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1. Introduction

Methods of integrability have become a central tool for investigating the dynamics of

planar N = 4 extended supersymmetric gauge theory and noninteracting strings on the

AdS5 × S5 background [1 – 5], cf. [6, 7] for reviews. Investigations of the S-matrix [8 – 10]

have recently led to a highly nontrivial test of the AdS/CFT correspondence showing that

it may correctly interpolate between weak and strong coupling [11 – 14]. The proposal has

since been tested thoroughly, see [15 – 30].

Perturbative gauge theory in the planar limit can be cast into the form of a spin

chain. This spin chain model has a psu(2, 2|4) symmetry, and the spins transform in

a noncompact module of the symmetry algebra. At leading order this spin chain model

agrees with the standard nearest-neighbor integrable spin chain model based on this algebra

and module [31, 4].

Dealing with perturbative corrections to the spin chain Hamiltonian and symmetry

generators is however a formidable problem: With increasing order in perturbation theory

the local interactions along the spin chain will act on more and more neighboring sites.

Moreover, higher-order interactions change the length of the chain; they are dynamic [32].

Together with the infinite degrees of freedom at each site, the interactions become combi-

natorially almost intractable, even at relatively low perturbative orders. This holds true for

obtaining them (through explicit evaluation of gauge theory Feynman diagrams or through

clever construction) as well as for applying them to states. Furthermore, one can hardly

rely on standard psu(2, 2|4) representation theory because the algebra is not realized in

a manifest way. Nevertheless, the commutation relations are essential in constraining the

form of the corrections.

As a step toward the complete corrections at the first few loop orders one can restrict

to certain subsectors. An apt choice is the psu(1, 1|2) sector, which has complexity well

balanced between realistic features and simplifications. It incorporates a noncompact spin

representation whose components are quite simple to enumerate. Furthermore, the dynamic

interactions are mostly frozen out: The generators change the length by a definite amount,

either by one unit or not at all. Finally, the Hamiltonian is a nonseparable part of the

symmetry algebra.

The construction of the higher-loop algebra for this sector was started in [33] (also

see [34] for the two-loop dilatation generator of a sl(2) subsector). A key simplification in

this construction was based on some less obvious symmetries: In N = 4 SYM the symmetry

algebra of the sector contains two factors of psu(1|1) in addition to the psu(1, 1|2) algebra.

They made it possible to find the Hamiltonian at the two-loop level and to represent it
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using simple building blocks. Beyond that order, the construction appears to be rather

complex. However, it might be that some crucial insight is still lacking in order to extend

the construction conveniently to higher orders.

For example, a curious observation made in [5] has not yet been explained or taken into

account: The Bethe equations for the sector lead to a huge degeneracy of 2M multiplets

that is not explained by any known symmetries of the integral model. In this paper we

would like to understand this degeneracy at the level of spin chain operators commuting

with the Hamiltonian. These might be of help in the construction of higher-loop corrections

to the algebra generators.

The degeneracy is partially explained by an su(2) automorphism of the psu(1, 1|2)
algebra, see e.g. [35]. The automorphism is not a part of the underlying psu(2, 2|4) algebra

of N = 4 SYM. It is nevertheless an exact symmetry of the psu(1, 1|2) sector, i.e. it should

apply also at finite Nc. The degenerate psu(1, 1|2) multiplets transform in a tensor product

of su(2) doublets, 2⊗M . However, such tensor products are reducible, and therefore the

su(2) automorphism alone cannot explain the full degeneracy.

With respect to su(2), the multiplets transform in a reducible 2⊗M = 2⊗ . . .⊗2 repre-

sentation. This is reminiscent of the su(n) Haldane-Shastry model [36, 37], which also has

degenerate states transforming in reducible tensor products of su(n) representations [38].

There, the degeneracy is caused by a su(n) Yangian algebra that commutes exactly with

the Hamiltonian, even on a finite periodic chain. It is therefore conceivable that a su(2)

Yangian or a similar algebraic structure will explain the further degeneracy in our case as

well. In the present paper we shall present evidence in favor of this conjecture.

In section 2, we review the Bethe equations and transfer matrix and use them to

observe this degeneracy. In section 3, we review the leading-order spin representations for

the psu(1, 1|2) and psu(1|1)2 symmetry generators and present the su(2) automorphism. To

gain further intuition about the degeneracy, we study some degenerate spin chain states in

section 4. Finally, in section 5 we explain the degeneracy by constructing an infinite set of

nonlocal spin chain symmetry generators, at leading order. These generators are built from

the psu(1|1)2 generators and form a triplet of su(2). We discuss how these new generators

map between degenerate states and argue that they form a parabolic subalgebra of the loop

algebra of su(2). We also discuss the relation of this symmetry to the integrable model’s

Yangian symmetry. Directions for further research are given in section 6. Appendix A

contains the commutation relations for the extended psu(1, 1|2) and psu(1|1)2 algebras,

and in appendix B we present relevant multilinear operators for the psu(1, 1|2) sector,

including a cubic operator that is a su(2)-triplet and psu(1, 1|2) invariant. The proof that

the nonlocal symmetry generators commute with the classical psu(1, 1|2) generators and

the one-loop dilatation generator is given in appendix C.

2. Symmetry enhancement in the Bethe ansatz

In this section, we describe the symmetries of the one-loop Bethe equations for the

psu(1, 1|2) sector, as well as the resulting 2M -fold degeneracies in the spectrum. Fur-
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vk uk v̇k

M K Ṁ

Figure 1: Dynkin diagram for psu(1, 1|2). The different flavors of Bethe roots and their overall

numbers are indicated below/above the nodes, respectively.

thermore, we show that these degeneracies are also present for the transfer matrix, which

provides the full set of local conserved charges of the integrable system.

2.1 Bethe equations

The Bethe equations for the psu(1, 1|2) sector of planar N = 4 SYM at leading order take

the form

1 =

K∏

j=1

vk − uj − i
2

vk − uj + i
2

,

1 =

(
uk − i

2

uk + i
2

)L K∏

j=1

j 6=k

uk − uj + i

uk − uj − i

M∏

j=1

uk − vj − i
2

uk − vj + i
2

Ṁ∏

j=1

uk − v̇j − i
2

uk − v̇j + i
2

,

1 =

K∏

j=1

v̇k − uj − i
2

v̇k − uj + i
2

. (2.1)

These are just the standard Bethe equations for a closed nearest-neighbor spin chain with

psu(1, 1|2) symmetry (in the form determined by the Dynkin diagram in figure 1) and spins

transforming in the [0; 1; 0] representation. The three types of Bethe roots v1,...,M , u1,...,K

and v̇1,...,Ṁ are associated to the three nodes of the Dynkin diagram in figure 1. The length

of the spin chain is given by L.

The momentum and energy eigenvalues for eigenstates of this system are determined

through the main Bethe roots u1,...,K alone

exp(iP ) =

K∏

j=1

uj + i
2

uj − i
2

, E =

K∑

j=1

(
2i

uj + i
2

− 2i

uj − i
2

)
. (2.2)

2.2 Symmetries

The psu(1, 1|2) symmetry is realized in the standard way: One can add Bethe roots v, u, v̇ =

∞ to the set of Bethe roots for any eigenstate. It is easy to convince oneself that the Bethe

equations (2.1) for the original roots as well as for the new root are satisfied. Moreover,

the momentum and energy (2.2) are not changed by the introduction of the additional

root. This means that the eigenstates come in highest-weight multiplets with degenerate

momentum and energy eigenvalues. These multiplets are modules of the symmetry algebra

psu(1, 1|2). Note that the Bethe roots v, u, v̇ = ∞ are allowed to appear in eigenstates

more than one time, and thus even very large or infinite multiplets can be swept out with

this symmetry.
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n = 0 n = 1 n = 2 n = 3 n = 4 φ
(n−1)
1

ψ
(n−1)
<

ψ
(n−1)
>

φ
(n)
2

Figure 2: Structure of the spin representation (left). Each box represents one component of the

module with the assignments shown on the right. Arrows represent simple roots of the algebra.

The long diagonal arrows correspond to the middle node of the Dynkin diagram 1 while the short

horizontal and vertical arrows correspond to the outer nodes.

Another type of symmetry that is very important to N = 4 SYM exists only in the

zero-momentum sector. Here one adds a single root v = 0 or v̇ = 0 to an eigenstate

configuration while decreasing the length L by one unit [5]. The original Bethe equations

are preserved, and the Bethe equation for v = 0 and v̇ = 0 is equal to the zero-momentum

condition, cf. (2.2). As the momentum and energy eigenvalues depend explicitly on the

main Bethe roots uk only, they are not affected by this transformation. This symmetry

leads to an additional fourfold degeneracy of states because each of the Bethe roots v = 0

and v̇ = 0 can only appear once at maximum. The associated algebra consists of two copies

of su(1|1) whose typical modules are two-dimensional. These two additional algebras are

required for a consistent embedding of the spin chain into a larger model with psu(2, 2|4)
symmetry [6]. Their generators were constructed in [6, 33] at the leading order, and they

transform one site of the spin chain into two or vice versa. We will present these generators

in section 3.

The third and most obscure type of symmetry was observed in [5]. The auxiliary Bethe

roots vk and v̇k appear in the Bethe equations (2.1) completely symmetrically: The Bethe

equation for vk is exactly the same as the one for v̇k. Furthermore, the product in the

Bethe equation for uk involves a product over all vj and v̇j with the same form of factor.

Therefore, we can freely interchange them

vj ←→ v̇j′ (2.3)

without violating the Bethe equations. As for the previous type of symmetry, modify-

ing only the auxiliary Bethe roots does not change the momentum nor the energy. It is

straightforward to convince oneself that this leads to a degeneracy of 2M0 states where M0

is the number of vj roots which are distinct from v̇j (in order to avoid coincident Bethe

roots of the same type).

The closer investigation of this latter symmetry will be the main subject of the present

paper.

2.3 Commuting charges

A first question is whether the symmetry merely constitutes an accidental degeneracy of

the momentum and energy spectrum or whether it is a symmetry of the full integrable

structure. Therefore it is useful to look at the eigenvalues of the commuting charges of the
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integrable model. The eigenvalues of the higher local charges

Qr =
1

r − 1

K∑

j=1

(
i

(uj + i
2 )r−1

− i

(uj − i
2)r−1

)
(2.4)

depend on the main Bethe roots uj only, just like the momentum and energy (2.2). Con-

sequently their spectrum displays this additional degeneracy.

However, this is not all there is to show; there are also nonlocal commuting charges

whose invariance properties might lead to some additional clues. Furthermore, the local

charge eigenvalues Qr in (2.4) are accurate only for r ≤ L. For r > L these charges wrap

the spin chain state fully, and they receive contributions from the auxiliary Bethe roots

vj and v̇j . This is best seen by considering the transfer matrix in the spin representation,

which serves as a generating function for the local charges as

Tspin(x) = exp i
∞∑

r=1

xr−1Qr. (2.5)

A transfer matrix is a trace over a particular representation of the symmetry algebra.

Therefore, its eigenvalues in a particular representation are typically written as a sum

with as many terms as there are components in the representation. The eigenvalues of a

transfer matrix can often be reverse engineered by a sort of analytic Bethe ansatz [39].

This requires some knowledge of the structure of the representations for which the transfer

matrix is to be constructed. In particular, it is important to know what the components

are and how they are connected by the simple roots of the algebra. The structure of the

spin representation is depicted in figure 2. Now it is generally true that the transfer matrix

has no dynamic poles, i.e. poles whose position depends on the Bethe roots. Conversely,

the terms in the expression for the transfer matrix eigenvalue typically have many dynamic

poles. These will have to cancel between the various terms once the Bethe equations are

imposed. In particular, the Bethe equation for a particular type of Bethe root will have

to ensure the cancellation of singularities between all terms that are related by the simple

root associated to that Bethe root, cf. figure 1. We are then led to the following expression

for the transfer matrix eigenvalue in the spin representation, see also [5, 40, 41],

Tspin(x) =

∞∑

n=0

(
x

x− in

)L M∏

j=1

x− vj

x− vj − in

Ṁ∏

j=1

x− v̇j

x− v̇j − in
(2.6)

×


δn 6=0

K∏

j=1

x− uj − i
(
n+ 1

2

)

x− uj − i
(
n− 1

2

) − 2δn 6=0 +
K∏

j=1

x− uj − i
(
n− 1

2

)

x− uj − i
(
n+ 1

2

)


 .

We leave it as an exercise for the reader to confirm the cancellation of poles. This is true

even if there are two coincident auxiliary Bethe roots vj = v̇j′ in which case a potential

double pole is fully eliminated. Furthermore, it is straightforward to show that the local

charge eigenvalues (2.4) (for r ≤ L) follow from (2.5), (2.6) and that only the one term

with n = 0 contributes for r ≤ L.
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This expression is clearly invariant under the degeneracy transformation (2.3). There-

fore, the full transfer matrix obeys the enhanced symmetry, which is a clear hint that

the integrable structure is compatible with the symmetry. It is however not fully in-

variant under it as the eigenvalues of transfer matrices in different representations show.

These transfer matrices encode nonlocal charges. For instance, for the fundamental and

conjugate-fundamental representations it is easy to construct the transfer matrices

Tfund(x) = +

(
x+ i

2

x

)L M∏

j=1

x− vj − i
2

x− vj + i
2




K∏

j=1

x− uj + i

x− uj
− 1




+

(
x− i

2

x

)L Ṁ∏

j=1

x− v̇j + i
2

x− v̇j − i
2




K∏

j=1

x− uj − i

x− uj
− 1


 (2.7)

and

Tfund(x) = +

(
x− i

2

x

)L M∏

j=1

x− vj + i
2

x− vj − i
2




K∏

j=1

x− uj − i

x− uj
− 1




+

(
x+ i

2

x

)L Ṁ∏

j=1

x− v̇j − i
2

x− v̇j + i
2




K∏

j=1

x− uj + i

x− uj
− 1


 . (2.8)

These expressions are clearly not invariant under the shuffling (2.3) of auxiliary Bethe

roots. The violation of the symmetry may be related to the fact that the fundamental

representations are centrally charged under su(1, 1|2) while the spin representation has

zero central charge and thus belongs to psu(1, 1|2).1
Finally, we note that the transfer matrix in the spin representation (2.6) also has the

degeneracy due to the psu(1|1) symmetries (as do all of the Qr). Adding a v or v̇ root at

zero gives a factor of x/(x − in) in each term of the sum. This is cancelled by decreasing

L by one. However, again the degeneracy is not present for the transfer matrix in the

fundamental or conjugate-fundamental representations.2

3. Symmetry enhancement in the Lie algebra

3.1 The spin representation

We begin by describing the spin representation on which the present spin chain model is

based. By direct inspection of the explicit expressions we will uncover an additional su(2)

symmetry of the model.

The spin module with Dynkin labels [0; 1; 0] is spanned by the states, cf. figure 2

|φ(n)
a 〉, |ψ(n)

a 〉. (3.1)

1It may be noted that the product Tfund(x)T
fund

(x) is again invariant under switching the v and v̇. This

is in agreement with the fact that the overall central charge for the two representations is zero.
2Their product does not have this degeneracy either.
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The Latin index a can take values 1, 2, the Gothic index a can take the values ‘<’, ‘>’ and

n is a nonnegative integer. The φ’s are bosonic and the ψ’s are fermionic. In N = 4 gauge

theory, these states correspond to the fields with derivatives (in the notation of [6])

|φ(n)
a 〉 ≃ 1

n!
Dn

11Φa3, |ψ(n)
> 〉 ≃ 1

n!
√
n+ 1

Dn
11Ψ13, |ψ(n)

< 〉 ≃ 1

n!
√
n+ 1

Dn
11Ψ̇

4
1 . (3.2)

The psu(1, 1|2) algebra has eight supersymmetry generators. We denote them collec-

tively by Qaβc where a Greek index β can take the values ‘+’, ‘−’. In gauge theory the

supercharges translate to

Qa+> = Qa
1, Qa+< = εabQ̇1b,

Qa−> = Ṡa1, Qa−< = εabS1
b. (3.3)

At leading order they act on the states as follows,

Qa+b
(0) |φ(n)

c 〉 =
√
n+ 1 δa

c ε
bd|ψ(n)

d 〉, Qa+b
(0) |ψ(n)

c 〉 =
√
n+ 1 δb

cε
ad|φ(n+1)

d 〉,
Qa−b

(0) |φ(n)
c 〉 =

√
n δa

c ε
bd|ψ(n−1)

d 〉, Qa−b
(0) |ψ(n)

c 〉 =
√
n+ 1 δb

cε
ad|φ(n)

d 〉. (3.4)

Furthermore, there are the su(2) generators Rab = Rba, which translate to the notation

of [6] as Rab = εacRb
c. They act canonically on the bosonic doublet of states (to all orders)

Rab|φ(n)
c 〉 = δ{ac εb}d|φ(n)

d 〉. (3.5)

Finally, the su(1, 1) generators are denoted by Jαβ = Jβα. They are related to the gauge

theory notation as

J++ = P11, J−− = K11, J+− =
1

2
D +

1

2
L1

1 +
1

2
L̇1

1. (3.6)

They act on the states by changing the index n by up to one unit

J++
(0) |φ

(n)
a 〉 = (n+ 1)|φ(n+1)

a 〉, J++
(0) |ψ

(n)
a 〉 =

√
(n + 1)(n+ 2)|ψ(n+1)

a 〉,
J+−

(0) |φ
(n)
a 〉 = (n+ 1

2)|φ(n)
a 〉, J+−

(0) |ψ
(n)
a 〉 = (n+ 1)|ψ(n)

a 〉,
J−−

(0) |φ
(n)
a 〉 = n|φ(n−1)

a 〉, J−−
(0) |ψ

(n)
a 〉 =

√
n(n+ 1)|ψ(n−1)

a 〉. (3.7)

3.2 The automorphism

In the above expressions, the Gothic indices a, b, . . . = <,> were introduced to handle

the two fermionic states in a collective manner. The transformation rules (3.4), (3.5), (3.7)

follow from psu(1, 1|2) symmetry alone. Curiously they can be written with the usual index

contraction rules using only the auxiliary symbols δa
b and εab. It is therefore obvious that

the representation has an su(2) automorphism, see e.g. [35], and that the Gothic indices

label a doublet of this su(2). We introduce the generators Bab of this su(2), which rotate

the fermions as

Bab|ψ(n)
c 〉 = δ

{a
c ε

b}d|ψ(n)
d 〉. (3.8)

The su(2) automorphism can be viewed as an accidental symmetry in the psu(1, 1|2)
sector of N = 4 SYM: The generators B≪ and B≫ transform between fermions Ψ and

– 8 –
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conjugate fermions Ψ̇ in gauge theory, cf. (3.2). However, none of the psu(2, 2|4) genera-

tors of the full theory acts in such a way. Only the Cartan generator B<> of the su(2)

automorphism is equivalent to a combination of the Lorentz generators: B<> = L1
1− L̇1

1.

This means we have found an additional symmetry in this sector, which explains a

higher degree of degeneracy in the spectrum. Indeed, in terms of the Cartan charges,

the transformation of Bethe roots (2.3) has the same effect as the generators B≪ and

B≫. The two flavors of auxiliary Bethe roots v and v̇ effectively form a doublet of the

su(2) automorphism.3 If there are M0 auxiliary Bethe roots in total, the degeneracy is

realized as the M0-fold tensor product of su(2) doublets. This tensor product is reducible,

and su(2) symmetry can only account for degeneracy within the irreducible components.

Nevertheless, even the irreducible components turn out to be fully degenerate. Therefore,

the su(2) automorphism explains only part of the extended degeneracy, and there should

be an even larger symmetry. This symmetry should have the full tensor product as one

irreducible multiplet. This behavior is somewhat reminiscent of the Yangian symmetry in

the Haldane-Shastry model [36 – 38], which also displays fully degenerate tensor products.

We will return to this issue in section 4, and consider only the su(2) automorphism for the

moment.

3.3 Zero-momentum states

As discussed above, for zero-momentum states the symmetry is enhanced by two copies of

psu(1|1) with one central charge. We shall denote the fermionic generators by Q̂a and Ŝa

and the central charge by D̂. In the gauge theory notation, they represent the supercharges

Q̂< = Q̇23, Q̂> = −Q4
2,

Ŝ< = S2
4, Ŝ> = Ṡ32,

and the generator of anomalous dimensions

D̂ =
1

2
D + L2

2 + R4
4 =

1

2
D + L̇2

2 − R3
3 =

1

2
δD. (3.9)

The last two equalities are satisfied for states within the psu(1, 1|2) sector. The fermionic

generators expand in odd powers of the coupling constant, and they act by increasing

or decreasing the length of the spin chain by one unit. At the leading order O(g), the

generators Ŝa
(1) act on two adjacent sites and turn them into a single site. Explicitly, the

action takes the form [33]

Ŝa
(1)|φ

(m)
b ψ

(n)
c 〉 = − 1√

n+ 1
δa
c

∣∣φ(n+m+1)
b

〉
,

Ŝa
(1)|ψ

(m)
b φ(n)

c 〉 =
1√
m+ 1

δa
b

∣∣φ(n+m+1)
c

〉
,

3Note, however, that a pair of v and v̇ taking the same value form a singlet because of Fermi statistics.
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Ŝa
(1)|ψ

(m)
b ψ

(n)
c 〉 =

√
n+ 1√

(m+ 1)(m+ n+ 2)
δa
b

∣∣ψ(n+m+1)
c

〉

+

√
m+ 1√

(n+ 1)(m+ n+ 2)
δa
c

∣∣ψ(n+m+1)
b

〉
,

Ŝa
(1)|φ

(m)
b φ(n)

c 〉 =
1√

n+m+ 1
εbcε

ad
∣∣ψ(n+m)

d

〉
. (3.10)

Conversely, the generators Q̂a
(1) act on a single site and turn it into two,

Q̂a
(1)|φ

(n)
b 〉 =

n−1∑

k=0

1√
k + 1

εac
∣∣ψ(k)

c φ
(n−1−k)
b

〉
−

n−1∑

k=0

1√
n− k

εac
∣∣φ(k)

b ψ
(n−1−k)
c

〉
,

Q̂a
(1)|ψ

(n)
b 〉 =

n−1∑

k=0

√
n− k√

(k + 1)(n + 1)
εac

∣∣ψ(k)
c ψ

(n−1−k)
b

〉

+
n−1∑

k=0

√
k + 1√

(n− k)(n + 1)
εac

∣∣ψ(k)
b ψ

(n−1−k)
c

〉

−
n∑

k=0

1√
n+ 1

δa
bε

cd
∣∣φ(k)

c φ
(n−k)
d

〉
. (3.11)

Again, by inspection the representations of psu(1|1)2 turns out to have a manifest su(2)

automorphism. It is nice to see that the unified treatment of the two fermionic states

as a doublet compresses the expressions found in [33] somewhat. Furthermore, when the

construction of [33] is to be carried to higher perturbative orders one may expect the su(2)

symmetry to reduce the number of permitted terms and thus simplify the analysis. Finally,

we should note that there is a unique lift of the action (3.10), (3.11) to the nonplanar level.

This means that the nonplanar psu(1, 1|2) sector of N = 4 SYM will also have the additional

su(2) symmetry.4

3.4 The hamiltonian

In the zero-momentum sector, the Hamiltonian H = δD = 2 D̂ is given by twice the

anticommutator of psu(1|1)2 supercharges, see (A.3).5 For a length L zero-momentum

state, this can be written purely in terms of two-site to two-site interactions as follows

H =

L∑

j=1

H(j, j + 1),

H(j, j + 1) = 2 Q̂<(j)Ŝ>(j, j + 1) + 2 Ŝ>(j − 1, j)Q̂<(j) + 2 Ŝ>(j + 1, j + 2)Q̂<(j)

+ Ŝ>(j, j + 1)Q̂<(j) + Ŝ>(j + 1, j + 2)Q̂<(j + 1). (3.12)

The arguments of the supercharges refer to the sites of the spin chain on which the su-

percharges act. The generator Ŝa(j, j + 1) replaces the fields at sites j and j + 1 with

4It is likely, however, that the 2M0 degeneracy will be lifted into the irreducible components of su(2).
5Because the extended psu(1|1)2 central charges vanish on zero-momentum states, it does not matter

which pair of conjugate supercharges we use to compute D̂.
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a new (sum of) field(s) at site j, and Q̂b(j) acts in the conjugate way. From the last

equality, one can compute the explicit interactions of H(j, j + 1). Then (3.12) also gives

H for periodic states with arbitrary momentum, as this definition does not require cyclic

states. This Hamiltonian for general periodic states still commutes with the (leading order)

psu(1, 1|2) generators, is integrable, and for a given Bethe eigenstate has eigenvalue equal

to the energy E determined by the Bethe equations (2.1) and by (2.2).

Using R and B symmetry, as well as the fact that the Hamiltonian has even parity,

these interactions can be written in terms of seven functions.6 We now give the explicit

form of H(1, 2) in a hermitian basis7

H|φ(j)
a φ

(n−j)
b 〉 =

n∑

k=0

f1(n, j, k)|φ(k)
a φ

(n−k)
b 〉 +

n∑

k=0

f2(n, j, k)|φ(k)
b φ(n−k)

a 〉

+

n−1∑

k=0

f3(n, j, k)εabε
cd|ψ(k)

c ψ
(n−1−k)
d 〉,

H|φ(j)
a ψ

(n−j)
b 〉 =

n∑

k=0

f4(n, j, k)|φ(k)
a ψ

(n−k)
b 〉 +

n∑

k=0

f5(n, j, k)|ψ(k)
b φ(n−k)

a 〉,

H|ψ(j)
a φ

(n−j)
b 〉 =

n∑

k=0

f4(n, n− j, n − k)|ψ(k)
a φ

(n−k)
b 〉 +

n∑

k=0

f5(n, n− j, n− k)|φ(k)
b ψ

(n−k)
a 〉,

H|ψ(j)
a ψ

(n−j)
b 〉 =

n∑

k=0

f6(n, j, k)|ψ(k)
a ψ

(n−k)
b 〉 +

n∑

k=0

f7(n, j, k)|ψ(k)
b ψ

(n−k)
a 〉

+

n+1∑

k=0

f3(n+ 1, k, j)εabε
cd|φ(k)

c φ
(n+1−k)
d 〉, (3.13)

with the coefficient functions fn

f1(n, j, k) = 2 δjk
(
h(j) + h(n − j)

)
− 2 δj 6=k

|j − k| +
2

n+ 1
,

f2(n, j, k) = − 2

n+ 1
,

f3(n, j, k) =
2 (n − k)

(n+ 1)
√
k + 1

√
n− k

− 2 θ(j − k − 1)√
k + 1

√
n− k

,

6Parity, or p, reverses the order of the fields in spin chain states. In addition to minus signs for every

resulting crossing of fermionic fields, parity also includes a factor of (−1)L for states of length L. All of the

extended psu(1, 1|2) and psu(1|1)2 generators have p eigenvalue +1, or are parity even.
7Alternatively, one could eliminate square roots by using a different normalization for the fermionic

fields, at the expense of no longer having a hermitian basis. In that case one appearance of f3 would be

replaced with a new eighth function.
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f4(n, j, k) = 2 δjk
(
h(j) + h(n − j + 1)

)
+ 2 θ(k − j − 1)

√
n− k + 1

(j − k)
√
n− j + 1

− 2 θ(j − k − 1)

√
n− j + 1

(j − k)
√
n− k + 1

,

f5(n, j, k) = − 2 θ(k − j)√
n− j + 1

√
k + 1

,

f6(n, j, k) = 2 δjk

(
h(j + 1) + h(k + 1) − 1

n+ 2

)

+ 2

√
j + 1

√
n− j + 1√

k + 1
√
n− k + 1

(
θ(k − j − 1)

(n− j + k + 2)(n − k + 1)

(n− j + 1)(j − k)(n + 2)

−θ(j − k − 1)
(k + 1)(n + j − k + 2)

(j + 1)(j − k)(n+ 2)

)
, (3.14)

f7(n, j, k) = 2

√
j + 1

√
n− j + 1√

k + 1
√
n− k + 1

(
n− k + 1

(n− j + 1)(n + 2)
− θ(j − k − 1)(j − k)

(j + 1)(n − j + 1)

)
.

The symbol θ(n) represents the step function, which is one for n ≥ 0 and 0 otherwise, and

h(n) is the n-th harmonic number,

h(n) =

n∑

j=1

1

j
. (3.15)

4. Some degenerate states

Let us now consider the full observed degeneracy. We will try to get acquainted with it

by constructing explicitly some degenerate states. Here and in the following sections we

will work only at leading order in the coupling constant g. In other words, the psu(1, 1|2)
generators Q,J are truncated at O(g0), and for the psu(1|1)2 generators Q̂, Ŝ we take only

the O(g1) contributions Q̂(1), Ŝ(1) in (3.10), (3.11).

4.1 Vacuum

The simplest state that is part of a nontrivial multiplet is

|0L〉 = |ψ(0)
< ψ

(0)
< ψ

(0)
< . . . ψ

(0)
< 〉. (4.1)

We shall call it the vacuum state of length L. Note that it is not the ground state of the

model, but it is a homogeneous eigenstate of the Hamiltonian, and we can place excitations

on it by flipping some of the spins. In the above Bethe ansatz it is represented by K = L

main Bethe roots and M = L auxiliary Bethe roots. The roots are the solutions to the

algebraic equations (including u = ∞ and twice v = ∞)
(
u+

i

2

)L

=

(
u− i

2

)L

, (v + i)L + (v − i)L = 2vL. (4.2)

The equation for the main Bethe roots can be solved explicitly as uk = 1
2 cot(πk/L). The

momentum and energy of this state are given by (2.2)

P = π(L− 1), E = 4L. (4.3)
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The eigenvalue of the transfer matrix in the spin representation reads (2.6)

Tspin(x) = 1 +

∞∑

n=0

xL
(
2xL − (x+ i)L − (x− i)L

)

(x− in)L(x− in− i)L
. (4.4)

Note that for even L the overall momentum is maximal, P ≡ π, while for odd L the

overall momentum is zero, P ≡ 0. Therefore only the states with odd L are physical states

of AdS/CFT, and only for those the symmetry algebra enlarges by psu(1|1)2.
The vacuum state is part of a su(2) multiplet of L+ 1 states. The L+ 1 components

are given by (B≪)0,1,...,L|0L〉. Note also that it is part of a multiplet of L− 1 multiplets of

psu(1, 1|2).8 The L− 1 highest-weight components are obtained by acting with the cubic

operator given in appendix B.2; they read ((J3)≪)0,1,...,L−2|0L〉.

4.2 Degenerate eigenstates

Let us now consider the set of states where the flavor of one auxiliary Bethe root is flipped.

One can convince oneself that a state is composed from basis states of the typical form

Q2−<(k)Q1−<(l)J++(m) |0L〉 ∼ |. . .
k
↓
φ

(0)
1 . . .

l
↓
φ

(0)
2 . . .

m
↓
ψ

(1)
< . . .〉. (4.5)

The arguments of the generators correspond to the sites of the spin chain on which they

should act. Here we have only displayed the excitations while the vacuum sites ψ
(0)
< have

been suppressed. The operators J(k) act as the leading order generators in (3.4), (3.7) on

site k of the chain.9 Note that if two or all of the three excitations coincide on a single site

they will give rise to φ
(1)
1 , φ

(1)
2 or ψ

(0)
> . We find precisely L+1 states of this form completely

degenerate with the vacuum |0L〉. Three of these states are descendants of psu(1, 1|2),

εabQ
a−<Qb−<J++|0L〉, εabQ

a−<Qb+<|0L〉, εabQ
a+<Qb−<|0L〉, (4.6)

and one is the su(2) descendant

B≪|0L〉. (4.7)

However, since Bab does not commute with psu(1, 1|2), it is more convenient to use instead

the cubic operator (J3)ab presented in appendix B.2 (built from cubic combinations of

ordinary psu(1, 1|2) and su(2) generators),

(J3)≪|0L〉. (4.8)

The generator (J3)ab commutes with psu(1, 1|2) and therefore moves between psu(1, 1|2)
highest weight states.

For even L (and nonzero momentum) this exhausts the set of trivial descendants.

There remain L − 3 unexplained degenerate states. For odd L the vacuum is a zero-

momentum state, and therefore the additional psu(1|1)2 symmetry applies. It yields one

further descendant,

Ŝ<Q̂<|0L〉. (4.9)

8Due to the su(2) grading of the psu(1, 1|2) algebra these two numbers differ by two.
9The statistics of the fermionic generators Q(k) is taken into account by first permuting it to its place

of action. This may cause a sign flip.
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Consequently there are only L− 4 unexplained degenerate states in this case.

Among the remaining degenerate states we find one state with the very simple form

|1L〉 =

L∑

n,k=1

(−1)kJ++(k + n) εabQ
a−<(1 + n)Qb−<(L+ n) |0L〉

− (1 − (−1)L)B≪ |0L〉. (4.10)

One can confirm straightforwardly that it is a highest-weight state of psu(1, 1|2). For even

length this state is indeed linearly independent of the above descendants. For odd length,

however, the state is proportional to the psu(1|1)2 descendant (4.9), |1L〉 ∼ Ŝ<Q̂<|0L〉.
This turns out to be a special case because of the overall momentum being zero. We will

return to this issue in the next section.

We have also found a second degenerate state with a slightly more complicated form,

|2L〉 =
L∑

n,k=1

(−1)k(2k − L− 1 + δk1 − δkL)J++(k + n) εabQ
a−<(1 + n)Qb−<(L+ n) |0L〉

+

L∑

k=2

L∑

n=1

(−1)kJ++(k + n) εabQ
a−<(2 + n)Qb−<(L+ n) |0L〉

+ (1 + (−1)L)(L− 1)B≪ |0L〉. (4.11)

This state is also a highest weight state of psu(1, 1|2), and for odd length is not a psu(1|1)2
descendant of |0L〉.

4.3 Parity

The degenerate states do not all have the same parity. For L even or odd we find 1
2(L− 2)

or 1
2 (L− 3) states, respectively, which have opposite parity than the vacuum.10 Recalling

the above results, this means that after removing the trivial descendants there is always

one more degenerate state with opposite parity than with equal parity. More explicitly, we

can say that |1L〉 has the opposite parity as |0L〉 for even L and the same parity as |0L〉 for

odd L. Conversely, the state |2L〉 has the same parity as |0L〉 for even L and the opposite

parity as |0L〉 for odd L.

5. Nonlocal symmetry

To account for the additional degeneracy, it is natural to seek new symmetry generators.

We will take into account the findings regarding the Bethe ansatz and the form of the

degenerate states found in the previous section to construct some nonlocal generators Y.

We will then investigate their algebra.

10The definition of parity may also include shifts Uk of the chain which act nontrivially on states with

overall momentum. It is therefore more convenient to only specify the parity w.r.t. a reference state.
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5.1 Bilocal generators

First of all, an elementary step between two degenerate Bethe states consists in changing

the flavor of one auxiliary Bethe root, as discussed in section 2. The su(2) generators Bab

qualitatively act in the same way. This indicates that the new generators will be in the

same representation, i.e. in the adjoint/spin-one/triplet representation of su(2). We will

thus denote them by Yab = Yba.

As the example degenerate states given in the previous section have multiple nonad-

jacent excitations, we should look for nonlocal generators. The simplest degenerate state

|1L〉 in (4.10) has a pair of adjacent excitations and a single excitation that is not near the

pair. A generator that creates such a state from the vacuum |0L〉 consequently has to be

bilocal (at least). More complicated states with multilocal excitations such as |2L〉 in (4.11)

could in principle be generated by repeated application of these bilocal generators.

Furthermore, we know that the form of the example degenerate state |1L〉 in (4.10)

is qualitatively identical to the second order psu(1|1)2 descendant Ŝ<Q̂<|0L〉. Thus we

expect Yab to act similarly to Ŝ{aQ̂b}.

Here we have to make a distinction between states with zero and states with nonzero

momentum. For zero momentum the combination Ŝ{aQ̂b} already explains the degenerate

state |1L〉. However, due to the psu(1|1)2 algebra, it cannot explain any of the other

degenerate states. Conversely, in the case of nonzero momentum the individual generators

Ŝa and Q̂b cannot be defined independently because it is not possible to change the length

of the spin chain preserving the momentum.11 It is nevertheless possible to consistently

define the product Ŝ{aQ̂b} for nonzero-momentum states because it preserves the length.

This is the bilocal operator

Yab =

L−1∑

j=0

L+1∑

i=0

(
1 − 1

2
δi,0 −

1

2
δi,L+1

)
U j−i Ŝ{a(1, 2)U i Q̂b}(1)U−j . (5.1)

Here, U is the operator that shifts the chain by one site to the right; it commutes with all of

the local symmetry generators. The summation over j ensures that Yab acts homogeneously

on the chain, and the symmetrization in the indices makes it a su(2) triplet, as needed to

explain the degeneracy. The generator Q̂(1) removes the first site of the chain and replaces

it with two sites, while Ŝ(1, 2) replaces the first two sites of the spin chain with one. So, the

generator Yab consists of products of the Q̂ and Ŝ generators acting all possible distances

apart, with equal weight except for a symmetric regularization when a Ŝ interaction acts

on both sites created by a Q̂ interaction. The regularization resolves the one-site ambiguity

in where to place newly created sites.

For zero-momentum states the action of Yab is equivalent to the action of Ŝ{aQ̂b}.
Therefore, it cannot be used to immediately explain the additional degeneracy beyond the

established psu(1|1)2 symmetry in the zero-momentum sector. We will discuss this further

in section 5.5. However, Yab does commute exactly with psu(1, 1|2) and with the Hamil-

11The eigenvalues of a lattice momentum operator take the values 2πm/L (mod 2π). Changing the length

L by one unit only preserves the eigenvalue zero.
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tonian even if the momentum is nonzero; a proof is given in appendix C. Therefore the

existence of Yab proves the additional degeneracies for all states with nonzero momentum.

The generators Yab immediately explain the form of the simplest degenerate

state (4.10) found in the last section; it is related to the vacuum by applying Y≪ once,

|1L〉 ∼ Y≪|0L〉. (5.2)

For even length L ≤ 10 we have checked directly that the remaining descendants are given

by

Y<>|1L〉, . . . , (Y<>)(L−4)|1L〉. (5.3)

Of course, further application of Y<> generates no additional linearly independent states.

Since the (Y<>)m|1L〉 include all of the degenerate states, there is a linear combination of

them that equals the degenerate state generated by the cubic invariant (J3)≪|0L〉. Also, a

short computation shows that the Y<> transform under parity p as

pYabp = UYab. (5.4)

This is consistent with the counting of the parities of degenerate states done in section 4.3.

When acting on the even-length vacuum (U eigenvalue −1), the Yab are parity odd and

generate a sequence of alternating parity degenerate states.

For the odd-length states, which have vanishing momentum, one can easily convince

oneself using Yab ≃ Ŝ{aQ̂b} that the states (5.3) are all proportional to |1L〉.

5.2 An infinite-dimensional algebra

Let us first understand the algebra of Yab in the zero-momentum sector, where we have a

representation in terms of psu(1|1)2 generators. It is not difficult to convince oneself of the

following relations,

[
Bab, (−D̂)mŜcQ̂d

]
= (−D̂)mεc{bŜa}Q̂d − (−D̂)mŜcQ̂{bεa}d,

[
(−D̂)mŜaQ̂b, (−D̂)nŜcQ̂d

]
= (−D̂)m+n+1εcbŜaQ̂d − (−D̂)m+n+1εadŜcQ̂b. (5.5)

Denoting these combinations by Yab
k , k = 0, 1, 2, . . ., such that Yab

0 = Bab and Yab
n ≃

(−D̂)n−1Yab, we obtain the infinite-dimensional algebra

[Yab
m ,Ycd

n ] = εcbYad
m+n − εadYcb

m+n. (5.6)

This algebra is a parabolic subalgebra of the loop algebra of su(2).

We conjecture that the same algebra (5.6) holds not only for the zero-momentum

sector, but for all states if we identify

Yab
0 = Bab, Yab

1 = Yab, Yab
n+1 = −1

2
εcd[Yc{a,Yb}d

n ]. (5.7)

It is quite clear that the relations with m = 0 or n = 0 hold by su(2) symmetry. Further-

more, the relation with m = n = 1 merely defines Yab
2 . The relations with m+ n ≥ 3 are

nontrivial and have to be verified.
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In fact, the relations with m+ n = 3 are the Serre relations for the algebra, and they

imply all the relations with m + n > 3. In the following we will prove this statement by

induction. For convenience, we switch to an adjoint basis for Y i
n, i = 1, 2, 3 where the su(2)

structure constants are given by the totally antisymmetric tensor εijk. The commutation

relations can now be written for all nonnegative integer levels N as

[Y i
m,Y j

N−m] = εijkYk
N , m = 0, . . . N. (5.8)

Assume (5.8) is satisfied at some level N ≥ 3. Then we use five main steps to show that it

is satisfied at level N + 1.

• Step 1. Using our inductive assumption, consider the equations for m = 1, . . . N − 2

and their cyclic permutations,

0 = [Y2
1 ,Y1

N−m] + [Y1
1 ,Y2

N−m]

=
[
Y3

m, [Y2
1 ,Y1

N−m]
]
+

[
Y3

m, [Y1
1 ,Y2

N−m]
]

= [Y2
1 ,Y2

N ] − [Y1
m+1,Y1

N−m] + [Y2
m+1,Y2

N−m] − [Y1
1 ,Y1

N ]. (5.9)

Comparing the m = M and m = N −M − 1 equations, we find that

[Y1
m,Y1

N+1−m] = [Y2
m,Y2

N+1−m] = [Y3
m,Y3

N+1−m], m = 1, . . . N. (5.10)

• Step 2. We also have, for m = 1, . . . N

[Y1
m,Y1

N+1−m] =
[
Y1

m, [Y2
1 ,Y3

N−m]
]

= [Y3
m+1,Y3

N−m] − [Y2
1 ,Y2

N ], (5.11)

and cyclic permutations. Using the result from step 1, we find

[Y1
m,Y1

N+1−m] = m[Y1
1 ,Y1

N ], m = 1, . . . N, (5.12)

and similarly for cyclic permutations. However, since

[Y1
1 ,Y1

N ] = −[Y1
N ,Y1

1 ]. (5.13)

we must have

0 = [Y1
m,Y1

N+1−m] = [Y2
m,Y2

N+1−m] = [Y3
m,Y3

N+1−m], m = 1, . . . N. (5.14)

• Step 3. Commuting Y0 with [Y1
m,Y1

N+1−m] (and cyclic permutations) yields

[Y i
m,Y j

N+1−m] = −[Y j
m,Y i

N+1−m], m = 1, . . . N. (5.15)

• Step 4. We can now show that there is a unique consistent way to define Yk
N+1. For

instance, consider the following equations for m = 1, . . . N − 1,

[Y1
m,Y2

N+1−m] =
[
Y1

m, [Y3
1 ,Y1

N−m]
]

= −[Y2
m+1,Y1

N−m]

= [Y1
m+1,Y2

N−m]

. . .

= [Y1
N ,Y2

1 ]

= Y3
N+1. (5.16)
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• Step 5. It is now straightforward to use any of the equivalent expressions for Yk
N+1 to

check that

[Y i
0,Y j

N+1] = εijkYk
N+1. (5.17)

This completes the set of equations at level N + 1. Therefore, assuming the level-3

equations are satisfied, (5.8) is satisfied for all N .

At this time, a direct proof of the level-3 relations is beyond our technical capabilities.

Note that to prove the level-3 relations, it is sufficient to check that (switching back to

the previous su(2) notation) [Y<>
1 ,Y<>

2 ] = 0, since commutators with the B yield the

remaining relations. This relation can also be written using only bilocal generators as

[
Y<>, [Y≪,Y≫]

]
= 0. (5.18)

Still, we have to gain confidence in the level-3 relations. As a start, using Mathematica we

have checked that they are satisfied on many states of small excitation number, including

all states of length 4 with 4 or fewer excitations (above the half-BPS vacuum) and all state

of length 5 or 6 with 3 or fewer excitations. Also checked were states with larger lengths

and excitation numbers, including a length-7, 7-excitation state. Checking much longer or

higher excitation states rapidly becomes impractical because of combinatorics. However,

we consider the evidence described above as persuasive. Hopefully, a complete proof will

become possible in the future.

5.3 The representation of the loop algebra

The observed degeneracies motivating this work should correspond to irreducible 2M -

dimensional representations of the above loop algebra. Finite-dimensional representations

of loop algebras are typically tensor products of evaluation representations. In an evalua-

tion representation, the level-n generator Yn acts like the level-0 generator Y0 multiplied

by the n-th power of the evaluation parameter x

Yn|x〉 = xnY0|x〉. (5.19)

Tensor products of evaluation representations |xk〉 with distinct evaluation parameters xk

are generally irreducible. The basic reason is that the sum over (xk)
n is not proportional

to the n-th power of the sum over xk.

In our case the relevant evaluation module is two-dimensional and consists of the states

|<,x〉 and |>,x〉. (5.20)

Explicitly, the generators act on these states as (note that Yab
0 = Bab)

Y≪
n |<,x〉 = +xn|>,x〉, Y≪

n |>,x〉 = 0,

Y≫
n |<,x〉 = 0, Y≫

n |>,x〉 = −xn|<,x〉,
Y<>

n |<,x〉 = −1
2x

n|<,x〉, Y<>
n |>,x〉 = +1

2x
n|>,x〉, (5.21)
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L p u v v̇

3 ±2π
3 1 ∓ 4

√
3u− 12u2 ± 16

√
3u3 1 ±

√
3v − 6v2 1 ∓

√
3v̇

4 ±π
2 1 ∓ 16u − 40u2 ± 64u3 + 80u4 1 ± 5v − 6v2 ∓ 10v3 1 ± v̇

4 π u− 4u3 1 − 6v2 —

5 ±2π
5 −1

2

√
1 + 2√

5
(1 − 40u2 + 80u4) 1 − 15v2 + 15v4

√
1 + 2√

5
∓ v̇

±3u∓ 40x3 ± 48u5 ±5
√

1 + 2√
5
(v − 2v3)

6 π −3u+ 40u3 − 48u5 1 − 15v2 + 15v4 —

8 π u− 28u3 + 112u5 − 647 1 − 28v2 + 70v4 − 28v6 —

Table 1: Eigenstates used for checking the relationship (5.24) between Y eigenvalues and Bethe

roots. The first two columns give the length and momentum of the eigenstates. The last three

columns give the polynomials whose zeros are the Bethe roots. Note that the contributions of equal

auxiliary roots (vk = v̇j) cancel in the expression for Y<>
n (5.25).

which is consistent with the algebra (5.6). Then, tensor products labeled by the highest-

weight state

|Ψ〉 = |<,x1〉 ⊗ |<,x2〉 ⊗ . . . ⊗ |<,xM 〉 (5.22)

with distinct xk form multiplets of dimension 2M . These multiplets are characterized by

the eigenvalues of the generator Y<>
n

Y<>
n |Ψ〉 = −1

2

(
M∑

i=1

xn
k

)
|Ψ〉. (5.23)

In fact, by examining some representative eigenstates listed in table 1, we find that the

xk should be simply related to the auxiliary Bethe roots vk and v̇k as

xk =
i(1 − eiP )

vk
, (5.24)

where P is the overall momentum of the state. With this identification, the algebra im-

plies that any nonzero momentum Bethe eigenstate |Ψ〉 characterized by auxiliary roots

{v1, . . . , vM} and {v̇1, . . . , v̇Ṁ} satisfies

Y<>
n |Ψ〉 = −1

2

(
i(1 − eiP )

)n




M∑

k=1

1

vn
k

−
Ṁ∑

k=1

1

v̇n
k


 |Ψ〉. (5.25)

This identification (5.24) is not surprising since the auxiliary Bethe roots are closely asso-

ciated with the degeneracy. Furthermore, the inverse dependence on the v and on the v̇

follows from (5.21). This is necessary for compatibility with invariance of Yab under the

psu(1, 1|2) algebra. It is also consistent with the fact that a pair of equal auxiliary Bethe

roots v and v̇ leads to a singlet rather than a quadruplet.
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It is curious that the overall momentum P appears in the definition of the evaluation

parameter. It actually cancels the singularities that occur when there are auxiliary roots

v or v̇ at zero: As explained in section 2.2 this can only happen for zero-momentum

states, and in that case the factor in the numerator (1 − eiP ) also goes to zero. The

explicit evaluation of Y<>
n for the odd-length vacuum state |0L〉 in (4.1) gives the proper

regularization (for n > 0) 12

Y<>
n |0L〉 = −1

2
(−D̂)n|0L〉. (5.26)

Here D̂ = 1
2E = 2L is the eigenvalue of D̂ which equals half the energy of the state. In other

words, the state corresponds to the following tensor product of evaluation representations,

|0L〉 = |<,−D̂〉 ⊗ |<, 0〉 ⊗ . . .⊗ |<, 0〉. (5.27)

Therefore the generators Yn, n > 0, transform effectively only the first doublet. This is fully

consistent with our above findings that the generators Yn cannot explain the degeneracy

in the zero-momentum case and also with the algebra Yn ≃ (−D̂)n−1Y.

Finally, we should emphasize that we have not proven that the identification (5.24) is

satisfied for all states, but we have given compelling evidence of its truth.

5.4 Relation to Yangian symmetry

The apparent asymptotic integrability of the N = 4 SYM spin chain is equivalent to the

existence of a Yangian symmetry [42], which is a nonlocal infinite-dimensional symmetry.

The Yangian of the N = 4 SYM spin chain was constructed at leading order in [43, 44],

and its perturbative corrections in subsectors have been studied in [45 – 49]. The Yangian

is a Hopf algebra whose structure is the subject of many recent investigations [40, 50 –

56]. In general, for a Lie algebra with generators JA, the Yangian is generated by the Lie

generators JA
0 = JA combined with additional generators, JA

1 . In a spin chain description,

the JA
1 act as bilocal products of the JA

0

JA
1 ≃

∑

k<n

fA
BCJB

0 (k)JC
0 (n), (5.28)

where fA
BC are the structure constants. From this action, it is clear that the JA

1 transform

in the adjoint of the Lie algebra. The Yangian generators must satisfy a Serre relation,13

[
JA

1 , [J
B
1 ,J

C
0 }

}
−

[
JA

0 , [J
B
1 ,J

C
1 }

}
=

1

6
aABC

DEF {JD
0 ,J

E
0 ,J

F
0 ],

aABC
DEF = (−1)(EM)fAK

Df
B

E
LfC

F
MfKLM . (5.29)

12The result can in fact be derived from a regularization of (5.25) as well: Assume v1 = 0 and eiP = 1 for

some solution to the Bethe equations. Take a small deformation of the set of Bethe roots which preserves

the Bethe equation for v1. Then the limit (as P returns toward 0) of the combination i(1 − eiP )/v1 equals

− 1

2
E, which equals the eigenvalue of −D̂. We thank the referee for pointing out this method to us.

13The symmetric triple product is {x1, x2, x3] =
P

i6=j 6=k
xixjxk, with appropriate additional signs for

fermionic x.
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The term on the right hand side implies that a Yangian is a deformation of the loop

(sub)algebra of a Lie algebra. Also, combining this Serre relation with the adjoint trans-

formation of the J̃A implies another relation,

[
[JA

1 ,J
B
1 }, [JP

0 ,J
Q
1 }

}
+

[
[JP

1 ,J
Q
1 }, [JA

0 ,J
B
1 }

}
=

1

6
aABC

DEFf
PQ

C{JD
0 ,J

E
0 ,J

F
1 ]. (5.30)

This second Serre relation is useful when considering a su(2) algebra, since in that case the

first Serre relation is trivial.

Let us now compare the action of Yab in (5.1) to the formal action of Yangian generators

in (5.28). The former acts as a bilocal product of Ŝa and Q̂b. The same is true for the

su(2) automorphism B̂ab of psu(1|1)2 with vanishing central charges Ĉab = 0. In fact, the

action is equal up to (not yet investigated) issues related to the length-changing nature of

the psu(1|1)2 generators Ŝa and Q̂b. Therefore it is natural to identify our generators Yab

with the level-one generators of the su(2) automorphism14

Yab = B̂ab
1 . (5.31)

The generators Yab would thus enlarge the psu(1|1)2 Yangian (which is a part of the full

psu(2, 2|4) Yangian [43, 44]) by an automorphism in just the same way as the generators

Bab enhance the the psu(1|1)2 Lie algebra by the su(2) automorphism. Consistently with

this identification, the Serre relation (5.30) implies that the Yab generate an undeformed

su(2) loop (sub)algebra, since the relevant combinations of structure constants appearing

on the right side vanishes for central charges Cab = 0.15

Of course, for nonzero momentum states the psu(1|1)2 symmetry no longer applies.

However, it does apply for infinite-length states (which are typically required also for

Yangian symmetry to be realized16). We can then view the loop algebra symmetry for

nonzero-momentum states simply as the consequence of the extended psu(1|1)2 Yangian

for the infinite-length chain combined with the fact that the Y = B̂1 are length-preserving.

In contrast, the other Yangian generators, the Q̂1 or Ŝ1, clearly are not a symmetry for

finite-length nonzero-momentum states since they also change the length of the chain.

It is still unusual even for part of this Yangian symmetry to be realized exactly by the

Hamiltonian for finite-length states. It is closely tied to the fact that the generators Ŝ and

Q̂ change the length by a definite and opposite amount, so that a bilocal product consistent

with periodic boundary conditions can be constructed.

While we identify the su(2) automorphisms of the psu(1, 1|2) and psu(1|1)2 algebras,

B = B̂, apparently the corresponding Yangians cannot be identified, B1 6= B̂1. For

14As in [48], the definition of the bilocal product here needs to be generalized naturally to allow for

multisite (and even length-changing) symmetry generators. With appropriate modifications of the local

terms, we could write the bilocal product also including terms with Ŝ acting first, in agreement with the

bilocal action.
15This Yangian relation thus provides an efficient way to see that the level-3 relation suffices to guarantee

that the loop subalgebra is satisfied. The level-3 relation is equivalent to the Serre relation for the su(2)

part of the Yangian.
16The bilocal Yangian generators usually cannot be defined consistently with periodic boundary condi-

tions.
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instance, the Y = B̂1 commute with the psu(1, 1|2) algebra, while the Yangian generator

B1 should not commute. However, it would still be interesting to generalize [48] to obtain

the O(g2) corrections to the extended psu(1, 1|2) Yangian. It is possible still that there is

some relation between the O(g2) Yangian generators of the two automorphisms.

Finally, note that we can now expect contributions to other Yangian generators at

O(g2) that have similar spin chain structure as the Yab. Suitable sectors that have gener-

ators that act nontrivially at O(g) include the su(2|3) sector as well as the full psu(2, 2|4)
spin chain.

5.5 Zero-momentum degeneracy and the Yangian double

With our new understanding of the origin of the algebra generated by the Y, there is a

natural explanation for the remaining degeneracy of the zero-momentum sector. As noted

above, any Bethe eigenstate in the zero-momentum sector has a root at v = 0 or v̇ = 0. The

contribution from this root dominates the eigenvalue of the Y<>, so that these states only

form doublets of the loop algebra. What is needed to explain the other degenerate states

is a generator with the inverse eigenvalues, for which the nonzero roots would dominate.

This is precisely what we would expect from the full su(2) loop algebra, which would follow

from the double Yangian [57] for the extended psu(1|1)2 algebra.

The full su(2) loop algebra takes the same form as in (5.6), except now the Ym are

defined for all integer values m. So the full algebra is generated by Yab
0 , Yab

1 , and Yab
−1. The

additional relations that would need to be checked to verify that the Yab
−1 generate the rest

of the algebra include the level-(−3) Serre relation and

[Yab
−1,Ycd

1 ] = εcbBad − εadBcb. (5.32)

It would be very interesting to find the spin chain representation for the Yab
−1, which basically

invert the Yab
1 . We leave this investigation for the future, but note that using the example

states in table 1 and (5.25) with n = −1 will provide significant information about these

generators. However, unlike the Yab
1 there does not appear to be as natural a representation

in terms of ordinary symmetry generators. Finally, once one finds the Yab
−1, one could

immediately compute the Q̂−1 and Ŝ−1, which would not act just as products of ordinary

symmetry generators.

5.6 A singlet bilocal generator

It is curious to note that there exists a bilocal generator X very similar to the Yab, which

is a su(2)-singlet

X =

L−1∑

j=0

L+1∑

i=0

(
1 − 1

2
δi,0 −

1

2
δi,L+1

)
1

2
εbaU j−i Ŝa(1, 2)U i Q̂b(1)U−j . (5.33)

Like the Yab, it commutes with the psu(1, 1|2) algebra and the one-loop Hamiltonian, as

discussed in appendix C.

Similar to the reasoning used at the beginning of section 5.2, we can use the zero-

momentum reduction for X to conjecture that it commutes with the Yab
n for all n. Again,
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we have obtained very strong evidence using Mathematica. We have checked that these

commutators vanish for the same set of states described in the last paragraph of section 5.2.

It is however presently not clear how to generalize X to an infinite-dimensional algebra of

Xm. For such an algebra, we would have X0 = Â, and for zero-momentum states the

remaining generators would simply be Xn = D̂n−1X , yielding an abelian algebra that

commutes with the Yab
n .

Using the states in table 1, we find that the eigenvalues of X only differ from those of

Y<>
1 by the relative sign between the v and v̇ contributions,

X|Ψ〉 = − i

2
(1 − eiP )




M∑

k=1

1

vk
+

Ṁ∑

k=1

1

v̇k


 |Ψ〉. (5.34)

From this and the fact that X reduces to a product of psu(1|1)2 symmetry generators for

zero-momentum states, we see that X does not map between different psu(1, 1|2) multiplets.

Similar arguments as in section 5.4 imply that we can identify X as a bilocal Yangian

generator, X = Â1, and the Serre relation (5.29) then implies that X commutes with the

triplet Y. Finally, X also should have a double, but the double would commute with X .

6. Conclusions and outlook

In this article we have investigated a curious 2M -fold degeneracy of an integrable spin chain

with psu(1, 1|2) symmetry. This degeneracy was observed at the level of Bethe equations

in [5]. Here we have considered the symmetry algebra that explains the degeneracy. We

have constructed two triplets of symmetry generators, B and Y, at the level of opera-

tors acting on spin chain states. The local generators B form a su(2) automorphism of

psu(1, 1|2) while the bilocal generators Y commute with psu(1, 1|2). Together they appar-

ently generate a subalgebra of the loop algebra of su(2). This extended symmetry algebra

commutes with the Hamiltonian and thus explains the degeneracy.

It remains an open problem to identify the spin chain operators that generate the

2M degeneracy for zero-momentum states. As argued above, these operators are likely

to generate the remaining part of the full su(2) loop algebra. It is possible that these

operators’ spin chain representation is not simple. However, this still deserves further

study especially because it is also possible that they would give new insight into the origin

of the simple next-to-leading order corrections to the local symmetry generators obtained

in [33].

While we have restricted our study to the one-loop Hamiltonian, it is clear that the

symmetry enhancement persists at higher loops. The 2M degeneracy of the Bethe ansatz

is preserved by the higher-loop corrections [5]. Therefore, we expect the Yab to receive

loop corrections so that they commute with the loop-corrected Hamiltonian. Note that the

leading terms for the bilocal symmetry generators Yab
(2) discussed in this paper correspond

to O(g2). Given the Yangian origin of the Yab, we expect the corrections for the bilocal

generators to involve substituting the appropriate loop corrections for the psu(1|1)2 gener-

ators appearing in the expression for the Yab, similar to the quantum corrections to bilocal
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Yangian generators studied in [48]. That is, at O(g2ℓ) the bilocal generators should take

the form

Yab
(2ℓ) ≃

ℓ∑

m=1

L−1∑

j=0

L+1∑

i=0

U j−i Ŝ
{a
(2m−1)(1, . . . ,m+1)U i Q̂

b}
(2ℓ−2m+1)(1, . . . , ℓ−m+1)U−j . (6.1)

Explicit calculation will be required to find the regularization of the overlap between Ŝ

and Q̂. The study of these corrections may be very useful in constraining the higher-loop

contributions to the local symmetry generators.

As at leading order, for cyclic states the Yab
(2ℓ) will reduce to ordinary products of

the (loop-corrected) psu(1|1)2 generators. Therefore, we expect that the loop corrections

will also preserve the algebra of the Yab
n . This would be consistent with the loop algebra

following from the extended psu(1|1)2 Yangian of the infinite-length chain, as discussed in

section 5.4, which is expected also to all orders in perturbation theory.

The degeneracy was observed in the context of AdS5 × S5 string theory. However, it

might also be relevant for certain superstring models on AdS3×S3 or AdS2×S2 which also

possess psu(1, 1|2) symmetry. Further suitable models include the principal chiral/WZW

model on the group manifold P̃SU(1, 1|2) or some of it cosets. For instance, in some of

these cases an additional su(2) and some even larger unexplained degeneracies were noticed

in [58]. It is conceivable that they are of a similar origin as the ones discussed here.
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A. Commutation relations

In the following we shall list the commutation relations for the symmetry algebras.

A.1 Maximally extended psu(1, 1|2) algebra

Let us first consider the psu(1, 1|2) algebra. It consists of the three su(2) generators Rab =

Rba, the three su(1, 1) generators Jαβ = Jβα, and the eight fermionic generators Qaβc. All

Latin, Greek and Gothic indices can take one out of two values. A summary of commutation

relations reads

[Rab,Rcd] = εcbRad − εadRcb,

[Jαβ ,Jγδ ] = εγβJαδ − εαδJγβ ,

[Rab,Qcδe] =
1

2
εcaQbδe +

1

2
εcbQaδe,

[Jαβ ,Qcδe] =
1

2
εδαQcβe +

1

2
εδβQcαe,

{Qaβc,Qdǫf} = εβǫεcfRda − εadεcfJβǫ + εadεβǫCcf. (A.1)
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For completeness, we have introduced a maximal set of three central charges Cab = Cba. In

the case of the spin representation they act trivially. The algebra furthermore admits an

su(2) grading. The commutators with the generators Bab = Bba of the automorphism are

canonical,

[Bab,Bcd] = εcbBad − εadBcb,

[Bab,Qcδe] =
1

2
εeaQcδb +

1

2
εebQcδa,

[Bab,Ccd] = εcbCad − εadCcb. (A.2)

Note that the “central charges” Cab now become a spin-1 triplet under this su(2) automor-

phism, i.e. they are not central for the maximally extended algebra. All in all this algebra

can be denoted as su(2) ⋉ psu(1, 1|2) ⋉ R
3.

A.2 Maximally extended psu(1|1)2 algebra

The only nontrivial commutator of the psu(1|1)2 algebra reads

{Q̂a, Ŝb} = Ĉab + εabD̂. (A.3)

For completeness we have introduced a triplet Ĉab of central charges to accompany the

singlet D̂. In our spin chain model the triplet acts trivially, Ĉab = 0.

The algebra admits a u(2) grading, which can be split up into su(2) and u(1) gradings.

The su(2) automorphism is defined by the commutation relations

[B̂ab, B̂cd] = εcbB̂ad − εadB̂cb,

[B̂ab, Q̂c] =
1

2
εcaQ̂b +

1

2
εcbQ̂a,

[B̂ab, Ŝc] =
1

2
εcaŜb +

1

2
εcbŜa,

[B̂ab, Ĉcd] = εcbĈad − εadĈcb, (A.4)

while the u(1) grading Â distinguishes Q̂ from Ŝ,

[Â, Q̂a] = +Q̂a,

[Â, Ŝa] = −Ŝa. (A.5)

Altogether the algebra can be denoted by u(2) ⋉ psu(1|1)2 ⋉ R
4.

A priori the su(2) automorphisms B and B̂ of psu(1, 1|2) and psu(1|1)2, respectively,

are not identical, but they merely satisfy the same commutation relations. For the spin

representation of the product of these algebras in perturbative gauge theory, they should

however be identified B = B̂.

The psu(1|1)2 algebra can be embedded in another psu(1, 1|2) algebra, with the

fermionic generators now written as Q̂aβc. Then we have

Q̂a = Q̂1+a, Â = R̂12,

Ŝa = Q̂2−a, D̂ = −Ĵ+− + R̂12. (A.6)
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B. Multilinear operators

In this appendix we list some relevant multilinear operators for the symmetry algebra.

These include the quadratic Casimir invariant, but also an interesting triplet of cubic

operators. We then show that the cubic operators satisfy the same algebra as the Yab and

can be used to deform the Yab while preserving this algebra.

B.1 Quadratic invariants

It is straightforward to construct the quadratic Casimir for the maximally extended

psu(1, 1|2) algebra introduced in appendix A,

J2 = 2εbcεdaB
abCcd + εbcεdaR

abRcd − εβγεδαJαβJγδ − εadεβǫεcfQ
aβcQdǫf. (B.1)

For the algebra without central extensions, Cab = 0, the first terms simply drops out. The

centrally extended algebra without automorphism, on the other hand, does not have a

quadratic invariant because the first term is important, but it requires Bab.

For the maximally extended psu(1|1)2 the quadratic Casimir operator reads

Ĵ2 = εbcεda{B̂ab, Ĉcd} + {Â, D̂} − εab[Q̂
a, Ŝb]. (B.2)

In the combined algebra of psu(1, 1|2) and psu(1|1)2 with identified automorphisms

Bab = B̂ab also the central charges have to be identified, Cab = Ĉab, in order for a quadratic

invariant to exist. This invariant is the sum of (B.1) and (B.2) but with the first term in

both expressions appearing only once.

Some more invariant quadratic generators obviously include quadratic combinations

of the central charges

C2 = εbcεdaC
abCcd, Ĉ2 = εbcεdaĈ

abĈcd, D̂2. (B.3)

B.2 Triplet of cubic psu(1, 1|2) invariants

Curiously, there exist three cubic psu(1, 1|2) invariants (J3)ab = (J3)ba for the algebra

without central extensions, Cab = 0,

(J3)ab =
1

2
εceεdhεζιR

cd[Qeζa,Qhιb] +
1

2
εehεγζεδιJ

γδ[Qeζa,Qhιb] (B.4)

+ εdeεfcB
abRcdRef − εδǫεζγBabJγδJǫζ − εcfεδηεehB

abQcδeQfηh.

They transform as a triplet under B, and commute with the psu(1, 1|2) algebra. These cubic

generators are important for the multiplet structure in the algebra with automorphism. For

a multiplet of the extended algebra, the highest-weight states of psu(1, 1|2) form a multiplet

of su(2). To move about in this multiplet, one cannot simply use the su(2) generators Bab

because they do not commute with psu(1, 1|2). Instead, the cubic generators map between

highest-weight states of psu(1, 1|2), i.e. they can be understood as su(2) ladder generators.
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B.3 Algebra of cubic invariants

The cubic operators (J3)ab commute with all psu(1, 1|2) generators, and they transform as

a triplet under the su(2) automorphism

[Bab, (J3)cd] = εcb(J3)ad − εad(J3)cb. (B.5)

It remains to be seen how they commute among themselves.

We first note that (J3)ab in (B.4) contains the quadratic Casimir J2 in (B.1) (with

Cab = 0) multiplied by the su(2) generator Bab. We can thus split it up into two parts

(J3)ab = (J̃3)ab + J2Bab (B.6)

with the remainder

(J̃3)ab =
1

2
εceεdhεζιR

cd[Qeζa,Qhιb] +
1

2
εehεγζεδιJ

γδ [Qeζa,Qhιb]. (B.7)

Now, (J3)ab commutes with ordinary psu(1, 1|2) generators, and the J̃3 are products of

ordinary psu(1, 1|2) generators only. Therefore, the commutator of two nonidentical J3

generators yields simply a product of the quadratic Casimir and a J3,

[(J3)ab, (J3)cd] = εcbJ2(J3)ad − εadJ2(J3)cb. (B.8)

From this, it is straightforward to obtain the entire algebra generated by the cubic

invariants. Define

(J3
0)

ab = Bab and (J3
n)ab =

(
J2

)n−1
(J3)ab, n ≥ 1. (B.9)

It only takes a short computation to show that these J3
n satisfy a loop algebra (the same

algebra as the Yn in section 5.2)

[(J3
m)ab, (J3

n)cd] = εcb(J3
m+n)ad − εad(J3

m+n)cb. (B.10)

For n or m equal to 0, this algebra is satisfied since the quadratic Casimir commutes even

with Bab. Assuming n and m are greater than 0, we substitute the definition (B.9) to

obtain

[(J3
m)ab, (J3

n)cd] = [
(
J2

)m−1
(J3)ab,

(
J2

)n−1
(J3)cd]

=
(
J2

)n+m−2
[(J3)ab, (J3)cd]

= εcb
(
J2

)n+m−1
(J3)ad − εad

(
J2

)n+m−1
(J3)cb

= εcb(J3
n+m)ad − εad(J3

n+m)cb, (B.11)

as required. We used the vanishing commutator between J2 and (J3)ab, and (B.8). It is

interesting that the role of the quadratic Casimir operator here resembles that of D̂ in the

Y algebra for cyclic states above (5.6).
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B.4 Representation of the algebra

Let us understand the representations of the above loop algebra generated by (J3)ab, cf.

section 5.3. We act with (J3
n)<> on a su(2) ⋉ psu(1, 1|2) highest-weight state |Ψ〉 and find

(J3
n)<>|Ψ〉 = (J2)n−1(J̃3)<>|Ψ〉 + (J2)nB<>|Ψ〉

= xn−1(J̃3)<>|Ψ〉 + xnB<>|Ψ〉, (B.12)

where x is the eigenvalue of the quadratic Casimir J2 on |Ψ〉. Now it turns out that

(J̃3)<>|Ψ〉 = 0, and consequently

(J3
n)<>|Ψ〉 = xnB<>|Ψ〉. (B.13)

Therefore, the representation of the loop algebra of J3
n is an evaluation representation

with evaluation parameter x. In the case of a (m + 1)-dimensional su(2) multiplet of

psu(1, 1|2) representations, the highest weight is realized as a symmetric tensor product of

m fundamental evaluation representations with equal evaluation parameters x

|<,x〉 ⊗ |<,x〉 ⊗ . . .⊗ |<,x〉. (B.14)

B.5 A one-parameter deformation of the loop algebra

Assuming that the Yab satisfy a loop algebra as explained in section 5.2, there is actually

a one-parameter generalization of these generators using the (J3)ab. The same subalgebra

of the su(2) loop algebra is generated by

Ŷab = Yab + α (J3)ab (B.15)

for any constant α.

Let us present the full deformation of the Yab
n , which we label Ŷab

n . We parameterize

the deformation with α. Ŷab
0 is still given by Bab, but all other generators become

Ŷab
n = αn(J3

n)ab +
n−1∑

m=0

αm

(
n

m

)(
J2

)m Yab
n−m, n ≥ 1. (B.16)

Again, the algebra relations take the same form,

[Ŷab
m , Ŷcd

n ] = εcbŶad
m+n − εadŶcb

m+n. (B.17)

The commutators with n or m equal to zero are again satisfied because J2 commutes with

Bab. In order to check the relations with m = 1, we need the commutators between the

(J3
n)ab and the Yab

1 . The vanishing commutator between the Y and the ordinary psu(1, 1|2)
generators implies for all n ≥ 0

[Yab
1 , (J3

n)cd] =
(
J2

)n
(
εcbYad

1 − εadYcb
1

)
. (B.18)
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Now we expand the left side of the relations (B.17) with m = 1 using (B.16). We simplify

using (B.18) and the algebras of the (J3
n)ab and of the Yab

n ,

[Ŷab
1 , Ŷcd

n ] = αn[Yab
1 , (J3

n)cd] + αn+1[(J3)ab, (J3
n)cd]

+
n−1∑

m=0

αm

(
n

m

)(
[Yab

1 ,
(
J2

)m Ycd
n−m] + α[(J3)ab,

(
J2

)m Ycd
n−m]

)

= αnεcb
(
J2

)n Yad
1 − αnεad

(
J2

)n Ycb
1 + αn+1εcb(J3

n+1)
ad − αn+1εad(J3

n+1)
cb

+

n−1∑

m=0

αm

(
n

m

)(
J2

)m
(
εcbYad

n+1−m − εadYcb
n+1−m

)

+

n−1∑

m=0

αm+1

(
n

m

)(
J2

)m+1
(
εcbYad

n−m − εadYcb
n−m

)

= αn+1εcb(J3
n+1)

ad − αn+1εad(J3
n+1)

cb

+
n∑

m=0

αm

(
n+ 1

m

)(
J2

)m
(
εcbYad

n+1−m − εadYcb
n+1−m

)

= εcbŶad
n+1 − εadŶcb

n+1. (B.19)

We combined terms to reach the second-to-last expression, and substituted the defini-

tion (B.16) for the last line. The calculation proceeds in parallel for (B.17) with n = 1.

Since this algebra’s Serre relations are the level three equations, which have n or m equal

to one, it follows that (B.17) is satisfied.

C. Symmetries of the bilocal generators

In this appendix, we prove that the Yab commute with the psu(1, 1|2) generators, including

the one-loop dilatation generator. The proofs can be modified straightforwardly to show

the same for X .

Again, since we work only at leading order the psu(1, 1|2) generators Q,J are truncated

at O(g0), and the psu(1|1)2 generators Q̂, Ŝ only act with Q̂(1), Ŝ(1).

C.1 Invariance under psu(1, 1|2)

We now prove that Yab commutes with the classical psu(1, 1|2) generators. It is sufficient to

prove that the commutators with the Q vanish since the Q generate the complete algebra.

Furthermore, using B symmetry, it is sufficient to prove this for Y≪. Now, Qaβ< commute

exactly with the Q̂< and Ŝ<, so it is clear that these commutators vanish. However, it is

nontrivial to show that the Qa+> commute with Y≪, since they only commute with Q̂<

up to a gauge transformation

{Qa+>, Q̂<}|X〉 = εab|Xφ(0)
b 〉 − εab|φ(0)

b X〉 = Ža(2) − Ža(1). (C.1)

Here we use the notation Ža(i) for the insertion of a bosonic field at a new site between

the original sites i and i+ 1. It will be useful to note that we can use U to change the site

– 29 –



J
H
E
P
1
0
(
2
0
0
7
)
0
3
1

indices of any generator that acts on site i and any number of following sites,

X(i+ 1 . . .) = UX(i . . .)U−1. (C.2)

We are now ready to check the commutator directly. We use that the Qa+> still commute

exactly with Ŝ< and apply (C.1) and (C.2),

[Qa+>,Y≪] =

L−1∑

j=0

L+1∑

i=0

(
1 − δi, 0

2
− δi, L+1

2

)
U j−i Ŝ<(1, 2)U i (Ža(1) − Ža(2))U−j

=
L−1∑

j=0

L+1∑

i=0

(
1 − δi, 0

2
− δi, L+1

2

)
U j−i Ŝ<(1, 2)U i Ža(1)U−j

−
L−1∑

j=0

L+1∑

i=0

(
1 − δi, 0

2
− δi, L+1

2

)
U (j+1)−(i+1) Ŝ<(1, 2)U i+1 Ža(1)U−(j+1)

=

L−1∑

j=0

L+1∑

i=0

(
1 − δi, 0

2
− δi, L+1

2

)
U j−i Ŝ<(1, 2)U i Ža(1)U−j

−
L∑

j=1

L+2∑

i=1

(
1 − δi, 1

2
− δi, L+2

2

)
U j−i Ŝ<(1, 2)U i Ža(1)U−j (C.3)

We shifted summation variables to obtain the last line, i→ (i+ 1) and

j → (j + 1). Since the chain is of length L initially and after the application of the

commutator, j = L is equivalent to j = 0. Now we can combine the two lines (being

careful with the different ranges for i) and simplify,

[Qa+>,Y≪] =

L−1∑

j=0

L+2∑

i=0

[((
1 − δi, 0

2
− δi, L+1

2
− δi, L+2

)
−

(
1 − δi, 1

2
− δi, L+2

2
− δi, 0

))

× U j−i Ŝ<(1, 2)U i Ža(1)U−j

]

=
1

2

L−1∑

j=0

(U j−1 Ŝ<(1, 2)U Ža(1)U−j + U j Ŝ<(1, 2) Ža(1)U−j

−U j−2 Ŝ<(1, 2)U Ža(1)U−j − U j−1 Ŝ<(1, 2) Ža(1)U−j)

=
1

2
(1 − U−1)

L−1∑

j=0

U j(U−1 Ŝ1(1, 2)U Ža(1) + Ŝ<(1, 2) Ža(1))U−j . (C.4)

To reach the middle expressions, we used that the length of the chain is L + 1 after Ža

acts. The expression in parenthesis inside the sum in the last line gives a chain derivative

by parity. To see this, we write the chain with site 0 = L first:

(U−1 Ŝ<(1, 2)U Ža(1) + Ŝ<(1, 2) Ža(1))|Y0 Y1 Y2 . . .〉 =

εab

2
(S<(0, 1)|Y0φ

(0)
b Y1 Y2 . . .〉 + S<(1, 2)|Y0 φ

(0)
b Y1 Y2 . . .〉) =

εab

2
(−S<(0, 1)|φ(0)

b Y0 Y1 Y2 . . .〉 + S<(1, 2)|Y0 φ
(0)
b Y1 Y2 . . .〉). (C.5)
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We used parity to reach the last line. Since this term acts homogeneously on the chain,

the first and second terms cancel.

The proof for the Qa−> is similar. They only commute with Ŝ< up to the gauge

transformations

{Qa−>, Ŝ<}|Xφ(0)
b 〉 = −δa

b |X〉 = −Ẑa(2),

{Qa−>, Ŝ<}|φ(0)
b X〉 = δa

b |X〉 = Ẑa(1). (C.6)

Here we have defined Ẑa(i). Since the Qa−> commute exactly with the Q̂<, again us-

ing (C.2) to shift site indices we find

[Qa−>,Y≪] =

L−1∑

j=0

L+1∑

i=0

(
1 − δi, 0

2
− δi, L+1

2

)
U j−i (Ẑa(1) − Ẑa(2))U i Q̂<(1)U−j

=
1

2
(U−1 − 1)

L−1∑

j=0

U j
(
U Ẑa(1)U−1 Q̂<(1) + Ẑa(1) Q̂<(1)

)
U−j . (C.7)

Again, the term in parenthesis is a chain derivative by parity. This completes the proof

that the Q commute with Y≪. It follows by B and psu(1, 1|2) symmetry that the Yab

commute with all of the classical psu(1, 1|2) generators.

It is clear from the above proof that X (5.33) also commutes with the classical

psu(1, 1|2) generators, since the bilocal product of Ŝ< and Q̂> (or Ŝ> and Q̂<) by it-

self commutes.

C.2 Conservation

To prove that the Y commute with the Hamiltonian H, or with D̂ = 1
2 H, we first need to

consider how the psu(1|1)2 generators commute with the Hamiltonian. Locally, we have

D̂ = {Q̂<, Ŝ>} + chain derivative,

= −{Q̂>, Ŝ<} + chain derivative,

=
1

2
δD2 + chain derivative. (C.8)

Here “locally” refers to the interactions that are summed over the length of the chain. For

instance, the local expression for the one-loop commutators expand as one-site to one-site

and two-site to two-site interactions,

{Q̂a, Ŝb} = (Ŝb(1, 2)Q̂a(1)) + (Q̂a(1)Ŝb(1, 2) + Ŝb(2, 3)Q̂a(1) + Ŝb(1, 2)Q̂a(2)). (C.9)

The term inside the first parenthesis is one-site to one-site, and the remaining terms are

two-site to two-site. A chain derivative summed over the length of a periodic chain gives

zero, so when we commute Yab with the Hamiltonian, we can use any of the equivalent

forms in (C.8) as long as each one acts homogeneously on the chain. We will use this

freedom to always commute any psu(1, 1)2 generator with the commutator in (C.8) that

involves the same generator. Therefore, it will be convenient to define

DL = {Q̂<, Ŝ>}
DR = −{Q̂>, Ŝ<}. (C.10)

– 31 –



J
H
E
P
1
0
(
2
0
0
7
)
0
3
1

Furthermore, the DL and DR split into local one-site to one-site and two-site to two-site

interactions (C.9). Then we have the exact local equalities only involving the two-site to

two-site interactions of DL and DR,

[Q̂<(i),DL] = q̂<(i− 1, i) − q̂<(i, i+ 1),

[Q̂>(i),DR] = q̂>(i− 1, i) − q̂>(i, i+ 1),

q̂<(i− 1, i) = Q̂<(i)DL(i− 1, i) − DL(i− 1, i)Q̂<(i)

q̂>(i− 1, i) = Q̂>(i)DR(i− 1, i) − DR(i− 1, i)Q̂>(i). (C.11)

Note that the q̂(i, i+1) have two-site to three-site interaction, with final sites (i, i+1, i+2),

and that their explicit forms in terms of interactions are not needed. These equalities can

be shown easily by expanding DL and DR and using the fact that (Q̂a)2 = 0 is even satisfied

on a one-site chain:

(Q̂a(1) + Q̂a(2))Q̂a(1) = 0 (no sum). (C.12)

Similarly, we have

[Ŝ<(i, i + 1),DR] = ŝ<(i− 1, i, i + 1) − ŝ<(i, i+ 1, i + 2),

[Ŝ>(i, i+ 1),DL] = ŝ>(i− 1, i, i + 1) − ŝ>(i, i+ 1, i + 2),

ŝ<(i− 1, i, i + 1) = Ŝ<(i, i+ 1)DR(i− 1, i) − DR(i− 1, i)Ŝ<(i, i+ 1)

ŝ>(i− 1, i, i + 1) = Ŝ>(i, i+ 1)DL(i− 1, i) − DL(i− 1, i)Ŝ>(i, i+ 1). (C.13)

The ŝ(i, i + 1, i + 2) have three-site to two-site interactions, with final sites (i, i + 1), and

again we do not need their explicit forms. Now, using these commutation relations, and

the identities that follow from (C.2)

q̂a(i− 1, i) = U−1 q̂a(i, i+ 1)U ,
ŝa(i− 1, i, i + 1) = U−1 ŝa(i, i + 1, i+ 2)U , (C.14)

we find

[D̂,Yab] =

L−1∑

j=0

L+1∑

i=0

(
1 − 1

2
δi,0 −

1

2
δi,L+1

)
U j−i (ŝa(0, 1, 2) − ŝa(1, 2, 3))U i Q̂b(1)U−j

+

L−1∑

j=0

L+1∑

i=0

(
1 − 1

2
δi,0 −

1

2
δi,L+1

)
U j−i Ŝa(1, 2)U i (q̂b(0, 1) − q̂b(1, 2))U−j

= −1

2
(1 − U−1)

L−1∑

j=0

U j (ŝa(1, 2, 3) Q̂b(1) + U−1 ŝa(1, 2, 3)U Q̂b(1))U−j

+
1

2
(1 − U−1)

L−1∑

j=0

U j (Ŝa(1, 2) q̂b(1, 2) + U Ŝa(1, 2)U−1 q̂b(1, 2))U−j .

(C.15)

To complete the proof, we will now show that this vanishes since it is a homogeneous sum

of a chain derivative. Equivalently,

Ŝa(1, 2) q̂b(1, 2)+U Ŝa(1, 2)U−1 q̂b(1, 2)−ŝa(1, 2, 3) Q̂b(1)−U−1 ŝa(1, 2, 3)U Q̂b(1), (C.16)
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acts as a chain derivative on sites 1 and 2.

First we simplify the first term. For simplicity, we consider the (≪) component. By

definition and using the two-site to two-site interactions of the defining commutator of

DL (C.10), we have

q̂<(1, 2) = Q̂<(2)DL(1, 2) − DL(1, 2)Q̂<(2) (C.17)

= Q̂<(2)Q̂<(1)Ŝ>(1, 2) + Q̂<(2)Ŝ>(1, 2)Q̂<(2) + Q̂<(2)Ŝ>(2, 3)Q̂<(1)

−Q̂<(1)Ŝ>(1, 2)Q̂<(2) − Ŝ>(1, 2)Q̂<(2)Q̂<(2) − Ŝ>(2, 3)Q̂<(1)Q̂<(2).

Now, in the second term of the last expression (on the second-to-last line), we can switch

the order of Q̂<(2) and Ŝ<(1, 2) (with a minus sign) since these two operators do not act

on any shared sites, but being careful with site indices, we must use Q̂<(3) instead. Then,

by the identity (C.12) that Q̂2 = 0 even on one site, we find that the second term and the

fifth term cancel, and we are left with the simpler expression

Q̂<(2)Q̂<(1)Ŝ>(1, 2) + Q̂<(2)Ŝ>(2, 3)Q̂<(1)

−Q̂<(1)Ŝ>(1, 2)Q̂<(2) − Ŝ>(2, 3)Q̂<(1)Q̂<(2). (C.18)

Now the first two terms of (C.16) can be written as

Ŝ<(1, 2) q̂<(1, 2) + Ŝ<(2, 3) q̂<(1, 2). (C.19)

The contributions from the first term of (C.18) cancel using (C.12) and the identity17

(Ŝ<(1, 2) Q̂<(1) − Ŝ<(2, 3) Q̂<(2))Q̂<(1) = 0 (C.20)

So we are left with the following six terms for (C.19) (the first two terms of (C.16))

Ŝ<(1, 2)Q̂<(2)Ŝ>(2, 3)Q̂<(1) − Ŝ<(1, 2)Q̂<(1)Ŝ>(1, 2)Q̂<(2) −
Ŝ<(1, 2)Ŝ>(2, 3)Q̂<(1)Q̂<(2) + Ŝ<(2, 3)Q̂<(2)Ŝ>(2, 3)Q̂<(1) −
Ŝ<(2, 3)Q̂<(1)Ŝ>(1, 2)Q̂<(2) − Ŝ<(2, 3)Ŝ>(2, 3)Q̂<(1)Q̂<(2). (C.21)

Similar steps can be used for the last two terms of (C.16). We find

Ŝ<(2, 3)Q̂>(1)Ŝ<(1, 2)Q̂<(1) + Ŝ<(2, 3)Ŝ<(1, 2)Q̂>(2)Q̂<(1) −
Ŝ<(1, 2)Q̂>(2)Ŝ<(2, 3)Q̂<(1) + Ŝ<(2, 3)Q̂>(1)Ŝ<(1, 2)Q̂<(2) +

Ŝ<(2, 3)Ŝ<(1, 2)Q̂>(2)Q̂<(2) − Ŝ<(1, 2)Q̂>(2)Ŝ<(2, 3)Q̂<(2). (C.22)

Recall that we need to show that (C.16) is a chain derivative. (C.16) is the sum

of (C.21) and (C.22). At this point, it is necessary to explicitly expand these terms as a

17This identity can be proved without too much difficulty. The second term is minus the parity image of

the first term, so one just needs to check that the first term is parity even. This can be done with a short

computation because, by B charge conservation, the only possible interactions are of the form (suppressing

derivatives) |ψ<〉 → |ψ>ψ>〉.
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sum of interactions. However, we can use discrete symmetries to greatly reduce the amount

of computation. Under the discrete transformation R that acts as

R|ψ(n)
< 〉 = |ψ(n)

> 〉, R|ψ(n)
> 〉 = |ψ(n)

< 〉, R|φ(n)
1 〉 = |φ(n)

1 〉, R|φ(n)
2 〉 = −|φ(n)

2 〉, (C.23)

the supercharges transform as

RQ̂<R−1 = −Q̂>, RŜ<R−1 = Ŝ>, (C.24)

as can be confirmed by examining the expressions for the psu(1|1)2 generators (3.11). Then

under the combined operation

X → RX†R−1, (C.25)

(C.21) transforms into minus (C.22) (term by term). Also, (C.21) and (C.22) are both

parity odd. Using these discrete symmetries, as well as R symmetry and conservation of B

charge, one can infer the complete action of (C.16) by computing the following four types

of interactions:

|φ(n)
1 φ

(m)
2 〉 −→

n+m−1∑

k=0

g1(n,m, k)|ψ(k)
> ψ

(n+m−k−1)
> 〉,

|φ(n)
1 ψ

(m)
< 〉 −→

n+m∑

k=0

g2(n,m, k)|φ(k)
1 ψ

(n+m−k)
> 〉 + g3(n,m, k)|ψ(k)

> φ
(n+m−k)
1 〉,

|ψ(n)
< ψ

(m)
< 〉 −→

n+m∑

k=0

g4(n,m, k)|ψ(k)
< ψ

(n+m−k)
> 〉. (C.26)

Completing this still lengthy computation, and applying the known symmetries, we find

that the ≪ component of (C.16) is given by the chain derivative X≪(1) −X≪(2), where

the only nonvanishing action of X≪ is

X≪|ψ(n)
< 〉 =

2

(n+ 1)2
|ψ(n)

> 〉. (C.27)

Therefore, the ≪ component of the commutator with the Hamiltonian vanishes on periodic

states, and by B symmetry the Yab commute with H.

Analogous steps to those above can be used to show that X also commutes with

the Hamiltonian. However, we have only computed (via Mathematica) the two-site to

two-site interactions in this case up to five excitations. That computation was consistent

with the commutator being a chain derivative, but another lengthy computation is needed

to complete the proof in this case (the five-excitation computation is extremely strong

evidence).
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