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Editor’s note

George Ellis

Rainer Sachs and Arthur Wolfe theoretically predicted Cosmic Microwave
Background Radiation (‘CBR’) fluctuation amplitudes in an expanding universe in
their classic 1967 paper [1]. In this paper they introduced the covariance multipoles
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that are the commonplace basis of analysis of the CBR anisotropies today. They pro-
vided the general equations for such CBR anisotropies in perturbed Robertson–Walker
universes (showing how they are based in redshift effects1), and identified their sources
as either gravitational potential variations in the early universe or peculiar velocities
of matter on the Last Scattering Surface (‘LSS’). By fully integrating the perturbed
Einstein Field Equations and the null geodesic equations, they worked out detailed
predictions for these anisotropies in the case of a spatially flat Einstein de Sitter uni-
verse. This is a key paper, laying the foundation for a huge number that followed, such
analyses being a major part of present day cosmology [2–5].2

This paper was a product of the powerful relativity group at the University of
Texas in the late 1960’s (see the Sachs biographical note below). The CBR was ob-
served, and its nature as relic radiation from the hot early universe was understood,
just two years previous to its publication. The importance of this radiation for cos-
mology was immediately recognised after its discovery. A key issue is who brought
into play a concern about CBR anisotropies [2, p.198]. On the experimental side,
these were looked for soon after the radiation was identified: measurements of its
dipole were attempted by both Conklin and Bracewell [6] and Partridge and Wilkin-
son [7] in 1967, the latter stating “A Dicke radiometer (3.2-cm wavelength) was used
to make daily scans near the celestial equator to look for possible anisotropy in the
cosmic blackbody radiation. After about one year of intermittent operation we find no
24-h asymmetry with an amplitude greater than ±0.1% (of 3◦K). There is, how-
ever, a possibly significant 12-h anisotropy with an amplitude of about 0.2%”. The
first reliable dipole measurements were obtained by Corey and Wilkinson in 1976
[8], and great many such measurements have of course been made since then at all
angular scales [2], in particular by the Cosmic Background Explorer (COBE) and
Wilkinson Microwave Anisotropy Probe (WMAP) satellites, and are a central fea-
ture of current cosmology. Thus this paper, the first theoretical paper to analyse these
anisotropies, was written at the same time or even preceded early attempted measure-
ments of CBR anisotropies, which would have been widely discussed at the time.
Shortly afterwards the results of this paper were extended by calculations such as
those by Rees and Sciama [9] looking at specific aspects in more detail, and com-
panion calculations were made of the CBR anisotropy in spatially homogeneous
anisotropic models by Thorne [10] and others, giving strong limits on their early
anisotropy.

The Sachs and Wolfe paper has two major parts: the theoretical derivation of CBR
anisotropy effects in any perturbed spatially flat Robertson Walker model, obtained by
integration of the null geodesic equations in generic form, followed by the detailed inte-
gration of the perturbed Einstein field equations for the spatially flat cases in order to
attain explicit results for the anisotropy predictions in this specific case (“The equations
for general linearized perturbations away from these models are explicitly integrated
to obtain density fluctuations, rotational perturbations, and gravitational waves”). The
p = 0 models are then compared in detail with corresponding Newtonian models. The

1 This feature is based on the reciprocity theorem, the subject of another Golden Oldie’.
2 The Science Citation Index gives about 769 citations for this paper, and Google gives about 203,000
webpage listings for “Sachs Wolfe effect”.
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presentation of the integration of the field equations in the Sachs–Wolfe paper is rather
obscure, because the calculations are so briefly described. Some very useful notes by
Jürgen Ehlers later clarified the details of this integration; these notes are reproduced
below. This later derivation of the solutions to the perturbation equations essentially
follows a paper by P.C. White, a former research student of Ehlers. In this paper [11],
it is shown that the so-called “moment condition” imposed by Sachs and Wolfe in their
general treatment of the perturbation problem for k = 0 Robertson–Walker universes
both excludes physically reasonable solutions, and is unnecessary. This restriction is
removed by establishing that the Sachs–Wolfe solution gives the most general C∞
solution provided the potentials are C∞. This method has been generalized to solu-
tions with � �= 0 by Cherubini et al. [12]. Note the careful control of gauge and
coordinate freedom in this integration, crucial to a proper physical understanding of
cosmological perturbations.3

Despite the later custom of referring to the Sachs–Wolfe effect as only pertaining
to the large scale anisotropies, the first part of their paper includes in principle all the
effects at all scales when matter-radiation interactions are negligible. Thus the paper
includes

(1) The Sachs–Wolfe (SW) effect: variations in the gravitational potential on the
LSS result in varying redshifting of photons between points on the LSS and
the present,4 and consequent temperature variations in the observed CBR. This
is the dominant effect at angular scales that are large in comparison with the
horizon size at decoupling, leading to the so-called Sachs–Wolfe plateau in the
CBR anisotropy spectrum at large angular scales (later interactions are negligi-
ble on large enough scales, and only primordial perturbations in the gravitational
potential survive).

(2) The integrated Sachs–Wolfe effect (‘ISW’) is due to a time change in the grav-
itational potential after the radiation has left the LSS. Firstly, if the radiation
contribution to the energy density on the LSS is non-negligible, its decreasing
contribution to the energy density as time progresses results in a decay of the
potential, producing the early ISW effect. Secondly, in cosmological models with
k = −1 or a non-zero cosmological constant, the gravitational potential decays
at late times because the expansion rate is larger than in k = 0 models, resulting
in the late ISW effect on large angular scales (and if k = +1 the opposite occurs).
The Rees–Sciama effect is due to growing concentrations of matter (incipient gal-
axies and galaxy clusters) generating time-varying potential wells, which cause
energy shifts in photons crossing these wells from the LSS to the present (the
well is deeper when they climb out than when they fall in), resulting in small
scale anisotropies [9]. In essence the Rees–Sciama paper explicates one of the
causal mechanisms generically included in the ISW effect, but extended to the
non-linear regime.

(3) The Doppler effect: small scale anisotropies result from redshifts due to the
peculiar velocities of the matter on the LSS.

3 Later work has introduced gauge-invariant variables and calculations (see [21] and citations therein), in
principle a better route to go.
4 This potential remains constant over time in perturbed spatially flat Einstein de Sitter models.
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The SW paper dealt with non-interacting matter and radiation. Major later develop-
ments of the theory are largely based on taking into account interactions between matter
and radiation, not considered in this pioneering paper, which also does not include the
adiabatic/isocurvature perturbation distinction (the paper deals firstly with pressure
free matter and secondly with pure radiation, but not a combination of the two). Later
papers consider first, the physics of the hot plasma before decoupling when matter and
radiation are tightly coupled, leading to the pattern of inhomogeneities and velocities
imprinted on the LSS by the early universe, predicting acoustic peaks for example,
which is then the initial data for the photon effects considered by Sachs and Wolfe.
Analysis of these peaks and their implications is a key area of present day observa-
tional and theoretical cosmology (see e.g., [5]). Second, they deal with matter-radiation
interactions after the radiation leaves the LSS, for example the Sunyaev–Zeldovich
effect resulting from scattering of the radiation by very hot intergalactic gas that also
emits X-rays. Finally, they deal with the decoupling process itself, when changes in the
anisotropy pattern are caused by effects such as photon diffusion from hotter to colder
regions (the Silk effect). All these effects are potentially observable, and indeed are
being observed at the present, giving constraints on models of dark energy [13–16].
On very small scales, gravitational lensing will alter the observed effect; this too has
been extensively investigated, as has the probable nature of polarisation of the CBR.
Observations of its polarisation [17] will give key tests of the inflationary universe
theory and its predictions of gravitational radiation [18].

The paper is based on the geometric optics approximation and photon description.
One can also derive the anisotropies from kinetic theory and the Liouville equation,
as widely used later (see [22] and references therein). Building on previous work by
Walker, Tauber and Weinberg, and others, Ehlers and Sachs in 1968 summarized a
powerful general formalism for the kinetic theory approach in General Relativity, see
[19,20]. However they did not develop its cosmological implications, except for deriv-
ing the important Ehlers Geren and Sachs theorem [23], showing that exact isotropy
everywhere of collision-free radiation in an expanding universe implies a Robertson–
Walker geometry. This is the current best observational basis for justifying the assump-
tion that a Robertson–Walker geometry is a good description of the visible region of
the universe (see [24] or [25] for detailed discussions). It is important to realise that
the Sachs–Wolfe kind of calculation does not prove the universe is almost Robertson–
Walker: rather that is the initial assumption made at the outset in all such papers at the
start of the calculation, and is taken for granted as the basis of the analysis. Thus in
the Sachs–Wolfe paper itself, a perturbed Robertson Walker geometry is the staring
point of the calculations.

In both the photon and the kinetic theory case, it is best to deal with gauge-invari-
ant variables (either Bardeen gauge invariant combinations of coordinate dependent
variables, or 1 + 3 covariant and gauge invariant variables). Later works used them
in both kinds of calculations (see [21,22] and references therein). Sachs and Wolfe
were very aware of the issue of gauge dependence, and in particular emphasize that
the splitting of the observational effect into Doppler and potential variation parts is
arbitrary, and of heuristic value only, because of its gauge dependence.

The one place where the Sachs–Wolfe paper is unrealistic is in its estimates of
the magnitude of the effects to be expected. The abstract states, “It is estimated that
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density fluctuations now of order 10 per cent with characteristic lengths now of order
1,000 Mpc would cause anisotropies of order 1 per cent in the observed microwave
temperature due to the gravitational red shift and other general-relativistic effects”.
This is a gross overestimate of the perturbations, now known to be at one part in
105 after the dipole (one part in 103) is removed in order to represent the aniso-
tropies seen in the cosmological rest frame. This high estimate resulted because it
was worked backwards from estimates of what size density fluctuations on the LSS
would be likely to grow to give the galaxies we see around us. It is now apparent that
non-linear clustering effects were much more efficient than estimated by Sachs and
Wolfe.

For a recent description of the Sachs–Wolfe effect see [26].
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Sachs–Wolfe integration

Jürgen Ehlers

1: Conventions: + − −−, c = 1, 8πG = 1.
a, b, . . . = 0, 1, 2, 3; µ, ν, . . . = 1, 2, 3.
Dust, p = 0; spatial curvature k = 0.

2: Background

gab = a2(η)ηab, a = 2η2

H
, H = const,

ρ = 3H2

η6 , t = 2η3

3H
, ηnow = 1, 0 < η < ∞.

Coordinates:

ηab = diag(1,−1,−1,−1), ua = δa
0

a
, x0 = η.

Isometries: euclidean translations and rotations.

3: Linear Perturbations: Write δ(...) for perturbations;

δgab = a2hab.

Shift indices on perturbed variables with ηab, ηab. Define

� := −ηµν∂µν = ∂µµ,
∂

∂η
:= ( )′.
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Primary gauge condition:

δua = 0.

(no loss of generality:

δua �→ δua + Lξua = 0 ⇔ ξa ;bub − ua ;bξb = δua .

Given ua and δua , this system of ordinary differential equations for the transport of
ξa along the integral curves of ua is always soluble).

gabuaub = 1, δua = 0, ua = δa
0

a
⇒ δg00 = 0 = h00.

Primary gauge-preserving transformations:

δxa = −ξa, ξ0 = b

Ha
, ξµ = ηµνd,ν + eµ, eµ,µ = 0;

eµ, b, d depend on xµ only. Write

hµ0 = hµ, hµ
µ = h, hµν = Sµν + 1

3
ηµνh ⇒ Sµ

µ = 0.

Primary gauge changes:

h �→ h − 2�d + 6
b

η3 , (1i)

hµ �→ hµ + b,µ
2η2 , (1ii)

Sµν �→ Sµν + 2

(
d,µν + 1

3
�dηµν

)
+ 2e(µ,ν), (1iii)

δρ �→ δρ − 9H2

η9 b. (1iv)

Note: h[µ,ν] and S′
µν are gauge-invariant.

4: Linearised field equations (δGa
b = δT a

b ).

The

(
0
0

)
equation:

Sµν,µν + 2

3
�h + 4

η
(2hν,ν − h′) = −8η4

H2 δρ (I)

(Hamiltonian constraint).
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The

(
ν

ν

)
equation:

Sµν,µν + 2

3
�h + 2

η4

[
η4(2hν ,ν − h′)

]′ = 0. (II)

The

(
ν

0

)
equation:

(Sµν,ν)
′ = 2

3
h′
,
µ + 24

η2 hµ + 2h[µ,ν]
,ν (III)

(momentum constraint).

The trace-free part of the

(
µ

ν

)
equation:

1

η4 (η
4S′
µν)

′ −�Sµν = 2(Sλ(µ,ν)
λ − 1

3
ηµνSαβ ,αβ)− 1

3
(h,µν + 1

3
ηµν�h)

+ 2

η4 (η
4[h(µ,ν) − 1

3
ηµνhλ,λ])′ (IV)

Remark The

(
0
ν

)
equation is implied by the forgoing equations, the background

equations and the S–W gauge condition.
The linearised field equations also imply the linearised equations of motion:

δ{(ρua);a} = 0 ⇔
(
δρ

ρ
+ h

2

)′
= 0 (2)

(the energy equation),

δ{ua;bub} = 0 ⇔ (ahα)
′ = 0 (3)

(the momentum equations).

5: Theorem (Sachs–Wolfe). The general smooth, linear dust perturbation of the Ein-
stein–de Sitter dust model can be written in the form

hα = −2

η2 �Cα, (4)

δρ = 3H2

2
�

(
A

η9 − B

10η4

)
, (5)

hαβ = 1

η

∂

∂η

(
Dαβ
η

)
− 4

(
8

η3 − �

η

)
C(α,β) + Bηαβ − η2

10
B,αβ + 1

η3 A, αβ (6)
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where the ‘potentials’ A(xµ), B(xµ), cµ(xν), Dµν(η, xλ) are smooth and subject to
the conditions

Cµ
,µ = 0, D[µν] = 0, Dµ

µ = 0, Dµν
,ν = 0,

(
�− ∂2

∂η2

)
Dµν = 0. (7)

Note that the general solution is a sum of two ‘scalar’, a ‘vector’, and a ‘tensor’ pertur-
bation. δρ and h are ‘scalar’, hα is ‘vector’, and only Sµν contains all three types.—No
uniqueness!

The Proof will be done by successively solving equations (2), (3), (I), (II), (III),
(I), (IV), simplifying results by using the remaining gauge-freedom along the way.

A. Energy integration:

(2) ⇔ δρ

ρ
+ h

2
= 3

2
B(xα),

so with the unperturbed ρ:

δρ = 3H2

2η6 (3B − h). (8)

B. Momentum integration:

(3) ⇔ hα = 1

2η2 Fα Š(xβ) (9)

where, by a b-type gauge transformation (1), one can impose

Fα, α = 0, hα, α = 0. (10)

This restricts the gauge transformations (1ii) to

�b = 0, (11)

Fα �→ Fα + b, α . (12)

C. Combine (I) and (II) with (10) and integrate, with result

h = A(xα)

η3 − B(xα)η2 + 3B. (13)

This gives, with (8),

δρ = −3

2
H2

(
A

η9 + B

η4

)
. (14)
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Eqns. (13) and (1i) show: A, B, B can be changed by the remaining gauge transfor-
mations according to

A �→ A + 6b, B �→ B, B �→ B − 2

3
�d, (15)

i.e., B is gauge-invariant. The last equation replaces eqs. (1i), (1iv).

D: If h and hα from (9) and (13) respectively are inserted in (III), the result can be
integrated. One obtains: there exists Jα(xβ) such that

Sµ
ν
,ν = η−3(2

3
A, µ − 4Fµ

) + 2

3
η2 B,µ + 1

2η
�Fµ + Jµ. (16)

According to equations (11), (12), (15) the coefficients of η−3, η2, η−1 are invariant
with respect to the gauge transformations (12), (15). Thus only the term Jµ in Sµν,ν
is gauge-variant, and we infer from (1iii) that it changes as follows:

Jµ �→ Jµ − 4

3
�d, µ −�eµ.

One can without loss of generality set Jµ = J, µ + Kµ with Kµ
,µ = 0. If we then

choose eµ, d such that Kµ = �eµ and 3
4 J = �d, we see that we can set Jµ = 0.

(This changes B as in (15), but it does not affect the results (9), (13), (14) if we write
again B for the re-gauged function). The remaining gauge transformations are further
restricted by

�b = 0, �
(
eµ + 4

3
d, µ

) = 0. (17)

We conclude from (16), Jµ = 0, and (10) that

Sµν,µν = −2

3

(
�A

η3 + η2�B

)
.

This equation combined with (9), (13), (14), and (I) gives

10B = �B. (18)

E. We have satisfied eqs. (I), (II), (III) and are now in a position to express the
right-hand member of (IV) in terms of the ‘potentials’ A, B, Fµ and the conformal
time, using (18) to get rid of B:

η−4(η4S′
µν)

′ −�Sµν =
(
�

η
− 6

η3

)
F(µ,ν) + η−3

(
A,µν + 1

3
ηµν�A

)

+
(
η2

10
�− 1

) (
B, µν + 1

3
ηµν�B

)
. (19)
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To solve (19), we introduce new potentials A, Cα by

�A = −A, �Cα = −1

4
Fα, (20)

with

Cα
,α = 0. (21)

Then we can reformulate (19) as follows:

η−4(η4S′
µν)

′ −�Sµν = (
η2

10
�− 1)(B, µν + 1

3
ηµν�B)− �

η3 (A,µν + 1

3
ηµν�A)

−
(

4�2

η
− 24�

η3

)
C(µ,ν). (22)

One solution of this equation is

S̃µν=−η
2

10
(B, µν + 1

3
ηµν�B)+ 1

η3 (A, µν+
1

3
ηµν�A)+

(
4�

η
− 32

η3

)
C(µ,ν). (23)

It has the divergence required by Eq. (16) with Jµ = 0.
The general solution of (22) is therefore a sum of S̃µν and the general symmetric,

tracefree, transverse solution of the equation

η−4(η4S′
µν)

′ −�Sµν = 0. (24)

To solve this (Darboux-) equation, we substitute Sµν = 1
η

(
Dµν
η

)′
; then the left hand

member of Eq. (24) becomes

(
1

η3 − 1

η2

∂

∂η

) (
�− ∂2

∂η2

)
D = 0.

Thus, any solution Dµν of the flat-space wave-equation gives rise to a solution Sµν of
(24). The data at η = 1 for Sµν and Dµν are related by

S(0)µν = D′(0)
µν − D(0)

µν ,

S′(0)
µν = 3(D(0)

µν − D′(0)
µν )+ D′′(0)

µν = 3(D(0)
µν − D′(0)

µν )+�D(0)
µν .

Given data S(0)µν , S′(0)
µν for the hyperbolic equation (24), there exist functions D(0)

µν , D′(0)
µν

on R3 such that

�D(0)
µν = 3S(0)µν + S′(0)

µν , D′(0)
µν = S(0)µν + D(0)

µν .
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The corresponding solution Dµν(η, xα) of the D’Alembert equation then solves (24)
for the given data. If, in addition, the data for Sµν are tracefree and transverse, the data
for Dµν can be chosen tracefree and transverse too, and then the solution is again TT.
Collecting results, we obtain the Sachs–Wolfe equations (4)–(7). 	


Tensor decompositions in Euclidean R3

1: V α a vector field. Then there exists a solenoidal Wα and curl-free U , α such that
V α = U ,α + Wα.

Proof V α;α = �U has a solution U ; then defining Wα :=V α−U,α implies Wα;α=0.
	


2: V α solenoidal. Then there exists a solenoidal Eα such that V α = �Eα .

Proof Solve V α = �Eα for α = 1, 2. Then solve

(∂11 + ∂22)F(x
1, x2) = V 3(x1, x2, 0)+ (E1

,1 + E2
,2)(x

1, x2, 0),

and define

E3(x1, x2, x3) = F(x1, x2)−
x3∫

0

(E1
,1 + E2

,2)(x
1, x2, y)dy.

Computation shows that Eα,α = 0 and �E3 = V 3. 	


3: T αβ symmetric, tracefree tensor field. Then there exist ψ , solenoidal Bα and a
symmetric, tracefree, transverse Wαβ such that

T αβ = ψ,
αβ − 1

3
δαβ�ψ + 2B(α,β) + Wαβ. (*)

Proof Solve T αβ , αβ = 2
3�ψ for ψ , solve T αβ ,β − 2

3�ψ
,α = �Bα with Bα,α = 0

(use 2 above). Then define Wαβ by (*) and verify it is TT. 	


Note these decompositions exist globally on R3 as well as on any open interval
ai < xi < bi . No fall-off is required. However, no uniqueness is claimed. The only
tool used is the

4: Theorem. ρ smooth, then there exists a smooth ψ such that �ψ = ρ.
(See Friedman, A., Generalised Functions and Partial Differential Equations,

page 320).
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Rainer K. Sachs: a brief biography

Rainer K. Sachs

Rainer K. (Ray) Sachs, Professor Emeritus of Math and of Physics
Evans Hall, MC 3840, University of California, Berkeley, CA 94720.
Email: sachs@math.berkeley.edu

Born 06/13/1932 in Germany; came to U.S. in 1937.
Bachelor’s in math, Massachusetts Institute of Technology, 1953.
Ph.D. in theoretical physics, Syracuse, 1959.
Flick Postdoctoral Fellow, Hamburg, Germany, 1960.
Postdoctoral Fellow, King’s College, London, 1961.
Assistant Professor, Department of Physics, Stevens Institute of Technology,

Hoboken NJ., 1962–1963.
Associate Professor and Professor, Department Physics, University of Texas at

Austin, 1963–1968.
Professor of Math and Physics University of California, Berkeley, 1969-present.

1993 Professor Emeritus. 1994 Research Professor of Mathematics.
Prof. Sachs writes, “I worked on general relativistic cosmology and astrophysics

until about 1985; then I switched to mathematical and computational biology, espe-
cially radiation biology.”

“My principal scientific accomplishment: introducing polymer models to describe
the large-scale geometry of chromosomes in the cell nucleus during cell-cycle inter-
phase.”

(From the webpage of Rainer K. Sachs)

Editor’s comment:5 Professor Sachs’ self-evaluation is a monumental under-appre-
ciation, and is not borne out by the citations to his papers. His achievements in relativity
include the organisation of meetings whose volumes of proceedings became important
sources for decades later (like, for example, the 47th course of the Enrico Fermi School
on relativistic cosmology, published in 1971—it defined the framework of the field).
Many of Professor Sachs’ papers were milestones in the development of relativity,
in particular in the study of gravitational radiation, the peeling-off theorem and use
of optical scalars. Notions and results introduced in some of those papers are today
widely known under names that include “Sachs” as their component. These include
the following, in approximate chronological order:

1. The Bondi–Metzner–Sachs group of asymptotic transformations,
2. The Goldberg–Sachs theorem,6

3. The Kantowski–Sachs symmetry group and spacetimes,
4. The Sachs–Wolfe effect in cosmology,
5. The Ehlers–Geren–Sachs Theorem.

The Sachs–Wolfe paper is one of the most important and innovative papers in cos-
mology, defining the basics of study of the Cosmic Microwave Background Radiation

5 By George Ellis and Andrzej Krasiński.
6 This paper will later appear as another “Oldie” in our series.
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anisotropies and providing the foundations for all later studies of this key feature of
present day cosmology. The Ehlers–Geren–Sachs Theorem is an under-appreciated
key result underlying our use of perturbed Robertson–Walker models as the basic
models of standard cosmology. The paper on observational cosmology by Kristian
and Sachs7 is no less innovative, combining Sachs’ deep insights into null geode-
sic congruences on the one hand, resulting from his work on gravitational radiation
and electromagnetic theory, and on the dynamics of cosmology on the other. This
understanding was developed firstly in conjunction with Jürgen Ehlers and the other
members of the Hamburg ‘exact solutions’ group in the early 1960s (comprising Pasc-
ual Jordan, Otto Heckmann, Engelbert Schücking, Jürgen Ehlers, Wolfgang Kundt,
Rainer Sachs, and Manfred Trümper); their work is summarised in the Mainz series of
papers which are due to be reproduced in the Golden Oldie series. It was then further
developed through the influential Texas University group set up by Alfred Schild in
the late 1960s, which again included Schücking, Sachs, and Ehlers. A key feature was
that they interacted with members of the Astronomy Department at the University
of Texas, particularly Gerard de Vaucouleurs, thereby learning many practicalities
of observational cosmology. These insights were influential in Sachs’ and Ehlers’
writings on cosmology, and led to Sachs’ supervision of the PhD thesis of Beatrice
Tinsley, an important work that challenged the common contention at the time that
galaxy evolution was unimportant in cosmological observations.

Arthur M. Wolfe: a brief autobiography

Arthur M. Wolfe

• Name: Arthur M. Wolfe
Place and Date of Birth: New York City, April 29, 1939

Education:
1961: B.S. Queens College, CUNY
1963: M.S. Stevens Insitute of Technology
1967: Ph.D. University of Texas, Austin

Professional Societies:
Fellow, American Academy of Arts and Sciences
International Astronomical Union
American Astronomical Society

Employment:
1973–1977: Asst Prof of Physics and Astronomy, University of Pittsburgh
1977–1981: Assoc Prof of Physics and Astronomy, University of Pittsburgh
1981–1989: Prof of Physics and Astronomy, University of Pittsburgh
1989–1997: Prof. of Physics, University of California, San Diego (UCSD)
1997–: Chancellor’s Associates IV Chair of Physics, UCSD

7 This paper will later appear as another “Oldie” in our series.
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Mailing Address:
Dr. Arthur M. Wolfe
University of California, San Diego
Center for Astrophysics and Space Sciences (CASS)
9500 Gilman Dr., MC 0424
La Jolla, CA 92093–0424, USA

• Collaborators
John N. Bahcall: Professor, Institute for Advanced Study, Princeton
Jacqueline Bergeron: Professor, Institute d’Astrophysique, Paris, and ESO
Alex Boksenberg: Professor, University of Cambridge
George Hartig: Researcher, Space Telescope Institute, Baltimore
Carl Heiles: Professor, U.C. Berkeley
Buell Jannuzi: Staff Astronomer, Kitt Peak National Observatories
Ken Lanzetta, SUNY, Stony Brook
Ue-Li Pen: Research Astronomer, CITA
Jason X. Prochaska: Carnegie Fellow, Carnegie Observatories, Pasadena, CA
W.L.W. Sargent: Professor, CALTECH
B.O. Savage: Professor, University of Wisconsin
D.P. Schneider: Professor, Pennsylvania State University
X. Shi: Postdoctoral Fellow, UCSD
Lisa Storrie-Lombardie: Postdoctoral Fellow, Carnegie Observatories
D.A. Turnshek: Associate Professor, University of Pittsburgh
R.J. Weymann: Staff Astronomer, Carnegie Observatorie

• Advisor of Others Within Past 48 months
Jason X. Prochaska: Ph.D. thesis advisor
Lisa Storrie-Lombardi, Carnegie Observatories: Postdoctoral Advisor
Graduate Students Advised: 6
Postdoctoral Fellows Sponsored: 6

• My Advisors
Ph.D. Advisor: R.K. Sachs, U.C. Berkeley
Postdoctoral Advisors: G.R. Burbidge, UCSD; M.J. Rees, Cambridge; Ya. B.
Zeldovich Moscow; F. Kahn, Manchester, England

For the past 25 years or so I have been working in observational cosmology, specifically
in the area of galaxy formation and star formation. It’s difficult to judge the significance
of one’s own work, but I would guess it would be a series of papers my collegues and
I wrote about the “damped Lyman α systems”. These are a population of neutral gas
layers that are widely believed to be the ancestors of modern galaxies (see Wolfe et al.
2005, ARAA, 43, 861; Wolfe et al. 1986, ApJS, 61, 249).
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