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Abstract. We construct 2-surfaces of prescribed mean curvature iru3folds
carrying asymptotically flat initial data for an isolatedagitating system with
rather general decay conditions. The surfaces in questiom & regular foliation
of the asymptotic region of such a manifold. We recover ptalbi relevant data,
especially the ADM-momentum, from the geometry of the tabia.

For a given set of data\/, g, K), with a three dimensional manifoltV, its Rie-
mannian metrig, and the second fundamental fofhin the surrounding four di-
mensional Lorentz space time manifold, the equation weesslk + P = const
or H — P = const. HereH is the mean curvature, arfd = ¢r K is the 2-trace
of K along the solution surface. This is a degenerate ellipticaggn for the
position of the surface. It prescribes the mean curvatuisoanopically, sinceP
depends on the direction of the normal.

1 Introduction and Statement of Results

Surfaces with prescribed mean curvature play an importéafor example in the field
of general relativity. Slicings are frequently used to firsshanic objects simplifying
the treatment of the four dimensional space-time. A promtisetting is the ADM
3+1 decomposition [ADM61] of a four dimensional manifoldarthree dimensional
spacelike slices. Such slices are often chosen by presgtibeir mean curvature in the
four geometry. In contrast, we consider the subsequenmglaf a three dimensional
spacelike slice by two dimensional spheres with prescnibean curvature in the three
geometry.

To be more precise, I€1\/, g, K) be a set of initial data. That i§)M, g) is a three
dimensional Riemannian manifold arid is a symmetric bilinear form od/. This
can be interpreted as the extrinsic curvatur@oin the surrounding four dimensional
space time. We consider 2-surfacéssatisfying one of the quasilinear degenerate
elliptic equationst + P = const whereH ist the mean curvature &f in (M, g) and
P = tr* K is the two dimensional trace df.

In the case wher& = 0 this equation particularizes td = const, which is the
Euler-Lagrange equation of the isoperimetric problem.sTheans that surfaces sat-
isfying H = const are stationary points of the area functional with respesbtame
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preserving variations. Yau suggested to use such surfaasstribe physical infor-
mation in terms of geometrically defined objects. Indeedskem and Yau [HY96]
have shown that the asymptotic end of an asymptotically femifald, with appro-
priate decay conditions on the metric, is uniquely foliabgdsuch surfaces which are
stable with respect to the isoperimetric problem. The Hagknass

=] 2

of such a surfac& is monotone on this foliation and converges to the ADM-mass.
This foliation can also be used to define the center of mass sodated system since
for growing radius, the surfaces approach Euclidean sphveite a converging center.
Therefore the static physics of an isolated system coresickes point mass is contained
in the geometry of thed = const foliation. However, these surfaces are defined
independently of<, such that no dynamical physics can be found in their gegmétr
different proof of the existence of CMC surfaces is due to¥&9p].

The goal of this paper is to generalize the CMC foliationswtdude the dynamical
information into the definition of the foliation. The equatiH + P = const was
chosen since apparent horizons satisfyiiig= 0 in the caseK = 0 generalize to
surfaces satisfying/ + P = 0 when K does not necessarily vanish. We made this
choice with the Penrose inequality [Pen73] in mind. Thisgunaity estimates the
ADM-mass of an isolated system by the area of a black holebobt

mMADM = B
— V 167

In the case< = 0 this becomes the Riemannian Penrose inequality, whichtbay &
Y] is an outermost minimal surface then the above inequaliglig. It was proved by
Huisken and limanen [HI97] and Bray [Bra97], both using présed mean curvature
surfaces. The proof of Bray generalizes the situation irctviain outermost minimal
surface is part of the stable CMC foliation from [HY96], inathit shows that the
Hawking mass is monotone on isoperimetric surfaces whenghelosed volume and
area increase even though they may not form a foliation. &#illly general apparent
horizon Penrose inequality does not seem to be true [BD@flelizing this picture
is of interest as it may help to investigate whether thererepéacement which is still
true.

We consider asymptotically flat data describing isolateaVigating systems. For
constantsn > 0,6 > 0,0 > 0, andn > 0 data(M, g, K) will be called(m, ¢, o, n)-
asymptotically flat if there exists a compact $&tC M and a diffeomorphism :
M\ B — R3\ B,(0) such that in these coordinatess asymptotic to the conformally
flat spatial Schwarzschild metri¢ representing a static black hole of massHere,
g° = ¢*g°, wherep = 1+ 7, g¢ is the Euclidean metric, andis the Euclidean radius.
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The asymptotics we require fgrand K are

sup  (r'*)g — g% +*7|VI = V| + 7| Ric! = Ric®|) <, (L.1)
R3\B;(0)

sup (7’2+5‘K‘ + 7,3—%—6‘ng|) <. (1.2)
R3\ B, (0)

Here V¢ and V*® denote the Levi-Civita connections gfand ¢° on T'M, such that
V9 — V¥ is a(1,2)-tensor. Furthermor®ic? andRic® denote the respective RicCi
tensors ofg and ¢°. That is, we consider data arising from a perturbation of the
Schwarzschild datég®, 0).

The main theorem will be proved far = 0 andn = n(m) small compared to
m > 0. These conditions are optimal in the sense that we only imposditions on
geometric quantities, not on partial derivatives. Theyude far more general data
than similar results. Huisken and Yau [HY96] for example deohthaly — ¢° decays
like »~2 with corresponding conditions on the decay of the deriestivp to fourth or-
der, while we only need derivatives up to second order. @d@ilou and Klainerman
[CK93] use asymptotics with — ¢° decaying liker—%/? with decay conditions on the
derivatives up to fourth order, and like »—>/2 with decay conditions on derivatives
up to third order, whereas our result needs to two levels fiéréintiability less. In
addition we allow data with nonzero ADM-momentum. For suakadvithé = 0 we
can prove the following:

Theorem 1.1 Givenm > 0 there isny = no(m) > 0, such that if the datai/, g, K)
are (m, 0, o, n9)-asymptotically flat for some > 0, there ishq = ho(m,o) and a
differentiable map

F:(0,ho) x S* = M : (h,p) — F(h,p)

satisfying the following statements.

(i) ThemapF(h,-): S? — M is an embedding. The surfag = F(h, S?) satisfies
H + P = h with respect td g, K). EachY;, is conveyA|? < 4 det A.

(i) There is a connected compact setc M, such thatF((0, hg), S?) = M \ B.

(iii) The surfaces(h, S?) form a regular foliation.

(iv) There is a constant' such that for allh the surfaceg:;, satisfy

IVA|[725) + [Eal Al 2w < CP12]72.

(v) There aresup-estimates for all curvature quantities ab,, cf. section 4.
(vi) Every convex surface with H + P = h contained inR? \ B),-2/3(0) equalsy;,.
Hence the foliation is unique in the class of convex foliagio

An analogous theorem holds for foliations with— P = const.



This theorem does not need th{at, ¢, K') satisfy the constraint equations. It can
be generalized to give the existence of a foliation satigfyf + (~) = const, where
P, : SM — R?is a function on the sphere bundle f with the same decay ds.

Our result includes the existence results from Huisken ad[MY96] for CMC
foliations. Their uniqueness result for individual sudacan be proved in a smaller
class, while the global uniqueness result holds in the gérase (cf. remark 4.2).

By rescaling(g, K), the dependence of andh, onm can be exposed. Consider
the mapF, : » — oz, and letg, := 0 2F'¢° and K, := o 'F’K. If (¢9,K) is
(m, 0, o, n)-asymptotically flat, thetg,,, K,,) is (1, 0, mo, m~'n)-asymptotically flat.
Thereforen,(m) = mno(1), andhg(o, m) = mho(mo, 1).

Section 2 introduces some notation. In sections 3 and 4 wg oat the a priori
estimates for the geometric quantities first in Sobolev rsoand then in theup-norm.
Using these estimates we examine the linearization of tbeadbgr 7/ + P in section 5
and show that it is invertible. This is used in section 6 tosprtheorem 1.1. Finally, in
section 7 we use special asymptotic§ @f K') to investigate the connection between
the foliation and the linear momentum of these data.

2 Preliminaries

2.1 Notation

Let M be a three dimensional manifold. We will denote a Riemanmatric on M/
by g, or in coordinates by;;. Its inverse is written ag~' = {¢*}. The Levi-Civita
connection ofg is denoted byV, the Riemannian curvature tensor By the Ricci
tensor byRic, and the scalar curvature Byal.

Let X be a hypersurface if/. Let~¢ denote the metric ok induced byg, and let
v9 denote its normal. The second fundamental formxa$ denoted by47, its mean
curvature byH?, and the traceless part df by A9 = A9 — %Hgyg.

We follow the Einstein summation convention and sum ovemLiadices from 1
to 3 and over Greek indices from 1 to 2.

We use the usual function spaces on compact surfaces withuual norms. The
LP-norm of an(s, t)-tensorI” with respect to the metrig on X is denoted by

T, :/ TP du™.
Ty oy = [, 1T

The spaceLf&t)(E) of (s,t)-tensors is the completion of the space of smaath)-
tensors with respect to this norm. In the sequel we will drepgubscriptss, ¢), since
norms will be used unambiguously. The Sobolev-nétih*(X) is defined as

1T kngsy = 1Ty + -+ IV T sy

where VET is the k-th covariant derivative of. Again, the spacéV*?(%) is the
completion of the smooth tensors with respect to this norm.
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For a smooth tensdr, define the Holder semi-norm by
PT(q) —T(p
[T]p@ — p‘ q ( ) OE )‘
prq  dist(p, q)
where P, denotes parallel translation along the shortest geodesicf to ¢, and the

supremum is taken over all # ¢ with dist(p, ¢) less than the injectivity radius af.
Define the Holder normjT'|| cx.« (s, as

[T\l e (57 == sup [T + sup [VT'| + - - - 4 sup |VET| + sup[VF T, -
(s:1) b b = peEY

We assume in the following th&f/, g, K') and all hypersurfaces are smooth, (&°.
However, to prove theorem 1.1 it is obviously enough to agsgto beC? and K to
beC"*. The a priori estimates from sections 3 and 4 are valid fdases of clas$l/3?,
whenp is large enough.

2.2 Extrinsic Geometry

Let ¥ C (M, g) be a hypersurface. The second fundamental fdgm and the Rie-
mannian curvature tens®,s,; of £ are connected to the curvature;,; of M/ via the
Gauss and Codazzi equations

Ropse = Rapse + AasApe — AncAps (2.1)
RiapsV" = VsAus — VsAas. (2.2)
Together, these imply the Simons identity [Sim68, SSY75]
A Ans = VIVIH + HAL Asg — |Al* Aag + AL Repes + A% Rsape
+V5 (Ricar V*) + VZ°(Riapst”) - (2.3)

Note that the last two terms were not differentiated with ltleéniz rule. Equation
(2.3) therefore differs slightly from how the Simons idéyts usually stated.

2.3 Round surfaces in Euclidean space

The key tool in obtaining a priori estimates for the surfaoeguestion is the following
theorem by DeLellis and Muller [LMO3, Theorem 1].

Theorem 2.1 There exists a universal constafitsuch that for each compact con-
nected surface without boundaxy with area|X| = 4, the following estimate holds:

1A =2 < CllA] 22w -

If in addition ||/ci||Lz(2) < 8m, thenX is a sphere, and there exists a conformal map
Y S% — ¥ C R3 such that

[ — (a +ids2)|lw22s2) < CllAll2(s)
whereidg: is the standard embedding 6f onto the spheres;(0) in R?, anda =
3|7 [iidy dp is the center of gravity of..
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DeLellis and Muller [LMO03, 3,6.1,6.3] also prove the foliong useful estimates for
the normals and the conformal factdr? of such surfaces:

Cl'<h<C,
Ih = w2y < Cll Al L2
IN —vovwizsez) < CllA| L2 -
Here, N is the normal ofS;(a), andh? is the conformal factor ofs, such that ify®
denotes the metric ofiz(a) andy the metric on:, then we have)*y = h2~5.
To translate these inequalities into a scale invariant flmmsurfaces which do not

necessarily have aré&| = 4, introduce the Euclidean area radiis = +/|X| /4.
From the first part of theorem 2.1 we obtain that for a genendhseX:

1A = Rl 2wy < CllA 2y - (2.4)

In the caseﬂﬁ”ww < 8, the second part of theorem 2.1 gives that there exist
3|7 [;ids dp € R? and a conformal parameterizatign: Sg, (a.) — X. By the
Sobolev embedding af?? we obtain the following estimates far, its conformal factor
h?%, and the difference of the normal of Sg_(a.) and the normad of 3:

sup |¢ — idsy, ()| < CRe||Allr2(s) (2.5)
SRe(aﬁ)
1h* = 1l 22(5p, (ae)) < ORel|Allz2(s) (2.6)
IN o idsg, (@) =V © YllL2(sp, (@) < CRellAllL2s) - (2.7)

2.4 Asymptotically flat metrics

Let ¢° be the spatial, conformally flat Schwarzschild metricRh\ {0}. Namely,
let gfj = ¢4gfj with ¢ = 1 + 3, whereg;; = §;; is the Euclidean metric, andthe
Euclidean radius oR?. Here and in the sequel we will suppress the dependenge of
on the mass parameter. However, we will restrict ourselves to the case> 0. The
Ricci curvature ofy® is given by

Ric = 567 (3 = 3pip) (2.8)
wherep = z/r is the radial vector field oR?, whenceScal® = 0.

Omiting K and saying that daté\/, g) are (m, , o, n)-asymptotically flat, we
mean thatX’ = 0 and (M, g, K = 0) is (m,, o, n)-asymptotically flat as defined
in the introduction. Recall that then there exists a compatB C M and a diffeo-
morphismz : M \ B — R?\ B,(0), such that in these coordinates the following
'norm’

lg = 9°lle2, ,me\B. ) (2.9)

= sup (r'Pg — g% 4+ ¥V — V| + 3| Ricd — Ric” |)
R3\ B, (0)



satisfieg|g — gSHCg1 . <n. We letO(n) denote a constant for whiahi(n) < Cn if
n < no is bounded.

The volume elementV of ¢ is a scalar multiple of the volume elemenit® of g7,
thatisdV = hdV®. The asymptotics (2.9) imply thé&k| < O(n)r~'~°. In addition,
the scalar curvaturgcal of ¢ satisfieq Scal | < O(n)r—37°.

Consider a surfac® C R?\ B,(0). Let~¢ ~°, andy be the first fundamental
forms of ¥ induced byg¢, ¢°, andg, respectively,A¢, A%, and A the corresponding
second fundamental form&[¢, HS, and H the mean curvatures antf, A5, and A
the respective trace free parts of the second fundamemial fo

From the well known transformation behavior for the follogigeometric quanti-
ties under conformal changes of the metric, and the asympt@.9), we see:

Lemma 2.2 The normals/#, v, andv of ¥ in the metricg®, ¢°, andg satisfy
VS — ¢—2V37
v* —v] <O(m)r='7°,
(V95 — V9| < O(n)r—27°.
The area element$u©, du®, anddy satisfy
dp® = ¢*du®,
dp —dp® = hdp with  |h| < O(n)r~'72.
The trace free partsﬁe, A : and A of the second fundamental forms satisfy
ﬁs _ ¢—2jie’
A= AS| < O@myr 2.
The mean curvatured ¢, H°, and H are related via
H® = ¢ H* + 4¢™°0,0,
[H — H¥| < O(n)r™7°.

To obtain integral estimates for asymptotically decayiongrmities, we cite the follow-
ing lemma from [HY96, Lemma 5.2].

Lemma 2.3 Let (M, g) be (m, 0, 0,n)-asymptotically flat, and lep, > 2 be fixed.
Then there existg(py), andry = ro(m,n, o), such that for every hypersurfagé C
R?\ B,,...(0), and every > p,, the following estimate holds

/ r P dp < c(po)rimy / H*dp.
% %
Integration and mean curvature refer ggandr is the Euclidean radius.

7



Using lemma 2.2 to compare thHe&-norms of A in the g-metric andA% in the g°-
metric, and using the conformal invariancel|[of®|| .2 (s, ,s), we obtain

Lemma 2.4 Let (M, g) be (m, 9,0, n)-asymptotically flat. Then there exists =
r1(n, o), such that for every surface c R? \ B,_. (0) with r,;, > r;, we have

112250y = 1A 25|
< Om)rat® (1A2mg + 1H 2 I All 2y + ik 21 H 2y ) -
= )7 min L2(2,9) L2(%) L2(%) min L2(%)

Corollary 2.5 Let M, g, r; and X be as in the previous lemma. Assume in addition
that || H|| 25y < €', then

HﬁeHLQ(z) < C(r1)||fci]|Lz(E,g) + C(r1, Co, CYO () k0.

min

Next we quote a Sobolev-inequality for surfaces containeasiymptotically flat man-
ifolds. It can be found in [HY96, Proposition 5.4]. The pragfes the well known
Michaels-Simon-Sobolev inequality in Euclidean space TS

Proposition 2.6 Let (M, g) be (m,0, o, n)-asymptotically flat. Then there ig =
ro(m,n, o), and an absolute constant,,,, such that each surfacé ¢ M \ B,,(0)
and each Lipschitz functiofion X satisfy

1/2
(/ ‘f|2d/i) Scsob/|Vf|+\Hf\d,u.
by by

Using Holder’s inequality, this implies that for afi > 1
1/p
([1Prau) < ot lns> [ 1952+ 127
) )

3 A priori estimates |

We begin by stating rather general a priori estimates fogtmmetry of surfaces. For
this, letX c R?\ B,(0) be a surface, and lgtbe (m, 0, 7, n)-asymptotically flat. Let
rmin ;= Miny, r be the minimum of the Euclidean radius Bn Assume that ot the
following two conditions are satisfied:

/ IVH?du < OK/r‘4|A\2 +r 5du, (3.1)
% %

/ wlAPdp < CF / u det Adp for all 0<ueC). (3.2)
> >



Remark 3.1 (i) The first condition states that in a certain sense the ncearature

is nearly constant. This condition will later be implied hetequation by which the
mean curvature is prescribed.

(i) The second condition means that the surfaces are conlreeed, on smooth
surfaces (3.2) implies thatl|?> < det A pointwise. However, we will need that condi-
tion (3.2) is preserved undé&y2?-convergence of surfaces. Huisken and Yau [HY96]
are able to replace this condition by requiring stabilityttegir CMC surfaces. In the
present case similar reasoning would work, however, staksinot a natural condition
for our surfaces. O

Condition (3.2) implies topological restrictions, and atimate on the.?-norm of the
mean curvature.

Lemma 3.2 There isry = r9(m, n, o, C¥), such that every compact closed surfate
satisfying(3.2) andr,;, > r is diffeomorphic taS? and satisfies

[ #2dn < comn.cp). (3.3)
b

Proof: The Gauss equation (2.1) implies that the Gauss curvéatwgX is given by
G = det A + Ric(v,v) — %Scal. Insertingu = 1 into (3.2) and applying lemmas 2.2
and 2.3, we obtain

/HQd/LSCf/Gd/LJrC(J)B/\Ric|du§0§x(2)+0§r;;/H2d,u.
> > > >

Here x(X) is the Euler characteristic of. If r,;, is large enough, this gives <

| H |12 < CEx(X), which impliesy(X) > 0. If x(X) = 0, i.e. ¥ is a torus, then
Js H*dp =0 Whence||2iy|Lz(Z) = 0. Using Corollary 2.5 and theorem 2.1, we obtain
thatX is a sphere, a contradiction. O

Proposition 3.3 Let (M, g) be (m, 0, o, n)-asymptotically flat. Then there exists=
ro(m,n, o, C¥, C*), such that each closed surfaBesatisfying(3.1), (3.2), andr,;, >
ro also satisfies

[e] 2 [e]
[V #214P du < O, 8,01
%

Proof: We begin by computing
ﬁaﬁAﬁaﬁ = /(iaﬁ(AAaﬁ + ’yaﬁAH) = /TQBAAQQ,
sinceA is trace free. By

21 A|AIA] + 2|V |A|)? = AJA]? = 24°PAA 5 + 2|V A)?
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and
VAP~ [VI4]P > 0, (3.4)
we obtain, using the Simons identity (2.3)

IAIAJA] > APV VaH + HA AL Ags — |AP A Any + AP A° R g5
+ A% A% Ryop. + APV 5 (Ricas vF) + A%V (Ryopst”) . (3.5)

Integration, and partial integration pﬁ|A\ﬁ| renders
/E IVIA|Pdp < /E — AN NV H + |APPAY Ay — HAP AL Ags dpu
- / AP AP R_pes + AP A% Ry dps
)
- /E AP (V5 Rica, V7)) + AV (Riapsr™) du. (3.6)
In the first line one computes as follows, and estimates gusamvexity (3.2)
/ |APAY Ayy — HAP AT Ag, dp = —2/ |A? det A dp
) )
- G Us
To recast the second line of (3.6), recall that in three dsraars, the Ricci tensor
determines the Riemann tensor:
Riji = Ricy, g5 — Ricy gjr — Ricyr, gu + Ricy gix — % Scal (girgji — 9agjk) - (3.7)
This implies that the second line of (3.6) can be expressed as
/Cio‘ﬁA‘;Rg@a; + /iaﬁA&R(;aﬁg = Qﬁaﬁfii Ricgs —\/(i|2 Ric(v,v).

Letw = Ric(-, )T be the tangential projection &ic(-, ) to 3. Then partial integra-
tion, the Codazzi-equations (2.2) and (3.7) give for the fesm of (3.6)

0 1
—/Ao‘ﬁvangdu:/ (§|VH|2+w(VH)) dp .
% %
In the last line of (3.6) we compute, by partial integratiequation (3.7), and (2.2)
/ (ﬁaﬁvﬁ (Ricas F) + A2V0 (Rkaﬁay’f)) dp = — / 2|w|? + w(VH) du.
% %
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Putting all this together, we obtain from (3.6) atjd/(VH)| < |w|?> + |[VH|?, that

o 2 o
[ IVIAIE + ZalAPIAR du
by C10

< / @\vm? + 3Jw|* + | AP Ric(v, v) — AP A} Ricgs ) dpr.
by

From the asymptotics af we have| Ric | + |w| < C'(m,n)r~3. Inserting the estimate
(3.1) for [, [VH|? dpu into the previous estimate, we arrive at

o] 2 o] (o]
LIV ARIAR g < Ol %) [ (AR~ AR) die. @)
3
The first term on the right can be splittd|? = | A|? + $H?. Using (3.3) we obtain

[ 4P ap < Clman O+ [ AR A
b Y

The third integrand of the right hand side of (3.8) can benestied together with the
last term of this equation by combining the Schwarz inedqualith lemma 2.3

CB
Lo an < [l Shan < 2 [ 1A Qs Clmn Gt
¥
Inserting these estimates into (3.8), and absorbing theadms of this equation on the

left hand side we obtain the assertion of the proposition. O

Corollary 3.4 Under the additional assumption thé{'f]1 )7'R(X)™! < |H|, the pre-
vious proposition gives an estimate for thenorm of 4,

HAHLQ(Z) < O(m>77>OOBa ClB>OK)R( )T_'Q

min °

Corollary 3.5 Under the assumptions of Proposition 3.3, in fact
IVAl 20y + 1 HAl 2y < C(m,n, CF,CF )2

Proof: The proof works by replacing equation (3.4) in the proof adgasition 3.3 by
16

mm :

VAR — |VIA|]? > \VAP (W + [ VHP).

This inequality is proved in the same way as a similar inagu&r VA, which is
recorded in [SY81, Section 2]. The right hand side introdutbe desired terfv A2,
and the remaining terms are treated as in the proof of propond.3. O

Corollary 3.6 Under the assumptions of proposition 3.3 and corollary &%, trace
free partA of the second fundamental form, as wellfasare controlled in theV!-2-
norm. We therefore have uniform estimates for the secordhfuental form:

| Al z2my < C(m,n, C'(])S,C'{B,C'K) (1 + r;?nR(E)) and
HVAHLQ(E < C(m m, COB>OK)

mm :
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4 A priori estimates Il

This section specializes on surfaces which satisfy thetemqua
H + P = const . (4.2)

We will use theorem 2.1 to derive estimates on the positissuoh a surface by using
the curvature estimates of the previous section.

As described in the introductio®®, = tr* K = tr™ K — K (v, v) is the trace of an
extra tensor field< alongX. We will consider datd M/, g, K') which are(m, §, o, n)-
asymptotically flat. That is, in addition to (2.9) we havetttiee weighted norm of{
satisfies

HK’|012_5(R3\BC,(0)) = sup (r*P|K|+r*T°|VIK]) <.
R3\ B, (0)

In the sequel, we will consider eithém, o, o, n)-asymptotically flat data with > 0
and arbitraryy < oo, or (m, 0, o, n)- asymptotically flat data with smajl < 1.

Remark 4.1 If (M, g, K) are(m, ¢, o,n)-asymptotically flat, equation (4.1) implies
condition (3.1). IndeedVH|?> = |[VP|? andV*P = VEtrM K — (VMK)(v,v) —
2K (A(-),v), suchthatVP]? < [VK|? + |A?| K|?. Then

/\VH\zd,u:/\VP\zd,ug 1112, 5/7'_4_25\A|2+r_6_25du. O
% % e %

The results of this section require some additional comaétion the surfaces:

RE)<CMe,  q< g foro >0 or g=1foré =0, (A1)
(C3HR(X) ' <H=%P, (A2)
/u\A|2du§C§4/udetAd,u for all 0<uelC™%)), (A3)
b b
1 , .
ATR, ()2 /;dﬁ dit) < Re. (A4)

In the sequelC* will denote constants which depend only 6t C3! and C3'. If
(M, g, K)is (m,d, o,n)-asymptotically flat withy > 0, with o(1) we denote constants
depending onn, C*4, § andn, such thab(1) — 0 for o < ry, — oo. If (M, g, K)

is (m, 0, o, n)-asymptotically flatp(1) is such that, for each > 0 there isr,, andr,
such thato(1)| < ¢, providedn < 1y andry,;, > ro. For fixedm and bounded,
bothr, andn, can be chosen independent(of.
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Remark 4.2 (i) Conditions (A1) and (A2) allow to compare different radiexpres-
sions, namely the Euclidean radinsthe geometric radiug(>) and the curvature
radius given by2/H. This is necessary, since the curvature estimates of thvéopie
section improve with growing,,;,, while the estimates of DeLellis and Muller include
the geometric radiug(>). To balance these two radii we use (Al). Condition (A2)
will be used to apply corollary 3.4 to obtaiif-estimates on.

(i) Condition (A4) means that the surface is not far off @ntWe will use this to
conclude that the origin is contained in the approximatipigese of theorem 2.1.

(i) The distinction of the case$ > 0 andd = 0 in condition (Al) is due to the fact
that in the proof of Proposition 4.3, we can use lemma 2.3 tmly > 0.

(iv) To prove the uniqueness result of Huisken and Yau [HY®R&] we do not need
conditions (A2) and (A3). Instead, if we impose stabilitytbé CMC surfaces, the
estimates}|ﬁy|Lz(E) < Crr;ilf and (3.3) can be derived as in [HY96, 5.3]. Condition
(A1) is slightly stronger than what Huisken and Yau needy thely requireq < 2.
Using stability and (A1) and (A4), only we can prove all suipsent estimates. [

The position estimates we will obtain here are formulatetthéfollowing:

Proposition 4.3 Let (M, g, K') be (m, d, o, n)-asymptotically flat withn. > 0, and let
Y] be a surface which satisfié$.1)and(A1l)—A4). Let R, denote the geometric radius
of ¥ anda its center of gravity, both taken with respect to the Eu@ienetric. Let
S := Sg.(a) denote the Euclidean sphere with centeand radiusR.. Then there
exists a conformal parameterization: S — (X, ~¢), such that

%m¢—mggcwmcﬂ3@fg§, (4.2)
1h? = 1|25y < C(m, CM)R(Z)*r,,;, and (4.3)
IN oidg —v 0 | 2(5) < C(m, CHR(Z)?r2, . (4.4)

In addition, the center satisfies the estimate
lal/Re < o(1), (4.5)
whereo(1) is as described at the beginning of this section.

Proof: Using (4.1), remark 4.1, and condition (A3), corollarie4 &8nd 2.5 imply the
following roundness estimates with respect to the Euchdeatric

| A L2y < Clm, G Reryf, (4.6)
Therefore theorem 2.1 and the subsequent remarks as welnasd 2.2 implyR. <
2R(X) and (4.2)—(4.4). Condition (A1) then implies thAtr . < 2C4%.", from
which by (4.2)

1
[ids | > [ = Cm, CHraf® = 7 = S >

min r Z

T'min »

NO| —
NO| —
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if rin IS large enough. Every convex combination witke A < 1 also satisfies
. 1
[Aidsy, (@) (1 = M) > 57 4.7)

Similar to Huisken and Yau [HY96], we compute for a fixed vedioc R? with
b]* =1

0= (H:l:P)/ge(b, v)dut = / H (b, z/e)d,uezl:/Pge(b, vo)duc. (4.8)
s 2 s
We estimate using (Al),
/Pge(b, vo)dpt| < 0(1)/7“_2_596(5, v )dps < o(1). (4.9)
2 2

This follows from lemma 2.3 in the cage> 0, and by brute force and (A1) in the case
0 = 0. In the first term we express by H¢. Using lemma 2.2 we obtain that the error
is of the ordemw(1), such that

[ (567 +460,06) g°0.07)
The firstE variation formula with respect to the Euclideanniceagives

[ ot e = [ avslo i = =2 [ 00,70 ay
Usingg(V¢¢,b) = g°(D¢,b) — g°(b, v°)0,.¢ and| D¢| < C(m)r—2 gives
E696(6, V) 0yep dp® — /E 2¢°(b, D) dp| <

Now we will use tha®: is approximated by the sphefeas described by (4.2)—(4.4),
and replace the integrals of (4.11) by integrals aveFor the first term estimate

/ ¢ (b, D) dys° — / 4 (b, DY) dye
> S

/ (R — 1)g°(b, Do 0 ) du?| + / 4°(b, (DY) 0 — D) d°
S S

Using (4.2), (4.3), (4.7)|D¢| < C(m)r~2, |D?*¢| < C(m)r—3, and Lemma 2.3 we
can estimate the error terms

/5 (2 — 1)g°(b, Do 0 ) ds°
< |IB® = 1|25 119°(b, D 0 )| £2(s) < C|| A |2y R
/5 g°(b, (D¢) o th — D) du®

<o(1). (4.10)

o(1) . (4.11)

<

mm ?

< sup|¢—id|/ max | D% (Aid (1 — A1) )dpt < O A% oy Rerc
S

A€[0,1]
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The second term in (4.11) can be replaced similarly, withiagaus treatment of
the error terms additionally using (4.4). In the end therers also controlled by
C|| A | 22(5) ReT min- Therefore both error terms can be estimate@'by., C*) R?r 2 .
Using (Al) glves,R2 < CAr_9 and finally (4.11) implies that

mm '

<o(1). (4.12)

/ 6°(b, N)Oo dpi° — / 24°(b, Do) du°
S S

Setb = N and choose coordinatgsandy on S such thay¢(b, N) = cos p. Compute
D¢ = —%p, N = R_'(x — a), andg®(N, p) = Rr—' + r~!|al cos ¢, where again
p = x/r is the radial direction oR3. Inserting this into (4.12) gives

)m/ 3lalr™ cos® ¢ + 2R.r 3 cosp — |alr~3 duf| < o(1). (4.13)
S

From condition (A4) we conclude that| < R.. Using the integration formula

TR, Retlal
/ " cos! o du® = (2Re|a\)_l/ R (r? — R? — |a®)! dr
Sre(a) |CL‘

Re—lal

we compute the terms in (4.13) and obtain
8rmla|/R. < o(1). (4.14)
Sincem > 0 this implies the last assertion of the proposition. O

Corollary 4.4 For eache > 0 we can choose(1) sufficiently small such thgiA1)
can be replaced by the stronger assumption

(14+6)'R(2) < rmin < (1 +6)R(D). (4.15)
In addition(A4) can be replaced by the assumption

1
4m R?

/ idy; d/f‘ <¢eR., (4.16)
b

providedr i, > o, andry = ro(e, m, o, C4) is large enough.
Proof. From the position estimates (4.2) and (4.5) we obtain foreyes S
(1—0(1))R. < R. — |a] < Jids(p)| < [¢(p)| + C(m,CY)R2r ]

€ mll’l

Since the left hand side is independenppby arranging thafo(1)| < € we obtain
(1 - €)R < Tmin T O(m OA)R2 —2

(& mll’l

which implies the corollary in view of (Al). OJ
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Corollary 4.5 Condition(A2) holds with improved constants. In addition the follow-
ing upper bound is also true
-1 -1 H -1
(I+e) " R(X) "< 5 <(1+e)R(X2), (4.17)
providedn < 7, is small enough and,;, > r, is large enough.

Proof: Using the first part of theorem 2.1, the roundness estimdté3, @nd|H —
H¢| < Cr~2 from lemma 2.2, we obtain the following estimate fér
IH = 2/Re||72(s) < Clm, CY)rd

min °

By equation (4.1), the mean curvatutieis nearly constant, whence we derive

min °

(H+P —2/R)*%| <2||H — 2/R6||2L2(2) + 2y|P||2LQ(Z) < C(m,CMr2

In view of |P| < C(||K||c1,)r?, this implies|H — 2/R.| < C(m,C*)r.2,, which

min?

gives the assertion of the corollary. O

We now take a closer look at those terms in the proof of prdjpos8.3 which came
from the geometry of\/. The Ricci tensor of the Schwarzschild metric, when re-
stricted to a centered coordinate sphere for example spthiegonally into a positive
tangential partRic®)” = mr—3¢=%+5 > 0 and a negative normal pagtic® (v, v) =
—2mr—3¢=% < 0, the mixed termv® vanishes. We now combine the estimates of
proposition 4.3 to estimate the analogous term&on

Proposition 4.6 Let X be as in proposition 4.3, then fat,;,, > ro(m, o, C4) large
enough, we have

I =6 plemy < 012+ C(m,CY),
| Ric(v,v) = 6~ Ric*(p. p)mgy < 0Ly + Clm, Oyl
oy < oLk +Clm. O,
| Ric —P5 o, Ric® 3o,y < oL+ Clm, Gy,

wherep = z/r is the radial direction oR?, P(f_Qp Ric” is theg®-orthogonal projection
of the Ricci tensors aof° onto the subspace of the tangential spacé/oivhich isg°-
orthogonal top—2p, ando(1) is as described at the beginning of the section.
Proof: From lemma 2.2 and corollary 4.4 we derive
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Now we use proposition 4.3 to obtain a sphére= Si_(a) and a conformal param-
eterizationy : S — ¥ satisfying the estimates (4.2)—(4.5). From the estimatthen
centera, we compute for the difference of the Euclidean noriak (z — a)/ R, and
the radial directiop = x/r that

[N = plge < (1R = rlye + lal) /R < 2|al/R° < o(1).

Using (4.2)—(4.4) we estimate

[po(x) — p(z)|ge < <>\Sel[10p1} |[Dp(Az — (1 = A)p(z)

S CAHAeHLQ(E’ge) y

P(z) —

ge)

ge

2 e
gedn®.

and
/ v —p
>

By the triangle inequality and the previous inequalitiesoléain

2 e 21, e
e dp :/Sh V€0t —poi)

2 e e
gedi SC/S\I/ o) —po

|V 0t — poth||r2s,ge)
< v ot — N2y + [|N = pllr2es) + |lp — p ol L2
S O(l)rmin + C(ma CA) :

This implies the first inequality of the proposition in view @.18). The second in-
equality now easily follows, since

I Ric(v, v) — ¢~ Ric®(p, p) [ 72(s;
< || Ric® —Ric |72z + sup | Ric® [*lv — ¢2pll72(x)
< O(m, O, (L+ (v = 72l Z2s)) -
For the third inequality, observe that by a similar compotat
I Ric(v, ) = Ric*(¢7%p, ) [[f2() < Clm, CN)rids (L + [V = 6 7pllZas) -

such that only the difference of the projectionsRif* (-, ¢~2p) to the subspacesg
orthogonal tov and g°-orthogonal top—2p have to be estimated. Note that the latter
projection is zero. To estimate the difference, write

PYRic®(-,¢*p) = Ric®(, ¢7%p) — g(-,v) Ric® (v,¢%p),
whereP? is theg-orthogonal projection on theorthogonal complement of, and
P(;?*?p RiCS(-, ¢_2p) = RiCS(-, ¢_2p) - gS(.’ ¢_2p) RiCS(¢_2p, ¢_2p) :

Therefore the third estimate of the proposition follows efobe. The last estimate can
be obtained using a similar computation. O
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We can now improve the roundness estimates of propositi&n 3.

Proposition 4.7 Let (M, g, K) be (m, 6, o, n)-asymptotically flat. Then there exist a
constantC'(m, C4) andry = ro(m, o, C*), such that for all surfacex satisfying
(4.1), conditiong(A1)—«A4), andr,;, > ro, the following estimate holds

mln _'_ C(m CA) mm

[ I9IAIE + 2P ap < o0y,
)
Proof: We use the Simons identity as in the proof of proposition 3.3
(o] 2 o]
JIVLAE + e AR
) CVO
3 o [e] o]
< / CIVHP + 8o + | AP Ric(v, v) — 40 4 Rics ) du.
P
By Remark 4.1 we haveVH|* < o(1)(r~*|A|* + r~%). We further proceed as in the

proof of proposition 3.3 but now estimate the resulting t®umsing proposition 4.6.
For example wittRic® (p, p) < 0 and the Schwarz inequality we derive

[ AP Rict v du < A Riclo, ) - ¢>-4 Ric(p, )| 2(x)
Py

< o()r,

— mll’l

> 4+ C(m,CMro

Here we used the Sobolev inequality from proposition 2.@&tlgr with proposition
3.3 and corollary 4.4, to estimate thé-norm of A

y|A||L4 < C(m,CH|Zr8 < C(m,CHr8

min

mm

mln °

The estimates for the other terms are obvious. O

Our next step is to provaip-estimates ford using a Stampaccia iteration.

Proposition 4.8 Let X be as in proposition 3.3, then for eaeh> 0 there exists, =
ro(m, o, C4) and a constan€ (s, m, C4), such that ifr,;, > 7o

sup |A| < C(e, m, CHY (o(1)rpm + Tmte)
>

min + rmm

Proof: Letu := \fcﬂ, anduy, := max(u — k,0) forall k > 0. Let A(k) := {z € ¥ :
ux, > 0}. Letp > 1, and multiply equation (3.5) with! and integrate. Partial integra-
tion, proceeding as in proposition 3.3, and using the Schweequality to absorb all
gradient terms on the left hand side gives

/ IVl Tl (4.19)
Ak

< c(p)/ W | VH? + b | VH? 4 vl |w|® + ubu?| Ric | + ub  ulw]?dp .
A(k)
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We have the bounquic\ + |w| < C(m)r~3, and remark 4.1 and corollary 4.5 imply
that|VH|? < o(1)(r~% + r—%u?). Equation (4.19) therefore gives

/ T IVl G (4.20)
Ak

< C(m, C’A) / uir‘ﬁ + uz_lur_ﬁ + uiuzr_?’ du .
A(k)

Using the Sobolev inequality from proposition 2.6 and papon 3.3 we infer

| wtdn < Cam A0+ ).
A(k)

SinceVu, = Vu, andu, < u on A(k), we can use this on the right of (4.20):

/ & ude < Clpom, CHAR) (o(L)ro2? + r%)
A(K)

/A S Clm CHAB o ).
We infer that

[ pdT R IVl g
< Clpum COARNGIEE S + 7).

Let f := u?/*", then this estimate shows that
/ V1P + H2 2 dp < Clp,m, CH) AR (o(L)rin " + it ).
Al)

Using the Sobolev inequality from proposition 2.6 to estieng f* du, and reexpress-
ing this in terms off? = ui” we obtain the iteration inequality

- kAm] < [ e [t
A(h) A(K)

< Cp,m,CN|AK)|*(o(1)r 2270 4 p— 376

min min

By [Sta66, Lemma 4.1], this iteration inequality impliesathA(d)| = 0 for d >
dy with d?™2 < C(p,m, CY) (o(1)r 7% + 7% 4(0)|. Since|A(0)| < |¥| =

min mln

47 R(¥)?, and because corollary 4.4 implies tHat:) < C(m, C*)r i, We obtain

min min

sup [A] < C(p,m, C*) (o), + o /7))
by
which proves the proposition, provideds large enough. ]
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We now have aup-estimate ford = Vv. This can be combined with the’-estimates
for |v — ¢~2p| to prove asup-estimate for this expression.

Proposition 4.9 Let Y be as in proposition 4.3 such that in particul&rsatisfieq|v —
¢72pllr2m) < o(1)rmin + C(m, C*) and |A] < C(m,C*)r, ... Then there exists
ro = ro(m, o, C*) such that

sup [ — ¢72p| < o(1) + C(m, C*)ril”

min

providedo(1) is small enough, and,;, > ro.

Proof: From the above assumption&/ (v — ¢~2p)| < C(m,C*)r_ . . Therefore
= |v — ¢72p|? satisfies

|Vf| = ‘g(V(V— ¢_2P),V - ¢ )‘ < C(m CA) mln’

providedr is large enough. Assume there exiggse > such that ford/ > 0 the
inequality f (py) > 2M(o( Y+r1i)¥3holds. LetB := {p € X : [p—po| < M(o(1)+

min

r1)¥3C(m, O 'ryum b Then for allp € B we have thaff (p) > M (o(1) 41,5 )%/3,

mll’l

which implies that

M3
/Efdﬂ > /de,u > CW(O(l)Tmin +1)?,

where we used thaB| > CM?(c + .1 )¥3C(m, C*)~2r2, . This follows from the

estimate on the conformal factor ¢f: S — X from theorem 2.1, it andr ! are
small enough. If\/ is large enough, this is a contradiction. O

Corollary 4.10 In the same way we obtain an estimatey, |v° — p| < o(l) +
C(m,CYr 2% and thereforef, g°(v, p) > 3, if o(1) is small enough. Hence

min ! 2’

is globally a graph overs?, i.e. there is a functiom € C>(5?) such that
Y = {u(p)p:pe S? CcR*}.
Corollary 4.11 Surfaces: as in proposition 4.3 satisfy

3 4 C(m, CMyr 2725

mm

| Ric(v, v) 4+ 2mr—2| < o(1)r,

mm

This enables us to precisely compute the curvatute taken with respect tg.
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Theorem 4.12 Let ¥ be as in proposmon 3.3. Lek. \/\2\ /47r be its Euclidean
geometric radius, and defing = 1 + 5 and H = ¢2R ¢5R2 Then there exist

ro = ro(m, o, C*) andC(m, C4), such that ifrmin > 70 the following estimates hold:

mm mln

sup |H — H| < o(1)r 2 + C(m,C%)r _2_2/3>
s
sup [det A — H?/4| < o(1)ri3 + C(m,C%) P
=

sup}G—P_IQ/Zl—Qm/RZ’} < o(l)rps + C(m,C?) r;?n_Q/g
s

mm

HereG = det A — Ric(v, v) + 5 Scal is the Gauss-curvature af.

Proof: From Proposition 4.3 we obtain an approximating sphere- Sg_(a) and
a conformal map) : S — ¥ which satisfies (4.2)-(4.5). We comparewith the
centeredsphereS = Sx_(0) and consider the map: S — X : x + ¢(x + a). From
(4.2) and (4.5) we obtain that

sup |r — R®| = sup } |€(z)| — |z ‘ < o(1)rmin + C(m,CY),
% S

which in particular implies thatr i — Re| < o(1)rmin + C(m,C#4). In addition
sups, |¢ — ¢| < 0( )t + C(m, C’A) r'a as well asupy, 072 — ¢ 72| 4 supy [¢° —
¢33 < o(V)r + C(m,Cr_ 2. Take a pointz € S, and Ietu be the Euclidean
normal toX. Estimate

1Dp(2)p(2) = Dyee(ay@(€(2))]
< [ Dyy$(x) — Dpwy@(§(2))| + [Dp(ay@(§(x)) — Dpiean $(&())]
+\Dp<g 10(£(2)) = Dye(e(ay @£ (2))
< o(V)rp2 + C(m, CYyr 2/3.

mm

mll’l

mln

The L2-norm of H — H can then be estimated by using lemma 2.2 to replaty H°,
and estimatingi H° — 2/ R?|| .2(»,) by taking the trace of (2.4).
D, 2 2
44 Dw? m

H— H|?du® _
/z‘ Pt < / # Y E T PR R
< o(1)rhy + Clm, Oyt

mln

2
dus + o(1)r,

Proceeding as in the proof of corollary 4.5 we obtain the rssdeup-estimate on
H — H by using (4.1) ande\ < o(1)r 2

mll’l

Thesup-estimates ot of proposition 4.8 imply thatl on X satisfies

ra2 4+ C(m, CYyr 2% | (4.21)

1 1 _
'A—ﬁHId' < 'A—ﬁHId‘HH—H\ < o(1)

21



which implies the second assertion of the theorem. Coxollakl gives that

[Ric(v,v) +2m/RZ| < o(1)r2 + C(m, CA>7,—3—2/3 ’

min min

which, in view of | Scal | < o(1)r.? , equation (4.21), and the Gauss equativn=

min’

det A — Ric(v, v) + 5 Scal, implies the last assertion. O

5 The linearization of the operator H + P

In this section we will examine the linearization of the agger H + P which assigns
the functionH + P to a surface. We will prove that this linearization is invie,
whence we can apply the implicit function theorem in secdo find surfaces with
H + P = const. We begin by computing the linearization. For thisietc M be

a closed surface. In a neighborhood>ofve introduce Gaussian normal coordinates
y: X% X (—e,e) — M, such that(-,0) = idyg, anddy /ot = vs,, with 3, = y(X,t).
For a functionf € C'*(X) with | f| < ¢ define the graph of overX as

graph(f) := {y(p, f(p)) : p € B} .

LetH : C>(X) — C*(X) be the operator, which assigns to a functjpthe mean
curvatureH(f) of graph(f), and letP : C*(X) — C*>(X) be the operator which
assigns to a functiorf the functionP = tr&"*P*($) ' evaluated orgraph(f). To
compute the linearization 6f + P at f = 0, we need the following lemma:

Lemma5.1 Let¥ C M be a surface, and” : ¥ x (—e,¢) — M a variation of%,
with F(-,0) = idg. If F is normal toX, i.e. 85| _ = fvfor f € C>(%), then

d—H =-—A*f— f (\A|2 + Ric(v, 1/)) ,

dt |,_,

% = f (V) uM K -V)K(v,v))+2K(V>f,v).
t=0

Here A is the second fundamental for, the mean curvature, and the normal of
¥.. The covariant derivative af/ is denoted byw™ and that ofS by V*.

Proof: The first equation is well known. It can be found in [Bra97, &pdix A]. The
second immediately follows fro? = tr K — K(v,v)and%|_ = -V*f. O

Lemma 5.1 implies that the linearizatidr’*” of H & P is given by
L7 = —Af—f (JA]? + Ric(v,v) £ V'K (v,v) F V)'tr K) 22K (V>f,v) . (5.1)

To obtain a form which is easier to handle, we multiply thisflgnd integrate by parts.
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Proposition 5.2 Let f € C>°(%), then
[rretran / VAP = £2(87 (a5 T0) + 5| (KT) £ AP+ 1oP)
——f2( (H=+P)?+ (HFK(v,v)’ - (tr K)? —2G)dpu.

Here, and.J are given by the constraint equation@r, = Scal —|K|2 + (tr K)?, and
8rJ = VMtr K — divM K and (K7)° denotes the trace free part of the tangential
projection of K" onto X, i.e. (K72, = Kog — 377 K.57as. Moreoverd = K(-,v)",
and G denotes the Gaussian curvaturedf

Proof: Multiply (5.1) with f and integrate to obtain
/fLHind,u /|Vf|2 > (JAP? + Ric(v,v) F V,tr K £ V, K(v,v)) du
%

:l:/ 2fK(V*f,v)du
By the Gauss equation an(j the constraint equation we compute
|A|* + Ric(v,v) = 87p + = (|K|2 (tr K)*> + H? +|A]?) —
Considering the term |, fK(VEf, v) du, we obtain by partial integration that
2 /E fE(VZf,v)du
- / fA-8rJw) + V¥ tr K — VMK (v,v) — HK(v,v) + KT - A)dp.

This gives the asserted identity in view|df |> = |[KT|? + 2|0|> + K (v, v)>. O

This expression can be used to prove positivity. In the degeewill restrict our-
selves to datd), g, K') which are(m, 0, o, n)-asymptotically flat. By eventually in-
creasings, every set ofm, d, o, 7)-asymptotically flat data can be matte, 0, o, n)-
asymptotically flat for any choice af > 0.

Proposition 5.3 For m > 0 and constant§s, C3!, andC4#!, there areyy = no(m, C4)
andrq = ro(m, o, C4) such that if the datdg, K) are (m, 0, o, ny)-asymptotically flat
and X satisfieg4.1), conditions(A1)—(A4) as well asr,;, > ro, then there ig.; with

p1 > 6mR;3 — o(1)R:2 + C(m, CY)R;372/3
such that for all functiong’ € C>(X) with [, f di = 0 the following inequality holds
w [ Fans [ gUerran.
% %

Hereo(1) is as described at the beginning of section 4.
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Proof: It is a well-known fact that a lower bound on the Gauss cumeati > « of

a surface gives a lower bound > 2k on the first eigenvalue of its Laplace-Beltrami
operator. This bound is provided by theorem 4.12, such tralf f with fz fdu=0
we obtain

1 - 4m _ _a_
(§H2+ I —o()R3 + C(m,CHR? 2/3)/2f2du§/E|Vf|2du.

From proposition 5.2, the asymptotics &f thesup-estimates ford from proposition
4.8, and the expression fat in theorem 4.12, we obtain

/VfLH:I:Pdeu > /(‘vf‘2_V‘i|2_§]—]2—|—G—O(1)Re_3)JC2dN
by z 1

> (6mR.;® —o(1)R.® — C(m, CA)R;3_2/3) / fAdu.
2

If o(1) is small enough, the factor on the right hand side is posiéind this gives the
assertion. O

We are now able to show that solutiom®f L7714 = const are almost constant.

Proposition 5.4 Let (M, g, K) and X be as in proposition 5.3. Consider a solution

u of L™ Pu = fwith [((f — f)*du < pi/4u* wherep, is as in proposition 5.3,
f=13|"" [ fdpis the mean value of, anda is the mean value af. Then

sup [u — | < (o(1) + C(m, CA)R;2/3) a.
b

Proof. We can assume thatis normalized such that = 1. Then

L"P(u—1) = f+ (JAP + Ric(v,v) £ V) K(v,v) F V) tr K) .
Multiplying by (u — 1), integrating, and using proposition 5.3, we obtain

1 /(u —1)*dpu

3
< /(u —1)f+ (u—1) (JAP + Ric(v,v) £ VY K(v,v) FV) tr K) dpu.
¥

Using the Schwarz inequality and the assumptiorf eve estimate

Jw=nsau= w10 -Haus’y (/Ew—l)?du)m 62

by

DefineR, andH as in theorem 4.12, then

o 1 _
|AI2 + §\H2 — H?| + |Ric(v,v) 4+ 2mR3| < o(1)R;% 4 C(m, CYR;372/3
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Combining [, (u — 1) H* dp = 0 with the Schwarz inequality gives

'/(u —1) (JA]* + Ric(v,v) £ VY K (v,v) F VY tr K) du
)
< (o(W)R.2+C(m, CHRZPP) flu = 1 r2(s)
Inserting this into (5.2), we obtain the*-estimate
= 1Fa) < p? (o() R + Cm, CT) R

By standard estimates from the theory of linear elliptidipadifferential equations of
second order [GT98] we can obtairw@-estimate from this

sup [u— 1] < piy ' (o(1) B, + C(m, C)RZ)
by

which implies the assertion, in view of the estimate/gifrom proposition 5.3. [

Corollary 5.5 Providedo(1) is small enough, and is as in the previous proposition,
a solution ofLu = f does not change sign.

Corollary 5.6 Letu be a solution of . "7y = f. If

Ju—ara<t (/E<u—u>2du)l/2,

with i from proposition 5.3, then

sup [u — | < o(1) + C(m, CYR,*3a.
>

This corollary implies thal. **7 is invertible in suitable Banach spaces.

Theorem 5.7 Under the assumptions of the previous propositiéf*” is invert-
ible as operatorL™*% . (C?%(¥) — C%¢(X%) for each0 < a < 1. Its inverse
LGP 0%(3) — C2(X) exists and is continuous. It satisfigso " f|| 12 <
R3/3m/|| f||12(s) and the Hblder norm estimate

R}
12 Fllezecm) < Clas B) g fllezes)

Proof: Assume that there exists a functiowith ||u|/2x) = 1 and

sup (5.3)

HU”L2(E):1

R3

e

/vLHiPu d,u‘ < sm
b
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From proposition 5.3 we have thatZ 0. Without loss of generality; > 0. Choosing
v = u — wuin (5.3) implies that the assumptions of corollary 5.6 afésBad. If o(1)
is small enough, we obtain thay2 < u < 2u. From|ul[2x) = 1 we obtain that
u > 1|%|71/2, and from Holder’s inequality < |X|~*/2. Usingv = 1in (5.3) gives

/ LHiPudﬂ‘ <
b

On the other hand, we compute from (5.1), using partial natiéégn, that

RS < Clm, CYR; (5.4)

/LHiPudu = —/u(\A|2—|—Ric(y,u):|:Vﬁ/[K(1/,y):FvytrK
2 2
+VYK(ea,v) FHK(v,v) £ KT - A) dpu.

Inserting this into the previous estimate, we infer using)&hat

/ u|A\2du\ <
>

Froma < 2u we obtain that/, H*>dp < C(m)R_", which contradicts (A2) for large
R.. This implies thatL™*" is injective, and since it is a linear elliptic operator, the
Fredholm alternative consequently implies its surjettivi he existence of a continu-
ous inversel/t*7 with the asserted bounds follows [GT98, Chapter 5]. Note biya

the a priori estimates of theorem 4.12 the Gauss curvatndetheerefore the injectivity
radius, are controlled. O

/ LTEPy, du' +C(m)R?|S|u < C(m)R. .
%

Remark 5.8 The constant’(«, ) can be chosen uniformly by using the Schauder
estimates in e.g. harmonic coordinate patches.oAnalogous estimates in the spaces
W2P(¥) can be found in [CK93, Chapter 2]

R}
1L ” Fllwerey < C(2>p)3—m!|f||m(z) :

The constant¥’(2, p) therein can be chosen uniformly since they only depend on
kmin == |27 ming G, andkmax := |X|~! maxs, G, which are controlled in our case.

6 The foliation

To prove the existence of surfaces satisfyiigt P = const, we use the following
strategy. Let(g, K') be (m,0, o, n)-asymptotically flat withm > 0. Letg, := (1 —
7)g° + 79, and K, := 7K. Then the datdg,, K. ) is also(m, 0, o, n)-asymptotically
flat. For the initial reference dai@”, 0) we know a lot of solutions to the equation
H = const, namely the centered spheres (note thd i£ 0 thenP = 0). The mean
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curvature of a centered sphere of radius with respect tgy° can be computed using
2.2 and equals

Sy = (12 ™\ (2™
H>(r) = <1+ 2r> <7’ 7“2) ‘
This function is invertible for > r,(m). The inverse function satisfi¢s—2/h| < C,

for any C providedh, is chosen small enough. LAt> 0 be a constant. Then we can
solve H5(r) = h with r > r;(m), providedh < h;(m). Therefore the equation

H+P=h

is satisfied on a sphere of radiug:) for - = 0. To deform this solution for = 0

to a family of solutions forr € [0, 1], we introduce two classes of surfaces. For this
consider the following conditions related to (A1)—(A4) ypaopriately choosing the
constants

R(2) < 8min , (B1)
R(X) ' <8(H £ P), (B2)
/u\A|2d,u§8/udetAd,u for all 0<ueC™X), (B3)
3 ¥
=i [ids i < 3, (B4)
. 4

Choose, so small, and so large, that corollaries 4.4, 4.5, and theorem 4.12 imply
that these conditions hold with better constants on susfaosith r;, > 7o

R(®) < 47min (C1)
RS <4(H+P), (C2)
/u\A|2d,u§4/udetAd,u for all 0<ueC™X). (C3)
3 ¥
R / idy dut < LR, (ca)
. 8

By eventually decreasing, and increasing,, we can assume that (C1) — (C4) imply
that the linearized operatdr/*=” from the previous section is invertible, corollary 4.10
guarantees that is globally a graph ovef?, andg¢(v¢, p) > 1/2. Moreover, from
theorem 4.12 we can assume that for all surfaces satisfihpg (B4), also

1
Jmin <(HEP) ' <drp,. (6.1)

Let (g, K') be data such that for fixech > 0 the data(g., K,) as before all are
(m, 0, o, n9)-asymptotically flat. Define the following nested sets ofaces:
Si(1) = {S?*~ ¥ C M : ¥ satisfies;, > 7 and (B1)—(B4) w.r.t(g,, K.)}
Sy(1) = {S?~ ¥ C M : ¥ satisfies,;, > 2ry and (C1)—(C4) w.r.tig,, K,)}
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Choosd < hy < h; such that the centered sphefg§0) with mean curvaturél/ < h;
are inS,(0). Choosehy < min{hy, hs, 575 '}. Let

k:[0,1] — (0, hg) x [0,1] : £ — (h(t),7(t))

be a continuous, piecewise smooth curve witf) = 0. Denote by(H + P). the
function H + P evaluated with respect {@,, K,). Let I, C [0, 1] be the set

I, = {t €[0,1] : IX(t) € Sy(7(¢t)) with (H & P),xy = h(t) }

Proposition 6.1 Under the assumptions of this sectidp,= [0, 1].

Proof: We can assume thatis smooth. By choice of, 0 € I,, S0, iS nonempty.

For proving that/,, is open, let, € I, andX € Sy(7(to)) the surface witH H +
P):t) = h(to). Consider Gaussian normal coordinages? x (—¢,e) — M, and let
B :={f € C**(X2) : sup |f| < ¢}. Define the operator

L:Bx[0,1] — CD): (f,1) — (H+P)(f) — h(t),

where(H + P),(f) is the function(H + P); ongraph(f). This operator is differen-
tiable, and we havé (0, ty) = 0.

The differential of £ with respect to the first variable is the operafdt~” from
section 5, and is invertible since@ € S,(7(¢)). By the implicit function theorem
there exists) > 0, and a differentiable functiog : (¢, — d,%y + 6) — B, such that
L(&(t),t) = 0forall t with |t — to| < 6.

Hence, for each suchthere is a surfac&(t) with (H £+ P),; = const. By
continuity, and by eventually decreasifigwe can assume thal(t) € S;(7(t)). By
choice ofr, andn, conditions (B1)—(B4) imply (C1)—(C4). By choice bf we obtain
Tmin > 279 WhenceX:(t) € Sy(7(t)). That s,/ contains a small neighborhood ff

To show that/, is closed, assume thdt,} C I, is a convergent series with
lim, oo t, — t. LetX(t,) € Sa(7(t,)) be the surface with/d + P),«,y = h(t,). By
corollary 4.10 alb(t,) = graph(u,,) are graphs ove$? as described in section 5.

From the position estimates in proposition 4.3, the unifestimates for the angle
g¢(v°, p), and the uniform curvature estimates from corollary 4.5 prgghosition 4.8
we obtain uniformC?(S5?%)-estimates for the sequen¢e,). In addition, thelV/*:2-
estimates on the curvature imply unifofiii*2-estimates fofw,,).

We can assume that,,) converges inV??(5?%) tou € W2P(S?) foral < p < cc.
Furthermore, we can assume that) — u in C**(S?) for a fixed0 < a < 1.

On graph(u) a weak version of the quasilinear equatigit = P),) = h(t) is
satisfied. By fixing coefficients, this can be interpreted lsemr equation. Since €
Ch, the coefficients of this equation af&-~. Regularity theory for such equations
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[GT98, Chapter 8] implies that, and therefor&, are smooth. By'"*-convergence
satisfies (C1), (C4), ang,;, > 2r,. By W?P-convergence (C2) and (C3) are satisfied,
providedp is large enough. Thereforec I, andl, is closed. O

This gives the following:

Theorem 6.2 Letm > 0 be fixed. Then there existg = ho(m, o) andny = 1y(m)
such that for everym, 0, o, 19)-asymptotically flat data s€ty, K') and every curve
k:[0,1] — (0, hg) x [0,1] : t — (h(t),7(t)) there exists a smooth family of surfaces
Y. (t) € So(7(t)) satisfyingH + P = h(t) with respect to the (¢)-data.

Remark 6.3 At first glance, the resulting/ = P = const-surface could depend on
the choice of the curve from x(0) to x(1). However, since the range sfis simply
connected, and the solutions obtained from the implicitfiom theorem are locally
unique, a standard argument using the homotopy of two cwitekE€ommon endpoints
shows that the surfaces in fact only depend on the endpdints o

We are now ready to prove the existence part of theorem 1.1.

Theorem 6.4 Let m > 0 be fixed and), and i, be as in theorem 6.2. By possibly
decreasingj, andh, we assure that corollary 5.5 is valid. Then the surfaces$atig

H + P = const constructed in theorem 6.2 form a foliation. For sm&ll+ P these
surfaces have arbitrarily large radius. In addition, thegea differentiable map

F 5% x(0,ho) x [0,1] — M

such that the surfaceB(S?, h, 7) satisfyH + P = h with respect to the datgy., K, ).
This foliation can therefore be obtained by deforming a pietthe 4 = const folia-
tion of (R?, ¢°) by centered spheres.

Proof: Choose) < h < hy, and define the curve,(t) = (h,t) fort € [0, 1]. Using
theorem 6.2 we obtain a family of surfacEs . with H + P = h by deforming the
centered sphere which h&g&® = h with respect tg;® alongx. The position estimates
and (6.1) implyh " < 47.:,(X5,), such that by choosing small, we can make,,;,
of 3, (h) large.

The mapF can be constructed by settidg(S?, h,7) = %5, and defining the
parametrization of, . by the fact that’, , is a graph overs?. This implies the
differentiability of 7 with respect tg € S? andr € [0, 1].

To show that these surfaces form a foliation, choose anothree. Leth; € (0, hg)
be fixed. The curve:,, gives a fixed reference surfagg, ;. Forh, < h; consider
the curves\,, (t) = ((1 — t)hy + thy, 1). Concatenating,,, and\,, gives a family of
surfaces”), | with h € [hy, hy] as well as a differentiable map : S x [hy, hi] — M
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such that'(S?, h) = %, . Remark 6.3 implies that), | = X, =: ¥,. ThereforeF
is differentiable with respect th € (0, ho).

Let v, denote the normal t&;,, then the lapsey, of the family F is defined as
oy = g (v, %L, SinceH + P = const alongX,, and therefore the tangential part of
% is irrelevant for the evolution off + P, we have

d
hi —hy = %(H + P) = L"*Pq,
with the operator.”*” from section 5. By corollary 5.5y, does not change sign.
Therefore the family of the&, is a foliation. OJ

We can also prove the uniquenesgbft P = const surfaces.

Theorem 6.5 For m > 0 there areny(m, C*) > 0 and hy(m, o, C*) > 0 such that
if (g9, K) is (m,0,0,n0)-asymptotically flat, then two surfacés and X, satisfying
(Al)—(A4) andH + P = h = const with h € (0, hg) coincide.

Proof: We prove this by reversing the process we used in the prodfeoéxistence
result. That is, we start for the data., K;) at7 = 1 with ¥; and¥, and obtain
surfaces’] andY), with H = h = const with respect to the Schwarzschild metyit
atT = 0. Heren, andh, have to be adjusted as in the beginning of this section, such
that this process works.

By the uniqueness of such surfaces satisfying (Al)—(Adh@&Schwarzschild met-
ric, as follows for example from Huisken and Yau [HY96, Sentb], we infer that}
coincides with>,. Then by the local uniqueness of the implicit function thesoralso
3, andX; coincide. O

Corollary 6.6 TheH + P = const foliations from theorem 1.1 consisting of surfaces
satisfying(A1)—A4) are unique at infinity.

7 Special data

We want to interpret the foliation ol + P = const surfaces in a physical manner.
A foliation of surfaces satisfying/ = const was interpreted in [HY96] as the center
of mass of an isolated system. The definition of this foliattmes not refer to the
extrinsic curvaturds and therefore can not contain information on dynamical fsys
In contrast, proposition 7.1 shows that tHet P = const foliation allows an interpre-
tation as linear momentum.

We restrict ourselves to data, K') with ||g — 95H031_5 < oo with § > 0 and

K== (p@p+p®p—2p0)g —p®p) +O0(2)

%7
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wherep € R3 is a fixed vectorp = z/r is the radial direction, and the derivatives of
O(r=279) are of orderO(r—3~?). This structure ofi’ was proposed by York [Yor78]
and represents a trace free extrinsic curvature tensorADf-momentump. There
exist initial data satisfying the constraint equationgwmitese asymptotics. Using this
representation ok, we can refine the estimates from proposition 4.3 and obtain

Proposition 7.1 Let (¢, i) be as described above. |}i| < m is small enough, and
Y satisfiesH + P = const, assumptiongA1)—(A4), andr,;, > ro, then there exist a
vectora € R3, a sphereS = Sg_(a), and a parameterizationt : S — ¥ such that

la/R. F7(v)p| < CR.°,
sup |[p —idg | < C’Re_‘s,
S
sup [° — R '(rp—a)| < CR;®

withp = 2, v = %,andT(v) = 1—7%}—”2 If 0 < v < 1then0 < 7(v) < 1 and
= 1v+ O(v?) forv — 0.

Proof: This proof is similar to the proof of proposition 4.3. Howevistead of
estimating like (4.9), we compute more carefully using tegnaptotics of/. For the
test vectoh = a := % we obtain

~

’—SWMM F4r <p,

a\ |a* + R}
R,

lal/ RZ

Now we splitp = ¢°(a, p)a + ¢°(g, p)g with g orthogonal taz and|g| = 1. Then we
useq as an additional test vector. This gives the second estimate

< CR.°. (7.1)

dm SR} — 2|al*R, — 3|a|?

- = < CR.’. (7.2)

[(p, @)

Proposition 4.3 gives := |a|/R. < 1if pis small. Then (7.2) implies th@g¢(p, §)| <
CRZ°, and thereforég®(p, a) — |p|| = |9°(p, )| < CR.°. Using (7.1) we infer that

‘—QmT Flp|(1+ 7'2)‘ <CR7°,
which implies the proposition. O

Remark 7.2 (i) This means that surfacé¥h) satisfyingH + P = h = const are
not only increasing in size fok — 0, but that they also translate. The magnitude
of this translation can be used to computeThe asymptotic translation from the
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previous proposition can be found by comparing the Euctideanter of gravity to the
center of gravity computed using themetric. In particular

2
lim (|Ee|_l/ rdu’ — |Z|_1/ a:d,u) = —m7p.
h—0 S(h) S(h) 3

Herer = limy,_¢ |a|/R.(X(h)) is the limit of the magnitude of the translation vector
andp the unit vector pointing into its direction. Thercan be computed from

B 2mr
N 1+72p.

(i) Corvino and Schoen [CS03] also propose a standard fdrtheoextrinsic curva-
ture tensor, namely

+p

2 B
KCS:ﬁ(p®p+p®p—<p,p>ge)+0(r %,

Contrary to the York-form this is not trace free in the term$ighest order. Corvino
and Schoen prove that data satisfying this asymptotic tiondior X andg = ¢° +
O(r~2) are dense with respect to suitable, weighted Sobolev narrtieiset of data

(g, K) satisfying the constraint equations and
g=g°+00r™" and K =0(r?

Therefore these asymptotics posses a certain universality

For these asymptotics we can also compute the asymptotislateon. It satisfies
-y = ImV/1-8e? =) — L 3

7(v) = —=;1—. Here7(v) = v+ O(v’) forv — 0.

This is not 5satisfactory for two reasons. At first, this asymtip translation and the
associated linear momentum formula do not coincide withfdheula obtained from
the York asymptotics. Secondly < 7(v) < 1 onlyfor0 < v < % while from
physical reasons at least the intervad [0, 1] should be admitted.

On the other hand, we can not expect to obtain a valid forrndapendent of the
slicing condition. For thed + P = const foliation, therefore the slicing condition
tr K = 0 seems to be appropriate.

(i) Both the asymptotics of York and the asymptotics of @oo and Schoen allow
examples of initial data satisfying the vacuum constraiptagions. This implies that
the Sobolev norm used by Corvino and Schoen to prove denkitiata with their
asymptotics is strong enough to preserve ADM-mass and -mtumg but not strong
enough to reproduce the fine structure of the:t P = const foliation. !
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