IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 24 (2007) 4191-4206 doi:10.1088/0264-9381/24/16/013

How to tell a gravastar from a black hole

Cecilia B M H Chirenti!? and Luciano Rezzolla>?

! Instituto de Fisica, Universidade de Sdo Paulo, Sdo Paulo, Brazil
2 Max-Planck-Institut fiir Gravitationsphysik, Albert Einstein Institut, 14476 Golm, Germany
3 Department of Physics, Louisiana State University, Baton Rouge, LA 70803, USA

Received 11 June 2007, in final form 29 June 2007
Published 31 July 2007
Online at stacks.iop.org/CQG/24/4191

Abstract

Gravastars have been recently proposed as potential alternatives to explain the
astrophysical phenomenology traditionally associated with black holes, raising
the question of whether the two objects can be distinguished at all. Leaving
aside the debate about the processes that would lead to the formation of a
gravastar and the astronomical evidence in their support, here we address two
basic questions: is a gravastar stable against generic perturbations? If it is
stable, can an observer distinguish it from a black hole of the same mass? To
answer these questions we construct a general class of gravastars and determine
the conditions they must satisfy in order to exist as equilibrium solutions of
the Einstein equations. For such models we perform a systematic stability
analysis against axial perturbations, computing the real and imaginary parts
of the eigenfrequencies. Overall, we find that gravastars are stable to axial
perturbations, but also that their quasi-normal modes differ from those of a
black hole of the same mass and thus can be used to discern, beyond dispute,
a gravastar from a black hole.

PACS numbers: 04.40.Dg, 04.30.Nk, 04.25.Nx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The gravastar model was proposed by Mazur and Mottola [1] and has attracted attention as
a possible alternative to black holes. Within this model, in fact, a massive star in its late
stages could end its life as a gravastar, namely a very compact object whose radius would be
very close to the Schwarzschild radius (indeed arbitrarily close to it) without having an event
horizon or a central singularity. For this to happen, a phase transition is expected to take place
at or near the location where the event horizon would have been otherwise formed [2]. The
interior of what would have been the black hole is replaced by a suitably chosen portion of
de Sitter spacetime with an equation of state (EOS) p = —p, surrounded by a thin shell of
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ultra-stiff matter with EOS p = +p, and which is then suitably matched to a Schwarzschild
vacuum. In practice, the Mazur—Mottola gravastar model, hereafter the MM model [1], is a
spherically symmetric and static five-layer solution of the Einstein equations, including two
infinitesimally thin shells needed by the junction conditions of the metric [3].

For as much as it is ingenious, the gravastar model also challenges a building block in
modern astronomy, namely the existence of astrophysical black holes. In spite of the many
observational evidences in favour of black holes, it may indeed be fundamentally impossible
to give an irrefutable observational proof for the existence of a black-hole horizon if only
electromagnetic radiation is received [4] and thus tell a black hole apart from a gravastar,
if the latter existed. Such a challenge has obviously attracted a lot of attention and several
related models have been recently proposed in the attempt to provide answers to two basic
questions: once produced, is a gravastar stable to generic perturbations? If stable, can an
external observer distinguish a gravastar from a black hole of the same mass?

In [1] it was argued that the MM solution is thermodynamically stable, but other stability
analyses are not so easy to perform because of the model’s structure. Visser and Wiltshire
[5] have analysed the radial stability of a simplified model with three layers and the stability
was shown to hold for a number of configurations. This stability was generalized by Carter
[6] for gravastar models with different exteriors. Other possibilities for the interior solution
have also been considered: Bili¢ et al [7] replaced the de Sitter interior by a Born—Infeld
phantom, while Lobo replaced the interior solution by one that is governed by the dark-energy
EOS [8], and Lobo and Arellano matched interior nonlinear electrodynamic geometries to the
Schwarzschild exterior [9].

To remove in part the complications produced by the infinitesimal shells in the MM
model, Cattoen et a/ [10] have found that fluid gravastars can be built if the fluid is confined
to a given layer and has anisotropic pressures there. The latter essentially replaces the surface
tension which was introduced in the original MM model by the matching of the metric in the
infinitesimally thin shells. Although anisotropic and with rather arbitrary equations of state,
these pressures have the appealing property of being continuous and thus of allowing one
to build equilibrium models without the presence of infinitesimally thin shells and thus look
more seriously into the issue of stability. Indeed, as a step to going beyond the construction
of equilibrium models, DeBenedictis ef al [11] made a first attempt to investigate the stability
of gravastars through a qualitative analysis of axial perturbations.

In order to provide more definitive answers to the questions mentioned above, we
have constructed a general class of fluid gravastars with finite shell thickness and variable
compactness. While this class is similar and has been inspired by the one proposed in [10, 11],
it also differs in two important aspects. First, while we also consider a fluid gravastar with
anisotropic pressures, we try and reproduce the most salient features of the original MM model
by creating an internal and an external region which reproduce a de Sitter and a Schwarzschild
spacetime at finite radii and not only asymptotically. Second, for these models we determine
precise bounds for the properties of the metric functions and the compactness of the gravastar
that yield equilibrium solutions, thus considerably restricting the class of possible solutions.

Using these models we have carried out a systematic investigation of the stability analysis
of gravastars against axial perturbations [12, 13], thus extending the results discussed in [14]
to our gravastar model and computing explicit eigenfrequencies. In this way we were able to
conclude that a gravastar is stable to axial perturbations and indeed it is possible to distinguish
it from a black hole if gravitational radiation is produced. More specifically, we have found
that for all the models considered the imaginary part of the eigenfrequencies is always negative,
thus indicating stability against these perturbations. Furthermore, while it is always possible
to build a gravastar with given compactness and thickness such that it will have the same
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oscillation frequency as that of a black hole with the same mass, the corresponding decaying
time will be different. Our results thus provide a way of distinguishing, observationally and
beyond dispute, a gravastar from a black hole.

The paper is organized as follows: in section 2 we review the main features of the
original MM model and obtain numerical solutions which enable us to impose bounds for
the parameters of the MM solution. In section 3, instead, we present our model for a fluid
gravastar with anisotropic pressures and discuss the bounds derived from general conditions
imposed by the EOS and the properties of the metric functions. In section 4, we outline the
perturbation equations and the numerical methods employed in the study of axial perturbations
of our model. In section 5, we discuss the results obtained for the QNMs and in section 6 we
present our final conclusions.

2. The MM gravastar model

We first present a quick review on the main features of the original MM model [1] for they
will be used in further developments in this paper and highlight that precise bounds exist for
the existence of solutions even for the simplest gravastar model.
In general, we consider a static and spherically symmetric line element
2 , dr? 21062
ds“ = —f(r)dt" + — +r-dQ-, (1)
h(r)

and the Einstein equations must be solved for a perfect fluid at rest, such that there are three
different regions with the three different equations of state:

I. Interior: 0<r<r, p=-p,
II.  Shell: ri<r<r, p=+p, 2)
III. Exterior: r, <r, p=p=0.
In region I, p is a constant given by p, = 3H02 / 8w, and the metric is that of a de Sitter
spacetime, so
f(r)=Ch(r)=C(1 — Hyr?), 0<r<n, (3)
where C is an integration constant, whose value will be determined later (cf equation (8)).

In region II, a new dimensionless variable w is defined as w = 87 r2 P, in order to obtain
the following set of equations:

dr dh @
r l—w—~h

dh l—w-—nh)\ dw

—_—— ) —, 5
h (1+w—3h> w )
w—2=c0nst. (6)
-

An analytical solution can be obtained in the case of a very thin shell, i.e., forr; — r,. Itiseasy
to see that (4) is satisfied if we take 1 = 1 — s /r and dim(r) = 2dm(r) = Smpr?dr? = wdr.
Therefore, in the thin-shell limit, (4) can be integrated to yield

= 2

h=1- L € M

r
where € is an integration constant. From the continuity of the metric coefficients f and / at
r1 and r,, it can be shown that the integration constants €, C, M and H, are given in terms of

<1, @)
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r1, r2, w; and w, by the relations

1 1\
e=—lnr—2<lnﬂ——+—) , (8)
r wi Wy Wi
1+ 2
c=< wﬂ, ©)
1+ w,
1+ wy)?
M:QP—ﬂ—lﬁizmmL (10)
2 wy
1 1 2
ngj[l_w]. (11)
rl w1

Finally, in region III and because of Birkhoff’s theorem, the spacetime is described by the
Schwarzschild metric,

2M
ﬂﬂ=Mﬂ=1—77, ry KT (12)

Clearly, region II is the most interesting one from a physical point of view since it is
where a non-trivial model for the gravastar can be specified. In the case of a ‘thick shell’,
that is away from the thin-shell limit, the gravastar solution in region II can be obtained in
the same way as for ordinary spherical stars, namely through the numerical solution of the
Tolman—Oppenheimer—Volkoff (TOV) equations for p(r) = p(r) and m(r). We recall that in
the MM model p(7) and p(r) are discontinuous in ry and r, and that m(r;) must, of course,
be less than ry /2.

By specifying ry, v, and thus the shell thickness 6 = r, —r;, as well as the initial
conditions for the pressure p(r1) and mass m(r;), the numerical solution of the TOV equations
provides m(r) and p(r) for r; < r < rp. A systematic analysis has revealed that a limit exists
on the compactness u = M /r, of the gravastar and in particular that, for given ry, r, and
m(ry) very close to the limit r; /2, there exists a value for p(r;) which provides the largest M.
In other words, it is not possible to achieve arbitrary values for M. On the other hand, if we fix
r, and decrease r; so as to increase the thickness of the shell, we must also decrease m (r1), and
we have verified that the maximum value obtained for M also decreases. Overall, therefore,
each shell thickness § also selects a maximum compactness of the gravastar n, above which
no solution of the TOV equations can be found.

All of this is shown in figure 1 which reports the space of parameters (§, u) where
equilibrium solutions can be found. The solid curve, in particular, is computed numerically
and distinguishes the region where equilibrium models can be found (i.e., the region below
the curve), from the region where no solutions can be found (i.e., the region above the
curve). Stated differently, for any given shell thickness §, the solid curve marks the maximum
compactness (i.e., the largest value of 1) for which gravastar models can be built. Interestingly,
therefore, it is not possible to build a very compact gravastar with a very thick matter shell.
Rather, gravastars have either large compactness and thin shells, or small compactness and
thicker shells, as shown in figure 1. This figure, and its inset in particular, also illustrates that
gravastars can be built with arbitrarily large compactness, i.e., with & — 1/2 and thus with the
outer radius r, being only infinitesimally larger than the corresponding Schwarzschild radius.
It is exactly this property that makes gravastars hard to distinguish from a black hole if only
electromagnetic radiation is available.
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Figure 1. Limits in the compactness and thickness of a gravastar in the MM model. The curve
shows the maximum compactness for a given thickness § of the shell, that is, in the light grey area
below the curve we have the possible solutions, while in the area above the curve solutions are no
longer possible. The dark grey area highlights the typical compactnesses for neutron stars. The
inset shows a comparison between the numerical solution of the TOV equations with the analytical
solution in the thin-shell limit.

3. The gravastar model with anisotropic pressures

3.1. The field equations

We now discuss our suggestion for a fluid gravastar model in which we follow the spirit of
the original MM model and consider a spacetime consisting of three different regions with the
internal and external ones reproducing a de Sitter and a Schwarzschild spacetime at finite radii,
r1 and r,, respectively. In addition, we follow the suggestion made in [10] and use a thick shell
with a continuous profile of anisotropic pressures to avoid the introduction of infinitesimally
thin shells of matter as demanded by the MM [1]. We start therefore with a metric of the form

ds? = —e"" dr? + e dr? + 12 dQ?, (13)

and a fluid stress—energy tensor 7#, = diag[—p, p,, p:, p:], where p, and p;, are the radial and
tangential pressures, respectively. The Einstein field equations for this spacetime geometry
and matter distribution are

(N 1 1
e —— |+ =87p, (14)
roor r
WA 1
G B (s)
ror r
e—k v B Ay . v/2 . Y 8y (16)
2 T4 Tq T Ty )T

It is now convenient to transform the above equations into a form where the hydrodynamical
properties of the system are more evident and that reduces to the TOV equations for systems
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with isotropic pressure, i.e.,

2
et =1 20 (17)
r
P 2m(r) + 8mwrip, (18)
r(r —2m(r))
, v 2(p — pr)
pp=—(p+pm+ =P (19)
2 r
where
m(r) = f 4rrpdr. (20)
0
Combining (18) and (19), we obtain the anisotropic TOV equation
, m(r) +4nrip,  2(p; — pr)
ph=—(p+p) by 20— P @)

r(r —2m(r)) r
which is reminiscent of the Newtonian hydrostatic-equilibrium equation and where the last
term is obviously zero in the case of isotropic pressures, i.e., p; = p;.

3.2. Equation of state

In order to adopt the model suggested in [10], and still maintain the simple structure of the
MM model, we make the following choices for our density function p(r):

p(0) = p(r1) = po, p(r2) =0, p'(r1) = p'(r2) = 0. (22)

A simple way to satisfy the above conditions is to consider a cubic dependence in r,

00, 0<r<n region |
p(r) = {ar’+br’ +cr+d, r <r<nr region II 23)
0, n<r region III,

with the coefficients a, b, c, d given by

2
4= &3’ (24)
(r2 — rp)
3 +
_ po(r2 r;)’ 25)
(rp —r1)
6007172
= = (26)
(ra—n)?
3 _ 3 2
g Pl rl3’2). @7
(ra —r1)
To obtain the density in terms of the total mass m(r,) = M, we write
o= 2= (3 =rt) _3C2tr(—r) 3nn(s —ri)
4 3 5 2
-1
33,02\ (r3 — 3 30 .33
+ (r; Vlr;)(rz r,)+r1(r23 ) _ 28)
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Figure 2. Left panel: behaviour of the functions p(r), p,(r) and p,(r) for a representative
gravastar model with M = 1, r; = 1.8 and rp = 2.2. The function p, (r) is scaled by 0.1 for better
visualization but provides the dominant contribution in equation (21). Right panel: behaviour of
the mass function m (r) and the metric coefficient g, for the same solution shown in the left panel.

For the radial pressure p,, we follow the suggestion made in [11, 15] and use an EOS of the

type
p? o\’
pr(p) = (_) [a C(+a) (—> } . (29)
Lo Lo

Clearly, the EOS (29) cannot be derived from basic principles and serves here essentially as
a closure relation for the system of the equations. Yet, such an EOS can be constrained and
the parameter « is determined by demanding that the maximum sound speed d?p, /dp? = 0
coincides with the speed of light to rule out a superluminal behaviour. Because the sound

speed
d 2
¢, = p’=2<ﬁ) |:a—2(1+oz)<ﬁ>:| (30)
dp 00 P0o

has a maximum for p = po/a/2(1 +)), requiring ¢;(p) = 1 yields @ =~ 2.2135.
Despite being not particularly realistic, the EOS (29) has the advantage of being simple
and possessing the needed physical limits since p, — —p forr — ry and p, — Oforr — r,
(cf the right panel of figure 2 for a typical gravastar model).

Once the solutions for the energy density and the radial pressure are known, the tangential
pressure p, can be computed through the anisotropic TOV equation (21) as

m(r) +4mwrp,
r(l — 2m(r)/r):| '

r

3 3D

pi=pr+ p£+%(pr+p)[
The set of equations (22)—(31) fully determines our gravastar model which will have a finite
core described by the de Sitter metric, a crust of matter and an exterior described by the
Schwarzschild solution.

The behaviour of the energy density and that of the pressures is shown in the left panel
of figure 2 for a representative gravastar model with M = 1,7, = 1.8M and r, = 2.2M. The
right panel in the same figure, instead, shows the mass function and the metric coefficient g,,
for the same representative model.
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Figure 3. Left panel: behaviour of 1 —2m(r)/r for M = 1 and different values of r; and r, = 2.2.
Right panel: dependence on § of the minimum value of 1 — 2m(r)/r for gravastars with M = 1
and different values of r,. Note that for sufficiently large models, the minimum is always positive.

3.3. Conditions on the metric functions

While equations (22)—(31) allow us to construct gravastar models, additional constraints need
to be imposed to guarantee that the metric functions g;, and g, (and their first derivatives) have
the expected properties once our choice for the EOS p, (p) and p(r) is made. In particular, it
is not difficult to conclude that m(r) and m’(r) are continuous for the choice of p(r) made in
equation (23), so that using equation (17) g, and its first derivative are continuous throughout
the spacetime.

Similar considerations apply for the metric function g,,, for which we note that in obtaining
the solution for v by integrating equation (18) we must allow for a constant of integration vy
so that

dr + vg. (32)

"2m(r) +8mrip,
/0 r(r —2m(r))
The integration constant can then be determined through the condition that, at the surface of
the gravastar, g, (r2) = — (1 — 2M/r,), thus giving

oM
g = _ev(r) — _ (l _ _) el"(r)—l"(rz), (33)
@)
where
2 +87r3p,
F(r) = / 2m@r) +8wr7pr o 34
o r(r—=2m(r))

In this way g,, and g/, are continuous across r, and throughout the spacetime.

The requirement for the metric functions of being continuous with continuous first
derivatives is, in general, not sufficient to guarantee the existence of acceptable equilibrium
models. The three free parameters M, r| and ry, in fact, cannot be chosen arbitrarily but in
such a way that g, is always positive. In the left panel of figure 3, we show a typical example
of the behaviour of the function 1 — 2m(r)/r, where different lines refer to different values
of the inner radius r; while the outer one r, is held fixed. Clearly, an incorrect choice of r;
and r, leads to negative values for g, and thus to the unphysical appearance of horizons. The
right panel of figure 3 shows how the minimum value of the function 1 — 2m(r)/r depends on
the gravastar’s thickness § and that gravastars with large thicknesses can be built if the outer
radius 7, is chosen to be sufficiently large, that is, if the compactness u is sufficiently small.
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Figure 4. Limit on the compactness p of the gravastar with the thickness of the shell §. This figure
compares the results obtained for the MM model in the lower curve (see figure 1) and the results
obtained for our model in the upper curve. The inset shows the surface redshift of the gravastar, z,
as a function of the compactness w, with the thick black segment referring to the redshift range for
standard neutron stars.

As amore systematic characterization of this problem, we have constructed a large number
of gravastar models in which we have varied both the compactness p and the thickness
8. In this way we can extend the diagram presented in figure 1 for the existence of MM
models to our thick-shell gravastar model and define the region in the (§, u) parameter
space where equilibrium solutions can be found. In particular, by defining the parameter €
as the dimensionless distance of the gravastar’s surface from a Schwarzschild horizon, i.e.,
€ =ry/M — 2, we find that for € > €. ~ 0.3085, the function 1 — 2m(r)/r is always positive,
so that the thickness 6 can be as large as r, (i.e., r; can also be taken to be zero). On the
other hand, for € < €, there exists a critical thickness 6, = §.(r», M) above which equilibrium
models cannot be found because of the appearance of horizons. For € = €., we have found
that §, = 2.306 85M.

Figure 4 summarizes these results by showing the region of the parameter space (8, 1)
where equilibrium models can be calculated. Equilibrium solutions for our model can be
found in the region below the solid line, and 6/M = 2.306 85 is the boundary between the
two distinct behaviours discussed above. Indicated with a dashed line is the corresponding
threshold for the MM model (cf figure 1). Overall, the data in the figure reveal that our
thick-shell model obeys similar but less restrictive bounds than the MM model. Also shown
in the inset of figure 4 is the surface redshift of our gravastar model z = (1 —2u)~'/? — 1 as
a function of p. Clearly, no bound exists for this quantity and it is possible to build gravastars
with arbitrarily large surface redshift, i.e., z — oo.

4. Perturbation equations and numerical methods

In order to assess the stability of gravastars against axial perturbations we have followed the
standard procedure to study non-radial oscillations of stars [12, 13, 16, 17]. This approach
differs from that adopted in [11], where the analysis of the axial perturbations of a gravastar was
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made following the standard procedure for Schwarzschild black holes (see [18] for a review)
in order to study only the asymptotic properties of the potential and determine whether it has
compact support and is everywhere positive.

We note that the pressure anisotropy in the shell does not play an important role in the
study of axial tensor perturbations since these perturbations hardly excite fluid motions. As
a result, the standard analysis for stars with isotropic pressures can be used here. This is no
longer true for polar perturbations (for which the pressure anisotropy plays an important role)
and a study on radial perturbations of stars with anisotropic pressures was recently presented
in [19, 20].

As for Schwarschild black holes or spherical relativistic stars, the propagation of axial
perturbations in the gravastar spacetime is governed by the wave equation in a scattering
potential

2y Ay
—_ T v , 35
57 g = VOV (35)
where the ‘tortoise’ coordinate is defined as
r = / et 2 dr, (36)
0

and the scattering potential is given by the expression
Ve(r) = 6—3[5(5 + Dr +4nr(p — py) — 6m]. 37
e

The potential vanishes for 7 — oo and diverges as 1/r% forr — 0, as a result of the centrifugal
term proportional to £(¢ + 1)/r2. This is an important difference that the potential V,(r) has
with respect to its counterpart for a Schwarzschild black hole, where V,(r) — 0 at the horizon
r = 2M. Note also that e — 1 for r — o0 (the spacetime is the Schwarzschild one for
r > r») and, from equations (33) and (34), e" — (1 —2M/rp)e " forr — 0.

Unlike for black-hole spacetimes, both the tortoise coordinate and the scattering potential
are here not expressed through simple algebraic relations but need to be computed as solutions
of ordinary differential equations. We have done so using a fourth-order Runge—Kutta method
to obtain e” and r, from equations (33) and (36), respectively.

Introducing now the ‘light-cone’ (null) variables u = t — r, and v = t + r,, the wave
equation (35) can be written in the more compact form as

32y
—4——u,v) = Ve(r) ¥ (u, v), (38)
oudv
and thus be integrated numerically. In particular, we have used a variation of the method used
in [21] and in many other works, and derived a strict second-order accurate discretization
given by

16 — A2Vy
16 + A2Vy

where the indices N, S, E and W refer to the grid points definedas N = (u+ A, v+ A), S =
(u,v), E= W, v+A)and W = (u+ A, v). Equation (38) was then numerically integrated in
the (u, v) plane with the algorithm (39) using a triangular grid limited by the lines r, = r™in
and u = 0, where r™" is a small value which we have set as r™" = A /2. A schematic
representation of the null grid is presented in figure 5, where the black points represent the
grid points where the solution is known, while the red ones are those where the solution is to

be calculated.

Uy = (Ye +Yw) — s + O(AY), (39)
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Figure 5. Diagram of the numerical grid and the domain of interest. The black points represent
the grid points where the value of the field is known. The red points (online version only) represent
the grid points to be calculated.

In a linear regime the eigenfrequencies of the gravastar are not sensitive to the choice of
the initial data and thus we have modelled the initial perturbation with the simplest possible
choice, i.e. a Gaussian pulse centred around v, and with width o:

—u)?
Y=o, v) = exp |~ L2 (40)
202
where, to satisfy the regularity condition at the origin, we set
Y™ ) =Y (u = v — vy, v) =0, Vr. (41)

During the integration of equation (38) we extract the values of the field ¥ along a line
of constant r,, i.e., at the points (u = v — 2r,, v). We let the field evolve for large values of
t, until the transient is over and possible contributions of the higher overtones have died off.
Only then, when the signal consists of the fundamental mode (the slowest decaying mode)
and of its overtones, we can compute the real wg and imaginary part w; of its eigenfrequency
with a least-squares fit of the function

Yri(t) = A,ﬁxp(w?t) cos (a)ﬁt + ¢), (42)

where A and ¢ are constant coefficients and n represents the order of the mode and this
is not meant as an exponent. Once the properties of the fundamental mode are known,
the eigenfrequencies of the overtones are obtained using the method proposed in [22],
which consists of subtracting from the numerical solution the fitted function relative to the
fundamental mode n = 0. This reveals the n = 1 mode and the procedure can be iterated
for obtaining higher overtones, depending on their damping rate. Of course, very rapidly
decaying modes cannot be obtained by this procedure, but this approach is a very efficient and
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Figure 6. Left panel: the scattering potential V, () with £ = 2 of gravastar models with the same
compactness ;1 = 0.46 but increasing thickness of the shell. Right panel: the same as in the left
panel but gravastar models with the same shell thickness § = 0.2 but increasing compactness.

easy way to obtain the first overtones in a signal, which are those expected to be detected from
any astrophysical sources.

The numerical set-up described above has been first tested by performing a perturbation
analysis of Schwarzschild stars, i.e., uniform-density spherical stars, obtaining results that are
in very good agreement with the values reported in the literature [13, 23].

5. Results

Before discussing the results of the perturbative analysis, we note that the axial potential given
in (37) shows features which are similar to those that are well known in compact uniform-
density stars [13]. Quite generically, in fact, the potential exhibits at least a minimum and
a maximum, thus indicating the possibility of having modes that are trapped in the potential
well.

In figure 6, we present some typical examples of the scattering potential V,(r) when
£ = 2 and which, in general, depends on both the compactness w (as for relativistic stars) and
the thickness of the shell §. The left panel of figure 6, in particular, shows the potential of
gravastar models having the same compactness ;= 0.46 but increasing thickness of the shell,
while the right panel reports how the potential changes for gravastar models with the same
shell thickness § = 0.2 but increasing compactness. Clearly, in the exterior region V,(r) is
just the Schwarzschild potential for axial perturbations and the depth of the potential well in
the interior region increases with both u and §. Furthermore, given the chosen EOS (29), it is
also possible to select the parameters ry, r, and M such that V,(r) has two local minima very
close to each other. This is shown by the curve with i = 0.35 in the right panel of figure 6.

Following the procedure outlined in the previous section, we have integrated the
perturbation equation (38) for a large variety of gravastar models differing in mass,
compactness and thickness. Figure 7 reports some typical results and shows the time evolution
of the perturbations for a representative gravastar with M = 1 and radii r; = 1.96, r, = 2.26.
The left panel, in particular, reports the total solution v (f) as extracted at r, = 10 during
the initial stages of the scattering off the potential and allows one to discern the ‘beating’
caused by the superposition of overtones and other rapidly decaying components of the signal.
Interestingly, this beating of the fundamental mode with overtones becomes more pronounced
with increasing p and 8, underlining that the contribution of the overtones increases (i.e., the
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Figure 7. Left panel: the evolution of the axial perturbations ¥ (f) as extracted at r, = 10 and
during the initial stages of the scattering for a gravastar with M = 1,r; = 1.96 and r, = 2.26.
Right panel: the same as in the left panel but when the contribution of the fundamental mode n = 0
is distinguished from that of the overtones n = 1, 2 and 3.

Table 1. Some typical values obtained for the first overtones of the gravastars QNM
eigenfrequencies for axial perturbations with ¢ = 2. The gravastars have M = 1,r, = 2.26 and §
given in the table. We also show for comparison the equivalent frequencies for a Schwarzschild
black hole of the same mass and for a standard TOV star with uniform density with M = 1 and
R = 2.26M (note that for these stars one must have R/M > 2.25 [13]).

n=>0 n=1 n=2
Model wR —wy wR —wy wR —wy
§=0.30 0.3281 2481 x 1073 0.4865  6.264 x 1072 0.6534 1.590 x 107!
5§=0.35 0.2943  7.081 x 1074 0.4459  3.202 x 1072 0.5922 1.093 x 107!
8§ =0.40 0.2575 1.543 x 1074 0.4011 1.227 x 1072 0.5384  5.814 x 1072
Schwarzchild black hole ~ 0.3737  8.896 x 1072 0.3467  2.739 x 107! 0.3011  4.783 x 107!
Schwarzchild star 0.1090  1239x 107  0.1484 3950 x 10  0.1876  5.470 x 1077

modes decay more slowly) with both ;¢ and § (i.e., as the depth of the potential well increases).
A similar relation between the decay rate of the modes and the potential well is known for the
‘trapped modes’ of compact uniform-density stars [23].

The right panel of figure 7, on the other hand, shows the evolution of the perturbations
over a longer timescale and when the overtones have been ‘removed’ from the general signal
using the approach discussed in the previous section. Note that, for increasing n, the period
of the oscillations becomes smaller and the decaying timescale shorter. Using a least-squares
fit of the numerical data to the ansatz (42) we have computed the real and imaginary parts of
the QNM eigenfrequencies and the numerical results for some typical cases are presented in
table 1, where they are also compared to the corresponding values for a Schwarzschild black
hole of the same mass and a Schwarzschild star of the same compactness. The tabulated
values are all for an £ = 2 perturbation and refer to the fundamental mode and to the first
two overtones since the third one does not usually have a sufficiently clear slope to allow for
an accurate measurement. If necessary, an increase in spatial resolution would improve the
decay of higher overtones and allow for their computation.

Figure 8 is the most important in this paper and it reports the variation of the £ =2, n =0
QNM eigenfrequencies as a function of the parameters of the gravastar: u and §. The two
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Figure 8. Left panel: behaviour of the real part wg of the £ = 2, n = 0 QNM eigenfrequencies
as functions of § for different values of . Right panel: the same as the left panel but for the
imaginary part w; of the eigenfrequencies. In both panels, the thick horizontal lines represent the
corresponding frequencies for a Schwarzschild black hole.

panels separately report the behaviour of the real and imaginary parts and indicate that both
the period of the oscillations tg = 27 /wg and the damping time t; = 27 /|w;| increase
with increasing 6 and p. The two thick horizontal lines instead represent the corresponding
frequencies for a Schwarzschild black hole of the same mass, i.e., Mwg = 0.37367 and
Mw; = —0.08896 [16]. Clearly, while it is always possible to select the thickness and
compactness of the gravastar such that it will have the same oscillation frequency of a black
hole with the same mass (cf left panel), the corresponding decaying time will be different and
about one order of magnitude larger (cf right panel). Stated differently, a gravastar and a black
hole with the same mass cannot have the same complex QNM eigenfrequency when subject
to axial perturbations. This result, which we have presented here for the fundamental mode,
can be shown to be true also for the first two overtones.

6. Conclusions

Although the gravastar model of Mazur and Mottola [1] represents an ingenious solution of
the Einstein equations in spherical symmetry, it has also challenged one of the most cherished
foundations of modern astrophysics, i.e., the existence of astrophysical black holes. Gravastars,
in fact, can be constructed to be arbitrarily compact, with an external surface which is only
infinitesimally larger than the horizon of a black hole with the same mass. As a result, the
electromagnetic emission from the surface of a gravastar will suffer from essentially the same
gravitational redshift as that of a black hole, thus making it difficult, if possible at all, to
distinguish the two when only electromagnetic radiation is available.

Without entering the relevant debate about the physical processes that would lead to the
formation of a gravastar or the astronomical evidence in support of their existence [24], we
have here considered two more fundamental questions: is a gravastar stable against generic
perturbations? If so, can an external observer distinguish it from a black hole? The short
answers to these questions are that a gravastar is stable to axial perturbations and indeed it is
possible to distinguish it from a black hole if gravitational radiation is produced.

To reach the first of these conclusions we have constructed a general class of gravastar
models that extends the one proposed by Mazur and Mottola by replacing the infinitesimal
shell of matter with one having finite size § and variable compactness . These equilibrium
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solutions of the Einstein equations have then been analysed when subject to axial perturbations
and the eigenfrequencies of the corresponding QNMs have been computed explicitly. For all
of the cases considered, the imaginary part of the eigenfrequencies has always been found to be
negative, thus indicating the stability of these objects with respect to this type of perturbations.

To reach the second conclusion, instead, we have shown that the QNM spectra of a
gravastar and that of a black hole of the same mass differ considerably. In particular, while it
is always possible to select § and p such that the gravastar has the same oscillation frequency
as that of a black hole with the same mass, the corresponding decaying time will be different.
As a result, the gravitational radiation produced by an oscillating gravastar can be used to
distinguish it, beyond dispute, from a black hole of the same mass.

We plan to extend our stability analysis also to polar perturbations and determine whether
or not these intriguing objects possess modes of oscillation that do not have a counterpart in
compact relativistic stars and may therefore hint to new solutions of the Einstein equations.
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