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High power detuned signal-recycling interferometers currently planned for second-generation in-
terferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two
resonances in the detection band, an optical resonance and an optomechanical resonance which is
upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The
detector’s sensitivity is enhanced around these two resonances. However, at frequencies below the
optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than
non-optical-spring configurations with comparable circulating power; such a drawback can also com-
promise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of
the interferometer to a class of sources. In this paper, we clarify the reason of such a low sensitivity,
and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky
and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity
front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the
influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited
sensitivity of optical-spring interferometers significantly and can be considered as a incorporation
of the optical-bar scheme into currently planned second-generation interferometers. On the other
hand it can be regarded as an extension of the optical bar scheme. Taking compact-binary inspiral
signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the
planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget.
We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.

PACS numbers: 04.80.Nn, 03.65.Ta, 42.50.Dv, 42.50.Lc, 95.55.Ym

I. INTRODUCTION

First-generation laser interferometric gravitational-
wave (GW) detectors (LIGO [1], VIRGO [2], GEO [3] and
TAMA [4]) are reaching design sensitivities. These in-
terferometers are usually Michelson interferometers with
Fabry-Perot cavities in the arms, with power-recycling
(PR) at the laser input port (with the exception of GEO,
which uses dual-recycling [5]), and operating close to the
dark-port condition.

In order to have a flexible sensitivity to specific as-
trophysical sources, and for other technical reasons such
as lowering power at the beam splitter (BS), second-
generation interferometers, such as Advanced LIGO [6],
plan to use the so-called signal-recycling (SR) configura-
tion, in which an additional mirror is placed at the dark
port of a Fabry-Perot Michelson interferometer, modi-
fying the optical resonant structure of the interferome-
ter. The adjustment of the location and reflectivity of
the signal-recycling mirror varies the optical resonance
frequency and bandwidth, respectively. Near the opti-
cal resonance, sensitivity to GWs is improved. When
the signal-recycling cavity, the cavity formed by the in-
put test-mass mirrors and the signal-recycling mirror is
neither resonant nor anti-resonant with respect to the
carrier frequency, the optical configuration is called de-
tuned signal-recycling. In these detuned configurations,
the optical resonance of the interferometer is away from

the carrier frequency, creating a peak sensitivity to GWs
away from DC.

FIG. 1: Schematic plot of a power- and signal-recycled Michel-
son interferometer with arm cavities and double-readout. The
added local readout sensing the ITM is realized by a secondary
laser which does not resonate in the arm cavities.

As demonstrated theoretically by Buonanno and
Chen [7, 8, 9] and experimentally by Somiya et al. [10]
and Miyakawa et al. [11], detuned signal-recycling also
makes the power inside the interferometer depend on the
motion of the mirrors, creating an optical spring, and can

http://arxiv.org/abs/0705.2987v2


2

shift the eigenfrequency of the test masses from the pen-
dulum frequency (∼ 1 Hz) up to the detection band. The
optical spring helps to improve the interferometer’s re-
sponse to GWs around the optomechanical resonant fre-
quency, even allowing the interferometer to surpass the
free-mass Standard Quantum Limit (SQL). However, the
quantum-noise-limited sensitivity of optical-spring inter-
ferometers at frequencies below the optomechanical res-
onant frequency is dramatically lower than the one of
non-optical-spring interferometers. Such a limitation in
sensitivity is caused by the optical spring, which rigidly
connects the front and the end mirror of the arm cavi-
ties at frequencies below the optomechanical resonance.
The general principle underlying this effect has already
been explained in the works of Braginsky, Gorodetsky
and Khalili, namely in their proposal of the optical bar

detection scheme [12]. In order to understand this more
conveniently, we need to use the local inertial frame of
the BS, in which the effect of GWs can be described com-
pletely as a tidal force field, which induces forces only on
the end test-mass mirrors (ETMs), but not on the input
test-mass mirrors (ITMs). We make the approximation
that the ITMs and the BS are co-located. In this frame,
the propagation of the light is unaffected by GWs. Re-
member that the optical spring connects the ITM and
the ETM. At frequencies substantially below the optome-
chanical resonance, the optical spring behaves like a rigid
optical bar, connecting the ITM and the ETM of each
arm rigidly. It is then easy to understand that the car-
rier light, which senses the change in arm-cavity length,
or the difference in ITM and ETM motion, cannot be
used to measure GW efficiently at these frequencies. On
the other hand, since the ITM and the ETM are rigidly
connected, they both move, in the local inertial frame of
the BS, by 1/2 the amount the ETM would have moved if
there were no optical spring present (assuming ITM and
ETM to have equal masses). To illustrate this situation,
assume that a low-frequency GW with amplitude h is
incident from right above our detector (with arm-length
L), then in the local inertial frame of the BS, the motion
of the ETM of a non-optical-spring interferometer would
be Lh, the motion of ITM and ETM of an optical-spring
interferometer below resonance will be both ∼ Lh/2. For
this reason, if one also measures the local motion of the
ITM using an additional local readout scheme, one can re-
cover low-frequency sensitivity dramatically. Note that
as viewed by the local meter, the ITM has an effective
mass that is equal to the total mass of the ITM and the
ETM. If one applies a local readout scheme to the ETM,
the same sensitivity recovery is possible, since the ETM
also moves with respect to a free co-located mirror by
−Lh/2. Braginsky, Gorodetsky and Khalili proposed an
optical-bar detection scheme, in which only the local mo-
tion of the ITM is measured [12]. In this sense, what we
are proposing can be considered as directly incorporat-
ing the optical-bar scheme into currently planned second-
generation interferometers.

Local readout schemes have also been proposed for in-

terferometers without optical spring, with a different mo-
tivation. In those interferometers, the motion of mirrors
with respect to their local inertial frames are caused by
radiation-pressure noise (if we only consider signal and
quantum noise sources); results of local readout schemes
can thus be used to cancel radiation-pressure noise and
improve low-frequency sensitivity [13, 14]. Furthermore,
such schemes are able to cancel parts of the classical
noise. Our treatment here can also be viewed as a gen-
eralization of these schemes because by setting detuning
in our treatment to zero will recover their results.

From an astrophysical point of view, the addition of
the local readout scheme, which broadens the detection
band, will allow the interferometer to search for multi-
ple sources simultaneously, as well as to examine a wider
frequency range of the same source. As an example, we
will explore how the increase in detection bandwidth can
allow us to detect more efficiently the population of com-
pact binary objects with a broad range of masses (and
hence signal frequency band).

In order to construct the local meter, we consider a
scheme where a second carrier is injected into the bright
port, which does not enter the arm cavities, but instead
senses the location of the ITMs, as shown in Fig. 1. An
alternative strategy would be attaching auxiliary inter-
ferometers at the ETMs. These two strategies are quite
equivalent in the ideal situation, but differ from each
other in terms of difficulty in implementation, in terms
of quantum noise and in terms of technical noise sources
such as laser noise as we will discuss in some more details.

This paper is organized as follows. In Sec. II, we study
the dynamics, sensing, and control of our double-readout
interferometer. In Sec. II A, we write down and solve
the joint Heisenberg equations of motion of test masses,
beam splitter, and optical fields; in Sec. II B, we evaluate
the optimal combined GW sensitivity of the two readout
channels; in Sec. II C, we prove that the use of control
schemes do not affect this sensitivity. In Sec. IV we show
the benefit, which the local readout scheme will provide
for the detection of intermediate-mass black-holes, using
a realistic Advanced LIGO noise budget. In Sec. IV we
consider practical issues for a possible implementation in
Advanced LIGO. In Sec. V we summarize our main con-
clusions.

II. DYNAMICS, SENSING AND CONTROL

A. Equations of motion

Let us consider a configuration where the ITMs’ mo-
tion of a signal- and power-recycled Michelson interfer-
ometer with arm cavities is locally sensed by a small
interferometer which has the ITMs as its end mirrors
(cf. Fig. 1). This is realized by injecting a second car-
rier into the bright port, which does not resonate in the
arms (preferably anti-resonant). Because the frequency
(and the polarization) of the second carrier is (are) dif-
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ferent from that of the first, we effectively obtain two
interferometers in one scheme where parameters such as
detuning and mirror reflectivities for each interferometer
can be chosen independently; input vacuum fluctuations
associated with the two lasers are also independent.

Throughout this paper, we will assume the GW with
amplitude h as incident from right above the interferom-
eter, with a polarization that maximizes the response of

our L-shaped Michelson interferometers. In the follow-
ing we will list the Heisenberg equation of motions in fre-
quency domain [7, 8, 9, 15, 16] for the differential mode
of motion (i.e., opposite in the two arms) of the input
mirrors x̂ITM and the end mirrors x̂ETM, respectively, as
well as for the BS motion normal to its reflective surface
x̂BS and for the two measurement outputs ŷ(i)

x̂ITM = −Rxx(Ω)
[

F̂ (1)(Ω) + R
(1)
FF (Ω) (x̂ETM − x̂ITM) − F̂ (2)(Ω) − R

(2)
FF (Ω) (x̂ITM +

√
2 x̂BS)

]

+ ξ̂ITM , (1)

x̂ETM = Rxx(Ω)
[

F̂ (1)(Ω) + R
(1)
FF (Ω) (x̂ETM − x̂ITM)

]

+ L h + ξ̂ETM , (2)

x̂BS = RBS
xx (Ω)

[

F̂ (2)(Ω) + R
(2)
FF (Ω) (x̂ITM +

√
2 x̂BS) + F̂

(1)
BP (Ω) + F̂

(2)
BP (Ω)

]

+ ξ̂BS , (3)

ŷ(1) = Ŷ
(1)
1 (Ω) sin ζ(1) + Ŷ

(1)
2 (Ω) cos ζ(1) +

[

R
(1)
Y1F (Ω) sin ζ(1) + R

(1)
Y2F (Ω) cos ζ(1)

]

(x̂ETM − x̂ITM) , (4)

ŷ(2) = Ŷ
(2)
1 (Ω) sin ζ(2) + Ŷ

(2)
2 (Ω) cos ζ(2) +

[

R
(2)
Y1F (Ω) sin ζ(2) + R

(2)
Y2F (Ω) cos ζ(2)

]

(x̂ITM +
√

2 x̂BS) . (5)

Note that x̂ITM and x̂ETM account for the differential
motion between two mirrors while x̂BS describes the mo-
tion of a single mirror with an angle of 45 degree. This
explains the factor of

√
2 in front of the BS motion. The

out-going fields at the dark port belonging to the two
different carriers are each sensed by homodyne detection
such that the measurement outputs are a certain combi-
nation of amplitude and phase quadratures (described by
the phases ζ(1),(2)). Note that we label all quantities with
superscripts (1) and (2) for the large-scale interferometer
and the local meter (the small interferometer, formed by
the BS and the ITMs), respectively. The (free) radiation
pressure force which would act on fixed mirrors and the
(free) shot noise in each of the two interferometers are
given by [9]

F̂ (i) =

√

ǫ(i)θ(i)mh̄

2

(iΩ − ǫ(i)) â
(i)
1 + λ(i) â

(i)
2

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

Ŷ
(i)
1 =

((λ(i))2 − (ǫ(i))2 − Ω2) â
(i)
1 + 2λ(i)ǫ(i) â

(i)
2

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

Ŷ
(i)
2 =

−2λ(i)ǫ(i) â
(i)
1 + ((λ(i))2 − (ǫ(i))2 − Ω2) â

(i)
2

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

where θ(i) =
8P (i)ω

(i)
0

mL(i)c
has units of frequency cube. Note

that P (i) refers to the circulating power in each arm, re-

spectively. Here â
(i)
1 and â

(i)
2 are the amplitude and phase

quadrature operators of the incoming vacuum fields at
the dark port [15], associated with the first and second
carrier field, respectively. The susceptibilities are given
by [9]

RBS
xx = −

√
2

mBSΩ2
,

Rxx = − 2

mΩ2
,

R
(i)
FF =

θ(i)m

4

λ(i)

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

R
(i)
Y1F =

√

ǫ(i)θ(i)m

2h̄

λ(i)

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

R
(i)
Y2F = −

√

ǫ(i)θ(i)m

2h̄

ǫ(i) − iΩ

(Ω − λ(i) + iǫ(i))(Ω + λ(i) + iǫ(i))
,

where the (free) optical resonant frequency of the large-
scale interferometer at Ω = −λ(1) − iǫ(1) is determined
by

λ(1) = γo
2ρSR sin(2φ)

1 + ρ2
SR + 2ρSR cos(2φ)

,

ǫ(1) = γo
1 − ρ2

SR

1 + ρ2
SR + 2ρSR cos(2φ)

.

As already mentioned, the second carrier does not res-
onate in the arm cavities and therefore the local meter
is just equivalent to a interferometer configuration with-
out cavities in the arms. Thus, in Eq. (3) we only take
into account the forces on the BS due to field fluctuations
around the second carrier, in the same way as in Ref. [17]:
the first two terms in the bracket on the right-hand side
of Eq. (3) are due to dark-port fluctuations around the
second carrier, while the third and fourth term, given by

F̂
(1)
BP = γ0

L(1)
√

θ(1)mh̄(1 − ρ2
PR)γ0√

2c(−γ0(1 − ρPR) + i(1 + ρPR)Ω)
b
(1)
1 ,

F̂
(2)
BP =

√

θ(2)mL(2)h̄(1 + ρPR)

2c(1 − ρPR)
b
(2)
1 ,
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Symbol physical meaning value

m single mirror mass 40 kg

mBS beam splitter mass 40 kg

c/ω
(1)
0 laser wavelength of 1st carrier 1064 nm

P (1) circulating power of 1st carrier 0.1 . . . 0.8 MW

L(1) large-scale interferometer arm length 4 km

ρPR power-recycling mirror reflectivity
√

0.94

φ detuning phase for 1st carrier 0 . . . π

ρSR signal-recycling mirror reflectivity
√

0.93

γo cavity half bandwidth for 1st carrier 2π 15 Hz

ζ(1) detection angle for 1st carrier 0 . . . π

c/ω
(2)
0 laser wavelength of 2nd carrier 1064 nm

P (2) circulating power of 2nd carrier 0 . . . 16 kW

L(2) local meter arm length 15 m

λ(2) detuning for 2nd carrier 0 Hz

ǫ(2) cavity half bandwidth for 2nd carrier 2π 4 kHz

ζ(2) detection angle for 2nd carrier 0

TABLE I: Technical data and parameter values for large-scale
interferometer and local meter used throughout the calcula-
tions.

are forces due to bright-port fluctuations, where b
(i)
1 are

the amplitude quadrature of fluctuations around the first
and second carrier, at the input port. Forces due to fluc-
tuations around the first carrier are usually negligible,
because the intensity of the first carrier at the beam split-
ter is lower than that of the second carrier; in addition,
fluctuations associated with the first carrier also do not
build up as much as those associated with the second
carrier, both in common and in differential mode.

In Eq. (4), we make the approximation that the first
carrier only senses the cavity length, x̂ETM − x̂ITM, ig-
noring the slight difference between its sensitivities to
ITM and ETM, as well as motion of the BS. In Eq. (5),
the second carrier only senses the ITM and BS motions,
since it does not enter the arm cavities.

The operators ξ̂ITM, ξ̂ITM and ξ̂BS model the classi-
cal noise at ITM, ETM and BS, respectively. We as-
sume that they are uncorrelated but all have the same
spectrum, namely, one fourth of the classical noise spec-
trum generally expected for the differential mode of mo-
tion. By using the following only non-vanishing correla-
tion functions

〈â(i)
k (Ω) (â

(j)
l )†(Ω′)〉sym = π δ(Ω − Ω′) δij δkl ,

〈b̂(i)
k (Ω) (b̂

(i)
l )†(Ω′)〉sym = π δ(Ω − Ω′) δkl S

(i)
l (Ω) ,

〈ξ̂ITM(Ω) (ξ̂ITM)†(Ω′)〉sym = 2π δ(Ω − Ω′) Scl(Ω) ,

〈ξ̂ETM(Ω) (ξ̂ETM)†(Ω′)〉sym = 2π δ(Ω − Ω′) Scl(Ω) ,

〈ξ̂BS(Ω) (ξ̂BS)†(Ω′)〉sym = π δ(Ω − Ω′) Scl(Ω) , (6)

we obtain the single-sided noise spectral densities. Here
Sl

i(Ω) is the spectrum of technical input laser noise while
Scl(Ω) characterizes the spectrum of all the other clas-

sical noise sources. In further calculations we will as-
sume amplitude laser noise to be white and ten times in
power above shot noise level. For other classical noise
sources, we use the current noise budget of Advanced
LIGO, as given in Bench [18]; contributions such as sus-
pension thermal noise, seismic noise, thermal fluctuations
in the coating and gravity gradient noise are presented
in Fig. 4.

Note that we can obtain two input-output relations
from the equation of motions in Eq. (1)-(5) and write
them in the following compact form

ŷ(1) = ~nT
1 ~ν + s1 h , ŷ(2) = ~nT

2 ~ν + s2 h , (7)

where ~νT = (â
(1)
1 , â

(1)
2 , â

(2)
1 , â

(2)
2 , b̂

(1)
1 , b̂

(2)
1 , ξ̂ITM, ξ̂ETM, ξ̂BS).

Here the two vectors ~n1,2 are the linear transfer functions
from the noise channels ~ν into the two output channels,
while the two functions s1,2 are the linear transfer
functions from the signal, i.e. the GW strain h, into the
output channels.

B. Combined sensitivity

Now we seek for a linear combination of the two output
channels, ŷ(1) and ŷ(2),

ŷ = K1(Ω) ŷ(1) + K2(Ω) ŷ(2) , (8)

which has optimal sensitivity to gravitational waves. In
this optimization, we only consider the signal-referred
noise spectral density of ŷ,

Sh(Ω) =

(

K1 K2

)

N

(

K∗
1

K∗
2

)

(

K1 K2

)

S

(

K∗
1

K∗
2

) (9)

with

N ≡
[

~nT
1

~nT
2

]















14

S
(1)
l

S
(2)
l

2Scl12

Scl















[

~n∗
1 ~n∗

2

]

(10)
and

S ≡
(

s1s
∗
1 s1s

∗
2

s2s
∗
1 s2s

∗
2

)

, (11)

where 1k stands for a k-dimensional identity matrix. One
way of obtaining the minimum noise is to impose the con-
straint that the value of the denominator always remains
unity, and minimize the numerator under this constraint.
Note that an overall rescaling of the vector (K1, K2) does



5

not affect Sh. The resulting minimum noise is one over
the bigger eigenvalue of the 2-by-2 matrix

M ≡ N
−1

S , (12)

with the corresponding eigenvector providing the optimal
filters (K1, K2).

We now illustrate the local readout scheme using the
following configuration: the parameters are given in
Tab. I as well as phase quadrature readout ζ(1) = 0,
signal-recycling cavity detuning phase φ = π/2 − 0.014π
and power P (1) = 800 kW of the first carrier are used.
In Fig. 2 we plot the individual signal- and noise-transfer
functions of the first and second carriers, for the config-
uration with P (2) = 4 kW. As we can see from these
plots, the first carrier mainly senses frequencies above
the optical-spring resonance with signal-transfer function
suppressed at lower frequencies by the optical spring; the
second carrier offers complementary sensitivity for fre-
quencies below the optical-spring resonance, when the
ITM is dragged together with the ETM by the optical
spring. As a consequence, as we see in the left panel of
Fig. 3, at frequencies above the optical-spring resonance,
the optimal combination depends mostly on the first
readout, while at frequencies below the optical-spring res-
onance, the optimal combination depends mostly on the
second readout.

Noise curves with optimal filters are plotted for differ-
ent powers of the second carrier (0 kW, 1 kW, 4 kW and
16 kW) in the right panel of Fig. 3 where only quantum
noise is taken into account. This plot illustrates that the
local readout scheme can directly improve the sensitivity
only below the optomechanical resonance frequency. It
turns out that 4 kW in each arm of the local meter al-
ready gives a remarkable increase in sensitivity. In the
following studies we fix P (2) = 4 kW.

One could imagine that the combination of a signal-
recycled Michelson interferometer with a local readout
may indirectly help improving the sensitivity at high fre-
quencies or increasing the detection bandwidth, once an
overall optimization to a broadband source is performed.
The underlying effect is that the sensitivity of the large-
scale interferometer can be shifted to higher frequencies
by choosing its detection angle to be closer to the phase
quadrature while the local meter helps to maintain sen-
sitivity at low frequencies. This will be studied more
carefully in Sec. III.

C. Control

As it has been shown in Refs. [7, 8, 9] the optical spring
introduces an instability, which must be stabilized using
a feedback control system. In single-readout systems,
it is easy to show that such a control system does not
give rise to any fundamental change in our GW sensitiv-
ity [7, 8, 9], intuitively because signal and noise are fed
back with the same proportion onto the test masses. Our

double-readout system is more complex, but the same in-
tuition still applies. If we denote ~x ≡ (x̂ITM, x̂ETM, x̂BS)T

and ~y ≡ (ŷ(1), ŷ(2))T , the Eqs. (1)–(5) can be written
schematically as:

~x = A(Ω)~x + B(Ω)~ν + ~C(Ω)h + D(Ω)~y , (13)

~y = F(Ω)~x + G(Ω)~ν . (14)

Here matrix A describes mirror dyanmics, matrix B de-
scribes how the noise sources in ~ν are applied as forces

onto the mirrors, vector ~C describes how GW signal h
directly influences the mirrors, F describes how the out-
put channels ~y sense the various motions ~x, G describes
sensing noise in ~y, and finally D describes the feedback.
Solving Eqs. (13) and (14) jointly, we obtain

~y = [12 − HD]−1
[

[HB + G]~ν + H~Ch
]

, (15)

where we have defined H ≡ F(12−A)−1. In Eq. (15) the
only dependence of ~y on the control system is through
D, which only appears in the first factor on the right-
hand side. The optimal sensitivity, which is obtained by
maximizing signal-referred noise spectrum of (K1 K2) ~y,
is then clearly invariant with respect to changes in D.

III. IMPROVEMENTS IN ADVANCED LIGO

SENSITIVITY

A. Matched-filtering signal-to-noise ratio

To quantify the astrophysical merit of various con-
figurations, we will calculate the improvement in the
matched-filtering signal-to-noise ratio (SNR) or the de-
tectable distance for a given threshold SNR, respectively,
for inspiral waves from compact binary systems. For a
known waveform (in the frequency domain) h(f), the
optimal SNR achievable by correlating the data with a
known template is

ρ = 2

√

∫ ∞

0

df
|h(f)|2
Sh(f)

(16)

where Sh(f) is the single-sided noise spectral density. For
compact binary objects, the lowest Post-Newtonian ap-
proximation gives (see, e.g., [19])

|h(f)| =
G5/6µ1/2M1/3

√
30π2/3c3/2D

f−7/6 Θ(fmax − f) (17)

with

M = (M1 + M2) and µ =
M1M2

M1 + M2
(18)

where µ, M , M1 and M2 are the reduced, total and sin-
gle masses of the binary and D is the distance from the
source to the detector. Here the amplitude is the one
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FIG. 2: Example for the signal (left panel) and noise (right panel) transfer functions in a signal-recycled Michelson interferometer

with two carriers and double-readout, for a configuration with the parameters as given in Tab. I but ζ(1) = 0, φ = π/2− 0.014π

and P (1) = 800 kW).

100 101 102 103

f @HzD

0.0

0.5

1.0

F
ilt

er
fu

nc
tio

n

ÈK2HWLÈ2
ÈK1HWLÈ2

100 101 102 103

f @HzD

10-24

10-23

10-22

10-21

N
oi

se
S

pe
ct

ra
lD

en
si

ty
@1
��
!!!!
!!!

H
z
D

SQL

PH2L = 16 kW
PH2L = 4 kW
PH2L = 1 kW
PH2L = 0 kW

FIG. 3: Left panel: filter functions K1 and K2, for the same configuration as in Fig. 2. Here each filter function is rescaled such
that it gives the percentage of how much GW strain it feeds into the combined output. Right panel: quantum noise curves
for our proposed scheme with different powers of 2nd carrier. Again phase quadrature readout ζ(1) = 0, signal-recycling cavity
detuning phase φ = π/2 − 0.014π and power P (1) = 800 kW of 1st carrier are used.

where rms average over all directions is already taken
into account. There is an upper cutoff frequency, fmax,
in Eq. (17) beyond which the systems undergoes a tran-
sition from adiabatic inspiral into non-adiabatic merger,
and Eq. (17) is no longer a valid approximation. This
frequency is usually taken to be the GW frequency at
the last stable circular orbit given, for a test mass in a
Schwarzschild space time with mass M

fmax ≈ 4400 Hz

(

M⊙

M

)

. (19)

A lower cut-off frequency fmin should also be applied to
the integration in Eq. (16), below which it is no longer
possible to treat the system as stationary. We take
fmin ≈ 7 Hz. Considering binaries of averaged orienta-

tion the observable distance for a given SNR ρ0 reaches

D =

√

2

15

G5/6µ1/2M1/3

π2/3c3/2ρ0

√

∫ fmax

fmin

df
f−7/3

Sh(f)
. (20)

In this paper, we assume event rate to be proportional
to the cube of detectable distance, i.e.,

R ∝ D3 . (21)

B. Improvement in the event rate

The tools reviewed in the previous subsection enable
us to optimize a specific interferometer configuration for
given binary inspirals by maximizing its SNR with re-
spect to certain interferometer parameters. Note that we
now take also classical noise into account as it is indicated
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FIG. 4: Noise curves for the scheme with local readout (power of 2nd carrier fixed to P (2) = 4 kW) and without local readout
both optimized for binary systems with total mass M = 2.8 M⊙ (upper left), M = 40 M⊙ (upper right) and M = 120 M⊙

(lower). Special parameters used for optimizations are given in Tab. II and all others in Tab. I. Here classical noise (grey lines)
is included. Single contributions of the classical noise are labeled according to their appearance: suspension thermal noise
results from the fluctuations in the suspension system; seismic noise is due to motion of the ground; thermal fluctuations in the
coating dominates the one in the substrate; gravity gradient noise accounts for time-changing Newtonian gravitational forces.

M/M⊙ optimization parameters w/ local meter optimization parameters w/o local meter improvement

P (1) in kW φ in radian ζ(1) in radian P (1) in kW φ in radian ζ(1) in radian in event rate

2.8 800 0.48 π 0.7 π 800 0.48 π 0.49 π 29 %

20 450 0.47 π 0.58 π 500 0.48 π 0.48 π 28 %

30 250 0.46 π 0.46 π 200 0.46 π 0.49 π 30 %

40 150 0.45 π 0.43 π 150 0.45 π 0.46 π 33 %

80 100 0.45 π 0.38 π 100 0.45 π 0.46 π 44 %

120 100 0.46 π 0.32 π 100 0.47 π 0.41 π 42 %

160 110 0.47 π 0.25 π 100 0.47 π 0.30 π 45 %

200 110 0.48 π 0.25 π 100 0.48 π 0.27 π 48 %

TABLE II: Parameters used when optimizing our proposed double-readout scheme and the usual Advanced LIGO like con-
figuration each for different binary systems. Last column gives the improvement in the event rate for our proposed scheme
compared to the usual scheme both optimized for the given equally distributed total binary mass.

by the grey lines in Fig. 4. In this paper we assume that
Advanced LIGO refers to a signal-recycled interferome-
ter without local readout and optimized for neutron star
- neutron star (NS-NS) binary systems, i.e. binary sys-
tem with M = (1.4 + 1.4) M⊙. We then vary the optical
power P (1), detuning φ(1) and detection angle ζ(1) in such

a way that the SNR of the signal-recycled interferometer
without local readout is maximized for the total mass of
a given binary system in Tab. II. When we optimize our
scheme, we maximize the SNR varying the same set of
parameters of the large-scale interferometer (cf. Tab. II)
but with imposing a fixed power for the second carrier
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(P (2) = 4 kW), requiring the second carrier to be reso-
nant in the signal-recycling cavity (λ(2) = 0), and fixing
a detection quadrature phase of ζ(2) = 0 (i.e., detecting
the phase quadrature). Such a prescription is justified,
because a local meter with such a short arm length, low
power and finesse (as we have chosen) is mostly domi-
nated simply by shot noise.

If we compare the two schemes with and without an
added local meter at the binary mass they are optimized
for we find moderate improvement in event rates (cf. last
column in Tab. II). The improvement increases for higher
binary masses since our scheme helps to enhance sensi-
tivity mainly at low frequencies. Such a moderate im-
provement has been limited mainly due to low-frequency
classical noise.

The advantage of the local readout scheme can be ap-
preciated better when we realize that there are different
populations of likely sources (e.g., binary total mass M
can reside in a range, M), whose signals extend to differ-
ent frequency bands. We need to investigate how good a
configuration optimized for a particular system with total
mass M would perform for other possible masses in M.
In this paper, we consider M = [M⊙, 630 M⊙] with max-
imum mass determined by the condition fmax = fmin. In
Fig. 5, we show the improvements in event rates (with re-
spect to Advanced LIGO baseline, optimized for NS-NS
binaries) obtainable by Advanced LIGO configurations
(solid lines) and double-readout configurations (dashed
lines) for binaries with M ∈ M, when the configurations
are optimized specifically for M = 2.8 M⊙ (black), 40 M⊙

(dark gray) and 120 M⊙ (light gray). In Fig. 4, we show
the corresponding noise spectral densities of these con-
figurations, together with classical noise. Figures 5 and
4 provides us with at least two possible applications of
the double-readout scheme.

Detector with broader frequency band. The sensitivity
of the double-readout configuration optimized for 2.8 M⊙

systems (solid curve on the upper left panel of Fig. 4)
is broader in band and globally better than the base-
line design of Advanced LIGO (dashed curve in the same
figure), particularly at higher frequencies; this demon-
strates that when an overall optimization is performed,
the local readout can indirectly improve sensitivity at
higher frequencies. Although Fig. 5 (solid curve) does
not show a significant increase in binary event rates, this
configuration is potentially interesting for detecting other
sources above 300Hz, for example pulsars and Low-Mass
X-ray Binaries.

Detector for intermediate-mass black-hole binaries.
The double-readout configuration optimized for 40 M⊙

systems (dark gray curve in Fig. 5) has the same sen-
sitivity to low-mass binary systems as Advanced LIGO
baseline (up to M = 10 M⊙), while improving event
rates for 60 M⊙ – 300 M⊙ by factors of 2 – 4.5. This
allows us to build a detector sensitive to the more spec-
ulative (yet in some sense astrophysically more interest-
ing) intermediate-mass black-hole binaries, without sac-
rificing sensitivity at low-mass systems which are more
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FIG. 5: Improvement in the event rate compared to Advanced
LIGO versus total binary mass with fixed optimization pa-
rameters for each curve. Signal-recycled interferometer with
(solid lines) and without (dashed lines) local readout are op-
timized for three different binary masses. Power of 2nd carrier
is fixed to P (2) = 4 kW.

certain to exist. As we see from dashed curves in Fig. 5,
such broad improvement simultaneously for systems with
different total masses is not achievable by single-readout
Advanced LIGO like configurations. It is also interesting
to note that this configuration only requires a circulating
power of 150kW in the arms.

It turns out that our scheme even improves sensitiv-
ity in the low-frequency regime when sensitivity is domi-
nated by classical noise, as can be seen in Fig. 5, since for
high binary masses the dashed curves meet at a factor of
(4/3)3/2 below the solid curves. We explain this factor
in the Appendix.

IV. IMPLEMENTATION ISSUES

In this section we discuss the possibility of implement-
ing this technique explicitly in the Advanced LIGO de-
tector. In fact, the so-called central Michelson degree of
freedom in the detector, already to be measured to keep
the signal-extraction port of the interferometer in dark
fringe, is exactly what our local readout scheme proposes
to measure. However, sensitivity of the current Michelson
control signal must be improved dramatically in order to
be turned into our regime. We note that more precise
measurement of this Michelson degree of freedom also
helps to decrease control-loop noise, which is shot noise
imposed on the control signal coupling to the main signal
due to unavoidable imbalances [20].

Optical Power. In the baseline design, a pair of radio
frequency (RF) sidebands created around the main car-
rier frequency will be injected to probe the motion as it
is already done in current detectors. However, the power
level of current RF sidebands is not high enough for our
local readout. In the baseline design, the input power
is 125 W, which is amplified to ∼ 1.0 kW at each ITM,
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due to power recycling. Only about 1% of the power at
the input port is pumped into the RF sidebands that res-
onate in the power-recycling cavity but not in the arms.
Taking into account the fact that the RF sidebands do
not enter the arm cavities and thus suffer from less opti-
cal losses, the power of the Michelson-control sidebands
at the ITM is currently planned to be ∼ 34 W. Thus,
one needs to raise the current power by ∼ 120 times
in order to achieve P (2) = 4 kW. Another more realis-
tic way of realization is to use a phase-locked secondary
laser with its frequency shifted by an odd number of half
free-spectral ranges from the primary laser to satisfy the
off-resonant condition in the arms. Furthermore, this
sub-carrier should almost be in dark fringe at the signal-
extraction port and should be resonant in both recycling
cavities. To achieve a circulating power of P (2) = 4 kW
for the sub-carrier we even need a little more input power
than for the primary laser. But we can hope to use the
higher-power laser for the sub-carrier while the paramet-
ric instability [21, 22] in the arm cavity may limit the
power of the primary laser.

Detection. Each signal at the dark port should be ex-
tracted with some reference field, which will be another
set of RF sidebands in the RF readout scheme, or DC
offset light in the DC readout scheme. The former one
leaks through the dark port via macroscopic asymmetry
in the central Michelson interferometer, and the latter
one leaks through the dark port via microscopic asym-
metry between two arm cavities. Either way, the refer-
ence fields for the carrier and the sub-carrier should be
isolated before the photo-detection, otherwise the refer-
ence field which is not used for the signal extraction will
just impose extra shot noise. One way to solve the prob-
lem is to make use of orthogonal polarizations. Before
the photo-detection, the carrier and the sub-carrier ac-
companied with the reference fields can be separated by
a polarized beam splitter, which is all-reflective to one
polarization and transmissive to the other. In addition,
it is easy to combine the two beams before injection into
the interferometer without losing the power. An alter-
native way to the orthogonal polarizations is to use a
cavity that can separate the beams at different frequen-
cies, where one resonates in the cavity while the other
does not. The cavity, a so-called output-mode-cleaner,
is already planned to be used at the detection port in
Advanced LIGO. In the same way an input mode cleaner
cavity can be used to combine two beams before the in-
jection into the interferometer.

Alternative configuration. One may also place the lo-
cal meters around the ETMs. In this case, a single laser
beam, which can be different in frequency from the car-
rier light, should be split and brought to each end of the
arms so that laser noise can be cancelled out after taking
a subtraction of the two ETMs’ motion measurements.
A cavity can be implemented as well as it is proposed for
a radiation-pressure-noise reduction method in [13, 14].
In this way the secondary laser for the local readout does
not need such high power and there is no concern of a

heat problem at the BS and the ITMs. However, in this
case much more additional optical components are re-
quired to realize this configuration.

V. CONCLUSION

Motivated by the optical-bar schemes [12] and
quantum-locking schemes [13, 14], we have proposed in-
jecting a second laser beam into detuned signal-recycled
Michelson interferometers, sensing the differential motion
of the input mirrors, and improving low-frequency sensi-
tivities of these interferometers, currently at low frequen-
cies being limited by the rigidity of the optical spring. We
derived the optimal combined sensitivity of this double-
readout scheme, and demonstrated that this optimal sen-
sitivity is invariant with respect to the application of a
feedback control scheme.

Taking into account the current classical noise bud-
get of Advanced LIGO, as well constraints on optical
power, we performed an optimization of our double-
readout schemes toward the detection of compact binary
inspirals. This scheme is shown either to be able to
broaden the detection band and (indirectly) significantly
improving high-frequency sensitivities, or to allow the de-
tection of intermediate-mass black-hole binaries with a
broad frequency range without sacrificing sensitivity to
neutron-star binaries and stellar-mass black-hole bina-
ries.

We also discussed briefly how the sensing of the Michel-
son degree of freedom in the currently plan of Advanced
LIGO can be made dramatically more sensitive and
turned into our local readout scheme.

Finally, we would like to point out that this scheme
should be further investigated as a candidate design for
third-generation detectors, possible in conjunction with
the injection of squeezed vacuum states [23, 24] into the
interferometer’s dark port [25, 26].
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APPENDIX A: DOUBLE-READOUT SCHEME

DOMINATED BY CLASSICAL NOISE

Suppose at low frequencies, sensing noise is negligible,
and noise is dominated by the classical force noise acting
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on the mirrors. Then, the first carrier offers the following

ŷ(1) ∝ ξ̂ETM − ξ̂ITM + Lh , (A1)

where ξETM and ξITM are classical noise on the ITM and
the ETM, respectively. The output of the second carrier
is proportional to

ŷ(2) ∝ ξ̂ETM + ξ̂ITM + 2
√

2ξ̂BS + Lh , (A2)

where ξBS is the classical noise acting on the BS. Suppose
again that ξITM, ξETM, and ξBS have independent noise
at the same level for ITM and ETM but half as high for
the BS (cf. Eqs. (6)). We obtain that the optimal filter
uses 3/4 of the output of the large-scale interferometer

and one fourth of the small interferometer in the units as
above. This is in contrast to the optimal filter functions
when only quantum noise is taken into account as in the
left panel of Fig. 3. Then the combined output is given
by

ŷ ∝ ξETM − 1

2
ξITM +

1√
2
ξBS + Lh . (A3)

Then the large-scale interferometer’s noise spectral den-
sity versus the optimal noise spectral density reads 2/ 3

2
which gives the factor in Fig. 5. In this way the double-
readout is able to cancel some fraction of the classical
noise.
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