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Abstract
Understanding the area proportionality of black-hole entropy (the ‘area law’)
from an underlying fundamental theory has been one of the goals of all models
of quantum gravity. A key question that one asks is: where are the degrees of
freedom giving rise to black-hole entropy located? Taking the point of view that
entanglement between field degrees of freedom inside and outside the horizon
can be a source of this entropy, we show that when the field is in its ground
state, the degrees of freedom near the horizon contribute most to the entropy,
and the area law is obeyed. However, when it is in an excited state, degrees
of freedom far from the horizon contribute more significantly, and deviations
from the area law are observed. In other words, we demonstrate that horizon
degrees of freedom are responsible for the area law.

PACS numbers: 04.70.Dy, 03.67.Mn, 03.65.Ud, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

The area proportionality of black-hole entropy (the ‘area law’ (AL)),

SBH = AH

4�2
P

, (�P ≡
√

h̄G/c3 = Planck length), (1)

which differs from the volume proportionality of familiar thermodynamic systems, has been
conjectured to be more fundamental in some senses (the holographic hypothesis). Black holes
are also regarded as theoretical laboratories for quantum gravity. Thus, candidate models of
quantum gravity, such as the string theory and loop quantum gravity, have attempted to derive
the ‘macroscopic’ AL (1) by counting ‘microscopic’ degrees of freedom (DOF), using the von
Neumann/Boltzmann formula [1]:

S = −T r[ρ ln(ρ)] = ln �, kB = 1, (2)

where ρ and � correspond to the density matrix and number of accessible micro-states,
respectively. Depending on the approach, one counts either certain DOF on the horizon or
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abstract DOF related to the black hole, and there does not appear to be a consensus about
which DOF are relevant or about their precise location [2].

In this paper, we attempt to answer these questions in a more general setting which, in
fact, may be relevant in any approach. We adopt the point of view that the entanglement
between quantum field DOF lying inside and outside of the horizon lead to black-hole entropy.
It was shown in [3, 4] (see also [5, 6]) that the entanglement entropy of a massless scalar field
propagating in flat spacetime (by tracing over a spherical region of radius R) is proportional
to the area of the sphere

Sent = 0.3

(
R

a

)2

, a is the UV cutoff. (3)

This suggests that the area law is a generic feature of entanglement, and acquires a physical
meaning in the case of black holes, the latter’s horizon providing a natural ‘boundary’ of the
region to trace over. Note that equation (3) will continue to hold if the region outside the
sphere is traced over instead.

The relevance of Sent to SBH can also be understood from the fact that both entropies are
associated with the existence of the horizons [7]. Consider a scalar field on a background of a
collapsing star. At early times, there is no horizon, and both the entropies are zero. However,
once the horizon forms, SBH is non-zero, and if the scalar field DOF inside the horizon are
traced over, Sent obtained from the reduced density matrix is non-zero as well.

In [3, 4], along with the fact that calculations were done in flat spacetime, a crucial
assumption was made that the scalar field is in the ground state (GS). In [8, 9], the current
authors studied the robustness of the AL by relaxing the second assumption, and showed that
for generic coherent states (GCS) and a class of squeezed states (SS), the law continues to
hold, whereas for the excited states (ES), one obtains

Sent = κ

(
R

a

)2α

, κ = O(1), (4)

where α < 1, and the higher the excitation, the smaller its value. In this paper, we attempt
to provide a physical understanding of this deviation from the AL, by showing that for ES,
DOF far from the horizon contribute more significantly than for the GS. We also extend our
flat spacetime analyses for any (3 + 1)D spherically symmetric non-degenerate black-hole
spacetimes3.

We begin by considering a scalar field φ(x) propagating in a Schwarzschild spacetime4:

ds2 = −f (r) dt2 +
dr

f (r)
+ r2 d�2

2, f (r) = 1 − r0

r
, (5)

where r0 is the horizon. Transforming to Lemaı̂tre coordinates (τ, R) [12]:

τ = t + r0

[
ln

(
1 − √

r/r0

1 +
√

r/r0

)
+ 2

√
r

r0

]
(6)

R = τ +
2r

3
2

3
√

r0
�⇒ r

r0
=

[
3

2

(R − τ)

r0

]2/3

,

3 Our analysis differs from that of [10]. There, the authors divide the exterior region r � r0 into two by introducing a
hypothetical surface and obtain Sent of the hypothetical horizon. In contrast, we consider the complete r � r0 region
and obtain Sent for the event horizon of the black hole.
4 The perturbations of (3 + 1)D static spherically symmetric black holes result in two kinds—axial and polar—of
gravitational perturbations. The equation of motion of the axial perturbations is the same as that of a test scalar field
propagating in the black-hole background [11, 15]. Hence, by computing Sent of the test scalar fields, we obtain the
entropy of black-hole metric perturbations.
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the line element (5) becomes

ds2 = −dτ 2 +

[
3

2

(R − τ)

r0

]− 2
3

dR2 +

[
3

2

(R − τ)

r0

] 4
3

r
2
3

0 d�2. (7)

Note that R(τ) is everywhere space-like (time-like), the metric is non-singular at r = r0

(corresponding to 3(R − τ)/2r0 = 1) and the metric is explicitly time dependent. The
Hamiltonian of a massless, minimally coupled scalar field in the background (7) is given
by

H(τ) =
∑
lm

1

2

∫ ∞

τ

dR

[
2P 2

lm(τ, R)

3(R − τ)
+

3r

2
(R − τ)

× [∂Rφlm(τ, R)]2 + 3

√
r0

r
�(� + 1)φ2

lm(τ, R)

]
, (8)

where Plm(τ, R) is the canonical conjugate momenta of the spherically reduced scalar field
φlm(τ, R), such that [φ̂lm(R, τ0), P̂lm(R′, τ0)] = iδ(R − R′) and � denotes angular momenta.
Note that, in these coordinates, the scalar field and its Hamiltonian explicitly depend on
time.

Next, choosing a fixed Lemaı̂tre time (say, τ0 = 0) and performing the following canonical
transformation [16]

Plm(r) = √
rπlm(r), φlm(r) = ϕlm(r)

r
, (9)

the Hamiltonian (8) transforms to

H(0) =
∑
lm

∫ ∞

0

dr

2

[
π2

lm(r) + r2
[
∂r

ϕlm

r

]2
+

�(� + 1)

r2
ϕ2

lm(r)

]
, (10)

which is simply the Hamiltonian of a free scalar field in flat spacetime! Equation (10) holds for
any fixed τ , for which the results of [4, 9], namely relations (3) and (4), go through, provided
one traces over either the region R ∈ [

0, 2
3 r0

)
or the region R ∈ [

2
3 r0,∞

)
[10]. Extension to

any non-degenerate spherically symmetric spacetimes is straightforward5.
The remaining steps in the computation of Sent are as follows.

(1) Discretize the Hamiltonian (10)

H =
∑
lm

1

2a

N∑
j=1

[
π2

lm,j +

(
j +

1

2

)2 (
ϕlm,j

j
− ϕlm,j+1

j + 1

)2

+
l(l + 1)

j 2
ϕ2

lm,j

]
, (11)

where πlm,j denotes the conjugate momenta of ϕlm,j , L = (N + 1)a is the box size and a
is the radial lattice size. This is of the form of the Hamiltonian of N coupled HOs

5 Ideally, one would like to fix the vacuum state at some Lemaitre time τ = 0 and study the evolution of the modes
at late time leading to the Hawking effect. Such an analysis is nontrivial for the (3 + 1)D black holes. Even in the
case of (1 + 1)D black holes, this issue has been addressed with limited success [13]. In the rest of this paper, we will
not consider these effects.
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H = 1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiKij xj , i, j = 1, . . . , N, (12)

with the interaction matrix elements Kij given by

Kij = 1

i2

[
l(l + 1)δij +

9

4
δi1δj1 +

(
N − 1

2

)2

δiNδjN

+

((
i +

1

2

)2

+

(
i − 1

2

)2
)

δi,j (i �=1,N)

]

−
[(

j + 1
2

)2

j (j + 1)

]
δi,j+1 −

[(
i + 1

2

)2

i(i + 1)

]
δi,j−1, (13)

where the last two terms are the nearest-neighbor interactions.
(2) Choose the state of the quantum field. For the GS (r = 1, αi = 0), GCS (r = 1, αi =

arbitrary) or a class of SS (α = 0, r = arbitrary), the N-particle wavefunction ψ(x1 . . . xN)

is given by [9]

ψ(x1 . . . xN) =
∣∣∣∣ �

πN

∣∣∣∣ exp

[
−1

2

∑
i

rκ
1/2
Di (xi − αi)

2

]
. (14)

For ES (or 1-particle state), the N-particle wavefunction ψ(x1 . . . xN) is given by

ψ(x1 . . . xN) =
∣∣∣∣ 2�

πN

∣∣∣∣
1
4

N∑
i=1

aik
1
4
Dixi exp


−1

2

∑
j

k
1
2
Dj x2

j ,


 , (15)

where aT = (a1, . . . , aN) are the expansion coefficients (normalization requires aT a =
1). For our computations, we choose aT = 1/

√
o(0, . . . 0, 1 . . . 1) with the last o columns

being non-zero. For details, see [9].
(3) Obtain the density matrix. For an arbitrary wavefunction ψ(x1, . . . , xN), the density

matrix—tracing over first n of the N field points—is given by

ρ(t; t ′) =
∫ n∏

i=1

dxiψ(x1, . . . , xn; t1, . . . , tN−n)ψ
(x1, . . . , xn; t ′1, . . . , t

′
N−n), (16)

where tj ≡ xn+j , t ≡ t1, . . . , tN−n, j = 1..(N − n), xT = (x1, . . . , xn; t1, . . . , tN−1) =
(x1, . . . , xn; t). This step, in general, cannot be evaluated analytically and requires
numerical techniques. For GS/CS/SS, substituting (14) in the above expression and
using relation (2) gives equation (3). For ES, on the other hand, this leads to relation (4)
[9].

Now, to locate those DOF which are responsible for entropy, we take a closer look at
the interaction matrix (13). As mentioned earlier, the last two terms are the nearest-neighbor
interactions between the oscillators and constitute entanglement. As expected, if these terms
are set to zero (by hand), Sent vanishes. Instead, let us do the following.

(i) Set the interactions to zero (by hand) everywhere except in the ‘window’ (q − s � i �
q + s), with s � q � n − s, i.e. restrict the thickness of the interaction region to 2s + 1
radial lattice points, while moving it rigidly across from the origin to the horizon. In
figure 1, we have plotted the percentage contribution to the total entropy as a function
of q for the GS/GCS/SS (o = 0, solid thin curve) and ES (o = 30(50), bold (light)
thick curve). (We choose N = 300 and n = 100, 150, 200. The numerical error in the
evaluation of the entropy is less than 0.1%.) Figure 1 shows the following.
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Figure 1. Plot of the percentage contribution to the entropy for the GS and ES as we move the
window q − 2 � i < q + 2 from q = 2 to q = n, for N = 300 and n = 100, 150 and 200. The
solid thin curve is for the GS o = 0 and the bold (light) thick curve for o = 30(50).

• When the interaction region does not include the horizon, the entanglement entropy is
zero and it is maximum if the horizon lies exactly in its middle. The first observation
confirms that entanglement between DOF inside and outside the horizon contributes
to entropy, while the second suggests that DOF close to the horizon contribute more
to the entropy compared to those far from it.

• When the number of excited states is increased (i.e. o = 30, 50), the percentage
contribution to the total entropy close to the horizon is less compared to that of the
GS and the (bold/light thick) curves are flatter. These indicate that, for ES, there is
a significant contribution from the DOF far away from the horizon.

(ii) To further investigate, we now set the interactions to zero (by hand) everywhere except
in the window p � i � n, with the horizon as its outer boundary, and vary the width
of the window t ≡ n − p from 0 to n. For t = n, the total entropy is recovered, while
for t = 0, i.e. zero interaction region, the entropy vanishes. In figure 2, we have plotted
the normalized GS/GCS/SS and ES entropies [Sent(t)] versus t for n = 100, 150 and
200. (Here again, the solid thin curve is for the GS and the bold (light) thick curve for
o = 30(50).) We infer the following.

• For the GS/GCS/SS, the entropy reaches the GS entropy for as little as t = 3. In other
words, the interaction region encompassing DOF close to the horizon contributes to
most of the entropy for the GS/GCS/SS.

• In the case of ES, the entropy reaches the ES entropy only for t = 15(20) (for
o = 30(50)). This indicates that (a) the DOF far away from the horizon have a
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Figure 2. Plot of the percentage contribution of Sent(t) for the GS and ES. Here again,
N = 300, n = 100, 150 and 200, and the solid thin curve is for the GS and bold (light) thick curve
for o = 30(50).

greater contribution than those of the GS and (b) as the number of excited states
increases, contribution far away from the horizon also increases.
This leads us to one of the main conclusions of this paper: the greater the deviation
from the AL, the larger is the contribution of the DOF far away from the horizon. It
can be shown that the density matrix for the ES is more spread out than for the GS.

(iii) To understand this further, let us define

�pc(t) = pc(t) − pc(t − 1) where pc(t) = Sent(t)

Sent
× 100,

where pc(t) is the percentage contribution to the total entropy by an interaction region of
thickness t and �pc(t) is the percentage increase in entropy when the interaction region is
incremented by one radial lattice point. In other words, �pc(t) is the slope of the curves
in figure 2. In figure 3, we have plotted �pc(t) versus (n − t) for GS and ES. For the
GS/GCS/SS, it is seen that when the first lattice point just inside the horizon is included
in the interaction region, the entropy increases from 0 to 85% of the GS entropy. Inclusion
of the next three points add another 9%, 3%, 1% respectively. The contributions to the
entropy decrease rapidly and by the time the (n/3)th point is included, the entropy barely
increases by a hundredth of a per cent! For ES, however, inclusion of one lattice point adds
70(50)%, for o = 30(50), to the entropy, while the next few points add 9%, 4%, 3% . . .

respectively. The corresponding slopes are smaller.

Figures 2 and 3 suggest the next key result of this paper: most of the entropy comes from
the DOF close to the horizon. However, the DOF deep inside must also be taken into account
for the AL (3) to emerge for the GS/GCS/SS and the law (4) to emerge for ES. These DOF
affect the horizon DOF via the nearest-neighbor interactions in (13).
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Figure 3. Plot of �pc(t) versus n − t for GS and ES. Here again, N = 300, n = 100, 150 and
200, and the solid thin curve is for the GS and bold (light) thick curve for o = 30(50).

Our work clearly demonstrates the close relationship between the AL and the horizon
DOF, and that when the latter become less important, the entropy scales as a power of area
less than unity. This can be understood from the following heuristic picture: taking the point
of view that SBH is proportional to N , the number of DOF on the horizon, and that for the
GS/CS/SS there is one DOF per Planck area, such that N ∝ AH , the AL follows (this is
known as the it-from-bit picture [14]). For ES, however, since this number is seen to get
diminished, it will be given by another function N = f (A) < A. Now, since current results
are expected to be valid when A 
 1 (in Planck units) (such that backreaction effects on
the background can be neglected), it is quite plausible that f (A) ∼ Aα, α < 1, just as we
obtain. Note that the above reasoning continues to hold when the outside of the horizon is
traced over. Another way of understanding our result is as follows: all interactions being of
the nearest-neighbor type (cf equation (13)), the degrees of freedom deep inside the horizon
influence those near the horizon (and hence contribute to the entropy) only indirectly, i.e.
via the intermediate degrees of freedom. Evidently, their influence diminishes with their
increasing distance from the horizon. When they are excited, however, they have more energy
to spare, resulting in an increased overall effect. Further investigations with superpositions of
GS and ES are expected to shed more light on this [15].
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