri-
cal waveforms as we approach the highly relativistic phase
[29]. Hopefully, in time, this will provide us with a com-
plete GW template, from the adiabatic regime of the in-
spiral through the merger and onto the ringdown.

In this work, we are mostly interested in the PN approxi-
mation and the adiabatic inspiral phase. In particular we
will focus on the inspiral of BH-BH binaries as these
systems will coalesce in the most sensitive frequency
band for the ground-based detectors. The PN approxima-
tion is a perturbative method which expands the equations
of motion, binding energy and GW flux as a power series in
v=c, where v is the invariant velocity of the system and c is
the speed of light. In the early adiabatic stage of an inspiral,
the radiation reaction time scale is much greater than the
orbital time scale. At this point in the binary evolution, the
velocity of the bodies in the system is quite small. In fact
for a BH-BH system of �10; 10�M�, the velocity of the
system as it enters the LIGO bandwidth is �0:23c. At this
point, the two BHs are separated by a distance of R� 19m,
where m is the total mass of the system. This is quite close
to the point at r � 10m [30] where we know the PN
approximation begins to break down.

It was shown [31–34] that templates based on resum-
mation methods, such as Padé approximation, have a faster
convergence in modeling the gravitational waveform for
test-mass systems. However, in this case an exact expres-
sion is known for the binding energy of the system, while
the GW flux is known only in terms of a PN expansion in
powers of v. When compared with numerical fluxes, the
Padé approximations were clearly superior to the standard
PN fluxes. The Padé based templates were then used to
partially construct effective one body templates [35] which
went beyond the adiabatic approximation and modeled the
waveform into the merger phase. Other template families
such as the more phenomenological BCV (Buonanno-
Chen-Vallisneri) templates [36] and a new family called
complete adiabatic [37] have also been proposed as pos-
sible successors to the PN template.

In this paper, we build on the results of a previous work
where we defined a new template family for the
Schwarzschild test-mass case that was based on shifted
Chebyshev polynomials (SCPs). We were able to show that
modeling the flux function with these orthogonal polyno-
mials gave a more convergent and robust flux function
which leads to lower errors in the estimation of the chirp
mass. In this current work we explore the comparable-mass
case. It is known that the Chebyshev polynomials are

bound in the domain between �1. In the previous work,
we used the SCPs which we bound between zero and the
velocity at the last stable orbit (LSO). However, it is known
in the literature that the smaller the domain we are approx-
imating in, the faster the convergence of a Chebyshev
series. We therefore derive the SCPs which are a function
of the total mass of the system. This ensures that we
minimize the domain of the SCPs for different
comparable-mass systems to try and ensure the best results.
Using the SCPs we propose a new representation of the
binding energy and flux functions.

The paper is organized as follows: In Sec. II we define
the gravitational waveform in the restricted PN approxi-
mation for ground-based detectors. We also define PN
expansions for the derivative of the binding energy and
the flux functions. In Sec. III we quickly review some
aspects of the approximation theory and outline some of
the details of the Chebyshev polynomials. We then go on to
derive the analytic form for the SCPs in terms of the
monomials in v, as well as analytic expressions for the
monomials in terms of the SCPs. In Sec. IV we define the
new Chebyshev approximations to the binding energy and
the GW flux function. We also define a fiducially exact
binding energy and flux which is based on a hybrid scheme
that uses aspects from both the test-mass and comparable-
mass cases. Using these fiducial functions, we make a
graphical comparison of the performance of both the PN
and Chebyshev approximations against the respective fi-
ducial functions. Section V contains a more quantitative
analysis of the new approximations. Using the newly de-
fined functions we calculate the fitting factors of the
Chebyshev and PN waveforms against a fiducial exact
waveform. In Sec. VI we investigate the Cauchy conver-
gence of this new template family. In Secs. VII and VIII we
look at how well the various approximations predict the
position of the LSO, and how much signal-to-noise ratio
they recover as a function of both total mass and distance
when compared to the fiducial waveform.

II. THE GRAVITATIONAL WAVEFORM

In the transverse-traceless gauge GWs are represented
by the two polarizations h� and h�. The response h�t� of a
detector to an incoming signal is given by the combination
h�t� 	 h�F� � F�h�, where in the restricted post-
Newtonian approximation [38] the polarizations are given
by

 h��t� 	
4�m
D
�1� cos2i�

2
v2�t� cos��t�; (1)

 h��t� 	
4�m
D

cosiv2�t� sin��t�; (2)

and the beam-pattern functions are given by
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 F���;�;  � 	
1

2
�1� cos2�� cos2� cos2 


 cos� sin2� sin2 ; (3)

 F���;�;  � 	
1

2
�1� cos2�� cos2� sin2 

� cos� sin2� cos2 : (4)

By restricted PN approximation we retain only the domi-
nant amplitude and ignore all higher harmonic corrections.
In the above equations, m 	 m1 �m2 is the total mass of
the system, � 	 m1m2=m2 is the reduced mass ratio, i is
the inclination angle of the binary orbit,D is the distance to
the source, v 	 �m��1=3 	 ��mfGW�

1=3 is the invariant
PN velocity parameter related to the orbital frequency �
and GW frequency fGW, ��;�� define the sky position of
the source and  is the polarization angle of the wave. As a
single detector will be unable to disentangle the two indi-
vidual polarizations, we can write the response in the form

 h�t� 	
4�m
D

Av2�t� cos���t� ��0�; (5)

where, for the short-duration signals we are considering in
this study, the coefficient A 	A��;�; i;  � and phase
factor �0 	 �0��;�; i;  � can be taken to be constant.

The PN approximation and the quadrupole formula,
when applied to an inspiralling binary system, give the
relativistic binding energy per unit mass E�v�, and the GW
flux F�v� as series expansions in the parameter v. Once we
have these two functions we can use the energy balance
argument

 m
dE�v�
dt

	 
F�v� (6)

to obtain the evolution of the phase of the GW. Integrating
the energy balance equation and using 2�f 	 d�=dt, we
obtain the set of parametrized integral equations

 t�v� 	 t0 �m
Z vlso

v
dv
E0�v�
F�v�

; (7)

 ��v� 	 �0 � 2
Z vlso

v
dvv3 E

0�v�
F�v�

; (8)

where E0�v� 	 dE�v�=dv, t0 and �0 is can be taken to be
constants of integration at a particular reference time.
Rather than solving the set of equations by numerical
integration, it is much quicker to solve the following set
of ordinary differential equations (ODEs)

 

dv
dt
	 


F�v�
mE0�v�

;
d�
dt
	

2v3

m
: (9)

The above integral equations and ODEs for the phasing
formula � 	 ��t� hold under the ‘‘adiabatic inspiral’’
assumption.

While for test-mass systems we have an exact expres-
sion for the binding energy and a PN expansion for the flux
function, we have no such luxury in this case. For
comparable-mass bodies, the binding energy is represented
by a PN series approximation to order O�v6�, while the
GW flux function is again represented by a series approxi-
mation to order O�v7�. Thus we replace the functions
�E0�v�; F�v�� in Eqs. (9) with the PN power series approx-
imations �E0Tn�v�; FTn�v��.

The PN energy derivative is defined by the power series
expansion [39–43]

 E0Tn�v� 	 
�v
X6

k	0

ekvk (10)

where

 

e0 	 1;

e2 	 

1

6
�9� ��

e4 	 

3

8

�
27
 19��

�2

3

�

e6 	 4
�



675

64
�

�
34445

576



205�2

96

�
�


155

96
�2



35

5184
�3

�
(11)

and e1 	 e3 	 e5 	 0. In the coefficient e6 we have
used the fact that the constant term appearing in the litera-
ture has been determined to be � 	 
1987=3080
[41,42,44,44], which allows us to write the terms in square
brackets in a more condensed form.

The GW flux function, also defined in the form of a PN
expansion, is given by [15–21]

 FTn�v� 	 FN

�X7

k	0

Ak���v
k � ln�v�B6v

6

�
; (12)

where the Newtonian flux is given by

 FN�v� 	
32

5
�2v10; (13)

and
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A0 	 1;

A1 	 0;

A2 	 

1247

336



35

12
�;

A3 	 4�;

A4 	 

44711

9072
�

9271

504
��

65

18
�2;

A5 	 


�
8191

672
�

583

24
�
�
�;

A6 	
6643739519

69854400



1712�
105

�
16�2

3



3424 ln�2�

105




�
41�2

48



134543

7776

�
�


94403

3024
�2 


775

324
�3;

A7 	 �
�



16285

504
�

214745

1728
��

193385

3024
�2

�
;

(14)

 B6 	 
1712=105; (15)

where � 	 0:577 . . . is Euler’s constant. Once again, in
coefficient A6 we have used the value for the constant � 	

11831=9240 [45] that appears in the literature to write
the � dependent term in a shortened form. We can see that
the flux is not defined by a pure power series, but has a
logarithmic term appearing at the 3-PN order. Terms like
this can be responsible for poor convergence if not treated
properly.

III. THE SHIFTED CHEBYSHEV POLYNOMIALS
AND THE VELOCITY MONOMIALS

As we have seen, both the binding energy and the GW
flux functions are given by power series representations to
various orders. We can treat these expansions just like we
would a standard Taylor series. We should caution the
reader not to confuse the subscript Tn with the symbol
for the Chebyshev polynomial Tn�x� that we will define in
this section. While it is an unfortunate coincidence, we will
continue to use both symbols as they are established in the
literature. We have seen in other studies [31–34] that in the
case of a test-mass particle orbiting both Schwarzschild
and Kerr black holes, the PN representation of the flux does
not display the fastest convergence. Other resummation
methods such as Padé approximation offer a faster con-
verging approximation to the GW flux function when
compared with numerical results from black hole pertur-
bation theory. It is these previous works that motivate us to
try a different and more convergent approach to the mod-
eling of the binding energy and flux functions.

The problem for expansions like a Taylor or a Maclaurin
series is that they are based on the Weierstrass theorem, i.e.
for any continuous function f�x� 2 C�a; b� and for any
given � > 0, there exists a polynomial pn�x� for some
sufficiently large n such that jf�x� 
 pn�x�jmax < �. So,

as long as we can approximate a function with a series
containing a sufficiently large number of terms, we can
always minimize the error of our approximation. However,
this is not always practical as the number of necessary
terms may be too high (for example, it takes about 5000
terms in a Taylor expansion of arctan�x� to deliver a five
significant figure accuracy at x equal to unity [46]).
Moreover, we may be dealing with an approximation to
some function where it is very difficult to calculate more
than a few terms. For comparable-mass systems this is a
particular problem as we have only a three term expression
for the binding energy and a seven term expansion for the
GW flux function. We know from previous studies in the
test-mass case that this number of terms may not be
sufficient to accurately model the true binding energy
and flux functions. A more promising possibility is based
on the Chebyshev alternation theorem for polynomials
which states ‘‘For any continuous function f�x� 2
C�a; b�, a unique minimax polynomial approximation
pn�x� exists, and is uniquely characterized by the ‘alter-
nation property’ (or ‘equioscillation property’) that there
are (at least) n� 2 points in �a; b� at which jf�x� 
 pn�x�j
attains its maximum absolute value with alternating signs.’’
Thus, the reason the minimax polynomial is so sought after
is that the Chebyshev alternation theorem guarantees that
there is only one such polynomial and it has the necessary
condition of having an ‘‘equal-ripple’’ error curve.
Unfortunately, the minimax polynomial is usually ex-
tremely difficult, if not impossible, to find. A more prom-
ising and obtainable possibility is based on getting close to
the minimax polynomial by using the family of ultraspheri-
cal (or Gegenbauer) polynomials which are defined by

 P���n �x� 	 Cn�1
 x
2�
�

dn

dxn
�1
 x2�n��

�
1 � � � 1�;
(16)

where Cn is a constant. These polynomials are orthogonal
over x 2 �
1; 1� with respect to the weight function �1

x2��. A feature of the polynomials P���n �x� is that they have
n distinct and real zeros and exhibit an oscillatory behavior
in the interval �
1; 1�. For the particular value of � 	

1=2 the amplitude of the oscillations remain constant
throughout the interval and is conducive to finding an
‘‘equal-ripple’’ error curve, which is integral to the mini-
max polynomial.

This value of � corresponds to the Chebyshev polyno-
mials of the first kind Tn�x� (hereafter Chebyshev poly-
nomials). These polynomials are closely related to the
minimax polynomial due to the fact that there are n� 1
points in �
1; 1� where Tn�x� attains a maximum value of
unity with alternating signs [47]. It can be shown [48] that
the Chebyshev polynomials exhibit the fastest convergence
properties of all of the ultraspherical polynomials. The n�
1 extrema are given by
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 xk 	 cos
�
k�
n

�
k 	 0; ::; n; (17)

with n zeros given by

 xk 	 cos
�
�k
 1

2��

n

�
k 	 1; ::; n: (18)

The Chebyshev polynomials are formally defined by

 Tn�x� 	 cos�n�� when x 	 cos���: (19)

From de Moivre’s theorem, we know that cos�n�� is a
polynomial of degree n in cos���, e.g.

 cos�0�� 	 1; cos��� 	 cos���;

cos�2�� 	 2cos2��� 
 1; . . . ;
(20)

which allows us to write the Chebyshev polynomials

 T0�x� 	 1; T1�x� 	 x; T2�x� 	 2x2 
 1; . . . :

(21)

Therefore, a Chebyshev series in x corresponds to a Fourier
series in �. This close relation to a trigonometric function
means these polynomials are extremely useful in approx-
imating functions. The Chebyshev polynomials are or-
thogonal polynomials with respect to the weight
�1
 x2�
1=2 according to

 hTi�x�jTj�x�i 	
Z 1


1
dx
Ti�x�Tj�x���������������

1
 x2
p 	

8><>:
0 i � j
�
2 i 	 j � 0
� i 	 j 	 0

(22)

with initial conditions

 T0�x� 	 1; T1�x� 	 x: (23)

We calculate the higher order Chebyshev polynomials
using the recurrence relation

 Tn�x� 	 2xTn
1�x� 
 Tn
2�x�; (24)

given the above initial conditions.
The Chebyshev polynomials are usually defined in the

domain �
1; 1�. For this particular problem, we require the
shifted Chebyshev polynomials, T
n�v�, which are defined
in the domain v 2 �vini; vlso� so that we have the maximum
convergence possible. We can transform from the domain
�
1; 1� to another interval �a; b� using

 s 	
2x
 �a� b�

b
 a
8x 2 �a; b�; s 2 �
1; 1�: (25)

Now first defining the two variables

 	 	 vini � vlso; 
 	 vlso 
 vini; (26)

where vini 	 ��mflow�
1=3 is the initial velocity of the body

as it crosses the lower frequency cutoff of the detector and
vlso is the velocity at the last stable circular orbit, the shift

has the form

 s 	
2v
 	



8v 2 �vini; vlso�: (27)

We should point out here that both 	 and 
 are functions of
the total mass of the binary through the initial velocity.
This in turn infers that the SCPs are also functions of the
total mass. Furthermore, while the PN approximations to
the energy and flux functions are unchanged for all equal
mass systems, regardless of total mass, this will not be the
case for the Chebyshev approximations. For each equal
mass system with a different total mass, the approxima-
tions to the energy and the flux will differ. We now write
the SCPs in the form

 T
n�v� 	 Tn�s� 	 Tn

�
2v
 	



�
; (28)

and the recurrence relation as

 T
n�v� 	 2
�
2v
 	



�
T
n
1�v� 
 T



n
2�v�: (29)

While for computational purposes we will use the above
recurrence relation to calculate the shifted polynomials, we
also need to be able to express the polynomials in analyti-
cal form. Once we have the analytic expressions for T
n�v�
in terms of v, we can then invert the expressions to find an
analytic format for the monomials of v in terms of T
n�v�.
Therefore, using the fact that the SCPs are normalized
according to

 T
0�v� 	 1 (30)

 T
1�v� 	 

1�2v
 	� (31)

we can use the recurrence relation to find the other shifted
polynomials to order O�v7�, i.e.

 T
2�v� 	 

2��2	2 
 
2� 
 8	v
 8v2� (32)

 

T
3�v� 	 

3��3	
2 
 4	3� � 6�4	2 
 
2�v


 48	v2 � 32v3� (33)

 

T
4�v� 	 

4��
4 � 8	4 
 8	2
2� � 32�	2
2 
 2	3�v

� 32�6	2 
 
2�v2 
 256	v3 � 218v4� (34)

 T
5�v� 	 

5��20	3
2 
 16	5 
 5	
4� � �160	4


 120	2
2 � 10
4�v� �240	
2 
 640	3�v2

� �240	
2 
 640	3�v3 
 1280	v4 � 512v5�

(35)

NEW TEMPLATE FAMILY FOR THE DETECTION OF . . . PHYSICAL REVIEW D 76, 104002 (2007)

104002-5



 

T
6�v� 	 

6��32	6 
 48	4
2 � 18	2
4 
 
6� � �384	3
2 
 384	5 
 72	
4�v� �1920	4 
 1152�	
�2 � 72
4�v2

� �1536	
2 
 5120	3�v3 � �7680	2 
 768
2�v4 
 6144	v5 � 2048v6� (36)

 

T
7�v� 	 

7��112	5
2 
 64	7 
 56	3
4 � 7	
6� � �896	6 
 1120	4
2 � 336	2
4 
 14
6�v

� �4480	3
2 
 5376	5 
 672	
4�v2 � �17920	4 
 8960�	
�2 � 448
4�v3 � �8960	
2 
 35840	3�v4

� �43008	2 
 3584
2�v5 
 28672	v6 � 8192v7� (37)

Using the above expressions we can now write the monomials of v in terms of T
n�v� as follows

 v 	
1

2
�	T
0 � 
T



1� (38)

 v2 	

�

2

8
�
	2

4

�
T
0 �

	

2
T
1 �


2

8
T
2 (39)

 v3 	

�
3

16
	
2 �

	3

8

�
T
0 �

�
3

8
	2
�

3

32

3

�
T
1 �

3

16
	
2T
2 �


3

32
T
3 (40)

 v4 	

�
3

128

4 �

	4

16
�

3

16
	2
2

�
T
0 �

�
1

4
	3
�

3

16
	
3

�
T
1 �

�
3

16
	2
2 �


4

32

�
T
2 �

1

16
	
3T
3 �


4

128
T
4 (41)

 

v5 	

�
15

256
	
4 �

5

32
	3
2 �

	5

32

�
T
0 �

�
5

256

5 �

15

64
	2
3 �

5

32
	4


�
T
1 �

�
5

32
	3
2 �

5

64
	
4

�
T
2

�

�
5

64
	2
3 �

5

512

5

�
T
3 �

5

256
	
4T
4 �


5

512
T
5 (42)

 

v6 	

�
	6

64
�

15

128
	4
2 �

45

512
	2
4 �

5

1024

6

�
T
0 �

�
15

256
	
5 �

15

64
	3
3 �

3

32
	5


�
T
1

�

�
15

2048

6 �

15

128
	2
4 �

15

128
	4
2

�
T
2 �

�
5

64
	3
3 �

15

512
	
5

�
T
3 �

�
3

1024

6 �

15

512
	2
4

�
T
4 �

3

512
	
5T
5

�

6

2048
T
6 (43)

 

v7 	

�
	7

128
�

35

2048
	
6 �

21

256
	5
2 �

105

1024
	3
4

�
T
0 �

�
105

1024
	2
5 �

7

128
	6
�

105

512
	4
3 �

35

8192

7

�
T
1

�

�
21

256
	5
2 �

35

256
	3
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To express the PN expansions for both the energy deriva-
tive and the gravitational flux function in terms of shifted
polynomials, we will substitute the above expressions for
the monomials in v and collect all terms proportional to
each polynomial. In Fig. 1 we plot the SCPs for a
�10; 10�M� binary BH. We can see that the polynomials
are bound between �
1; 1� for v 2 �0:23; 0:408� which
correspond to the initial and LSO velocities for this par-
ticular system assuming a lower frequency cutoff of 40 Hz
and that the velocity at the LSO is given by the test-mass

Schwarzschild value of vlso 	 1=
���
6
p

. We can also see that
SCPs have an equal amplitude oscillation exhibiting n� 1
alternating maximum and minimum values of �1, as well
as n zeros across the domain.

IV. THE CHEBYSHEV APPROXIMATION
GRAVITATIONAL WAVEFORM

Our aim in this section is to take the set of ODEs given
by Eq. (9) and write them in the form
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dv
dt
	 


FCn�v�

mE0Cn�v�
;

d�
dt
	

2v3

m
: (45)

where E0Cn�v� and FCn�v� are more robust and convergent
expansions of the binding energy and flux functions based
on SCPs.

A. Modeling the energy function

We begin rewriting the monomials for v2, v4 and v6

appearing in Eq. (10) in terms of the SCPs. This allows us
to define the Chebyshev approximation to the energy de-
rivative function

 E0Cn�v� 	 
�v
X6

k	0

EkT
k �v�; (46)

where the new coefficients are defined by
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(47)
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 E 3 	 e4
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 E 5 	 e6
3

512
	
5 (52)

 E 6 	 e6

6

2048
(53)

Notice that the Chebyshev energy derivative is defined at
all PN orders. The PN approximation suffered from the fact
that for any odd PN order template, we had to use the
previous order PN approximation for the energy derivative.
This new expression allows us to use an equivalent
order approximation to the flux function when we define
waveforms at odd PN orders. We also remind the reader
that the function E0Cn�v� 	 E0Cn�v;�;m� through the
shifted Chebyshev polynomials, whereas E0Tn�v� 	
E0Tn�v;�� only.

In Fig. 2 we plot the absolute value of the coefficients
from both the PN and Chebyshev approximations for four
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FIG. 1 (color online). The 7th order shifted Chebyshev poly-
nomials for a �10; 10�M� BH-BH binary in the domain v 2
�0:23; 0:408�. We can see that the polynomials have n� 1
alternating maximum and minimum values of �1 and n zeros
across the domain.
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FIG. 2 (color online). A comparison of the convergence for the
binding energy derivative coefficients of the PN approximation
(left) and the shifted Chebyshev approximation (right) for the
four BH-BH systems with masses (5, 5), (10, 10), (20, 10) and
�20; 5�M�. We can see that while the values of the PN coef-
ficients oscillate wildly, the Chebyshev coefficients get smaller
as we go to higher orders of approximation. We have plotted two
systems with � 	 0:25 to emphasize the fact that the Chebyshev
coefficients Ek 	 Ek�m� are a function of the total mass of the
system.
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BH-BH systems with masses (5, 5), (10, 10) and
�20; 10�M� to give values of � between 0.16 and 0.25.
We can see from the left hand cell that the PN coefficients
display no obvious convergence, with the values of the
coefficients growing as we go to higher orders of approxi-
mation. On the other hand, the Chebyshev coefficients
display a remarkable convergence with each successive
coefficient smaller than the previous as we move to higher
PN orders. This informs us that the Chebyshev series is
convergent. We have shown in a previous work [49] that as
the shifted polynomials have maximum absolute values of
jT
n�v�j � 1, the value of the coefficients En give an ex-
cellent estimate of the truncation error at each PN values
for the Chebyshev series.

In order to make some kind of comparison we have to
define some fiducially exact energy derivative function.
For this particular exercise we define a hybrid [50] energy
function using the information we have from both the test-
mass and comparable-mass cases. Using the � dependent
terms from the PN energy we define
 

E0X�v� 	 
�v
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 6v2
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 3v2�3=2
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19��
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34445
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205�2
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24
�2



35

1296
�3

�
v6

�
: (54)

where the first term in the brackets is the exact expression
for a test particle in a Schwarzschild geometry. While we
make the assumption that the comparable-mass case is a

smooth � deformation of the test-mass case, this seems to
be a plausible function to use as it returns the test-mass
result in the case of �! 0.

In Fig. 3 we plot the relative error between the PN and
Chebyshev approximations and the fiducial energy func-
tion for a number of different BH-BH systems, i.e.

 err 	

��������1

E0A�v�
E0X�v�

��������: (55)

We can see from the left hand column that in all cases the
PN energy at 1-PN order has an expected high error. There
is then a large jump to the 2-PN order and it is clear that the
3-PN energy gives a slightly better fit than the 2-PN energy.
From the images one could imagine that the PN approxi-
mation is converging to a particular solution. However, one
only has to look at the PN approximation for the flux in
both the test-mass and comparable-mass cases to realize
that if it were possible to go to 4-PN order, it may be that
the 4-PN approximation does worse than either the 2 or 3-
PN approximations. On the other hand, we observe a very
remarkable convergence with the Chebyshev approxima-
tion. In most cases, the 1-PN order approximation is very
close to the performance of the 3-PN Chebyshev approxi-
mation. For the low equal mass case, the approximation
has quite a large oscillation at low velocity. However, this
is increasingly minimized as we move to higher mass
systems, both equal and unequal-equal. We can see that
in most of the cases on the right hand side, it is virtually
impossible to make out the various Chebyshev approxima-
tions from 1.5-PN order upwards.
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FIG. 3 (color online). Comparison of the relative errors for the PN (left) and Chebyshev (right) energy derivative functions against a
fiducial exact energy function for four BH-BH systems with masses (5, 5), (10, 10), (20, 10) and �20; 5�M�. Each dip in the
approximation error curves correspond to a crossing of the exact energy function by the approximated flux. The initial velocity in each
case is defined by a lower frequency cutoff of 40 Hz.
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B. Modeling the gravitational wave flux function

In order to model the flux function as best as possible,
we will borrow some steps from the work on Padé approxi-
mation [31]. We can see from Eq. (12) that there is a null
linear term in the PN expansion for the flux. We have
confirmed that rewriting the expansion in terms of the
SCPs automatically introduces a linear term in the expan-
sion and that compared to the fiducial flux that we will
define below, improves the approximation to the flux.
However, we can do better. In the spirit of the Padé
expansion, we first of all define the factored flux function

 fTn �
�
1


v
vpole

�
FTn; (56)

where vpole 	 1=
���
3
p

is the velocity at the light ring for a
test particle orbiting a Schwarzschild BH. In order to
minimize the effect of the logarithmic term appearing at
3-PN order, we factor out this term and normalize it

according to

 fTn�v� 	
�

1� ln
�
v
vlso

�
B6v

6

��X7

k	0

fkv
k
�
; (57)

where f0 	 c0 and fk 	 Ak 
 Ak
1=vpole, for k 	
1; . . . ; 7. Now once again, swapping all of the monomials
in v in the series expansion on the right hand side with their
expansions in terms of the SCPs, we define the new
Chebyshev flux function

 FCn�v� 	 FN

�
1� ln

�
v
vlso

�
B6v6

��
1


v
vpole

�

1

�
X7

k	0

F kT


k �v�; (58)

where the new coefficients are defined by
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In a previous study [49] we showed that it was also
prudent to expand the power after the log term as a
Chebyshev series. However, in that case we had a power
series to order O�v11�. In this study as the only information
is given by the v6 term, we found that there is no advantage
to rewriting this term in terms of SCPs. Again we note that
FCn�v� 	 FCn�v;�;m� due to the dependence of the SCPs
on vini. In Fig. 4 we again plot the absolute value of the flux
coefficients for both the PN and Chebyshev approxima-
tions. We can see in this case that the PN coefficients (left)
display large oscillations in their values as we go to higher
PN orders. On the other hand, we once again see that the
Chebyshev coefficients show convergent properties by get-
ting smaller as we increase the order of approximation. We
should point out that there is a slight oscillation in the
values of the Chebyshev coefficients for the� 	 0:16 case.
The reason for this is not fully understood. What we have
worked out is that this behavior only exists for reduced
mass ratios in the range 0:16 � � � 0:19.

As in the case of the energy function, we need to have
some way of comparing both flux approximations. To this
end, we use another hybrid scheme where we use the test-
mass numerical flux from BH perturbation theory mixed
with the � correction terms from PN theory. Thus the 3.5-
PN fiducial exact flux is given by
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; (67)

where FNNnum�v� is the Newtonian normalized numerical
GW flux function [51].

In Fig. 5 we again plot the relative error between the PN
and Chebyshev GW flux approximations and the fiducial
flux function for the BH-BH systems of masses (5, 5), (10,
10), (20, 10) and �20; 5�M�. We can see from the cells in
the left hand column a known trait of the PN expansion,
that going to higher orders does not necessarily give a
better approximation. In any event, it is clear that in all
cases the 2.5-PN flux approximation is only marginally
better than the 1-PN case. We should point out here that
the 1.5 and 2-PN fluxes look much better than any other
order as they approach the LSO. This is due to a coinci-
dental crossing of the exact flux function as the LSO is
reached. While the 3 and 3.5-PN approximations are much
better earlier on, it is clear that their relative errors are
greater than the 1.5 and 2-PN orders at the LSO. However,
we should point out that for the �20; 5�M� case, the 3-PN
approximation has a crossing as the LSO approaches, thus

giving a very small error in the most important region. The
PN approximations can give an extremely good fit in a very
narrow range as the approximated flux crosses the exact
flux. However, it is clear from the plot that where this
happens for each PN order depends on the total mass of
the system.

The Chebyshev fluxes, on the other hand, display a
remarkable convergence. In all cases we see oscillating
error curves indicating that the Chebyshev approximations
cross the exact flux many times. While the 1-PN case has
the largest amplitude of error oscillation, all other orders of
approximation are incredibly consistent. We can see that
for the equal mass cases, the Chebyshev fluxes at all orders
have a smaller error than PN fluxes at the 3 and 3.5-PN
order. It is clear to see from the slopes of the error curves,
that the Chebyshev approximation attempts to find an equal
amplitude error curve by leaving the error float in some
parts in order to improve the performance elsewhere.
While it does not fully succeed, it is pretty much impos-
sible to make out any difference between the Chebyshev
approximations at PN orders of greater than one. While the
Chebyshev approximations do not have the small range
accuracy of the PN approximations, overall the Chebyshev
approximations display a higher stability.

V. FITTING FACTORS

We define the overlap between two waveforms h�t� and
s�t� as the inner product of the normalized waveforms
denoted by
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FIG. 4 (color online). A comparison of the convergence for the
flux coefficients of the PN approximation (left) and the shifted
Chebyshev approximation (right) for the four BH-BH systems
with masses (5, 5), (10, 10), (20, 10) and �20; 5�M�. We can see
that the values of the PN coefficients again oscillate wildly and
display an overall trend of growth. While not as smooth as in the
case of the binding energy, the Chebyshev coefficients again get
smaller as we go to higher orders of approximation.
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 O 	
hhjsi��������������������
hhjhihsjsi

p ; (68)

where the scalar product is defined by

 hhjsi 	 2
Z 1

0

df
Sh�f�

�~h�f�~s
�f� � ~h
�f�~s�f��: (69)

Here, the 
 denotes complex conjugate and ~h�f�, ~s�f� are
the Fourier transforms of h�t�, s�t�. The above scalar
product is weighted by the inverse one-sided noise power
spectral density (PSD) of the detector Sh�f�. For initial
LIGO, the design study PSD [1] is given by [32]

 Sh�f� 	 9� 10
46�0:52� 0:16x
4:52 � 0:32x2� Hz
1;

(70)

where x � f=fk, and fk 	 150 Hz is the ‘‘knee fre-
quency’’ of the detector. We take the PSD to be infinite
below the lower frequency cutoff of flow 	 40 Hz. For
testing the performance of a particular template, a more
appropriate quantity compared to the scalar product is the
fitting factor FF. Defining each template as a function of
the intrinsic parameters �� 	 fm;�; t0; �0g, the fitting
factor is defined as the maximum overlap obtained by
varying the parameters of the template relative to the signal
we are trying to detect.

 FF 	 max
��

O����: (71)

While we expect the comparable-mass waveforms to
have LSO frequencies different to the test-mass case, we

have verified that we can take the flso from the test-mass
case as the upper limit to the scalar product integral with-
out any great change of results. For this study we generate
our signal by inserting the equations for the fiducially exact
binding energy and flux functions given by Eqs. (54) and
(67) into the set of ODEs that describe the velocity and
phase evolution of the waveform, i.e. hX�v� 	
h�E0X�v�; FX�v��.

In Figs 6 and 7 we plot the percentage errors in the
recovered total massm and reduced mass ratio�, as well as
the recovered fitting factors for six different comparable-
mass systems. For this study we have chosen three equal
mass systems of (5, 5), (10, 10) and �20; 20�M�, and three
unequal mass systems of (10, 5), (20, 10) and �20; 5�M�.
Firstly, focusing on the PN waveforms. We can see that in
all cases the 1-PN template performs very badly against the
test waveform, never achieving very high fitting factors
and always returning extremely high errors in the total
mass [almost 90% in the case of the �20:5�M� system].
From 1.5-PN order onwards, we can always achieve fitting
factors of greater than 0.95. However the figures display the
known oscillatory nature of the PN expansion. We can see
that the 2-PN is better than the 1.5-PN, but then the 2.5-PN
order template is worse than the 2-PN template etc. In all
cases however, the 3 and 3.5-PN order templates return
acceptable answers. We should bring attention to the fact
that for the �5; 5�M� system, the 2-PN template outper-
forms the Chebyshev template in the extraction of the
parameters, with a comparable fitting factor to the
Chebyshev templates. However, this behavior does not
repeat itself in any of the other cases we examined.
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FIG. 5 (color online). Comparison of the relative error for the PN (left) and Chebyshev (right) GW flux functions against a fiducial
exact flux function for four BH-BH systems with masses (5, 5), (10, 10), (20, 10) and �20; 5�M�. Each dip in the approximation error
curve corresponds to a crossing of the exact energy function by the approximated flux. The initial velocity in each case is defined by a
lower frequency cutoff of 40 Hz.
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FIG. 7 (color online). The percentage errors in total mass m, reduced mass ratio � and fitting factors for three unequal mass systems
of (10, 5), (20, 10) and �20; 5�M� for both PN and Chebyshev waveforms when compared to the fiducially exact hybrid waveform.
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On the other hand, the Chebyshev templates display a
remarkable convergence with all templates always achiev-
ing a fitting factor of greater than 0.99. In terms of parame-
ter estimation, it is clear, in all cases, that the error at 1-PN
order is only slightly greater than the Chebyshev errors at
3.5-PN order. This is a consequence of the Chebyshev
series attempting to minimize the maximum error and
find a minimax solution. While there is some oscillation
in the error curves, it is quite small in comparison to the PN
templates. We can see from the figures, that compared to
the PN templates, the Chebyshev templates always achieve
comparable or smaller errors in the estimation of m and �.

VI. CAUCHY CONVERGENCE

If a sequence fxng converges, the terms get closer and
closer to the limit of the sequence as the order of the
approximation increases. However, the Cauchy criterion
demands that rather than a limit, the terms get closer to
each other. To this extent, we define our Cauchy conver-
gence as

 C 	 hhnjhn�1i: (72)

In calculating the Cauchy convergence, the masses of
both templates are kept the same as we only need to max-
imize over the extrinsic parameters t0 and �0.
Maximization over t0 is achieved by simply computing
the correlation of the template with the data in the fre-
quency domain followed by the inverse Fourier transform.
This yields the correlation of the signal with the data for all
time lags. To maximize over�0 we use the definition of the
‘‘best possible overlap’’ when individually maximizing
over the phases of two separate templates [31]. This is
given by

 �cos�AB�max 	

�
A� B

2
�

���������������������������������
A
 B

2

�
2
� C2

s �
1=2
; (73)

where
 

A 	 heA1 je
B
1 i � he

A
1 je

B
2 i; B 	 heA2 je

B
1 i � he

A
2 je

B
2 i;

C 	 heA1 je
B
1 ihe

A
2 je

B
1 i � he

A
1 je

B
2 ihe

A
2 je

B
2 i; (74)

and

 eA1 	
~hA1
j~hA1 j

; eA2 	
~hA2 
 hh

A
2 je

A
1 ie

A
1

j~hA2 
 hh
A
2 je

A
1 ie

A
1 j
; (75)

where ~hA1 	 ~h��0 	 0� and ~hA2 	 ~h��0 	 �=2�.
The Cauchy convergence has been calculated many

times before for PN templates (see for example [31]), so
we will not repeat the exercise here. Suffice it to say that
the PN templates display the usual oscillatory behavior
which shows that going from one PN order to the next
does not necessarily result in a better template. In Table I
we list the Cauchy convergence for the Chebyshev tem-
plates for the six test cases we analyzed in the previous
sections. The parameter n denotes the level of approxima-
tion, e.g. n 	 2 corresponds to 1-PN or v2. We can see
from the tables that the Chebyshev templates are incredibly
convergent with all templates achieving overlaps of greater
than 0.9 with the successive template. In fact it is only in
the �5; 5�M� case that the template fails to achieve overlaps
of � 0:97 with each other.

VII. POSITION OF THE LSO

In the previous sections of this work we took the position
of the LSO to be at R 	 6m thus giving the dimensionless
velocity of vlso 	 1=

���
6
p

. Here we investigate how close
both the PN and Chebyshev approximations come to cor-
rectly predicting the position of the LSO, defined as
E0�v� 	 0. For both the ‘‘exact‘‘ and PN expansions this
quantity is E0�v;�� 	 0, while for the Chebyshev approxi-
mation it is E0�v;�;m� 	 0 giving different values for
different total masses.

In Fig. 8 we plot the positions of the predicted LSOs
against the fiducial value for four of the BH-BH systems
that we used previously. In each cell, the circle denotes the
value of the exact LSO position in units of R=m. We have
placed the exact position of the LSO at 3-PN to signify the
order of � corrections involved. The squares denote the PN
approximation values and the triangles denote the
Chebyshev approximations.

In the top two cells we use the same values for both the
fiducial and PN predicted LSOs. These cells correspond to
the � 	 0:25 case which does not change for the PN
approximation, but does for the Chebyshev approximation.
We can see that in all four cases, the PN approximation at

TABLE I. The Cauchy convergence hhnjhn�1i of the Chebyshev templates for three equal
mass, and three unequal mass systems assuming a LIGO noise curve and a lower frequency
cutoff of 40 Hz.

n �5; 5�M� �10; 10�M� �20; 20�M� �10; 5�M� �20; 10�M� �20; 5�M�

2 0.9497 0.9841 0.999 91 0.9703 0.9998 0.999 87
3 0.999 69 0.9999 1.0 0.999 53 0.999 996 0.999 78
4 0.9998 1.0 1.0 0.999 49 1.0 0.999 98
5 0.9999 1.0 1.0 0.999 99 1.0 1.0
6 1.0 1.0 1.0 1.0 1.0 1.0
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1-PN gives a very bad prediction of the position of the
LSO. This value is improved somewhat at 2-PN order, with
the best value coming in all cases from the 3-PN order PN
approximation.

Just like other resummation methods, there is no new
information gained from restructuring the series approxi-
mation. Thus, there are no obvious tricks we can use to
ensure that the location of the LSO is improved at the
highest PN order. Therefore, it is no surprise that the PN
and Chebyshev templates predict the same location at 3-PN
order. However, we can see from the image that the pre-
diction for the LSOs position is greatly improved at lower
PN orders with the Chebyshev templates. The flat profile of
the error distribution is consistent with the effort of the
Chebyshev approximation to minimize the maximum
error.

VIII. SIGNAL-TO-NOISE RATIOS

The final aspect we will investigate is a comparison of
recovered SNRs using the fiducially exact template as our
signal. Using the definition of the scalar product, we can
write the SNR obtained by searching for a signal hX�t�with
a template hn�t� as

 � 	
hhnjhXi���������������
hhnjhni

p : (76)

For this investigation we place the exact waveform and
template at a distance of 100 Mpc. We also assume that the
parameters of the template match the parameters of the
signal exactly. In Fig. 9 we plot the recovered SNRs at
various PN orders for equal mass systems. The results scale
as

������
4�
p

for unequal mass binaries. We can see from the
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plots that at 1, 1.5 and 2.5-PN orders the Chebyshev
templates recover a much greater SNR than the PN tem-
plates at virtually all masses. At the 2-PN order the
Chebyshev templates outperform the PN templates at low
masses and are then comparable at the higher masses.
While for the 3 and 3.5-PN orders, the PN templates out-
perform the Chebyshev templates at very low masses, but
are then comparable at higher masses.

IX. CONCLUSION

In this work we have presented a new family of tem-
plates to detect GWs from the inspiral of comparable-mass
BH-BH binaries. The templates are based on shifted
Chebyshev polynomials which are bound between the
initial and final velocities of the system in question. In
general, the Chebyshev polynomials display the fastest
convergence of all the orthogonal polynomials. Using the
shifted polynomials, we have defined a new resummed
binding energy and GW flux function which we demon-
strated to be graphically more convergent than the PN
functions when compared with a fiducially exact energy
and flux. Using a fiducially exact template constructed
from the exact energy and flux, we were able to show
that the Chebyshev templates achieve very high fitting
factors and excellent parameter extraction as compared to
the PN templates. We were also able to show that in an
effort to get close to a minimax solution, the 1-PN

Chebyshev template is almost as good as the 3.5-PN PN
template. Further displaying the strength of these new
templates, we were also able to show that they provided
more accurate measurements for the position of the LSO,
have an incredibly fast Cauchy convergence, and in most
cases achieve a higher recovered SNR.

We should point out that the Chebyshev templates out-
performed the PN templates when compared to a fiducially
exact waveform constructed from a hybrid combination of
the test-mass binding energy and a numerical flux function
from BH perturbation theory. These functions were then
combined with the mass dependent parts of the PN expan-
sion for the energy and flux functions for comparable-mass
bodies. While is seems sensible, as we recover the test-
mass result in the limit �! 0, it is still only an approxi-
mation of a true possible waveform. However, we are
confident in the abilities of this new template family. We
plan to follow up this investigation with a comparison
against comparable-mass waveforms from numerical rela-
tivity. This should provide us with a more concrete critique
of the ability of these new Chebyshev templates to detect
GWs and parametrize their sources.

For now, we believe that this new family of comparable-
mass templates will be a valuable addition to the search for
BH-BH binaries with both ground and space-based
detectors.
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