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We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-
diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective
purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic
limit of the iterative distillation and purification protocol and discuss its properties.
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I. INTRODUCTION

Continuous variable (CV) quantum information process-
ing [1] is complementary to discrete variable quantum infor-
mation based on qubits. It employs the encoding of informa-
tion into field modes of light [2—4] or into the collective spin
state of many particles such as in a cloud of atoms [5-7].
Encoding quantum information into continuous variables of
optical modes exhibits several advantages over approaches
based on single-photon qubits. For example, it allows for the
deterministic realization of several important protocols, such
as the generation of entanglement [8—11] and entanglement
swapping [12], quantum teleportation [2,3], quantum cloning
[13], and quantum dense coding [14], using only linear op-
tics, optical parametric oscillators as squeezed light sources
and balanced homodyne detection. It is also possible to store
continuous variables of light in atomic memories, either by
means of direct interaction [6] or by teleportation [7].

In the description of CV systems, an important role is
played by probability quasidistributions, which represent
each field mode by a real two-dimensional function [15].
When this function is of Gaussian shape, the corresponding
state is referred to as Gaussian. Due to the ease of both
experimental and theoretical treatment of such states, they
are, together with Gaussian operations preserving the Gauss-
ian nature of the quasidistributions, a significant part of CV
quantum information. However, attempts to estabilish en-
tanglement between two distant parties, which is one of the
fundamental tasks quantum information is facing, are ham-
pered by decoherence and thus, purification and distillation
of entanglement are needed to remove the added noise and
restore, at least approximately, the initial entangled state
[16,17]. Indeed, the entanglement distillation and purification
techniques allow one to extract from many copies of weakly
entangled mixed state a single copy of highly entangled al-
most pure state by means of local quantum operations on
each party’s side and classical communication between the
two parties sharing the states. In general, distillation refers to
the process of increasing entanglement (or squeezing), while
purification is associated with reduction of the state’s mixed-
ness. Within the framework of this paper both effects involve
each other and the corresponding terms will be used inter-
changeably. Unfortunately, purification and distillation of en-
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tanglement are impossible to accomplish for Gaussian states
by using feasible Gaussian operations alone [18-20]. Note,
that a similar no-go theorem also holds for single-mode
squeezed states [21]. Namely, it is impossible to use passive
Gaussian operations, balanced homodyne detection, and
feedforward to transform an arbitrary number of Gaussian
states into a single state with squeezing better than the initial
one, where the squeezing is characterized by the lowest ei-
genvalue of the covariance matrix. On the other hand, Gauss-
ian operations are sufficient to improve purity of a squeezed
state if loss of squeezing is accepted [22].

To allow for increasing the entanglement of Gaussian
states by local means, one has to at one point step out of the
Gaussian domain, as was utilized in [23-25]. The complete
distillation protocol, proposed by [25-27], consists of two
steps: de-Gaussification by a single photon subtraction
[24,28-31] followed by Gaussification by means of interfer-
ence on beam splitters, measurement, and conditioning.
However, if the initial states are already non-Gaussian, for
example, due to the effect of non-Gaussian noise, it is pos-
sible to distill and purify them by employing only linear
optics, homodyne detection, and postselection [32-35]. Re-
cently, we have proposed [32] and experimentally demon-
strated [33,35] distillation of squeezing from states disturbed
by phase-diffusion noise. This noise, caused by random fluc-
tuations of optical phase, commonly occurs in optical com-
munication links. The distillation protocol is based on the
interference of two copies of the state at a balanced beam
splitter, followed by homodyne detection of one mode trig-
gering the acceptance or rejection of the other mode that
contains the purified state [25,26,32]. The procedure can be
straightforwardly extended to accommodate two-mode
squeezed states and can also serve as the Gaussification part
of the universal CV distillation protocol based on de-
Gaussification and subsequent Gaussification.

In this paper we provide detailed theoretical numerical
treatment of the distillation and purification of phase-
diffused single-mode squeezed states. We consider the stan-
dard iterative purification protocol [32] as well as the simul-
taneous collective purification of an arbitrary number of
copies of the decohered state. We also discuss the possibility
of conditioning on the measurement of an arbitrary quadra-
ture operator, up to abandoning the concept of definite
quadrature completely and using phase-randomized homo-
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FIG. 1. (Color online) Setup for purification of single-mode
squeezed states. Two single-mode squeezed states are sent through
independent dephasing channels, which result in their decoherence.
They are then mixed on a balanced beam splitter (BS) and homo-
dyned in both output ports. The virtual beam splitters (VBS) are
meant to simulate inefficient homodyning.

dyne detection. Finally, we derive a semianalytical expres-
sion for the state obtained in the limit of an infinite number
of iterations of the distillation procedure and discuss its prop-
erties.

II. ITERATIVE PURIFICATION

The single step of the purification protocol for single-
mode squeezed states is depicted in Fig. 1. It consists of
interference on a balanced beam splitter (BS) followed by
homodyne measurement of a single mode, detecting a value
of the quadrature operator that was, prior to effects of the
noise, squeezed [32,33]. If the absolute value of the mea-
sured quadrature x is lower than a certain preselected thresh-
old X then the purification succeeded and otherwise it failed.
The purified state is present in the other output port of the
beam splitter and is available for further applications or for
the next iteration of the purification procedure, whereby two
purified copies of the state are purified again. The success of
the procedure can be verified by suitable homodyne mea-
surements on the purified state, as schematically shown in
Fig. 1. We will treat the purification in the Fock basis, which
allows us to calculate the full density matrix of the purified
state after k iterations of the purification protocol,

p¥ = 2 Py

m,n=0

(1)

where |n) denotes the n-photon Fock state of the field mode.
The initial density matrix of a phase-diffused squeezed
vacuum state can be expressed as

p? = f U()pcU () D(p)d . (2)

Here p; denotes the density matrix of the initial Gaussian
state, ®(¢p) denotes the probability distribution of the ran-
dom phase shift ¢, and U(¢) is a unitary phase-shift operator
with matrix elements (m|U|n)=¢"?%§,,,, where the &, stands
for the Kronecker delta. We can rewrite Eq. (2) as follows:
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p(0)= E pG,m,nfm—n

3)

m,n=0

where pG,m,n=<m|pG|n> and
fﬁf D(p)e"?dep (4)

is a Fourier transformation of ®(¢). Throughout this paper
we assume that the phase fluctuations have Gaussian distri-
bution,

—¢2/202
(g)= 7= e 5)

On inserting this probability distribution into Eq. (4) we ob-
tain fn=e‘”2"2/2.
The Wigner function corresponding to the squeezed
vacuum state pg reads
_ I ~(*12v)-(p*12V,)

W(x,p) =T e ; (6)
where V, and V), denote the variances of the x and p quadra-
tures, respectlvely For a Vacuum state one has Vi=V,=3 L and
the state is squeezed when V, < orV, < . Note that due to
the proper normalization, all varlables used throughout the
paper are dimensionless. Presently, these values could go as
far as V,~0.06-0.05 (-9to-10dB), V,=16-25
(15-17 dB) [36,37], but values around V,=~0.16-0.22
(=5 to =3 dB) are common in contemporary experiments
[33-35]. The density matrix elements pg,, , can be evaluated
by noting that the Husimi Q function defined as Q(«)
=L(alp|a), where |@) denotes a coherent state with ampli-
tude a, is a generating function of the density matrix ele-
ments in the Fock-state basis,

a
’n' da" dar

Pman= e *m [e a| Q(CY [e4 )]|a—a F=0- (7)

The Q function corresponding to the Wigner function (6) is
also Gaussian,

1
O(a,a’) = —==-exp[(U-Daa -T(’ +a?)], (8)

mV,V,
where V,=V,+1/2, V,=V,+1/2, and
1 1 1 1
U=l-—-—, T=—-—". )
2V, 2V, 4V, 4V,

On inserting function (8) into expression (7) we obtain after
some algebra

T) [(m=-n)/2]+2a Un—2a

m—n)'
2 !

if m+n is even and pg,, ,=0 if m+n is odd.
The distillation and purification scheme shown in Fig. 1
produces with certain probability from two copies of the

m!n! (-
pG,m,n = ~ o~

ViV @ a!(n—2a)!(a+

(10)
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state p*~1 a single copy of a purified state p® and we can
formally write the purification map as

pM=E(p* @ pih). (11)

As the formula suggests, the protocol can be iterated and the
outputs of each step can be used as inputs for the next itera-
tion. As we shall show, each iteration increases the squeezing
and purity of the state and Gaussifies it.

The interference of two copies of the state p*~" on a
balanced beam splitter is governed by a unitary transforma-
tion. Since this transformation preserves the total photon
number, we can write it in the Fock basis as follows:

|y, m,)y — > Azl,m2|m1 +a,m,—ay, (12)
where
P \m1'm2 2 —1)d+a /(m1+a)!(m2—a)!
ml,1112 ml+m2)/2 d'(d+a)'(m1 )!(mz—d—a)! .

(13)

After mixing on a BS the first output mode is measured in a
balanced homodyne detector where it is projected on the
eigenstate of the x quadrature |x). The positive operator val-
ued measure (POVM) element corresponding to conditioning
on |x|<X reads C=[%Jx)(x| and its matrix elements in the
Fock basis can be expressed as

X
Cm’n=f (m|x){x|n)dx. (14)

=X

This can be easily evaluated numerically by recalling that

1 _2n
(x[m) = Ty e, (15)

where H,(x) denotes the Hermite polynomial. For any real-
istic detector with efficiency 7<<1 we can use the model
where the inefficient detector is replaced by a beam splitter
with transmittance # whose auxiliary input port is in the
vacuum state and which is followed by an ideal perfect de-
tector [15]. This yields

Cm,n(n) = E Bmu( W)Bna( n)Cm—a,n—a’ (16)

Ba=1\ <m>n<'"‘“>’2(1 - ). (17)
a

We are now in a position to combine all the above expres-
sions and write down the purification map (11) in the Fock
state basis,

where

= 2 2 2 p1(1/1<1_nlpm2 L)ZAZ” mzAZl Mo

my,ny my,ny a,b
X Cm1+a,n1+b(77)|m2_a><n2_b|' (18)

The density matrix (18) is not normalized and its trace is
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FIG. 2. (Color online) Performance of the four-step iterative
purification protocol. The variance (a) and purity (b) of the purified
state as well as the total success rate of the purification (c) are
plotted as functions of the phase noise o. The curve for the initial
phase-diffused state (blue dashed line) is plotted along curves of
several iterations (green solid lines), where the arrows indicate the
direction of an increasing number of steps. The parameters were
7=0.85, V,=0.2, V,=2, and X=0.45.

equal to the probability of success (success rate) of k itera-
tions of the purification protocol,

P(k) =T p®]. (19)

Typical numerical results are shown in Fig. 2. We can see
that each step of the iterative purification decreases the vari-
ance of x, i.e., increases the squeezing. Also, the purity of the
state P=Tr[ p?]/(Tr[p])? increases after each iteration of the
protocol and approaches some asymptotic value, which is
generally less than unity, cf. Fig. 2(b). So our protocol puri-
fies the state but it does not generally distill perfectly pure
states from the initially mixed states. One important param-
eter determining the practical feasibility and usefulness of
the scheme is the probability of success of the protocol,
which is plotted in Fig. 2(c). We can see that for the chosen
acceptance window X=0.45 the success rate P(N) is very
high, the probability of success of each iteration is about
50%, and the total probability of success for a protocol in-
volving four iterations is still about 10%. The trade-off be-
tween the performance of the protocol and the success prob-
ability is illustrated in Fig. 3, which shows the final variance
and purity of the state after four iterations as a function of the
total success rate P. Higher purity and stronger squeezing are
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FIG. 3. (Color online) Trade-off between the success rate of the
four-step purification protocol and the resulting squeezing (a) and
purity (b) of the state. The parameters were 7=0.85, V,=0.2, V,
=2, and 0=0.5.

achievable at the expense of reduced P. Our numerical cal-
culations suggest that it is suitable to choose the threshold
X=~1V,, which achieves good purification and squeezing en-
hancement at a reasonably high probability of success.

The purification procedure also Gaussifies the state. To
quantify this, we evaluate the fidelity of the state p® after k
iterations of the protocol with the Gaussian state pg that has
the same mean quadrature values and covariance matrix as
the state p¥). The fidelity of two mixed states is defined as

follows:
—
F=(TrV \/%p(k) Vb))%, (20)

and it holds that F=1 if and only if p5=p®. A value F<1 is
a clear signature of a non-Gaussian character of the state p®).
The results are shown in Fig. 4, which confirms that the
present protocol indeed Gaussifies the state. After four itera-
tions, we have F>0.999 so the state is almost perfectly
Gaussified.

So far we have considered only conditioning on the mea-
surement of the initially squeezed x quadrature. However, the
method works even for a measurement of an arbitrary
quadrature g(6)=x cos 6+p sin 6 [35], where the condition-
ing is again of the form |g(6)| < Q. This can be straightfor-
wardly implemented into our Fock-state basis formalism by
redefining the matrix elements of the POVM C(7%) as fol-
lows:

Ci11,n(7]’ 0) = Cm,n(n)ei(m_n)o' (21)

Note, however, that there are two prominent quadratures, x
=¢(0) and p=¢(7/2). Conditioning on one of these quadra-
tures yields, for separate ranges of o, the best improvement
of the purified state. Furthermore, since improvement in the
purified state can be seen no matter which quadrature ¢(6) is
measured [35], it is possible to consider also a phase-
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FIG. 4. (Color online) Fidelity of the purified state with respect
to a Gaussian state with the same covariance matrix (green solid
lines); the arrow indicates an increasing number of iteration steps.
The lowermost curve (blue dashed line) corresponds to the initial
dephased state. The parameters were 7#=0.85, V,=0.2, V=2, and
X=0.45.

randomized homodyning. In this case, Eq. (21) has to be
averaged over the random phase 6 and only diagonal ele-
ments survive,

C2 () = Cpun(1) S (22)

The results of numerical simulations of the iterative purifi-
cation are given in Fig. 5. Note that the advantage of condi-
tioning on p grows with the number of iterations. For ex-
ample, if 0=0.5 then after the first iteration the variance is

variance

variance

FIG. 5. (Color online) Iterative purification using conditioning
on |p|<Q (a) or phase-randomized conditioning (b), with the pa-
rameter settings 7=0.85, V,=0.2, V,=2, 0=0.45. The arrows indi-
cate an increasing number of iterations (green solid lines). The up-
permost curve (blue dashed line) corresponds to the initial phase-
diffused state.
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FIG. 6. (Color online) Collective purification of N copies of the
state. The beams are combined on an array of N—1 beam splitters
BS; and all output modes except for the last one are monitored with
balanced homodyne detectors BHD,.

more reduced by conditioning on |x|<Q than on |p|<Q.
However, for a four-step iterative procedure this is reversed
and it is slightly better to condition on |p| < Q rather than on
|x| < Q. The phase-randomized purification can be seen as a
compromise between conditioning on |x[<Q and
|p| < OQ—for large (small) values of o it yields results better
(worse) than conditioning on p(x) but worse (better) than
conditioning on x(p). In fact, values obtained by phase-
randomized purification are almost identical to those pro-
duced by random switching between x and p detections.

III. COLLECTIVE PURIFICATION

The iterative purification scheme analyzed in the previous
section requires at least 2¥ copies for k iterations of the pro-
tocol. Here we analyze a more general collective purification
scheme that works for any number N of available copies of
the state. In particular, this protocol can be employed when
three copies of the state are available and it reduces to the
previous scheme when N=2% The proposed setup is shown
in Fig. 6. The N copies of the phase-diffused squeezed state
are combined on an array of N—1 beam splitters with trans-
mittances #; and reflectances rj, tj+r]—1 All output modes
except for the last one are momtored by balanced homodyne
detectors, which measure the x quadrature of each mode. The
purification is successful if the absolute value of each mea-
surement outcome is below the corresponding threshold,
|xj,om| =<X;. The choice of the thresholds would depend on
the transmittances of the beam splitters. Here we shall con-
sider ideal homodyne detectors with unit efficiency, 7=1,
and conditioning on |x;,,|=0 for which the protocol
achieves the best performance. In practice, this would corre-
spond to choosing sufficiently narrow acceptance windows,
i.e., very small thresholds X;.

Let us for a moment fix the random phase shifts ¢; of
each mode. Then the variance of the quadrature x; of the jth
mode reads

_ 2 .2
V=V, cos” ¢;+V,sin" ¢, (23)

and in what follows we shall not explicitly display the de-
pendence of V; on ¢; for the sake of brevity. The joint prob-
ability distribution of the x quadratures of all N input modes
factors into the product of marginal Gaussian probability dis-
tributions,
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—x?/ZVj. (24)

JOlnl(X) H

=1\ WV

In the Heisenberg picture, the output x quadratures after in-
terference on the array of beam splitters can be expressed as
linear combinations of the input x quadratures,

N
xj,out = E Uj,lxh (25)
=1

where U;, denote elements of a real orthogonal matrix,
which describes the action of the interferometer composed of
the beam splitters. For the scheme shown in Fig. 6 it holds
that

N-1
Uni=r-1 Iz (26)
J=l

Here we formally define ry=1. The input-output relation (25)
can be inverted and we have

N N
xj = E (U7>j,lxl,out = 2 Ul,j-xl,om' (27)
=1 =1

The joint distribution of the output quadratures can be ob-
tained by inserting the x; expressed in terms of x; o, in Eq.
(24). Taking into account that the Jacobian of the transfor-
mation (25) is det U=1, we obtain

N | 1 N 2
oint\Xou € - U oul
P (Xou) = Jl_ll Vm Xp oV (E 1%, t)

(28)

The unnormalized distribution of x , conditional on pro-
jections x; 5, =0, I=1,...,N—1 then reads

\/77 2‘7

Pcond(xN,out) V1/2 \/_V XNO'” (29)
where
N o2
1 U
—=2 (30)
v =Y

The variance of x , can be calculated by averaging prop-
erly weighted V over the N random phase shifts,
N

V%/Z
Vou= 3 f " 1,ZH D(¢))d¢p. (31)

Here dep=d ¢, --d¢y and Ny is a normalization constant,
gz N
Ny= H D())dep. (32)
H V2

Two choices of the beam splitting ratios are of particular
interest. Using balanced beam splitters is experimentally
most straightforward, since these beam splitters are most
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FIG. 7. (Color online) Variance of the x quadrature of the state
obtained by purification from 2, 3, and 4 copies is plotted in depen-
dence on o. The curve labeled “in” shows the variance for the
initial state. The initial parameters were V,=0.2, Vp=2, n=1, and

X=0.

commonly used in the lab. In this case we have t;=r;=2""2,

which implies Uy =2""1Y2 and Uy ,=2"V-"12 [=2. No-

tice that the output quadrature xy o, is an unbalanced com-
bination of the input quadratures. The second choice is to use
unbalanced beam splitters, which yield a balanced superpo-
sition of the input quadratures, Uy =1/ JVN. This happens if
t;=j/(j+1). This latter scheme becomes fully equivalent to
the k-step iterative purification procedure discussed in the
previous section when N=2% Note that in the iterative
scheme we can also first let all the beams interfere on the
balanced beam splitters and then measure on all output ports
except one. If we condition on x; ,,,=0 then the two schemes
become immediately fully equivalent. For realistic finite
thresholds X; the schemes become equivalent if conditioning
on appropriate linear combinations of x; ,, is adopted.

The results of numerical simulations of the collective pu-
rification procedure are shown in Fig. 7. We can see that each
additional copy helps to further suppress the noise and re-
duce the quadrature fluctuations. The difference between the
performances of the two-copy and three-copy protocols is
sufficiently large so that it should be possible to observe it in
present-day experiments. The numerics also reveal that the
difference between the schemes using balanced and unbal-
anced beam splitters is very small and the scheme is quite
robust and insensitive to changes in reflectances or transmit-
tances of the beam splitters of the order of a few percent,
which is an important practical advantage.

A conditional measurement in the form of a detection of
arbitrary quadrature ¢(6) can be also considered for the col-
lective purification. To treat in a unified way conditioning on
measurements of arbitrary quadratures of the first N—1 out-
put modes, we shall present a more detailed treatment of the
scenario, based on the formalism of covariance matrices
(CM). Let &=(xy,p1,X2,P2,---,Xn,py) denote the vector
of quadrature operators. The covariance matrix 3, ik

{A§J,A§k}> comprises the second moments. The CM of

the single-mode squeezed state is diagonal, gy
=diag(V,,V,). A random phase shift ¢ transforms the CM to

Ssms(@) =R(P)ZsmsR (), where
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cos —sin

. ¢ ¢). (33)
sin ¢ cos ¢
For fixed random phase shifts qﬁj, the covariance matrix of

the N-mode Gaussian state impinging on the array of N—1
beam splitters is given by

R(¢) =<

N
S=@ Ssms(9)). (34)
j=1

The covariance matrix of the output modes can be obtained
from 3, by a symplectic transformation,

2out = SBSEinSgS’ (35)

where the symplectic matrix Sgg governs the linear mixing of
the quadrature components in the passive linear interferom-
eter consisting of the array of N—1 beam splitters (see Fig.
6). To make our treatment simple, we shall again consider
the limiting case of conditioning on ¢;=0, j=1,...,N-1.
The quadratures which are being observed are specified by
N—1 relative phases ¢; and we assume that all detectors have
the same efficiency 7. We introduce a new covariance matrix

5= 7SO0+ L, (36)

where I stands for the identity matrix, S(0)=69;V=1R(6j) and
we set fy=0. The single-mode phase shifts in the above
formula map all measured quadratures onto the x quadra-
tures. We want to calculate the variance of the quadrature xy
conditional on all measurement outcomes being equal to 0.
We first construct a submatrix of 3, which comprises vari-
ances and covariances of the x quadratures only,

3= 8,2 Sy (37)

Here S, is a NX2N matrix defined as §;,;_;=1 and all other
elements are equal to zero. The joint probability distribution
of the N quadratures x=(x;,x,,...,xy) can be expressed as

1 Ts-1
— = L=12)x'3x
P(x) = 2 )N/ZV—|2 |e , (38)

where the |.| denotes determinant of the matrix. The probabil-
ity distribution of x, conditional on x;=x,... =xy_;=0 reads

VN 1 2
Peond(ty) o \[ reie——— N2, 39
d( N) |2X| \/27TVN ( )

where Vy=1/[(27")y] is the conditional variance of x.
Since we assume that the mean values of all quadratures are
initially zero and the purification scheme preserves this prop-
erty, the resulting variance of x, after purification can be
evaluated as the properly weighted average of Vy,

1
Vou = N f S H D(¢))dep. (40)

Here dep=d ¢, --d¢y and Ny is a normalization constant,

053820-6



MULTIPLE-COPY DISTILLATION AND PURIFICATION ...

0.5

0.45

I
~
.

0.35¢

variance

o
(&)
:

0.25¢

0.2

FIG. 8. (Color online) Collective purification from three copies
of the state. The figure shows the variance of the x quadrature
before (blue dashed line) and after purification. The quadratures
measured by balanced homodyne detectors BHD; and BHD, were
the following: x;, x, (green solid line), p;, p, (red dot-dashed line),
and x;, p, (black dotted line).

N
Ny= f \ A TT ()dep. (41)
b |2x|j=1

Note that V,,; determined in this way corresponds to the
variance of the purified beam that would be measured by a
balanced homodyne detector with efficiency 7. The expres-
sions (40) and (41) generalize the formulas (31) and (32).
The numerical results for three-copy purification are plotted
in Fig. 8. This figure confirms the general trend that for weak
phase fluctuations it is advantageous to condition on mea-
surements of p while for strong noise it is better to measure
the quadrature x [35]. The intermediate strategy where the
first balanced homodyne detector (BHD) measures x while
the second BHD measures p does not bring any advantage so
we can conclude that the optimum strategy that provides
maximum reduction of quadrature variance consists of mea-
suring the same quadrature (either x or p) by both homodyne
detectors.

IV. ASYMPTOTIC LIMIT

It is possible to find a state to which the purification pro-
cedure (11) converges in the limit of an infinite number of
iterations, k— . This asymptotic state can serve as a refer-
ence for the performance of the purification, giving values
that can never be surpassed by a finite number of iterations.
Due to the nature of the result we seek, we shall consider the
post-selection threshold X in Eq. (14) to be zero. That is,
given two copies of a noisy state p;, ;, j=1,2, the state after
a single step of the purification is given by the map

Pout = glx:O)(pin,l ® pin,2)
=Tr[ U 2pin) ® pin,ZUT2|x =0)(x=0

I 42

where U;, denotes a unitary operator describing balanced
beam splitter coupling modes 1 and 2 and |x=0),{(x=0| is a
projector on the eigenstate of the x quadrature. In the follow-
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€

x=0)

BS

FIG. 9. (Color online) Equivalence of the single step of the
purification for homodyning (left) and projection onto vacuum
(right) as a conditioning measurement.

ing we shall exploit the possibility of expressing the x eigen-
state as

|x=0)=lim S,|0), (43)
where the operator S,=exp[r(a’*-a'?)/2] stands for finite
squeezing with parameter r and |0) is the vacuum state [27].
Since the operator S, ; ® S, , commutes with the beam splitter
transformation U,,, we can rewrite the relation (42) as

Pout = lim Sr£|0)(pi/n,lr ® pi,n,Zr)S:’(
r—00

= lim S0, U 2pf, 1, ® Pina, Ul0):S],  (44)
oo

with an, jr:SIpin, S» and where the purification map &) is the
same as in Ref. [26]. This is schematically demonstrated in
Fig. 9. Note that the inverse squeezing operation performed
on the output state cancels out with the initial squeezing of
the next purification step. Thus, the iterative purification
scheme, using projection onto the quadrature eigenvectors in
all steps, is equivalent to iterative purification with projection
onto vacuum states, accompanied by squeezing of all initial
states and inverse squeezing of the purification outcome [27]
(see Fig. 10). This allows us to find the asymptotic limit,
analogously as in Ref. [26]. Due to this similarity, we shall
mention here only the most important parts of the derivation
and the reader can find more details in Ref. [26].

The key realization in finding the limit is that stationary
points of the purification map & (p® p), i.e., states that re-
main unchanged by the map, are Gaussian states with zero
mean value. The initial non-Gaussian state will, over the
course of purification, converge to one of these states. As
another important observation, let us note that the coeffi-

€ €
[x=0) @ 10
- - ) )
8\x=0) Ix=0)
FIG. 10. (Color online) Equivalence of the iterative purification
setup for homodyning (left) and projection onto vacuum (right) as a

X T
8\0) 8\0>
conditioning measurement.
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cients oy, 0y, and oy, defined as o;;=p;;/ py are also un-
changed by the purification map &), and there is a one-to-one
correspondence between these three coefficients and the set
of covariance matrices, which in turn completely describe
any single-mode Gaussian state with zero mean.

The procedure for finding the limit is the following: first,
the initial states are described by the Wigner function

1 1
s exp(— EgzzggT)w, (45)

Wx,p)=| ®
(x.p) j (&) 5

where the vector &=(x,p) comprises the two conjugate
quadratures and

V. 0
3, =S,R(¢)( g )RT(¢)SY,
¢ 0 v,

s—(er 0) 46
r— O E_r ’ ( )

and R(¢) is defined in Eq. (33). The Q function correspond-
ing to this Wigner function reads

T 1
Q(X,P)=f cb((;/;)—\ |2 vl eXp(— ‘§Fr,¢§T>d¢, (47)
T 2

with T, ,=(Z, 4+1/2)7", !, where I stands for the 1dent1ty ma-
trix. Now, with the substitution x=(a+a’)/ V2, p=(a
-« )/1\2 we can use relation (7) and find the density matrix
elements

—
poo =T, g) g

P11=<\|Fr,¢|<1— ) )> >
¢

/—anzz L) g1+ 20, 401
Po2 = | | = >

T, yos =Ty gty — 2T,
P20 = Vﬂ $22 ,qﬁ,/l_l ,$,21 i (48)
2\’2 &

where (), denotes averaging over the distribution ®(¢).
From the density matrix elements we can obtain the coeffi-
cients oy, o, and oy, 0;;=p;;/ poo, Which are invariant over
the course of the purification and, therefore, describe the
Gaussian limit to which the state converges. It is now a
simple matter of finding the inverse relations

Tpt+ 0y

Fy=1-0y- R
V2

O+ 0y

Fyp=1-0,+ >
\2
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[y =Tpp= 222 (49)

iy

After some algebra we find that the formulas (48) and (49)
can be simplified to

_ <Fr,¢V’|Fr,¢|>¢
NIT gD

The final covariance matrix is given by E=S;1(F"
=1/ 2)S;'. Due to the symmetric nature of the phase noise,
the matrix % is diagonal and fully specified by values of
variances of the squeezed and antisqueezed quadratures,

Vyiim and V), ;i,. We can directly find the output variances by
taking the hmlt r— o0, obtaining

Ay
Vx,hm— <A3>¢’

(50)

3
Voim="V Vp%” (51

where
A=(V, cos> p+ v, sin® ¢p) 712, (52)

Note that V. ji,V), im= V.V, so the purification procedure as-
ymptotically suppresses all added noise and the asymptotic
Gaussian state has the same purity P=1/(2\V,V,) as the
initial state before dephasing. This, however, holds only for
idealized conditioning on x=0. For finite acceptance window
X >0 the purity of the asymptotic distilled state would gen-
erally be lower than the purity of the initial state.

It is possible to modify the method to incorporate other
scenarios discussed in previous sections. Finding the limit
state for iterations incorporating conditioning measurements
along an arbitrary quadrature ¢(6) is straightforward, requir-
ing only the use of an alternative squeezing operation de-
scribed by S, ,=R(6)S,R7(6). Adapting the calculations to
incorporate for imperfect detectors is a bit more tricky. Inef-
ficient detection with efficiency # can be simulated by a
beam splitter with transmittance 7 followed by a perfect de-
tector. The attenuation can be represented by a map M/(p)
acting on the density matrix and transforming the corre-
sponding covariance matrix of the Gaussian state as

1—
S— 2+

53
: (53)
The inverse operation M~!(p) acting as

S - (2 - T”I) (54)

is, of course, nonphysical. We can, however, formally use it
and in analogy with Eq. (44) represent a single step of the
purification procedure by the relation

M(lim S,eS7), (55)

r—0

Pout =

where the € is given by
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variance

purity

FIG. 11. (Color online) Performance of the iterative purification
protocol (green line), compared to the initial phase-diffused state
(blue dashed line), asymptotic limit (red circles), and state without
phase diffusion (black plus signs). The arrows indicate an increas-
ing number of iterations. The values shown are as if verified by an
imperfect detector. The parameters were V,=0.2, V,=2, 7=0.85,
and X=0.

£= S\O)[Sj,lM(pin,l)Sr,l ® S:zM(pin,Z)Sr,Z]- (56)

Now again, starting from the modified input states ST M (p)S,
we can find the asymptotic limit for the map &), and with the
use of relation (55) it can be transformed into the desired
result. However, if we are interested in results that can be
observed by imperfect detection, the final operation M™! is
not necessary.

Some numerical results are shown in Fig. 11. It can be
seen that the iterations converge to the limit given by Eq.
(51) in both the resulting variance and purity. Moreover, the
purity of the limit is independent of the actual amount of
initial phase fluctuations and is equal to the purity of the

variance

y
2454

7
L

8

FIG. 12. (Color online) Variance of the asymptotic limit state
relative to amount of phase fluctuations, o and the angle of condi-
tioning detection, #. The values shown are as if verified by an
imperfect detector. The parameters were V,=0.2, V,=2, and 7
=0.85.
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FIG. 13. (Color online) Purity of the asymptotic limit state rela-
tive to the amount of phase fluctuations, o and the angle of condi-
tioning detection, 6. The values shown are as if verified by an
imperfect detector. The parameters were V,=0.2, V,=2, and 7
=0.85.

original state (modified by imperfect detectors), although it is
less when the states are compared directly, without the im-
perfect verification measurement.

Figures 12 and 13 illustrate the behavior of the asymptotic
limit relative to the angle 6 of the conditioning measurement.
Although all choices of 6 lead to a state purified to some
extent, the two most interesting choices are 6=0, corre-
sponding to the measurement of the quadrature operator x
and 6=m/2, corresponding to the measurement of p. Only
these two choices can lead to a purity of the final state to be
maximal, that is, equal to the purity of the initial state (modi-
fied by detection efficiency). This is not very surprising,
since these two choices coincide with the basis in which the
covariance matrix of the initial state is diagonal. We can see
that for weak phase noise (small o) it is advantageous to
employ conditioning on measurements of the p quadrature
while for strong phase fluctuations the x-based postselection
is optimal.

V. SUMMARY

We have provided a detailed analysis of multiple copy
purification protocols for phase-diffused single-mode
squeezed states. We performed most calculations in the Fock
basis, which allowed for efficient numerical treatment. We
have also discussed the performance of collective purifica-
tion, employing more than two copies of the initial state in
one step. The collective purification and distillation uses an
arbitrary number of copies to improve the purity and non-
classicality of the state, and therefore was found to be a
generalization of iterative purification and distillation, which
requires 2X copies. In particular, we have shown that collec-
tive distillation based on three copies of phase-diffused
squeezed states is possible, and already provides a signifi-
cantly improved degree of squeezing when compared with
two-copy distillation. We have also investigated the conver-
gence of the iterative purification protocol and derived semi-
analytical expressions for variances of the asymptotic Gauss-
ian state. Finally, let us note that in the spirit of Ref. [32], the
results presented here can be straightforwardly extended to
describe the distillation of phase-diffused two-mode
squeezed states.
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