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Abstract. We prove that the validity of the recently proposed dressed,
asymptotic Bethe ansatz for the planar AdS/CFT system is indeed limited at
weak coupling by operator wrapping effects. This is done by comparing the Bethe
ansatz predictions for the four-loop anomalous dimension of finite-spin twist-
two operators to BFKL constraints from high-energy scattering amplitudes in
N = 4 gauge theory. We find disagreement, which means that the ansatz breaks
down for length-two operators at four-loop order. Our method supplies precision
tools for multiple all-loop tests of the veracity of any yet-to-be constructed set of
exact spectral equations. Finally we present a conjecture for the exact four-loop
anomalous dimension of the family of twist-two operators, which includes the
Konishi field.
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1. Introduction and verdict

Two-dimensional integrable structures appeared for the first time in four-dimensional
gauge field theories in the context of high-energy scattering in QCD. In a certain
leading logarithmic approximation the scattering amplitudes of colorless particles are
well described by the exchange of two effective particles, termed reggeized gluons. A
compound of two of these particles is frequently called the pomeron. In the planar limit,
the associated dynamics is governed by an integrable Hamiltonian® [1]. Shortly after, this
Hamiltonian was identified as the direct sum of two commuting non-compact spin-zero
Heisenberg magnets [2]. The length of this spin chain equals the number of reggeized
gluons considered. Therefore the leading dynamics of the pomeron is described by a very
short spin chain with two sites.

Some years later integrable spin chains also resurfaced in the analysis of planar
one-loop anomalous dimensions of composite local ‘twist’ operators in QCD [3,4].
The integrable structures appearing, respectively, in the context of reggeization and
of anomalous dimensions are frequently confused even though the considered physical
phenomena are quite different. However, when focusing on a more symmetric relative of
QCD, the N = 4 gauge theory, deep and surprising connections indeed link the respective
integrable structures [3]. In the N/ = 4 case, the above ‘confusion’ therefore actually
expresses a profound insight.

The next step towards unravelling the exactly solvable structure of planar N = 4
gauge theory came through the discovery that not only the sector of quasi-partonic twist

5 It was shown in [1] that the Hamiltonian is a member of a set of mutually commuting charges generated by a
monodromy matrix satisfying the Yang—Baxter equation. This Padua University preprint had been submitted to
Physics Letters B and was rejected by the referee.
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operators, but in fact the complete set of local composite operators is described at one
loop by an integrable psu(2,2]4) non-compact supermagnet [5|. Its spectrum is hence
described by a nested Bethe ansatz. Much evidence was found that integrability is not
destroyed by radiative corrections, and that the Bethe ansatz extends to higher loops [6]-
[8]. This led to a set of higher-loop Bethe equations [9], which were accurate to three-loop
order, but nevertheless still incomplete at four loops and beyond, in two distinct ways.

e Firstly, the Bethe ansatz [9] contained an unknown dressing factor which was
initially introduced in order to reconcile the integrable structures of gauge and string
theory [10], linked through AdS/CFT, in certain long-operator limits [11]. The
understanding of its necessity and structure was subsequently refined in a series
of important papers [12]. Its existence was finally indirectly proven through an
impressive field-theoretic four-loop calculation [13], following a testing procedure
proposed in [14]. Its precise form was written down in [15] contemporaneously
with [13], and agrees quantitatively with the field theory computation to a very high
precision [16]. A self-consistent derivation of the dressing phase from first principles is
still lacking. Very recently, however, it was demonstrated that the proper convolution
structure of the phase arises from a nested Bethe ansatz [17]. See also the comments
in [18].

e Secondly, the Bethe ansatz [9] does not necessarily incorporate wrapping effects, as it
is by construction [7] asymptotic. The point is that the all-loop dilatation operator
of the gauge theory is long range, i.e. the interactions link at ¢ loop orders ¢ + 1
neighboring sites on a lattice spanned by the partons. The definition of an S-matrix
requires an asymptotic region (see [7] for a discussion). If the interaction range
exceeds the size of the system the asymptotic region shrinks to zero and the Bethe
ansatz might well break down. One can show [9] that in A/ = 4 this cannot happen
up to three-loop order. A wrapping-induced breakdown might however occur at four-
loop order for the shortest possible operators. Investigating this issue is the main
purpose of this paper.

The shortest possible local composite operators in the N' = 4 theory are the so-called
twist-two operators. For a simple representative of these one starts from the protected
half-BPS states Tr Z2 and inserts M covariant derivatives D:

Tr(ZDMZ) + -, (1.1)

In the spin chain picture this is a non-compact s[(2) spin = —% length-two Heisenberg
magnet with M magnonic excitations. The dots indicate the mixing of all states where
the covariant derivatives may act on any of the two fields. For each even M there is
precisely one non-BPS state whose total scaling dimension is

A=2+M+7(g),  withy(g) =D 7209, (1.2)
=1
where (g) is the anomalous part of the dimension depending on the coupling constant
A
2
= 1.3
9= 152 (1.3)

and A = Ng2,, is the 't Hooft coupling constant. States with odd M do not exist in
the s[(2) sector. The anomalous part v(g) of the dimension may be reliably computed to
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three-loop order O(g%) by the asymptotic Bethe ansatz [7]; see (2.1), (2.4) of section 2.
The result agrees at two-loop order with the one obtained from an explicit field-theory
calculation [19], and at three-loop order with a solid conjecture [20] extracted by the
principle of maximum transcendentality [21] from a rigorous field theory calculation in
QCD [22]. Closely related interesting properties of perturbative anomalous dimensions,
following from certain generalized relations of Gribov and Lipatov, and of Drell, Levy and
Yan, are discussed in [23].

In ' = 4 theory the ¢th loop anomalous dimension ~,,(M) is expressed through
a combination of harmonic sums of constant degree 2¢ + 1. These are defined in (2.5)
below. The relationship to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [24] for
describing high-energy scattering amplitudes in gauge theory appears upon analytically
continuing the function v(g, M), and therefore the v,,(M), to general, complex values of
M. In particular, one expects singularities at all negative integer values of M. The first
in this series of singular points corresponds to the above-mentioned pomeron at

M=—-1+4w, (1.4)

where w should be considered small. Notice that in BFKL physics one more commonly
uses the variable j instead of M. These are related through M = j—2. Roughly speaking,
in view of (1.1) we could say that the BEKL pomeron of N' = 4 gauge theory is described
by the non-local gauge-invariant operator

pomeron = Tr(ZD ™ Z). (1.5)

The BFKL equation relates 7(¢) and ¢ in the vicinity of the point M = —1. To leading
(one-loop) order (LO) it reads

—ZgQ — (—%) + (14 %) —2u(1), (1.6)

where U(z) = (d/dz) logI'(x) is the logarithmic derivative of Euler’s Gamma function.
By expanding the W-functions in infinite series it may be rewritten as

w 2 N ()
g 2}2() C(2k + 1). (1.7)

We are now ready to point out the crucial importance of the BFKL equation as a
testing device for any, past or future, conjecture on the exact higher-loop spectrum of
anomalous dimensions in the A/ = 4 model. The point is that even though (1.6) is only
the one-loop approximation to the true, currently unknown relationship between the spin
label M = —1+w and the anomalous dimension 7, upon inversion of the power series (1.7)
we get an all-loop prediction of the leading singular behavior of v as a function of the
deviation from the singularity at M = —1 as w — 0.

This inversion is easily performed to arbitrary orders of perturbation theory. To for
example four-loop order one finds for the analytically continued anomalous dimension

=9 (_if) 0 (_ng)Q +0 (_if)g — 4¢(3) (_i92)4i---. (18)
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Table 1. The result for the four-loop asymptotic dimension y{B4(M)/256. The
harmonic sums are functions of M and are defined in (2.5). The basis is canonical,
except for the terms stemming from the dressing factor in the last line.

4S8 74+6S7+2(S_313+S5_322+S5331+S5_241)+3(=5_25

+ S 23-2)+4(S_214—S-2-2-21—5212-2—S_221-2—S51-213

— S1,—222—51,—231)+5(=S_34+S_2_29_3)+6(—=55_2

+ 51,04 —S_9_91,_9—S1_9_2_92)FT(—=S_2_5+S_3_2_2

+ S 90 3 9+S_9_23)+8(S_412+S-421—S_5_2—5_43

— S 91,92+ 51,-21,1,-2) + 953, _2_2—10S51 22 2+ 115 32 9
+12(=S_61+S-22-3+ 5142+ 54-21+S41,-2—5_311,-2—5S_22-21
— S1,123—5113-2—51132—51,213—51,22,-2—51,222— 51231 — 51,31,-2
— S13,1,2— 51,321 — 52,212 — 52,221 —521,1,3— 521,22 — 52,122

— 821,31 —S22,1,—2 — 52212 — 52221 — 52,311 —53,1,1,—2 — 53,1,1,2 — 53,1,2,1
— 539211)+ 1352 _03—1455 21 9+ 15(523 -2+ S3,2,—2)
+16(S_41,—2+S_21,-4—S_2_212—S5S_2_221—5_21-22—5211,-3

— S1,-31,2—51,-321 —S1,-2,-22— 52,221+ S5-211,-21+511,-2,1,—2

+ Si1,-212+S11,-221) —17S_52+18(—=S4,—3 — Se,1 + S1,-3,3)
+20(=S1,—6 —S1,6 —Sa3+S_51,1+S-4-21+S5-3-22+S5 2 41

+ S5 2 _32+S51,33+ 5313+ 5331 —S51,1,—23—S1,2-2-2—S521,-2,-2)
—21834+22(S1,—2-4+S223+ 5232+ 5322+ 5322)+23(—5_3_4

— S50+ 852, 92_3)+24(—=5_4_3+S1,—4-2—51,-31,—2—S111,4 — 51,141

— S1,3,-21 — S1,4,1,1 —53,—2,1,1 — S3,1,—21 — Sa,11+S—2, 211,10 FS—2,1,-2,1,1
+ S1,-2,-211 +51,-2,1,—21 +S1,1,—2,—21+S11,1,—2,—2 + 511,221 + S1,2,1,-2,1
+ S911,-2,1) +25852, 3,24+ 26 (=S5 + S1,42+ 5241+ Sa1,2+ S121)

+ 28 (S1,24 + 5214 —S5-31,-21 —S_21,-31—S51,-2,1,-3) +305_31,_3
+32(S151+ 5511 —S5-3-211—S5-2-311—51,-3,-21—51,-2-3.1

— 829,91+ S1,2,-21,1+ 521,211 — S1,1,1,-2,1,1) + 36 (S1,1,5 + S1,3,—3

+ 53,13 —S1,1,-3,—2 —S1,1,—2,-3 — S1,1,2,—3 — S1,2,-2,2 — S1,2,1,—3 — S2,1,—2,2
— S521,1,-3) +385_3 _31+40(—=51,-4,11 — 52,311+ S1,1,1,-2,2)

— 4183 _4 +42(—S2,—5+ S1,—42+ S1,-3,-3) + 44 (S1,—5,1 + S2,—32 + 53,_3.1)
+ 46.522,_3+48511,-31,1 +60(S11,-5 — S1,1,-3.2) + 6252 41 +6451,1,1,-3,1
+ 68(S1,2,—4+ S2,1,—4 — S12,-31 — S21,-31) —7251,1,1,—4 — 80 51,1,—4,1

— C(3)Sl(83 —S_3+2 S_271).

This may now be compared to the result as obtained from the dressed asymptotic Bethe
ansatz (ABA). In section 2 below we present its prediction for the four-loop dimension
at arbitrary positive integer spin M see table 1. After analytic continuation to negative
values of the spin M, and expanding in w around the pole at M = —1, see (1.4), we find

,)/ABAZQ(ng)_ (if)2+o(i92)3_2(_:‘:79:)4i..., (1.9)

w w w

where we have also restated the known results at less than four loops. One observes
mazximal violation of the BFKL prediction (1.8): the leading singularity in w should be
a pole of fourth order. Instead, we find a seventh-order pole, which is the maximum
order the analytic continuation of an harmonic sum of transcendentality degree seven can
yield. This means that 7*BA cannot be the correct anomalous dimension of finite spin M
twist-two operators in N' = 4 gauge theory. We have thus established that the long-range
asymptotic Bethe ansatz breaks down at four-loop order.
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2. Four-loop twist-two from Bethe ansatz

Let us now prove our claim. The twist J = 2 operators (1.1) of interest to us sit in the
s[(2) sector of the full psu(2,2]4) magnet. The long-range asymptotic Bethe equations for
twist-J operators read in this sector [9, 15]

x+ J M xl;_erl_gZ/x;rx* . M +
(_’f) - H L o ﬁr exp(2i0(uk, u;j)), H —Z, = (2.1)
j k=1

_ — 2
x, zf —x; 1—g?/z

j=1
ik
These are M equations for &k = 1,..., M Bethe roots wu;, with
+ + + i _u g9
x, = z(uy,), u _Uii’ x(u)—§ <1+ 1—4;) : (2.2)

and where the dressing phase 6 is a rather intricate function conjectured in [15]. Here we
will only need it to leading four-loop order, where it reads

0(uk, u;) = 4¢(3)g°(q2(ur)gs(u;) — gs(ur)ga(u;)) + O(g%), (2.3)

and where the ¢.(u) are the eigenvalues of the conserved magnon charges; see [9] for details
on this formalism. Once the M Bethe roots are determined from (2.1) for the state of
interest, its asymptotic all—loop anomalous dimension is given by

FABA(g) = 24 ; (— - —) . (2.4)

The equations (2.1) can be solved recursively order by order in g at arbitrary values of M
and J once the one-loop solution for a given state is known.

It was checked in [7] up to relatively high values of spin, that this Bethe ansatz
reproduces correctly the two- and three-loop anomalous dimensions of the twist J = 2
operators, which are known in terms of nested harmonic sums as obtained in [19,20].
However unfortunate, no analytical derivation is known at the time of writing. It would
be extremely interesting to develop tools for solving this problem. Therefore, a prior: it
is even less clear how to extract the four-loop prediction from the above Bethe equations.

This technical problem can nevertheless be surmounted. Assuming the maximum
transcendentality principle [21] at four-loop order one may derive the corresponding
expression for the anomalous dimension by making an appropriate ansatz with unknown
coefficients multiplying the nested harmonic sums, and subsequently fixing these
constants. The latter is done by fitting to the exact anomalous dimensions for a sufficiently
large list of specific values of M as calculated from the Bethe ansatz.

Luckily, at one loop the exact solution of the Baxter equation is known [14] and is given
by a Hahn polynomial. Knowing the one-loop roots one can then expand equation (2.1)
in the coupling constant g order by order in perturbation theory. The equations for
the quantum corrections to the one-loop roots are of course linear, and thus numerically
solvable with high precision.

Under the further assumption that no index equalling —1 may appear in the nested
harmonic sums (see [21] and discussion therein) there are, in principle, 238 terms which
may potentially contribute to the four-loop dimension. One thus needs to solve the Bethe

doi:10.1088,/1742-5468 /2007 /10/P10003 6
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equations for 238 different values of spin M. In order to find the ezact coefficients in
front of the harmonic sums, which fortunately are integers, it is crucial to determine at
each value of M the anomalous dimension as a numerically exact rational number. One
is thus forced to calculate with a very high numerical precision, i.e. one needs typically
more than 1000 digits at four-loop order. It is possible to reduce the number of the terms
in the ansatz by going to a non-canonical basis of harmonic sums [25]. In the end one
needs to determine around 170 values of M from the Bethe equations. An important
trick is to also use the information for odd values of M, even though these are unphysical.
After much effort the expression given in table 1 was found. There we use the following
definition of the harmonic sums [25]:

Sa(M) =" en(@)y g )= > Gen(a)yg ). (2.5)

jlal
j=1 J j=1

The degree of a harmonic sum is defined to be |ai|+- - - |a,|. Notice that the total degree of
each term in table 1 is seven in accordance with the maximal transcendentality principle.
The expressions for the finite M one-, two- and three-loop results are not reprinted here;
they may be found in [20]. We have highlighted the terms in the last line, containing the
number ((3) induced by the dressing factor (2.3). Using [26], we have also rewritten the
result in an interesting non-canonical basis, see table A.1 in the appendix.

We should stress that our method, which might appear to be only approximately valid
at first sight, actually leads to the ezact perturbative solution of the Bethe equations.
The reason is that a proper set of harmonic sums spans a linearly independent basis in
a finite-dimensional vector space [25]. A wrong ansatz produces incredibly complicated
coefficients multiplying the harmonic sums, and breaks down immediately when compared
with a further value of M which was not yet matched.

We are now ready to analytically continue the expression in table 1 to the vicinity of
the pomeron pole at M = —1 + w. An explanation for how this is done may be found
in [27]. It is based on a method suggested in [28]; see also [29, 30].

Harmonic sums of degree seven may lead to poles no higher than seventh order in
w. In fact, it is known that none of the sums in table 1 can produce such a high-order
pole except for the two sums S7 and S_7, which we have highlighted at the beginning of
the table. Their residues at 1/w” are of opposite sign. Thus, one immediately sees that
the sum of the two residues does not cancel. The precise statement was already quoted
in (1.9). This proves our claim.

3. NLO BFKL and double-logarithm constraints

The asymptotic Bethe ansatz fails the BFKL constraint at four loops already to leading
order in the expansion around the pomeron resonance singularity at M = —1 through
the failure to cancel the erroneous seventh-order pole in w, cf (1.9). The proper leading
behavior (1.8) should definitely be quantitatively reproduced by any future proposal for
exact spectral equations of AdS/CFT.

In fact, there are further known constraints from N = 4 high-energy scattering
amplitudes. Here we will state what is known, in order to provide precise tools for
testing the validity of any future proposal for the exact spectrum. These highly non-
trivial constraints fall into two classes: next-to-leading order (NLO) corrections to the
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BFKL equation (1.6), and the so-called double-log predictions. Let us begin by discussing
the former.

3.1. Two-loop BFKL

We discussed in section 1 that the one-loop BFKL equation (1.6) leads to all-loop results
for the leading singularities of the analytically continued anomalous dimensions of twist-
two operators at the special value M = —1. Likewise, the two-loop correction to the
BFKL equation leads to constraints on the next-to-leading corrections to the position of
the pomeron singularity near M = —1 [31]. Luckily this two-loop correction to the BFKL
equation was worked out in the case of the NV = 4 supersymmetric gauge theory [32,21].

The two-loop corrected BFKL equation, cf (1.6), for the twist-two case can be written
in the dimensional reduction scheme as

Y — () = $%5(7), (3.1)

4?2

where

() = U (—%) Iy (1 + %) 2w (1), (3.2)

6() = 4x"(7) +6¢(3) +2¢(2)x(7) + 4x()x'(7)
U v v
osinmy/2 i <_§> —ae (1 - 5) ' (33)

The function ®(7) is given by

B(vy) = ;%[WHWF 1) —w(1)]. (3.4)

This allows us, upon power series inversion, to compute the correction to the leading poles
to arbitrary orders in g. In particular, the four-loop result (1.8) is extended to

= (24 00) (—492) — (0 + 0w) (_ig2)2+ (0+¢(3)w) (—ng)?’

w

- (4g(3)+ Zg(4)w) (_i92)4i-.-. (3.5)

3.2. Double logarithms

The double-logarithmic asymptotics of the scattering amplitudes was investigated in QED
and QCD in the papers [33] and [34] (see also [35]). It corresponds to summing the leading
terms ~(aIn®s)" in all orders of perturbation theory. In combination with a Mellin
transformation, the double-logarithmic asymptotics allows one to predict the singular
part of anomalous dimensions near the point M = —2. According to the hypothesis
formulated in the articles [32,21], one can calculate the anomalous dimension vy near
other non-physical points M = j—2 = —r (r = 2,3, ...) from the eigenvalue of the BFKL

doi:10.1088,/1742-5468 /2007 /10/P10003 8
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kernel
W Y i
—w (=) +w (14 2+ nl) - 2001 3.6
by analytic continuation in the total conformal spin |n| to negative integers, i.e. we define
n = |n| for positive n and subsequently continue to n = —r + 1, r = 2,3,... rapidly
enough at w =M +1r — 0:
n+r—1=0Cr)w’ + Ow?). (3.7)

Physically this corresponds to the double-logarithmic contributions N(odn2 s)"s7"2 in
the Regge limit s — oo. For even r due to next-to-leading corrections the argument of
the second W-function in (3.6) is effectively shifted [32,21]

1+%+n—>1+%+n+w, (3.8)

and we derive the following equation for ~:
(2w +7) = —164% (3.9)

The solution of this equation is

/ 1692
v=—w+wy/l— wg

2 2\2 2\3 214
—4g°) _2(—4g ) +4(—4g > 10(—4g .
w w w w

Interestingly, our result in table 1 agrees at negative even integer values of the spin with
the —10((—4¢*)*/w") term of this expansion. This presumably means that the asymptotic
expression is quite ‘close’ to the true result, even though it clashes with the singularity at
M = —1. We shall attempt to improve it by brute force in the next section.

For odd values of M in accordance with [34] one can obtain the more complicated set
of equations

Ly

(3.10)

2
32w+ 7) = —16¢% — 1624,
w (3.11)

. - d .
P)/a(zw + ’Va) = _892 + 492 d_ Va;
w
where 7, is the anomalous dimension for an auxiliary operator in the adjoint representation
of the gauge group (in QCD it would carry octet color quantum numbers). The solution
of these equations coincides with the Born result

2 2
Fo=—4L 5= 8L (3.12)
w w

corresponding to the fact that at r» = 2k — 1 the leading terms ~(g*/w)(g/w)?" are absent.

One can generalize the double-logarithmic equation (3.9) for even r = 2,4,...
to include the corrections reproducing the three leading poles up to third order in
perturbation theory [20)]

(2w + ) = =164 (1 = S1w — (52 + ()w?) — 649" (s + (o — SF) — 4g*(S2 + S_2)7%,
(3.13)

doi:10.1088,/1742-5468 /2007 /10/P10003 9
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where S; = S;(r — 1). This predicts the corresponding residues to fourth order
G ¢
=2 alw) (—4g%)", (3.14)
=1

where, cf v5 of the arXiv version of [20],

@)= L= S —wlG+ S+,

128 S
250 Gto

CQ(w):—E—F 2 - .
_ 2 (3.15)
2 65 4(G2 + 52) + 457 4 (52 + S-)
c(w)=——— + 3 +o
w w w
5 208 14 Sy) — 2452 — 4(Sy + S_
er(w) = -2 + 61+ (G2 +52) 51 (S2 + 2)+
w w w

Note that for odd negative values of M the generalized set of equations (3.11) containing
the next-to-leading corrections has more parameters. One can fix some of them from the
known singularities of the anomalous dimensions at M +r =w — 0 (r=1,3,...),

1 S 25, 28, +S_5—25?
v = —84* (; -5 —w(G+ SQ)) — 32g4f —128¢4° (w—j 422 oo 1) ., (3.16)

but we currently do not know how to predict the residues of the corresponding poles in
the fourth order.

w3

4. Ad hoc improvement of four-loop twist-two

Here we attempt to experimentally improve the erroneous four-loop result of table 1
as obtained by the dressed asymptotic Bethe ansatz such that all BFKL and double-
logarithm constraints of section 3 are satisfied. Obviously this has to be done in a way
which does not ruin the correct features of the expression in table 1. In particular, the
improvement should not modify the large spin limit nor violate the transcendentality
principle. A seemingly natural way to ensure this is to replace the explicit ((3) stemming
from the dressing factor by an appropriate linear combination of {(3) and finite harmonic
sums of degree three. We found that there is indeed an attractive choice, namely replacing
in the last line of the expression in table 1 ((3) by

C(S) — o (3) - iS—3 + %S—QSI + 25152 + 253 + %5_271 — 175271. (41)

24 24
This alteration clearly preserves transcendentality, and it is easy to check that the large
spin limit is not modified. In addition, the catastrophic behavior in (1.9) is now replaced

by the correct one in (1.8). Furthermore, the constraints from (3.5) and (3.15) are also
satisfied®. In fact, if we make a general ansatz for the replacement” of ((3) in table 1

5 In the case of negative odd M the situation is unclear.

7 Please note that we are not proposing to improve the asymptotic Bethe ansatz as such by replacing the ¢(3) in
the dressing phase (2.3). Our proposal only applies to an ad hoc repair of the expression of table 1 for twist-two
operators, and we currently do not know if or how this replacement can be obtained from improved spectral
equations.
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by a linear combination of the seven structures on the right-hand side of (4.1), we find
that they are fixed to the above specific values by eight constraints, while one of the
constraints serves as a highly non-trivial cross-check of our procedure: two from the large
M limit (known log M scaling, no (log M)? terms), four from LO and NLO BFKL (known
residues at M = —1, namely 0/w", 0/w5, equation (3.5)), (the pole 1/w® is automatically
absent, because only the harmonic sum S; can combine with this pole, but S; at zero
equals zero) and two from the four structures appearing in the residue of the 1/w® pole
of c4(w) in (3.15) (the other two structures, as well as the residues of 1/w” 1/w® are
not affected, and already reproduced by the asymptotic Bethe ansatz). We are hence
tempted to conjecture with some confidence that the expression of table 1 improved with
the replacement (4.1) is in fact the exact four-loop anomalous dimension of the NV = 4
twist-two operator series.

It is therefore interesting to spell out the four-loop anomalous dimension of the twist-
two operator of lowest spin M = 2, i.e. the Konishi field, by using the formula in table 1
with the replacement (4.1). One finds

v =12¢" — 48¢" + 336¢° — (2L + 564¢(3)) ¢* + - - -. (4.2)

These numbers should be compared to the ones at the end of section 5 of [15]. Once
again, (4.2) is a result based on some reasonable and self-consistent assumptions, and we
dare calling it a conjecture.

5. Four-loop twist-three from Bethe ansatz

In this paper we are mostly focusing on twist-two operators. These are ideally suited
for an analysis of the wrapping problem. Furthermore, their precise relationship to the
BFKL equation is well established. Lastly, their spectrum may be exactly found at one-
loop order. This yields a firm platform for higher orders of perturbation theory. However,
all this does of course not mean that operators of higher twist are not interesting. Here
we will report on a novel ezact twist-three one-loop solution in the NV = 4 model. This
allows us to find exact higher-loop anomalous dimensions in terms of nested harmonic
sums, in close analogy with the twist-two case. Unfortunately we were so far unable to
test the analytic continuation of these expressions with the BFKL and double-logarithm
methods of section 3. We still feel that our result should allow for some non-trivial tests
in the future.
Twist-three operators are operators of the form

Tr (D" ZD%?ZD%Z) + - - -, (5.1)

with s; + 89+ s3 = M. Since the wrapping effects in sl(2) start at O(g?*™) the four-loop

anomalous dimension of twist-three operators should correctly follow from the asymptotic
Bethe ansatz (2.1) with J = 3. In this section we will proceed with the derivation of the
four-loop anomalous dimension of the ground state of twist-three operators at even values
of M. It will be shown that the anomalous dimension up to four-loop order can be
again given in terms of harmonic sums, similarly to the twist-two case. After analytical
continuation it will turn out, however, that the anomalous dimension does not have a pole
at M = —1 and thus cannot be checked with the BFKL equation. The validity of this
result as derived from the Bethe ansatz is therefore still an open question.
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At one loop the Baxter function for the twist-three operators satisfies

(u + %)3Q(u +i)+ (u - %)3Q(u i) = W) Qw), (5.2)

with the transfer matrix given by

t(u) = 2u” + gou + g3. (5.3)
Using the expansion
M
Qu) = [J(w—w) = u™ + ™ + cu™ =2 4 cqu P 4 (5.4)
n=1

one can read off the corresponding charges
¢ =—(M*+2M +3),  g¢=c2M+1). (5.5)

M

For the unpaired states ¢; = — ijl

for even values of M:

uj = 0 and g5 = 0. One can then solve (5.2) exactly
M M 1 1
=4 ——,—+1, = +iu, = —iu,;1,1,1;1 |. )
Q(U) 43( 272+ 72+1u72 luavaaa) (56)
Thus the Baxter function Q(u) is given by a Wilson polynomial. Wilson polynomials for
twist-three operators were also found in the QCD context; see [36]. It is straightforward
to derive the corresponding one-loop anomalous dimension

w — 45, (%) (5.7)

There exists one more solution of (5.2) for ¢y = 0 which is, however, non-polynomial. This
proves that all unpaired states for even M have energy given by (5.7). We suspect that
this is the lowest state, but we do not know any proof.

Similarly to the twist-two case one can derive from the Bethe ansatz a closed formula
for the corresponding two-, three- and four-loop anomalous dimensions by assuming the
transcendentality principle and making an appropriate ansatz. We found the following
expressions, where all harmonic sums have M /2 as an argument:

ABA
M
Ja ) 4( ) _ 95, 45,5, (5.8)
V?BA(M) 2
—_— = 28253 —|— S5 —|— 453,2 —|— 454,1 - 853,171 —|— 51(452 —|— 254 —|— 853,1), (59)
ABA ()1 40 32
781765) =53 (354 — 35371) + S7(20S5 — 40535 — 56541 + 6453 1)

+ S1(7S6 + 8524 — 24533 — 565,20 — 40551 — 245229 — 165231
+ 885312 + 885391 + 1205511 — 19255111 — 8((3)S3) — %5354
— 18, +3Sy5 + 334+ 3813 — 17852 — 2561 — 45223

— 85339 — 45241 + %53,1,3 + 525329 + %53,3,1 + 605412

+ 605421 +40S5511 + 85311 — 12055112 — 120551 91

— 12053727171 — 1285471,171 + 2565371717171. (5.10)
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It is also instructive to display ~g in the canonical basis of harmonic sums

wEAM) 1
T = 557 + 751,6 — 556,1 — 55374 — 295473 — 32517274 — 32527174 + 32517472

+ 45541 + 365412 + 365421 — 2451411 — 2454111 + 15525 — 21559
+ 245511 + 245331 + 245513 + 245 33 + 445350 + 405335 + 205223
— 2481312+ 1651231 — 2451321 — 2453112 + 1652131 — 2453121
— 24855311 — 2453211 — 2451222 — 2452102 — 2452212 — 2452221
— 408115+ 8051114 + 3251141 — 1651132 — 64511131

sbyty

— 8¢(3)(S1.3+ Ss31 — S4). (5.11)

The term multiplied by ((3) is due to the dressing factor. Curiously, only positive indices
in the harmonic sums appear. Because the argument of the harmonics sums in (5.7)—
(5.10) is M /2, there is no pole at M = —1 and thus these states are not captured by
the BFKL equation. It would be very interesting to see whether one can predict their
analytic structure at M < —2 from the double-log constraints. We would like to stress
again the fact that equations (5.7)—(5.10), even when the asymptotic character of the
Bethe equations (2.1) is taken into account, should give correct anomalous dimensions.
Below we present the two highest terms in the analytical continuation to M = 2(w — 1):

ABA 4 ABA 9 4
Bt i@wr, A2 R4,
W16 w15 |
B @)+, -+ 2 (2)
8 ws Wl 16 2wT WP
Note that the leading singularity is the same for all points M = 2(w — (k + 1)) and
k =0,1,.... The corresponding expansion of the total anomalous dimension up to four-

loop order reads

P = 81 (@ (0L - 2020 + (1 - 6(2)e)
+ (1 —10¢(2w?) + -]+ -+, (5.13)

where ¢ = ¢g?/w?. One can speculate on an all-loop generalization of (5.13). A plausible
form might be

2 2
ABA g 1 143t
7 w(l—t C()(1—t)2w+ + (5.14)

It is interesting to note that the double-logarithmic behavior of these states is different
from the twist-two ones (3.10).

6. Outlook

Our result in table 1 with the ensuing (1.9) proves unequivocally that the spectral
equations of [9,15] for AdS/CFT are still incomplete as the BFKL prediction (1.8) is
not reproduced at four-loop order O(g®).

Our weak-coupling study is complementary to indications that at strong coupling,
i.e. on the string side of the AdS/CFT correspondence, the asymptotic Bethe ansatz [9, 15]
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is also incomplete when one considers the finite size effect of the string worldsheet. For one,
it was argued that for a specific spinning string solution carrying both angular momentum
w.r.t. AdS; and S® as well as winding numbers, and whose classical [37] and one-loop [38]
energy is known, the ansatz does not reproduce exponentially small terms in the size of the
system [39]. A second indication comes from a study of the finite size effects [40] on the
dispersion law of classical giant magnons [41]. Again, terms which fall off exponentially
with the volume are seen which cannot easily be accounted for by the dressed asymptotic
spectral equations.

We have shown that linking the integrable structures found in the context of high-
energy scattering amplitudes in A/ = 4 theory and the ones appearing in the spectral
problem leads to very strong constraints. It was pointed out in [20] and [42] that pomeron
physics and anomalous dimensions are very naturally connected through the AdS/CFT
correspondence. However, no attention had so far been paid to the fact that integrability
will presumably allow one to truly explore these connections in a quantitative and analytic
fashion. We feel that we have made a first step in this direction.

Interestingly, the breakdown we observe is completely insensitive to the structure of
the dressing factor, which also appears at four-loop order [15], in contradistinction to
what one might have hoped for. Recall that this dressing phase leads to the four-loop
agreement between the Bethe ansatz and the result of a gluon scattering amplitude in
N = 4 theory [13,16,15]. This is not contradictory. The gluon amplitude tests the
anomalous dimension in the large spin limit M — oo, where it was argued that the all-
loop result leads to a universal scaling function [14] (see also [43]), i.e. one which is reached
by large M scaling of the lowest state at fixed length = twist. We may therefore choose
the twist large enough to avoid leaving the asymptotic regime. Turning this around, we
might say that the wrapping terms should be subleading in the large spin limit. This is
reassuring, in particular since by now it appears that the scaling function matches well [44]
the known string theory results [45]. Furthermore, the analytic structure of the dressing
phase fits well a semi-classical analysis [46].

In this paper it is proven that wrapping effects are not properly taken into account
by the existing asymptotic Bethe ansatz. We note that this was of course never claimed
otherwise by any of the current authors, and is actually quite expected from the way
this Bethe ansatz was initially constructed [7]. The mechanism for the breakdown of
the asymptotic approximation should be similar to the one discussed from a field theory
standpoint in [47], and from a lattice model point of view in [48].
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Appendix. Asymptotic four-loop anomalous dimension of twist-two operators in a
non-canonical basis

Table A.1. The four-loop asymptotic dimension v4§B*(M)/16 of table 1 in a
non-canonical basis. This isolates the Sy, i.e. all terms divergent as M — oc.

-85 3454+ 532 +285 55 +2 S% +3544+25 22+85211)

— 16 3_271 (4 S_4+ 532 —25 585, -2 S% — 554+ 63—272 + 83_27171)

— 853(365_4+952,4+ 185 258, +653+95,—56S5_31—505 25
+885.2,1,1) —1652(35_5+ 55 —6(S_41+S-32+S5-23—25_311

— 285 912—25 221+4852111)) —325_2(45_5+2855—5_41

— S 93+841—28 2 91)— 251854 —35%,+35,—165_3,

— 1085 92+ 8572’1,1) — 32 512 (S—2(5S5_3+355+ 2572’1)

+ 3.5 (3 S_3+ 53— 2572,1) +15S_5+5855 -2 (10 574,1 + 573’72

+ 105 320+785 23—841—145311+25 2 21 —105_5712—105_221
+ 12 3_2717171)) - 165, (53 (12 S_3—12 3_271) + S5 5 (8 S_4+ 6322 + 95,

— 12 3_371 — 23_272) + 255 (8 S_4+ 2332 +385,—12 3_371 — 10 5_272
+16S5_211)+265_6—35%;+53,+2554+257+35;—445 5,

— 46 57472 — 46 57373 — 453271 — 38 57274 + 45472 — 855,1 + 80 574’1’1

+ 885 3.21+85.31,2+845 312+845 321 —85 2 _22+685 213
+ 7285 99204+ 68S5_231—8541,1—1445 3111 +165_2 21,1 —1205_211
— 120 3_2717271 — 120 5_2727171 + 192 5_271717171) — 16 (8 S_-+95;—-16 S—G,l
— 6575’72 — 16 57572 — 574’73 — 17 574’3 — 15 573’4 — 18 57275 -5 54’3

+ 455,2 + 6 56,1 + 32 575’1,1 —6 574,72,1 + 36 574,1,2 + 36 574’2,1
—48_3_31—253_9_92—45_3_29+365_313+405_322+36S5_331
+25 9 4185 2,_32+105 5 _23+345 214+36S5_223+365_232
+ 325 941 —48412 454217254111 —805-31,12—805 3121

— 805 3211+245 5 _311+45 2 2 21+85 2 212+85 2 221
—885_21,1,—3—728_21,13—805_2122—725_2131—85 22 _21

—8085.2212—80S5 29221 —725_2311+2454111+1605_311,1,1
— 4885 5 211,10 —16S5 91 21,1 +1605_211,12+ 160521121
+ 160521211+ 160522111 —3205_21.11,1,1)

— 16 C(3)Sl(S3 —S_3+2 S_271)

Note added. Our results on twist-three operators in section 5 were independently obtained in the contemporaneous
paper [49].
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