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Editor’s note

George Ellis

Rainer Sachs and Arthur Wolfe theoretically predicted Cosmic Microwave

Background Radiation (‘CBR’) fluctuation amplitudes in an expanding universe in
their classic 1967 paper [1]. In this paper they introduced the covariance multipoles
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1930 R. K. Sachs et al.

that are the commonplace basis of analysis of the CBR anisotropies today. They pro-
vided the general equations for such CBR anisotropies in perturbed Robertson—Walker
universes (showing how they are based in redshift effects'), and identified their sources
as either gravitational potential variations in the early universe or peculiar velocities
of matter on the Last Scattering Surface (‘LSS’). By fully integrating the perturbed
Einstein Field Equations and the null geodesic equations, they worked out detailed
predictions for these anisotropies in the case of a spatially flat Einstein de Sitter uni-
verse. This is a key paper, laying the foundation for a huge number that followed, such
analyses being a major part of present day cosmology [2-5].>

This paper was a product of the powerful relativity group at the University of
Texas in the late 1960’s (see the Sachs biographical note below). The CBR was ob-
served, and its nature as relic radiation from the hot early universe was understood,
just two years previous to its publication. The importance of this radiation for cos-
mology was immediately recognised after its discovery. A key issue is who brought
into play a concern about CBR anisotropies [2, p.198]. On the experimental side,
these were looked for soon after the radiation was identified: measurements of its
dipole were attempted by both Conklin and Bracewell [6] and Partridge and Wilkin-
son [7] in 1967, the latter stating “A Dicke radiometer (3.2-cm wavelength) was used
to make daily scans near the celestial equator to look for possible anisotropy in the
cosmic blackbody radiation. After about one year of intermittent operation we find no
24-h asymmetry with an amplitude greater than £0.1% (of 3°K). There is, how-
ever, a possibly significant 12-h anisotropy with an amplitude of about 0.2%”. The
first reliable dipole measurements were obtained by Corey and Wilkinson in 1976
[8], and great many such measurements have of course been made since then at all
angular scales [2], in particular by the Cosmic Background Explorer (COBE) and
Wilkinson Microwave Anisotropy Probe (WMAP) satellites, and are a central fea-
ture of current cosmology. Thus this paper, the first theoretical paper to analyse these
anisotropies, was written at the same time or even preceded early attempted measure-
ments of CBR anisotropies, which would have been widely discussed at the time.
Shortly afterwards the results of this paper were extended by calculations such as
those by Rees and Sciama [9] looking at specific aspects in more detail, and com-
panion calculations were made of the CBR anisotropy in spatially homogeneous
anisotropic models by Thorne [10] and others, giving strong limits on their early
anisotropy.

The Sachs and Wolfe paper has two major parts: the theoretical derivation of CBR
anisotropy effects in any perturbed spatially flat Robertson Walker model, obtained by
integration of the null geodesic equations in generic form, followed by the detailed inte-
gration of the perturbed Einstein field equations for the spatially flat cases in order to
attain explicit results for the anisotropy predictions in this specific case (“The equations
for general linearized perturbations away from these models are explicitly integrated
to obtain density fluctuations, rotational perturbations, and gravitational waves”). The
p = 0 models are then compared in detail with corresponding Newtonian models. The

' This feature is based on the reciprocity theorem, the subject of another Golden Oldie’.

2 The Science Citation Index gives about 769 citations for this paper, and Google gives about 203,000
webpage listings for “Sachs Wolfe effect”.
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presentation of the integration of the field equations in the Sachs—Wolfe paper is rather
obscure, because the calculations are so briefly described. Some very useful notes by
Jiirgen Ehlers later clarified the details of this integration; these notes are reproduced
below. This later derivation of the solutions to the perturbation equations essentially
follows a paper by P.C. White, a former research student of Ehlers. In this paper [11],
it is shown that the so-called “moment condition” imposed by Sachs and Wolfe in their
general treatment of the perturbation problem for & = 0 Robertson—Walker universes
both excludes physically reasonable solutions, and is unnecessary. This restriction is
removed by establishing that the Sachs—Wolfe solution gives the most general C*>
solution provided the potentials are C*°. This method has been generalized to solu-
tions with A # 0 by Cherubini et al. [12]. Note the careful control of gauge and
coordinate freedom in this integration, crucial to a proper physical understanding of
cosmological perturbations.’

Despite the later custom of referring to the Sachs—Wolfe effect as only pertaining
to the large scale anisotropies, the first part of their paper includes in principle all the
effects at all scales when matter-radiation interactions are negligible. Thus the paper
includes

(1) The Sachs—Wolfe (SW) effect: variations in the gravitational potential on the
LSS result in varying redshifting of photons between points on the LSS and
the present,* and consequent temperature variations in the observed CBR. This
is the dominant effect at angular scales that are large in comparison with the
horizon size at decoupling, leading to the so-called Sachs—Wolfe plateau in the
CBR anisotropy spectrum at large angular scales (later interactions are negligi-
ble on large enough scales, and only primordial perturbations in the gravitational
potential survive).

(2) The integrated Sachs—Wolfe effect (‘ISW’) is due to a time change in the grav-
itational potential after the radiation has left the LSS. Firstly, if the radiation
contribution to the energy density on the LSS is non-negligible, its decreasing
contribution to the energy density as time progresses results in a decay of the
potential, producing the early ISW effect. Secondly, in cosmological models with
k = —1 or a non-zero cosmological constant, the gravitational potential decays
at late times because the expansion rate is larger than in k = 0 models, resulting
in the late ISW effect on large angular scales (and if k = 41 the opposite occurs).
The Rees—Sciama effect is due to growing concentrations of matter (incipient gal-
axies and galaxy clusters) generating time-varying potential wells, which cause
energy shifts in photons crossing these wells from the LSS to the present (the
well is deeper when they climb out than when they fall in), resulting in small
scale anisotropies [9]. In essence the Rees—Sciama paper explicates one of the
causal mechanisms generically included in the ISW effect, but extended to the
non-linear regime.

(3) The Doppler effect: small scale anisotropies result from redshifts due to the
peculiar velocities of the matter on the LSS.

3 Later work has introduced gauge-invariant variables and calculations (see [21] and citations therein), in
principle a better route to go.

4 This potential remains constant over time in perturbed spatially flat Einstein de Sitter models.
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The SW paper dealt with non-interacting matter and radiation. Major later develop-
ments of the theory are largely based on taking into account interactions between matter
and radiation, not considered in this pioneering paper, which also does not include the
adiabatic/isocurvature perturbation distinction (the paper deals firstly with pressure
free matter and secondly with pure radiation, but not a combination of the two). Later
papers consider first, the physics of the hot plasma before decoupling when matter and
radiation are tightly coupled, leading to the pattern of inhomogeneities and velocities
imprinted on the LSS by the early universe, predicting acoustic peaks for example,
which is then the initial data for the photon effects considered by Sachs and Wolfe.
Analysis of these peaks and their implications is a key area of present day observa-
tional and theoretical cosmology (see e.g., [S5]). Second, they deal with matter-radiation
interactions after the radiation leaves the LSS, for example the Sunyaev—Zeldovich
effect resulting from scattering of the radiation by very hot intergalactic gas that also
emits X-rays. Finally, they deal with the decoupling process itself, when changes in the
anisotropy pattern are caused by effects such as photon diffusion from hotter to colder
regions (the Silk effect). All these effects are potentially observable, and indeed are
being observed at the present, giving constraints on models of dark energy [13—16].
On very small scales, gravitational lensing will alter the observed effect; this too has
been extensively investigated, as has the probable nature of polarisation of the CBR.
Observations of its polarisation [17] will give key tests of the inflationary universe
theory and its predictions of gravitational radiation [18].

The paper is based on the geometric optics approximation and photon description.
One can also derive the anisotropies from kinetic theory and the Liouville equation,
as widely used later (see [22] and references therein). Building on previous work by
Walker, Tauber and Weinberg, and others, Ehlers and Sachs in 1968 summarized a
powerful general formalism for the kinetic theory approach in General Relativity, see
[19,20]. However they did not develop its cosmological implications, except for deriv-
ing the important Ehlers Geren and Sachs theorem [23], showing that exact isotropy
everywhere of collision-free radiation in an expanding universe implies a Robertson—
Walker geometry. This is the current best observational basis for justifying the assump-
tion that a Robertson—Walker geometry is a good description of the visible region of
the universe (see [24] or [25] for detailed discussions). It is important to realise that
the Sachs—Wolfe kind of calculation does not prove the universe is almost Robertson—
Walker: rather that is the initial assumption made at the outset in all such papers at the
start of the calculation, and is taken for granted as the basis of the analysis. Thus in
the Sachs—Wolfe paper itself, a perturbed Robertson Walker geometry is the staring
point of the calculations.

In both the photon and the kinetic theory case, it is best to deal with gauge-invari-
ant variables (either Bardeen gauge invariant combinations of coordinate dependent
variables, or 1 + 3 covariant and gauge invariant variables). Later works used them
in both kinds of calculations (see [21,22] and references therein). Sachs and Wolfe
were very aware of the issue of gauge dependence, and in particular emphasize that
the splitting of the observational effect into Doppler and potential variation parts is
arbitrary, and of heuristic value only, because of its gauge dependence.

The one place where the Sachs—Wolfe paper is unrealistic is in its estimates of
the magnitude of the effects to be expected. The abstract states, “It is estimated that
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density fluctuations now of order 10 per cent with characteristic lengths now of order
1,000 Mpc would cause anisotropies of order 1 per cent in the observed microwave
temperature due to the gravitational red shift and other general-relativistic effects”.
This is a gross overestimate of the perturbations, now known to be at one part in
107 after the dipole (one part in 10%) is removed in order to represent the aniso-
tropies seen in the cosmological rest frame. This high estimate resulted because it
was worked backwards from estimates of what size density fluctuations on the LSS
would be likely to grow to give the galaxies we see around us. It is now apparent that
non-linear clustering effects were much more efficient than estimated by Sachs and
Wolfe.
For a recent description of the Sachs—Wolfe effect see [26].
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Sachs—Wolfe integration

Jiirgen Ehlers
1: Conventions: + — ——,c=1,87G = 1.
a,b,...=0,1,2,3; u,v,...=1,2,3.
Dust, p = 0; spatial curvature k = 0.
2: Background
2 29
gab = a~(MNap, a = o H = const,
3H? 253
,02?, f:ﬁv Mow =1, 0 <n < oo.
Coordinates:
Sd
nap = diag(1, —1, -1, —1), u’ = 0 X0 = n.
a

Isometries: euclidean translations and rotations.

3:

Linear Perturbations: Write §(...) for perturbations;

88ab = azhalr

Shift indices on perturbed variables with 1,5, 7. Define

2

a
A= —n"d, = Oy, e =)\
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Primary gauge condition:
du’ =0.
(no loss of generality:
Sut > Sut 4 Leu =0 o % pub —u® 80 = su.

Given u“ and 6u“, this system of ordinary differential equations for the transport of
&% along the integral curves of u® is always soluble).

a
gapu®u® =1, su®=0, u’= ;0 = 8goo = 0 = hqo.

Primary gauge-preserving transformations:
Sx® = —&°, go =—, t*r=n"d, +e", et =0;
e, b, d depend on x* only. Write
1
hpo=hy, h*=h, hy = Su+ §n,wh = S, =0.

Primary gauge changes:

b
h—h—2Ad+6—, (11)
n
by ..
hN« = hM+2_r]2’ (111)
1
Suv = S +2 (d,,w + §Ad77,w) + 2e(u,v), (1iii)
9H? .
8p — dp — —9b. (liv)
n

Note: A,y and S, are gauge-invariant.

4: Linearised field equations (G} = §T;).

The (8) equation:

2 4
SHY o+ §Ah +-Qh", —h)y=——58p @
no
(Hamiltonian constraint).
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The (“j) equation:

RN S [ Yon, — h’)]/ —0 )
LAV 3 774 n Ry = U

The (5) equation:

2 24
(S 0) = ShM + ?h“ +2hlV1 (1)

(momentum constraint).

The trace-free part of the (/:) equation:

1 4ar oy A 1 af 1 1
F(n S,w) - AS;w = Z(SA(/L,V) - gn;ws ,otﬁ) - §(h,uv + §7quAh)

2 1
+F(n4[hw,u> - gnwh‘,u)’ (Iv)

Remark The (8) equation is implied by the forgoing equations, the background

equations and the S—W gauge condition.
The linearised field equations also imply the linearised equations of motion:

a o hY
Hpu) .y} =0 & —+=-) =0 (2)
Jo 2
(the energy equation),
Sluapu’} =0 & (ahy) =0 3)

(the momentum equations).

5: Theorem (Sachs—Wolfe). The general smooth, linear dust perturbation of the Ein-
stein—de Sitter dust model can be written in the form

-2
haz?ACm 4)
s JH? (A B 5
r=7 n° 10t )’
1 9 [ Dgp 8 A n? 1
hap = — — —4(=-2)c B — —B —A 6
o nan( n) (n3 n) )+ Blep =5 Bap t 5 A0 ©)
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where the ‘potentials’ A(x*), B(x"), c*(x"), D*"(n, x*) are smooth and subject to
the conditions

2

d
ct,=0, DWWl =0 Dt, =0 D",k =0, (A - W) D" =0. (7)

Note that the general solution is a sum of two ‘scalar’, a ‘vector’, and a ‘tensor’ pertur-
bation. §p and & are ‘scalar’, h is ‘vector’, and only S, contains all three types.—No
uniqueness!

The Proof will be done by successively solving equations (2), (3), (I), (II), (II),
D, (IV), simplifying results by using the remaining gauge-freedom along the way.

A. Energy integration:

sp h 3
2) & — + - = -B(x"%),
(2) p+2 2(x)

so with the unperturbed p:

sp = 3H (3B —h) 8)
o = 216 .
B. Momentum integration:
L b s
B) © hy = ;5 FSKP) ©)
2n

where, by a b-type gauge transformation (1), one can impose
F¥ 4 =0, h* 4=0. (10)
This restricts the gauge transformations (1ii) to

Ab =0, (11)
Furs> Fy+b.q. (12)

C. Combine (I) and (IT) with (10) and integrate, with result

AxY)
h = 3

— B(x*)n* +3B. (13)

This gives, with (8),
A + B (14)
ot )]
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Eqns. (13) and (1i) show: A, B, B can be changed by the remaining gauge transfor-
mations according to

B - 2
A+— A+6b, B+— B, Br—>B—§Ad, (15)
i.e., B is gauge-invariant. The last equation replaces eqgs. (1i), (1iv).

D: If 4 and hy from (9) and (13) respectively are inserted in (III), the result can be
integrated. One obtains: there exists J%(x?) such that

2 2 1
S =n 3(§A,,L—4FH)+§n2B,M+EAFM+Jﬂ. (16)

According to equations (11), (12), (15) the coefficients of n=3, n%, n~! are invariant

with respect to the gauge transformations (12), (15). Thus only the term J, in S,,” ,,
is gauge-variant, and we infer from (1iii) that it changes as follows:

4
Ju= Ju— gAd,u — Aey.
One can without loss of generality set J, = J , + K, with K* , = 0. If we then
choose ¢,,, d such that K,, = Ae,, and %J = Ad, we see that we can set J,, = 0.
(This changes B as in (15), but it does not affect the results (9), (13), (14) if we write

again B for the re-gauged function). The remaining gauge transformations are further
restricted by

Ab=0, Ale,+ gd,ﬂ) =0. (17)

We conclude from (16), J,, = 0, and (10) that

2( AA _
SEY L, = _5(? + n2AB).

This equation combined with (9), (13), (14), and (I) gives
10B = AB. (18)
E. We have satisfied eqs. (I), (II), (II) and are now in a position to express the

right-hand member of (IV) in_ terms of the ‘potentials’ A, B, F,, and the conformal
time, using (18) to get rid of B:

_ A 6 2 f— 1 _
n 4(774S;,w)/ - AS/w = (; - ?) F(M,v) +n 3 (A,/w + gnuvAA)
n 1
+ (EA — 1) (B, ny + gnMVAB) . (19)
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To solve (19), we introduce new potentials A, C, by

AA=—-A, ACy= —%Fa, (20)
with
€4 =0. @1
Then we can reformulate (19) as follows:
Nt 8], — ASuy = ('{—éA ~ (B, + %nwAB) - %(A,W + %n,wAA)
(22)

(4A2 24A) c
1 n’ (,v)-

One solution of this equation is

- r]2 1 1 1 4A 32
Suv:_E(B, wo gnuvAB) + F(A,Mv'i‘gn/wAA)'i‘ 7 - ? C(,u,v)- (23)

It has the divergence required by Eq. (16) with J,, = 0.
The general solution of (22) is therefore a sum of S‘,w and the general symmetric,

tracefree, transverse solution of the equation
(24)

n~*(n*S),,) = ASu, =0.

/
To solve this (Darboux-) equation, we substitute S, = % (Df;”) ; then the left hand

member of Eq. (24) becomes
1 139 32
——-—=—|)(A-—)D=0.
n? n?on an?
Thus, any solution D,,, of the flat-space wave-equation gives rise to a solution S, of
(24). The data at n = 1 for S, and D, are related by

0 0 0
s =p') - DY),
0 0 0 0 0 0 0
S0 =3P -+ 0" =3dY) - D'"))+ ADY).
0 0
. D)

Given data S,(g,), S’ ,(?V) for the hyperbolic equation (24), there exist functions D
on R3 such that
0 0 0 0 0 0
ADD) =350) +8' D). DO =80+ D).
@ Springer
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The corresponding solution Dy, (1, x*) of the D’ Alembert equation then solves (24)
for the given data. If, in addition, the data for S, are tracefree and transverse, the data
for Dy, can be chosen tracefree and transverse too, and then the solution is again TT.
Collecting results, we obtain the Sachs—Wolfe equations (4)—(7). O

Tensor decompositions in Euclidean R3

1: V¥ a vector field. Then there exists a solenoidal W* and curl-free U* ¢ such that
VY =0+ W<,

Proof V*., = AU hasasolution U; then defining W% := V% —U ® implies W%., =0.

O
2: V¥ solenoidal. Then there exists a solenoidal E* such that V¥ = AE“.
Proof Solve V¢ = AE“ for o = 1, 2. Then solve
@O+ ) F(x' x?) = V3!, %%, 0) + (E' 1 + E* 5)(x', 2, 0),
and define
X3
B!, a2 x%) = Fxl 2?) - /(E1,1 + B2 ) 22 y)dy.
0
Computation shows that E* , = 0 and AE? = V3. O

3. 79 symmetric, tracefree tensor field. Then there exist ¥, solenoidal B* and a
symmetric, tracefree, transverse W*B such that

1
T — w!aﬂ _ 58“’3A1ﬂ +2B@B) | b ()

PI"OOf Solve Taﬂ’aﬂ = %AI// for v, solve T“ﬂ’ﬁ — %Aw,a — AB® with Ba,(x =0
(use 2 above). Then define W*# by (¥) and verify itis TT. O

Note these decompositions exist globally on R? as well as on any open interval
a; < x; < b;. No fall-off is required. However, no uniqueness is claimed. The only
tool used is the

4: Theorem. p smooth, then there exists a smooth 1 such that Ay = p.
(See Friedman, A., Generalised Functions and Partial Differential Equations,
page 320).
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Ph.D. in theoretical physics, Syracuse, 1959.

Flick Postdoctoral Fellow, Hamburg, Germany, 1960.

Postdoctoral Fellow, King’s College, London, 1961.

Assistant Professor, Department of Physics, Stevens Institute of Technology,
Hoboken NJ., 1962-1963.

Associate Professor and Professor, Department Physics, University of Texas at
Austin, 1963-1968.

Professor of Math and Physics University of California, Berkeley, 1969-present.
1993 Professor Emeritus. 1994 Research Professor of Mathematics.

Prof. Sachs writes, “I worked on general relativistic cosmology and astrophysics
until about 1985; then I switched to mathematical and computational biology, espe-
cially radiation biology.”

“My principal scientific accomplishment: introducing polymer models to describe
the large-scale geometry of chromosomes in the cell nucleus during cell-cycle inter-
phase.”

(From the webpage of Rainer K. Sachs)

Editor’s comment:> Professor Sachs’ self-evaluation is a monumental under-appre-
ciation, and is not borne out by the citations to his papers. His achievements in relativity
include the organisation of meetings whose volumes of proceedings became important
sources for decades later (like, for example, the 47th course of the Enrico Fermi School
on relativistic cosmology, published in 1971—it defined the framework of the field).
Many of Professor Sachs’ papers were milestones in the development of relativity,
in particular in the study of gravitational radiation, the peeling-off theorem and use
of optical scalars. Notions and results introduced in some of those papers are today
widely known under names that include “Sachs” as their component. These include
the following, in approximate chronological order:

The Bondi—-Metzner—Sachs group of asymptotic transformations,

The Goldberg—Sachs theorem,®

The Kantowski—Sachs symmetry group and spacetimes,

The Sachs—Wolfe effect in cosmology,

The Ehlers—Geren—Sachs Theorem.
The Sachs—Wolfe paper is one of the most important and innovative papers in cos-
mology, defining the basics of study of the Cosmic Microwave Background Radiation

NS

3 By George Ellis and Andrzej Krasinski.

6 This paper will later appear as another “Oldie” in our series.
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anisotropies and providing the foundations for all later studies of this key feature of
present day cosmology. The Ehlers—Geren—Sachs Theorem is an under-appreciated
key result underlying our use of perturbed Robertson—Walker models as the basic
models of standard cosmology. The paper on observational cosmology by Kristian
and Sachs’ is no less innovative, combining Sachs’ deep insights into null geode-
sic congruences on the one hand, resulting from his work on gravitational radiation
and electromagnetic theory, and on the dynamics of cosmology on the other. This
understanding was developed firstly in conjunction with Jiirgen Ehlers and the other
members of the Hamburg ‘exact solutions’ group in the early 1960s (comprising Pasc-
ual Jordan, Otto Heckmann, Engelbert Schiicking, Jiirgen Ehlers, Wolfgang Kundt,
Rainer Sachs, and Manfred Triimper); their work is summarised in the Mainz series of
papers which are due to be reproduced in the Golden Oldie series. It was then further
developed through the influential Texas University group set up by Alfred Schild in
the late 1960s, which again included Schiicking, Sachs, and Ehlers. A key feature was
that they interacted with members of the Astronomy Department at the University
of Texas, particularly Gerard de Vaucouleurs, thereby learning many practicalities
of observational cosmology. These insights were influential in Sachs’ and Ehlers’
writings on cosmology, and led to Sachs’ supervision of the PhD thesis of Beatrice
Tinsley, an important work that challenged the common contention at the time that
galaxy evolution was unimportant in cosmological observations.

Arthur M. Wolfe: a brief autobiography
Arthur M. Wolfe

° Name: Arthur M. Wolfe
Place and Date of Birth: New York City, April 29, 1939

Education:
1961: B.S. Queens College, CUNY
1963: M.S. Stevens Insitute of Technology
1967: Ph.D. University of Texas, Austin

Professional Societies:
Fellow, American Academy of Arts and Sciences
International Astronomical Union
American Astronomical Society

Employment:
1973-1977: Asst Prof of Physics and Astronomy, University of Pittsburgh
1977-1981: Assoc Prof of Physics and Astronomy, University of Pittsburgh
1981-1989: Prof of Physics and Astronomy, University of Pittsburgh
1989-1997: Prof. of Physics, University of California, San Diego (UCSD)
1997—: Chancellor’s Associates IV Chair of Physics, UCSD

7 This paper will later appear as another “Oldie” in our series.
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Mailing Address:
Dr. Arthur M. Wolfe
University of California, San Diego
Center for Astrophysics and Space Sciences (CASS)
9500 Gilman Dr., MC 0424
LaJolla, CA 92093-0424, USA

e Collaborators
John N. Bahcall: Professor, Institute for Advanced Study, Princeton
Jacqueline Bergeron: Professor, Institute d’ Astrophysique, Paris, and ESO
Alex Boksenberg: Professor, University of Cambridge
George Hartig: Researcher, Space Telescope Institute, Baltimore
Carl Heiles: Professor, U.C. Berkeley
Buell Jannuzi: Staff Astronomer, Kitt Peak National Observatories
Ken Lanzetta, SUNY, Stony Brook
Ue-Li Pen: Research Astronomer, CITA
Jason X. Prochaska: Carnegie Fellow, Carnegie Observatories, Pasadena, CA
W.L.W. Sargent: Professor, CALTECH
B.O. Savage: Professor, University of Wisconsin
D.P. Schneider: Professor, Pennsylvania State University
X. Shi: Postdoctoral Fellow, UCSD
Lisa Storrie-Lombardie: Postdoctoral Fellow, Carnegie Observatories
D.A. Turnshek: Associate Professor, University of Pittsburgh
R.J. Weymann: Staff Astronomer, Carnegie Observatorie

e Advisor of Others Within Past 48 months
Jason X. Prochaska: Ph.D. thesis advisor
Lisa Storrie-Lombardi, Carnegie Observatories: Postdoctoral Advisor
Graduate Students Advised: 6
Postdoctoral Fellows Sponsored: 6

e My Advisors
Ph.D. Advisor: R.K. Sachs, U.C. Berkeley
Postdoctoral Advisors: G.R. Burbidge, UCSD; M.J. Rees, Cambridge; Ya. B.
Zeldovich Moscow; F. Kahn, Manchester, England

For the past 25 years or so I have been working in observational cosmology, specifically
in the area of galaxy formation and star formation. It’s difficult to judge the significance
of one’s own work, but I would guess it would be a series of papers my collegues and
I wrote about the “damped Lyman « systems”. These are a population of neutral gas
layers that are widely believed to be the ancestors of modern galaxies (see Wolfe et al.
2005, ARAA, 43, 861; Wolfe et al. 1986, ApJS, 61, 249).
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PERTURBATIONS OF A COSMOLOGICAL MODEL AND ANGULAR
VARIATIONS OF THE MICROWAVE BACKGROUND

R. K. Sacus anD A. M. WoLFE
Relativity Center, The University of Texas, Austin, Texas
Received May 13, 1966

ABSTRACT

We consider general-relativistic, spatially homogeneous, and isotropic £ = 0 cosmological models
withr either pressure zerd or pressure one-third the energy density. The equations for general linearized
perturbations away from these models are explicitly integrated to obtain density fluctuations, rotational
perturbations, and gravitational waves. The equations for light rays in the perturbed models are inte-
grated. The modelsare used to estimate the anisotropy of the microwave radiation, assuming this radiation
is cosmological. It is estimated that density fluctuations now of order 10 per cent with characteristic
lengths now of order 1000 Mpc would cause anisotropies of order 1 per cent in the observed microwave
temperature due to the gravitational redshift and other general-relativistic effects. The p = 0 models
are compared in detail with ccrresgonding Newtonian models. The perturbed Newtonian models do not
contain gravitational waves, but the density perturbations and rotational perturbations are surprisingly
similar.

I. INTRODUCTION

The actual Universe is quite lumpy, but the usual cosmological models assume a uni-
form distribution of matter (McVittie 1956; Heckmann and Schiicking 1959; Bondi
1960; this group of authors is referred to hereinafter as “Group 1”). One simple method
for making somewhat more realistic cosmological models is to consider linear perturba-
tions away from spatially homogeneous isotropic models (Lifshitz 1946; Bonnor 1957;
Lifshitz and Khalatnikov 1963; Irvine 1963; Peebles 1965: Hawking 1966; Silk 1966;
this group of authors is referred to hereinafter as “Group 27). In this paper we shall inte-
grate the equations governing perturbations of an expanding Friedmann model. The
background model has the spatial curvature parameter, k& = 0, and pressure, p, either
zero or p/3, where p is the density. The corresponding values of the deceleration
parameter (see Group 1), ¢o, of the background model are 4% for p = 0 and +1 for
P = p/3. After finding the perturbations we shall integrate the lightlike geodesics of the
perturbed model. We shall then use our model to estimate the temperature variations
in angle induced by the gravitational effects of the perturbations on the microwave
background radiation.

Because we assume 2 = 0, our calculations are less general than those given previous-
ly (see Group 2). The advantage is that in our case all the perturbation equations can
be explicitly integrated in terms of elementary functions. The value ¢o = +3% is con-
sistent with current observations (Sandage 1963), although not demanded by them.

The main mathematical result of this paper is the theorem of § Ilc.

II. INTEGRATION OF THE PERTURBATION EQUATIONS

a) Unperturbed Models

~ Weshall use the units ¢ = 8xG = 1 throughout. Latin indices run from 1 to 4; Greek
indices from 1 to 3; the signature of the metric gs is taken as —, —, —, +; and the
Minkowski metric is written as

nap = 7°® = diagonal (—1, —1, —1, +1) . (1
The signs of the Riemann and Ricci tensors are fixed by

Tazbie = Tazesb = Villigae, Rlaip = —Rap . @
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The Einstein field equations for a perfect fluid with density p, pressure p, and average
world velocity u°® are

G = —(p + p)uus + p&s, (u®u, = 1). (3)
The unperturbed 2 = 0 Friedmann-Tolman models are (Group 1)
ds? = a¥(n)[dn? — dx® — dy? — dz?] = a®(n)n.sdxedx® . o)

Here we use spatial coordinates x* = (x,y,3) = x and we choose 7 = x* Let H be
the Hubble parameter and Hy the Hubble parameter now; then H = a’/a? where the
primes denote n-derivatives. The function a(n), the pressure p, the density p, the cosmo-
logical proper time 7, and the present value nr of 7 are, for p = 0 or p/3, respectively,
given by (Group 1)

2 3H? : 273

p=0, a(ﬂ)=H—nR, P=—,,s_R' l=3H’7R, 7r=1, (5)
3H2 2

p=1%p, a(n)=§";, p=—n4—"', I=2an’ np=1. (6)

Thus we can regard » as a dimensionless variable that replaces the proper time and has
value unity now. The variables x* are also dimensionless. The coordinates in which
equation (4) holds are fixed-uniquely up to the rigid rotations and translations of
Euclidean 3-space, as in equation (23) below.

b) Field Equations for the Perturbations

In considering perturbations we shall continue to assume a perfect fluid with p = 0 or
p = p/3, respectively. We emphasize that for p = p/3 this assumption is quite non-
trivial because it involves neglecting transport processes.

We shall find it convenient to write the perturbations in the form

ds® = a*(1)[1as + hap)drdx® . )

Here a*(n) is to have the same functional form (3) or (6) that it does in the unperturbed
models: /,5(x%) is the small perturbation. Moreover, without loss of generality we can
insist that the coordinates x* are (Lagrangian-type) comoving coordinates and that dy
is related to comoving proper time interval d¢ by the unperturbed equations (3) or (6),
respectively. Two well-known (Ehlers 1961) formal characterizations of these coordi-
nate conventions are

u"—t—l—(n =G =0, hy=0. (8)

We have chosen the coordinate conventions (8) because they have a direct meaning
independent of any approximation scheme. In linear approximation we are then left
with a restricted set of allowed “gauge transformations”

[x]e = a8 — £(xY) . 9

Here £ is small in the samie sense that /s is. A short calculation shows that in linear ap-
proximation the conventions (8) restrict the allowed form of £ by either of the two
equivalent conditions:

»
1ue, bEb" te ,“6=0(_—_>c4=?_(.‘t;_)

S0 S 0(7])' E“:C“(xj)

(10)
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where b and c* are arbitrary functions of the spatial coordinates x? alone. The functional
change induced in /g by the transformations (9) and (10) is the Lie derivative of gas
with respect to £, namely,

7
[2)us= bus+ cupt cout2 -Z—z bus;
an

by
[h];u:"al"{"h;m; [Alu=hu=0.

In equation (11), and throughout this paper, all indices on hqy, ., and other small quantities
are raised and lowered wilh the Minkowski metric 74, 7°%; thus heb = goenbdh ¢, =
14868 = —0,pcP, etc. The conformal tensor, fluid shear tensor, and fluid vorticity tensor
are gauge-invariant because their unperturbed values vanish (Hawking 1966; Sachs
1964).

We must now work out the Einstein tensor of the perturbed metric. One can proceed
by force, computing the contravariant metric tensor, Christoffel symbols, Riemann
tensor, and Einstein tensor of equation (7) while systematically throwing away all terms
quadratic or higher in /,5. A much faster, though conceptually more complicated, tech-
nique is to consider first the conformal metric d5® = (745 + /05)d2°dx® and then use
standard conformal methods (Jordan, Ehlers, and Kundt 1960). In any case, we find up
to first order

G4y = G4 + 6G4y (12)
with the unperturbed ,G*; given by
. \ S . . 4a? 24" 24" a”
L= —F(1)6%5%—=G(n)d%, IF=—f=—, G=—F——
a a a a

The reader should note that we have defined 6G¢, as the first-order correction to the
mixed form G°;, of the Einstein tensor and nof, for example, as the correction to 7#°Gh..
One gets for 6G%

. ° . . a’ a’ .
oG = ;Cabg—{-l' (n)adhe _a_"( Iye+ hie g — he)) +;‘( 20— WY ey. a3

Here all indices on the right are, as mentioned above, raised and lowered and with
Naw, b = I = h#, = %%, = 9*h, 3, and x®s is the familiar (Bergmann 1942) expression:
X = (o — ho%) % + hedy + hed) cad®y — Ipar =1y, . (14)

Because of equations (3) and (8) our linearized field equations are
6Gy = — bp, 6G*; = 0, 6G*3 = §#5)p , (1s)
\(\;Pg(;re 5p =0orép = dp/3 for p = 0or p/3, respectively, and 6G*; is given by equation

¢) Solutions for the Perturbations

It turns out that when we assume suitable regularity conditions on 7,4 and /,5 we can
find the general solution of equation (135). The method is to take first spatial Fourier
transforms of /1,4 and /i,4:

hus = [d%kDus(Rym)eikx
hug = [d®kDus(kmekx.

Then one solves the field equations (13) and transforms back to position space. The
regularity conditions we shall use are: (i) h.s(k,n) and b,3(k,7) are generalized functions

(16)
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(Lighthill 1958) that coincide with continuous ordinary functions near k = 0; (ii) the
quantities h,gk#k8, b,sk?, b¥,, and b,.k* shall admit representations

b#ﬂk#kﬁ = k‘f(k:ﬂ)y buﬁkﬁ = kzgn(k:n) )
b"u = k‘j(k:n)) bn‘ik“ —ik2m<k:7’) ) an
B = kek = —k,bb .

Here f, g5, 7, and m are to be generalized functions that coincide (Lighthill 1958) with
continuous ordinary functions in a neighborhood of 2 = 0. We call equations (17)
“moment conditions’’; they are rather weak conditions on /,4(x,7) and %,s(x,n).! Our
solutions will, of course, contain some arbitrary functions of three variables, which are
determined by initial conditions on the gravitational waves, density perturbations, and
other perturbations that make up the most general perturbations. For p = 0 we need
(i) two arbitrary “scalar’? functions 4 and B of xf alone, which correspond to potentials
for density perturbations; (ii) a ‘“vector’” function C, of x# alone, restricted by the
transversality condition

Cru=0 (18)

which will presently be related to the perturbed rotation tensor; and (iii) an arbitrary
transverse-transverse trace-free ‘“‘tensor” solution D,s(x%,n) of the flat-space d’Alem-
bert equation, e.g.,

FY
D3 = Dg,, Dus?=0, D =0, 6—7’2—V2) D=0, (19)

Vi=—st st (20)

Giving D, is equivalent to giving four functions of x* alone. For the case p = p/3,8p =
dp/3, we need a vector C, and a tensor D,z as above and also a scalar solution
E(x* ) of the flat-space density-wave equation for sound with speed 1/4/3, namely

a?
=0. )
ar )E 0 (21

Since the calculations are rather long-winded while the results are simple, we shall
state the results in the form of a theorem:
Solutions of the perturbed field equations (15) are

D) p=0, 6p =0,
1
huﬂ— m9> (E_—>(Cmﬁ+cﬁ,u) +‘_‘+ 7]#53 10 Bm»":

(22)

N N " Hg 64 3B
Iy = —2V*Cu/ 7, op= 1 \& 7’9 57,4)

! For example, in one dimension if

f(k)=/_:f(x)ei"’dx,

then {(k)/k is finite at £ = 0 when
(==} z
o’ ’
j_mdx/o f(x')dx

is finite, etc. The moment conditions are sufficient, but not necessary for our calculations. They can al-
ways be imposed by altering /45 at locations outside the observable portion of the universe.

*“Scalar,” “vector,” and “tensor’’ here refer to the transformation properties under the transforma-
tions (23).
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ii) p=p/3,8p = p/3,

_ aa_ 7° 4 E,..s) 8 OF
ho=22— (494 2)(Cup+ Ca) + 2 2 L 22,

I 7t 4 2 9E, _38, o1 , 0 6E-"6q)
ud = Vcﬂ+4 3 % an /' dp= 7" a‘l}'[ﬂ an 7 ]

Moreover, every solulion obeying the moment conditions has the form (22) up lo a gauge
iransformation. Finally, the gauge and coordinale frame in which equalions (7) and (22)
hold are fixed uniquely up to the iransformations

x' = 0x+¢;007T = I;0, ¢ = const. (23)

Proaf: To see that equations (22) form a solution, we merely substitute into the field
equations (15); the result is an indentity. Next, to see that every solution of equations
(15) which obeys the moment conditions has the form (22) in some gauge frame we
proceed as follows. We Fourier-transform /4, ks, 8G*5, 8G¥;, and éG*; as in equation
(16). We are then left with coupled ordinary differential equations with independent
variable 3. We next split 0,4 and 6®#, into longitudinal and transverse parts, for ex-
ample,

P bui(k,m) = n, + imk,, nke =0, (24)

The moment conditions (17) guarantee the uniqueness of this splitting if we demand
that m (0,7) be finite. We similarly split b,s and-8(#5 into traces, longitudinal-longi-
tudinal parts, longitudinal-transverse parts, and trace-free transverse-transverse parts,
again using the moment conditions. The system 6f ordinary differential equations then
decouple.s into sets whose solutions are either powers of 5 or spherical Bessel functions
of low order. After solving, we transform back to position space. The result is the solu-
tion (22) up to terms of the form (11). The extra terms can, of course, be eliminated by
a gauge transformation. Thus we obtain solution (22). Since the details of the calcula-
tion are both tedious and straightforward, we omit them; the reader who wishes to re-
produce the calculation will find some auxiliary equations in Appendix I. Finally, we can
ask what gauge transformations are still allowed after we have not only made the re-
strictions (10) but also demanded that the solutions take the particular form (22). By
assuming the moment conditions, we find from equations (11) and (22) that c,,s + cg,.
=0, b = 0. Consequently ¢, = €,s%® + ¢, where e,5 = —es, = const., ¢, = const.

These transformations are simply infinitesimal versions of the zero-order transforma-
tions (23) and can therefore be included in the zero-order transformations (23) without
loss of generality. The net effect is that no gauge transformations whatsoever are left
and the only coordinate freedom is the zero-order group of motions (23). Q.E.D.

d) Interprelations

The gravitational waves with generating function D,z have the expected two degrees
of freedom, since the restrictions (20) are those for the rest-mass zero, spin-two repre-
sentations of the Poincaré group (Ehlers 1965a). To see how gravitational waves are
redshifted, we may consider a plane wave (say, for p = 0):

S i[M] . oDu=const, oDukf=0, ,D#=0; @9
n dn L]

suppose that 5 >> 1. Then the phase ¢ of the wave, as seen by an observer moving with
the fluid, is effectively determined by the factor ¢**. Then d¢/dt = ikdy di = ika='(n).
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Thus a wave emitted at 7z and received at 5z is redshifted by the amount z + { =
a(nr)/a(nE), just as an electromagnetic wave is (Group 1). For &7 >> 1 the other time-
varying factors in equation (25) are amplitude modulations.

We mention without proof that calculating the contribution of plane waves (25) to
the conformal tensor (Pirani 1965) shows three things: (i) the contribution is not Petrov
type N as follows independently from Szerkes (1966); (ii) for large n the dominant
term in the contribution is Petrov type N; (iii) in any case, comoving observers who
measure the relative accelerations of neighboring test particles see the typical transverse
pattern of gravitational plane waves. We shall henceforth ignore the gravitational waves
and concentrate on the other terms in solution (22). In Appendix II we show for = 0
that all the remaining terms in solution (22) have very direct analogues in the Newto-
nian theory. To analyze the C, terms we introduce the rotation (vorticity) tensor w,s,

defined by Ehlers (1961) »
wab = Fah%(theia — tae) (26)

where /%, = §°, — u°us is the projection operator. In our case the zero-order contribu-
tion to the vorticity tensor vanishes and the first-order contribution comes out w,s = 0

and

1
wu5=HR VZ(CB,“—C,,,S) (P—‘-O),
27)
n Py
“’Mﬂ__.ZI{R V'(Cﬂ,‘._c‘;,d) (PZP/S).

Since C,,* = 0, equation (27) and the moment conditions show that the rotation tensor
at any fixed 7 and C, uniquely determine each other. In this linear approximation the
rotation tensor is not coupled to the density fluctuations 6p, as we sece from solution (22).

Finally we consider the terms responsible for the density fluctuations. When p = §p =
0, there are two kinds of terms, corresponding to A4 and B, in both of which ép decreasces;
8p, p decreases or increases, respectively. In the latter case the relative increase takes
place on the same kind of time scale as the time scale of the background. There are two
rather tenuous bits of evidence to suggest that the density fuctuations we actually ob-
serve are of the relatively increasing type: (i) our own supercluster seems to be expand-
ing less rapidly than the background; (ii) most galaxies seem to occur in clusters,
whereas one might expect that in density fluctuations for which §p/p decreases galaxics
would be flung out individually (de Vaucouleurs 1959). It should be emphasized that the
linear approximation we are using is quite accurate for calculating the field of a given
lump but very inadequate for describing the internal dynamics of small lumps. For ex-
ample, the internal dynamics of our Galaxy at present is governed by gravitational self-
interactions and by anisotropic “‘pressures’ that correspond to a suitable solution of the
Boltzmann equation for stars; both of thesé effects are ignored in our treatment so that
there is no use tryving to analyze the present structure of our Galaxy; with our model.
On the other hand. suppose one has as given the essential parameters for our Galaxy
mass, size, angular momentum, etc.; then one can in the present model get the external
field of the Galaxy accurate to about one part in 107 (GM/Rc? =~ 10~7). The situation
is wholly analogous to that in linearized theory (Fock 1959). At characteristic lengths
L =~ 107%/Hz = 10° lt-yr we start to see lumps so loosely bound that the present ap-
proximation may give 4 reasonably good picture even of the internal dynamics. The”
effect of small, tightly bound lumps on light rays has been analyzed often; two recent
treatments are thase of Bertotti (1966) and Gunn (1966). :

For p = p 3. 3# = %2 3, and k7> /3 the density perturbations, governed by E
in solution (22), .ire simply density waves with the characteristic sound velocity 2* =

-
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dp/dp = }. This fact is most easily seen by looking at the Fourier transform of equations
(22) (ii); the relevant term is

(28)

6 r = const. n"j—ngnz ain[expi(k'x:;kn/\/3)]§,

where &t is the Fourier transform of dp.

The factors in 7 are merely slowly varying modulations when %y >>+/3. Because the
relation between 7 and ¢ is universal, the waves are redshifted in the same way that
gravitational and electromagnetic waves are; similarly the charcteristic length of the
density wave is L =~ a(n)/k with % constant, and this length grows at a corresponding
rate. For long wavelengths, £y < /3, the dominant time dependence in equation (28) is
carried by .the factors 1/%, etc. In that case, the density perturbation &p decreases, but
the time scale for the decrease of 8p is of the same order of magnitude as the time
scale for the decrease of p. Specifically, in a given interval An we have A(3p)/
8p =~ §Ap/p. This transition from a time dependence governed by ei*/v3 for k large
to a time dependence on the same time scale as that of the background for % small is
sometimes called a Jeans instability (Bonnor 1957; Peebles 1965); “instability”” is not
the best word; gravitational and electromagnetic waves show the same kind of behavior.

The above methods and results are similar to those of Lifshitz (Group 2). His bnck-
ground models are less restricted, but our solutions are more explicit.

€) Lightlike Geodesics and Redshifts

The models considered here have the very convenient property that one can integrate
the equations for lightlike geodesics in the perturbed metric. These lightlike geodesics
are the key elements which relate formal equations like (22) to astronomical observi-
tions. We shall now perform the integration. In this subsection we shall use only the
form (7) of the metric and the “comoving” coordinate conventions (8); the more explicit
form (22) of the metric is not needed in this subsection, nor is the special gauge in which
(22) holds relevant.

The geodesic equations can be integrated by force, but it is a little stimpler to use
conformal techniques. Suppose two metrics ds® and di? are reluted by a conformal trans-
formation :

ds* = a*(x*)ds* . (29)

Then the lightlike geodesics of ds* coincide with those of ds®. However the preferred
(affine) parameters do not coincide. More specifically, suppose we are given a lightlike
geodesic w@(r) = x°(w), where v and w are affine parameters for ds® and ds°, respectively.
Let & = dx*/dvand k* = dx*/dw be the respective tangents. Then the relution hetween
v and 2 can be written in any of the three forms

o= ()b ek, = bodv = ddi . 130)

Let us now apply these results to the metric (7), (8) with a® = ¢*(y) and ds? the physical
metric. We shall first find &2, 4*(w) and then use equation (30). For d5? the geodesic
equations arc

. d $\? d dxt dx? dxb dx©
s [(5) dw=0o i (gt Gy ) = e G G O

To zero order we get for *(w)

a

—— gt =1), 32)

dws "
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Suppose a light signal is emitted at event (x#7g) and received at (0,7z), where we can
set the spatial coordinate of the reception event to zero without essential loss of gen-
erality. Then equation (32) has the solution

o =g — W, &P = efw, efeg = —1, ¢f = const. (33)
where ¢g = ng,¢*. In equation (32) we have chosen a specific origin and normalization
factor for w without essential loss of generality. The vector ¢# = e represents to zero

order the spatial direction of the light signal as seen by a receiver moving with the fluid.
The zero-order tangent .4 is given by

k= (e, —1). €N

In the following equations we shall denote by “0”” or “(0)”’ a quantity evaluated at the
unperturbed x°(v) or ox*(w); for example,

ah
(Fapy€®) () = €8 ( 22 (35)
dx¥ ze=oz‘:(w)

Then the first-order correction x® to x*(w) is, according to equation (31), given by

d?.‘xa
dw?

=0 (3 hapc ~ Poe,a) 2B ). (36)

Since the right-hand side of equation (30) is cxp[icifly known when /as is known, equa-
tion (36) can be integrated directly. In the next section we shall need only din/dw:

din b (3 g d ha,
— = — (] 8 (s 1 PV S Bhibidis RPN 37
=~ Ua ot [(FLRee—25%e) dy,

where all the quantities in the integral are evaluated at the unperturbed ,x%(y).

In equation (37) we have set an integration constant to zero without loss of gener-
alitv. Equation (37) can be used to calculate redshifts. Let z = AN/X as usual. Then
(Kristian and Sachs 1966; Schrédinger 1959) for emitter and receiver moving with the
fluid we have

(k“uu )lt“‘vn_flz a ( n R) ( kauﬂ)u‘='m_’le

1= = = . (38)
e T (i) (e

In equation (38) we have set #* = au® = i, = a~'u,. From expressions (38), (7), (8), and
(37) we get for the redshift correct up through first-order terms

a(ng) [ 7R Ng (611,,3 A sy ) }
l=——""|1-1 neB—2 —"¢f) dy}. (39)
Bt a(ng) 2»/0‘ an © ¢ an° i

As a check, we note that, since z is a directly observable quantity, equation (39) must
be invariant under the gauge transformations (9) and (10). In fact a direct calculation
shows that a transformation (9) and (10) leaves the right-hand side of (39) invariant.
(Note that 7g and nz change numerically under a gauge transformation for which b = 0,
and that by gauge invariance we here mean numerical, not functional, invariance.)

III. ANGULAR VARIATIONS IN THE MICROWAVE RADIATION

We shall now illustrate hew our results are related to observations by an example
which has considerable intrinsic interest. We wish to calculate angular variations in the
microwave radiation (Dicke, Peebles, Roll, and Wilkinson 1963; Peebles 1963) caused
by the following mechanism (a) at present there are fluctuations dp in the mass density;
(b) these fluctuations contribute to the gravitational field as in equation (22); (¢) the
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field causes changes in the redshift as in equation (39); (d) if the microwave radiation
is cosmological, it shows a corresponding variation of temperature with angle.

The model we shall use is the following highly idealized one: (i) we take the present
value of H to be 1071 year—!; (ii) we ignore density variations on scales less than 10°
lt-yr and assume that at present (nz = 1), for some scale L =~ 10°-10" It-yr, there are
density variations of order 8p/p = 10 per cent; (iii) we assume that the appropriate
background model is that with = 0, with the microwave radiation giving a negligible
contribution to p; (iv) we assume that only density perturbations of the relatively in-
creasing type are relevant; (v) we assume that at some ng < # in the gauge frame of
equations (22) the microwave radiation as measured by observers moving with the p = 0
gas was isothermal with temperature Tz independent of position x*. We suppose that
since 7g no significant Thomson scattering of the microwave background has taken

7 N N
Us, ROW-by . NN
N W N
N N sy Ne-Lump
xR )
N NN
te-Lumps +\ N
N N,
\\ N N | »~Photon
N N N ~ \
T=cons.=T N\ N
<77=cons.=17 \\}\r\\ .
E \:-\ N

A ’ ’ y s ‘ ’ , g 4 /7 s
0 Themson Scattering 0L,

F16. 1.—Space-time diagram for the microwave radiation in the unique gauge frame (22). The lump
boundaries have vertical world lines when 4 = 0 in (22) (for dust) because then dp = 6p(x#)f(n) in our
comoving frame. This picture in comoving coordinates does not accurately represent actual distances,
but to zero order, lightlike lines are at 45°.

place (see Figs. 1 and 2). The actual value that we will use is 7z = 5Y; this value cor-
responds to an emission temperature T¢ of order 3000° K, since in the background
models

however, any value of 7z < ¥ would give rather similar results.

Most of the assumptions stated above may be a little on the conservative side. Thus
the estimate at which we shall arrive is intended really as a lower limit on the radiation
anisotropy. In particular, the assumption (v) of intrinsic uniformity is very question-
able. Any intrinsic variations in emission temperature could easily dominate the effects
we are analyzing here. In fact, the effects we shall consider are present for any extended
source which is of order 10°-10" It-yr away; but for, say, galactic groups the effects are
swamped by intrinsic variations of the sources. Moreover, the reader should note that
assumption (v) is nof gauge-invariant under the transformations (9}—-(11). Assumption
(v) becomes meaningful only after we specialize to the (unique) gauge frame in which
equations (22) hold (see Fig. 3).

In our model the temperature observed at any one angle, specified by ¢, is inversely
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proportional to z 4 1, where z = AN/\ is the redshift between nz and 5z = 1 at that
angle. This result is proved as follows. In the geometric optics approximation (Kristian
and Sachs 1966; Zipoy 1966) we can describe the radiation by the scalar general-rela-
tivistic photon-distribution function F(x?,$°) ; here $°, the photon momentum, is subject
to the constraint $°p®g,; = 0. Since there is no Thomson scattering (or absorption),
obeys the general-relativistic Liouville equation (Lindquist 1965; Ehlers 19655). Imagine
some emission event E, and let ¥ be that world velocity at the reception event (0,1)
obtained by parallel transport of the fluid world velocity from E to (0,1) along the light-
like geodesic joining these points. Liouville’s theorem implies that an observer at (0,1)
moving with world velocity V° sees the emission temperature T in the direction of E.

t «—Us, now

«—Distant

galaxy
al) xH Photon

Our galaxy ———»

<Birth 0/
T=cons.=Tg
\ }=cons.= 1E

//(/////'///f;cThomson Scattering 7/ ////’//{/////////

T16. 2.—Zero-order diagram which schematically represents actual distances more accurately than
Fig. 1. The cones are light cones.

n +—Us,now

Y.

in gauge (22)

<«—Our galaxy

T# cons.
| fj=cons.
T=cons.=Tg | P
" - | g
nEcONs. =M } o ——
5L

///>//\_(//////7}_7 AThomson Scattering’//

Fi6. 3.—Assumption (v) is riot invariant under the gauge transformations (11), because 7 in gen-
eral varies along the hypersurface [5] = const. and the Thomson-scattering cutoff is determined by 7g
rather than {n] (denoted by 7 in figure).
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The transformation from an observer at (0,1) with world velocity V¢ to an observer
at the same event moving with the fluid velocity is the same as in special relativity.
Therefore

Ty

Te=t

as was to be shown. Note that the proof does not depend on any approximations; equa-
tion (40) holds exactly.
From expressions (40) and (39) we have, to first order,

Tp=Tg 2% 5T_TR)’ (41)
g R

oT Olr_ 1 [TTTE (3 i 4 o8 3 hsy 5)
1 — —_ . )
T, 2 an etef—12 an e o dy . w2

(40)

where

According to assumptions (iii) and (iv) above we can evaluate equation (42) using
8p = 0 in solution (22) and setting 4 = C, = D, = 0. Then

6T g
Ty

where R denotes the reception event (0,1) and E the emission event [e(T[[g — m) ﬂb]

We shall now analyze each term in equation (43) separately. We shall give some intui
tive interpretations; the reader is warned that our interpretations are valid only when
we consider the redshifts due to density fluctuations of the relatively increasing kind.
If A in (22) is non-zero, the equation corresponding to (43) is more comphcated and
our heuristic discussion below is not valid.

The angular dependence of the first term, for a coordinate system here and now
whose s-axis is aligned with (¥ B8)g, is simply

8T g
Tr

=g [ (Bue*) pmr— (Bue*)gne+Br—Bg], (43

= (const. ) cos @, (44)

where 6 is the usual polar angle. Therefore this first term is essentially a Doppler shift
induced by the fact that our fluid velacity here and now does not coincide with that world
velocity which would make the received temperature as isotropic as possible. The inter-
pretation of this term as essentially a Doppler shift can also be seen from the Newtonian
models of Appendix II.

The second term in equation (43) is essentially a similar Doppler-shift correction for
the world velocity of the source; if 7z = F this second term is normally small. Finally
the terms

6Tg =1 1

T——T{B(O)"B[G“(ﬂa—nlz)]» (#3)

R

are rather similar to a standard gravitational redshift since B in equations (22) is rather
similar to a Newtonian potential. Note that we should consider the source of the “po-
tential” B to be the fluctuation §p at the present time 7z = 1, not at the emission time
or intermediate times. The time dependence of dp and k. has already been taken into
account, We emphasize again that in a generic gravitational field one cannot distinguish
gravitational redshifts from Doppler shifts by any standard recipe; thus our division
of equation (43) into three parts has only a heuristic significance.

To estimate the order of magnitude of the most interesting term (eq. [43]), imagine
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that the present density perturbations ép are sinusoidal with some characteristic ampli-
tude dop and characteristic scale L:

; al( 2
6p=60pe""x,|k|=—ZR)=HRL; (46)
then from solution (22)
ike — dop
B=DBye'kx,  By=20 k’HH)' (47
Consequently, equations (5), (45), and (46) give
5Te 5°"(H L), 49)
Te

Suppose the universe contains lumps with scale HL =~ 0.3 (e.g., L is about 1000 Mpc)
and density fluctuations 6p/p = 10 per cent. Then
8T g

——=0. . (49)
Th 5 per cent

While we have no convincing direct evidence for or against 10 per cent density fluctua-
tions over scales as large as HL = 0.3, the fact that much more drastic density fluctua-
tions occur with scales HL = 10~ — 10~% (de Vaucouleurs 1961) suggests that (49) is
not a severe overestimate. Of course expression (49) is not a surprising result: for the
density fluctuations considered, the dimensionless concentration parameter GM/Lc? is
not negligible and general relativistic effects must come in.

If one uses 10 per cent density fluctuations over scales /L = 0.3 to evaluate the
constant in equation (44), this constant comes out of order 1.5 per cent. Thus the
“Doppler shift” term, though less interesting, is a little larger.

A slightly more sophisticated estimate can be obtained if one uses stochastic averages.
Suppose (Wax 1954) that at 7, = 1

op=Hp [d%kQ(k)eikx, (50)
where Q(k) is a random function. Suppose for simplicity
QRQK)) = S(k)o*(k + k'), S(k) >0, (s1)
where the angular brackets denote an ensemble average. Then
ik.
B(x) =322 dke J‘Q(k) (52)

Consequently, for the angular autocorrelation function f(6) of the term (43) we get
(Wax 1954)

(6 = T%E ({Ble(nr — n&)] — B(0)} {Ble'(nr — n&)] — B(O)}>

-——f—— le plik-(e—e')(ng—ng)] —explik-e(npg—1g)] &
—exp[ —ik- e’ (ng—1ng) I F 1},

where 6 is the Euclidean angle between e and e’.
The only term in equation (33) that actually depends on 8 is the term

161r = dkS(k)sin kx
g(e)—gf e S(k)er[lk (e—e)(‘ng—ﬂE)] A 52 kx (54)
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where
x = 2(ng — ng) sin /2 = 2 sin (6/2) . (55)

Suppose S(&) is sharply peaked near some value &, of k. Then [g(0)]'/* gives back our
former magnitude estimates. From equations (54) and (55) we can estimate the angular
resolution needed to detect the effect considered. For &, << 1 the resolution required is
of order 2r/k, radians of arc.

By an analysis similar to the above one finds that if the present value of §p comes
from density perturbations of the relatively decreasing kind, so that only 4 # 0 in
equation (22)(i), then 67°/T is larger than the values given above. Moreover it is pos-
sible to imagine that §p is zero everywhere between us and the emitting event but B # 0
(or A #0). For such terms B and 4 would have to be solutions of the homogeneous
Laplace equation essentially up to the (spatial) particle horizon (Penrose 1964; Rindler
1956). We might visualize such terms as the longitudinal gravitational fields of large
masses so distant that the masses are outside our present particle horizon. No a priori
upper limits can be set on the size of such terms. Finally, gravitational waves with very
long wavelengths could also contribute to §7/7, and would presumably not be detect-
able otherwise. '

IV. CONCLUSION

We have estimated that anisotropies of order 1 per cent should occur in the microwave
radiation if this radiation is cosmological. This figure is a reasonable lower limit provided
even rather modest 10 per cent density fluctuations with a scale of § the Hubble radius
occur at present. Larger variations could arise from intrinsiCc inhomogeneities in the
radiation temperature at the time Thomson scattering became negligible, from the
effects discussed at the end of the last section, or from effects to whith our perturbation
theory here is not applicable, such as non-linear large-scale anisotwropies of the universe.
Conversely, if isotropy to within 1 per cent or better could be established, this would be
a quite powerful null result.

Of course very many other effects, observable in principle, can be obtained from the
approach used in this paper. We have not so far found any others that seem particularly
promising, though our present ignorance of most of the parameters involved leaves many
possibilities open. More interesting seem to be two extensions of the theory developed.
First, the linear perturbations are so surprisingly simple that a perturbation analysis
accurate to second order may be feasible using the methods of Hawking (1966). One
could then judge the domain of validity of the linear treatment and, more important,
gain some insight into the non-linear effects. Second, it would be desirable to describe
the matter and radiation by the Boltzmann equation (Gilbert 1966) rather than just
using fluid dynamics. The mechanism for producing lumps of a certain size and density
is at present very obscure. Perhaps, for example, radiation viscosity is an effective
mechanism for producing small-scale perturbations and damping large-scale perturbations
during the p = p/3 phase of the universe that general-relativistic cosmologies predict.
The fluid dynamical approach is not well suited for discussing transport processes or
various non-gravitational instabilities.

Future observations may exclude the homogeneous, isotropic, general-relativistic
k = 0 models, even as zero-order approximations. At present they are as acceptable as
any other models and considerably simpler than most models.

We thank Professors J. Ehlers, E. Schiicking, W. Drummond, and G. de Vaucouleurs
at the University of Texas; Professor P. Peebles at Princeton; Professor S. Chandra-
sekhar at the University of Chicago; and Professor D. Zipoy at the University of Mary-
land for comments and discussions.
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APPENDIX I
AUXILIARY EQUATIONS

We shall list a few of the equations used in deriving equations (22). We split §,4 and b,g as
lollows:

Dus = n, + imk,nkr =0,
Dus = pus + i(quks + qsku) — skuks + 71,6, 1
Pus = DBu, % =0, ?uﬁkﬂ =0, gk =0, -

where n,, m, p.g, qu, 5, and r are functions of k£ and 7. The moment conditions (17) imply that (i)
such a splitting is possible; (ii) we can require m, g,, s, and r to be finite at 2 = 0; and (iii) the
splitting is then unique. We then split §&#; and 6&* in the same way. The result is

al) (e +atp =0,
a.2) —a*kr — [(s'k* — 2mkHa?) =0,
a.3) kJr + a?F(q)m] =0,
’
a.4) k'-'r-i—% (3" + s'k* — 2mk?) — a%r =0, (1.2)
b.1) l'kg[(q'“ —_ n“)al'}’ =0,
b.2) —k(q'w — n,) + 2a*F(n)n, = 0,
c)  aKpust (pupe?) =0,

where primes denote n-derivatives, k2 = k+k = —k,k* and all indices are raised or lowered
with 7,8 = —6,4 as before. Because of the moment conditions equation (I.2) can be simplified;
for example, (1.2.a.2) can be written.

—a*r — [(s' — 2m)a®) =0, (1.3)

since 7, s’, and m are finite at £ = 0,
After simplifying, expressions (I.2.a), (I.2.b), and (I.2.c) can be solved directly. For example,
with a? = const. 7% (e.g., p = p/3), equation (I.2.c) reads

Ertpus + (0'usn®)’ = 0 (1.4)

with solution pus = pus(k)e"/n. The Fourier transform of this last expression is [D,s(x,7)], 7,
where D,3 is any solution of equation (20). Apart from terms of the form (11) we then get equa-
tions (22). :

APPENDIX II
NEWTONIAN ANALOGUES

We will perturb the Newtonian cosmological equations and get solutions for the first-order
corrections in density and velocity. As in the previous general-relativistic calculations we will
use a background model swhich is both homogeneous and isotropic. We set the cosmological
constant A = 0, and we consider the case of “free fall,” which is analogous to the case of zero
curvature (4 = 0) in general relativity. If the Newtonian and relativistic solutions agree, one
can have greater confidence in the validity of these results. For p = 0 the correspondence is very
close.
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a) Background Models

For the case of dust (p = 0) we calculate the equations for the background and then for the
first-order perturbations. Let v(r,£), p(r,t), and ¢(r,t) be the velocity, density, and potential of the
dust cloud at time ¢ and position 7. The Newtonian equations for dust (in Cartesian coordinates)
are the continuity equation

9
SV (pv) =0, a1
the Navier-Stokes equation

81 (vv)v=—Vs, @2

and Poisson’s equation (with A = 0)
V¢ = 4nGp . @)

In the zero-order approximation these equations will yield a class of evolving background
models. From the postulate that the background flow be homogeneous and isotropic we infer
that v = H({)r and p = p(!) (Heckmann and Schiicking 1959), where p(f) represents the
smoothed-out. background matter density. We let H(f) = [da(t)/dt]/a(t), where a(¢) is the
usual expansion parameter which is called R() in Heckmann and Schiicking. These expressions
are then substituted into equations (II.1), (I1.2), and (II.3). The subsequent calculations have
been done by Heckmann and Schiicking. We consider the case where /, the energy of a unit mass
particle, vanishes. This is known as “free fall” since the particle can just escape to infinity. The
cnergy equation being identical to the relativistic Friemann equation, we can identify / with
the curvature of the spacclike hypersurfaces ¢ = const. Hence we have the same background
model that we used in our relativistic calculations. We now give the results of I{eckmann and
Schiicking for “free fall.” We use the rqsult that M = 4/GIr where M is the “mass” of the
universe and /I, is the present I{ubble constant. We also define the variable n by ¢ = (G3/6)7°.
In this notation n(¢) is the same time coordinate we used in the relativistic calculations with the
present value of 7, ng = 1. Therefore:

2n® 3% oyr
“(’7)=§;1 8"GP(W)=“—,,Tv v(r, 1) =",
(IT.4)
u: b4
$(r,n) =0 1 H(n)=73’5.

49t

We now have complete knowledge of the time evolution and spatial dependence of the back-
ground expansion parameter, density, velocity, potential, and Hubble constant. These zero-
order quantities will appear in the first-order calculations. :

b) First-Order Solutions (p = 0)

If a small perturbation is placed on the background, first-order corrections appear in the
velocity, density, and potential. We will call these év(r,t), 6p(r,f). and 66(r,r). The Newtonian
equations are now solved to first order. The perturbed Navier-Stokes equation is

2L‘;)—;Q—E-H(r'v)()(5v)/<’~)r~{-Hz'5z«'=—V'(B(iz). (I1.5)

The perturbed continuity equation is [for convenience we define the density fluctuation,
D(rt) = dp(r,)/p(1)]

%[t—)-i—Hr-vD—}-v-(av):O. 11.6)
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Finally the perturbed Poisson equation is
v3(6¢) = 4xGp()D . (1.7

Equations (I1.5), (IL.6), and (IL.7) can be combined to yield the following differential equation
for D(r,t):

<%+2H+H7‘V>(%+HT'VD>=4WG;)(!)D. (11.8)

The method used in getting this differential equation is given in Peebles (1965).

In order to compare the Newtonian and relativistic perturbations we transform equation
(IL.8) to a coordinate system comoving in zero order by going from the components r® of the
Cartesian r to coordinates x8:

22 =1%/a(t) . (11.9)

We shall use the symbol V. to indicate d/dx". Under the coordinate transformation (I1.9)
equation (II.8) goes into the form

612 +2H(l)——41erD 0. (I1.10)

Transforming from ¢ to 7 and substituting the background values for # and p gives

9*D ZQ-£D=0, (I.11)

9n* " m dn  n?
The general solution of this equation can be written

D (x5, )————[—A(QA %B(x")ng], ar.12)

7°

where .4 and B are any functions of the x® alone and the numerics have been chosen to facilitate
comparison with the relativistic solutions. From equation (I1.12) and the definition of D we get

v, <6A > (I.13)
321rG )

We can now obtain d¢ by putting equation (II.7) into comoving coordinates x%, The solu-
tion comes out

56 = 3[(A/7%) — (B/10)] + J (<% n) (IL14)

where J is any solution of ¥%.J = 0. If we impose on ¢ conditions analogous to the moment
conditions described in the text, / must be zero and we henceforth assume that such is the case.

Finally, we can now solve the perturbed Navier-Stokes equations (IL.5) to get év. We shall
compute the Cartesian components of v as functions of the comoving coordinates x%. If we
transform variables in equation (II.5), it becomes

aov

VL H() = — 1009

dxp’

(I.18)

Q|-

where 8¢ are still the Cartesian components. When we introduce 7 and the relevant background
values this equation reduces to

dsvé 2 )
g0 L= — 11.16)
a7 +n ot 3616" 775 10 (
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Let C#(x®) be any function of the 2 alone. Then the general solution of equation (IL16) can be
written in the form
VP, 8 (34

By
e B e

.17
S

svf =

+

We can now compare with the relativistic solutions by setting 8xG = 1; moreover, the co-
ordinates x? are fully analogous in the two cases because they are comoving to zero order in both
cases and small corrections to x? are irrelevant when considering terms already small to first
order. For dp the Newtonian and relativistic expressions are simply identical:

_Er, [6‘4("6) 3B
4 z 7° 5 gt

5p ] (A, B arbitrary). (.18)

There are no simple relativistic analogues of v and ¢ which are gauge-invariant, though quanti-
ties analogous to the Newtonian v do appear in the redshift equations. However a simple rela-
tionship exists between the relativistic vorticity tensor we and the Newtonian analogue o =
v X v = V. X v/a(n). For a comparison we may work out the scalar magnitude of both
quantities, which is first order in both cases since the zero-order vorticity vanishes. A short
calculation shows that the magnitudes are in fact equal:

if{va(v,xm 1% C=C(=xf)arbitrary.  (I19)

©° 0 = Wewag gt =

We note that C as in the relativistic case has no longitudinal part. This may be seen by sub-
stituting the solutions for 62* and 8p/p into the perturbed continuity equation expressed in
comoving coordinates. This completes the Newtonian analogue. The only téf in (22) (i) which
has no direct analogue here is the gravitational radiation term D.g, which must of course be
missing in Newtonian approximation.

¢) The Case of Radiation (p = p/3)

The same perturbation scheme was tried with the following results. The background New-
tonian equations (IL.1), (I1.2), and (I1.3) had to be modified (Harrison 1965) to get the correct
background solutions. When these modified equations were perturbed to first order, their
solutions did not agree with the relativistic results, even qualitatively.

Note added in proof: (1) The Newtonian calculations have been done by Doroshkevich
and Zeldvich in 1963 (Astr. ZI., 40, 807). (2) The temperature-shift argument relating
to equation (40) was given previously by Etherington in 1933 (Phkil. Mag., ser. 7, 15,
761). (3) We have investigated the density perturbations of the relatively increasing
type (B type) in detail, and find that the mass of these lumps increases with time at
the same rate as the background expansion parameter a. We also find that the increasing
mass is supplied by a perturbed matter flow from the background.
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