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Abstract. Gravastars have been recently proposed as potential alt@® to explain the
astrophysical phenomenology traditionally associateblack holes, raising the question of
whether the two objects can be distinguished at all. Leawdsigle the debate about the
processes that would lead to the formation of a gravastartledastronomical evidence
in their support, we here address two basic questions: Isnaastar stable against generic
perturbations? If stable, can an observer distinguistoihfa black hole of the same mass? To
answer these questions we construct a general class obtaesand determine the conditions
they must satisfy in order to exist as equilibrium solutiofishe Einstein equations. For such
models we perform a systematic stability analysis agaixisi-gerturbations, computing the
real and imaginary parts of the eigenfrequencies. Overalffind that gravastars are stable to
axial perturbations, but also that their quasi-normal nsatiffer from those of a black hole of
the same mass and thus can be used to discern, beyond dassptaeastar from a black hole.
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1. Introduction

The gravastar model was proposed by Mazur and Mottola [1]resdattracted attention as
a possible alternative to black holes. Within this modelfacot, a massive star in its late
stages could end its life as a gravastar, namely a very cdrmpgct whose radius would be
very close to the Schwarzschild radius (indeed arbitrafihge to it) without having an event
horizon or a central singularity. For this to happen, a phasesition is expected to take place
at or near the location where the event horizon would have bmened otherwise [2]. The
interior of what would have been the black hole is replaceé Isyitably chosen portion of
de-Sitter spacetime with an equation of state (E@S) —p, surrounded by a thin shell of
ultra-stiff matter with EOS = +p, and which is then suitably matched to a Schwarzschild
vacuum. In practice, the Mazur-Mottola gravastar modeleafter the MM model 1], is a
spherically symmetric and static five-layer solution of Eiastein equations, including two
infinitesimally thin shells needed by the junction condis®f the metric[B].

For as much as it is ingenious, the gravastar model alsoecttabk a building block in
modern astronomy, namely the existence of astrophysieakbioles. In spite of the many
observational evidences in favour of black holes, it magadibe fundamentally impossible
to give an irrefutable observational proof for the existewt a black-hole horizon if only
electromagnetic radiation is received [4] and thus tellrapablack hole from a gravastar,
if the latter existed. Such a challenge has obviously dttha lot of attention and several
related models have been recently proposed in the attengubwiding answers to two basic
questions: Once produced, is a gravastar stable to geratigrpations? If stable, can an
external obverver distinguish a gravastar from a black bbtee same mass?

In ref. [1] it was argued that the MM solution is thermodynaatiy stable, but other
stability analysis are not so easy to perform because of thaetis structure. Visser and
Wiltshire [5] have analyzed the radial stability of a sinfiglil model with three layers and the
stability was shown to hold for a number of configurations.isTétability was generalized
by Carter[[6] for gravastar models with different exterio®ther possibilities for the interior
solution have also been considered: Béital [7] replaced the de-Sitter interior by a Born-
Infeld phantom, while Lobo replaced the interior solution dne that is governed by the
dark-energy EOS[[8], and Lobo and Arellano matched intenionlinear electrodynamic
geometries to the Schwarzschild exteridr [9].

To remove in part the complications produced by the infimtes shells in the MM
model, Cattoert al [10] have found that fluid gravastars can be built if the flsidonfined
to a given layer and has there anisotropic pressures. Tiee ésisentially replace the surface
tension which was introduced in the original model MM modgtire matching of the metric
in the infinitesimally thin shells. Although anisotropicdawith rather arbitrary equations of
state, these pressures have the appealing property of beiigpuous and thus of allowing
one to build equilibrium models without the presence of itdisimally thin shells and thus
look more seriously into the issue of stability. Indeed, atep to go beyond the construction
of equilibrium models, DeBenedictét al [11] made a first attempt to investigate the stability
of gravastars through a qualitative analysis of axial pedtions.

In order to provide more definitive answers to the questiomntioned above, we
have constructed a general class of fluid gravastars witte fghiell thickness and variable
compactness. While this class is similar and has been étspir the one proposed in]10,11],
it also differs in two important aspects. Firstly, while wis@consider a fluid gravastar with
anisotropic pressures, we try and reproduce the most sdaiares of the original MM model
by creating an internal and an external region which repredwde-Sitter and a Schwarzschild
spacetime at finite radii and not only asymptotically. Seltprfor these models we determine
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precise bounds for the properties of the metric functiortstaa compactness of the gravastar
that yield equilibrium solutions, thus restricting coresidbly the class of possible solutions.

Using these models we have carried out a systematic inegistigof the stability analysis
of gravastars against axial-perturbatidns [12, 13], thasreling the results discussed(in[14]
to our gravastar model and computing explicit eigenfregie=n In this way we were able
to conclude that: a gravastéy stableto axial perturbations and indeédis possibleto
distinguish it from a black hole if gravitational radiatios produced. More specifically,
we have found that for all the models considered the imaygipart of the eigenfrequencies
is always negative, thus indicating stability against ¢hperturbations. Furthermore, while
it is always possible to build a gravastar with given compas$ and thickness such that
it will have the same oscillation frequency as that of a blacke with the same mass,
the corresponding decaying time will be different. Our iessthus provide a way of
distinguishing observationally and beyond dispute a giardrom a black hole.

The paper is organized as follows: in section 2 we review tlannfeatures of the
original MM model and obtain numerical solutions which eleabs to impose bounds
for the parameters of the MM solution. In section 3, instead, present our model for
a fluid gravastar with anisotropic pressures and discusdolmds derived from general
conditions imposed by the EOS and the properties of the enteinictions. In Section 4 we
outline the perturbation equations and the numerical nustleonployed in the study of axial
perturbations of our model. In section 5 we discuss the tesbitained for the QNMs and in
section 6 we present our final conclusions.

2. The MM gravastar model

We first present a quick review on the main features of theimalgMM model [1] for they
will be used in further developments in this paper and hgjttlthat precise bounds exist for
the existence of solutions even for the simplest gravastatem
In general, we consider a static and spherically symmeirécdlement
dr?
ds? = —f(r)dt? + —— +r2dQ? 1

= —f ) + s+ A, (1)
and the Einstein equations must be solved for a perfect fluidsd, such that there are three
different regions with the three different equations ofesta

|. Interior: 0<r<r,, p=-p,
Il. Shell: r<r<ry, p=-+4p, )

Ill. Exterior: ro <1, p=p=0.

In region I, p is a constant given by, = 3HZ /8w, and the metric is that of a de-Sitter
spacetime, so

f(r)=Ch(r)=C(1 — H3r?), 0<r<r;. 3)
whereC'is an integration constant, whose value will be determiaésf Icf. eq. [8)].
In region Il, a new dimensionless variabigs defined agy = 87r2p, in order to obtain
the following set of equations

dr__dh @

r 1l—w-—h’
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dh 1—w—~h\ dw

T__<1+w—3h)?’ ®)
w—;f:const. (6)
r

An analytical solution can be obtained in the case of a varyghell,i.e, for r; — ry. Itis
easy to see thdtl(4) is satisfied if we take= 1 — m/r anddm(r) = 2dm(r) = 8rpr?dr? =
wdr. Therefore, in the thin-shell limit{{4) can be integrated¢/ield

(1 + w)?
e )

hEl—@:
r

wheree is an integration constant. From the continuity of the neetdefficientsf andh at
r1 andry, it can be shown that the integration constants, M andH, are given in terms of
r1, T2, w1 andws by the relations

<1, (7)

r w 1 1\ ¢
e:—ln—2<1n—2——+—> : ®)
T1 w1 wag w1
o 1+U)2 2
c—(1+m), (©)
2
M="2 [1 it wa)” ] =m(rs), (10)
2 wao
2
= {1 _ 4w } (11)
1 w1

Finally, in region Il and because of Birkhoff's theoremethpacetime is described by
the Schwarzschild metric,

fr=nm=1-2L n<r 12

Clearly, region Il is the most interesting one from a phyisant of view since it is
where a non-trivial model for the gravastar can be specifiadhe case of a “thick shell”,
that is away from the thin-shell limit, the gravastar salatin region Il can be obtained in
the same way as for ordinary spherical stars, namely thrtluglmumerical solution of the
Tolman-Oppenheimer-Volkoff (TOV) equations fofr) = p(r) andm(r). We recall that in
the MM modelp(r) andp(r) are discontinuous in; andry and thatn(r;) must, of course,
be less tham, /2

By specifyingry, r2, and thus the shell thicknegs= r, — r1, as well as the initial
conditions for the pressurg(r1) and massmn(ry), the numerical solution of the TOV
equations provides:(r) and p(r) for i < r < ry. A systematic analysis has revealed
that a limit exists on the compactngss= M /r, of the gravastar and in particular that, for
givenry, ro andm(ry) very close to the limitr; /2, there exists a value fq#(r1) which
provides the largest/. In other words, it is not possible to achieve arbitrary ealfor .

On the other hand, if we fix, and decrease so as to increase the thickness of the shell, we
must also decrease(r; ), and we have verified that the maximum value obtained{calso
decreases. Overall, therefore, each shell thicktiedso selects a maximum compactness of
the gravastar, above which no solution of the TOV equations can be found.

All of this is shown in figurd Il which reports the space of paggars(d, 1) where
equilibrium solutions can be found. The solid curve, in jgatar, is computed numerically
and distinguishes the region where equilibrium models e@fohnd (.e. the region below
the curve), from the region where no solutions can be foured the region above the
curve). Stated differently, for any given shell thicknegsthe solid curve marks the
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maximum compactness.€., the largest value ofi) for which gravastar models can be
built. Interestingly, therefore, it is not possible to lolé very compact gravastar with a
very thick matter shell. Rather, gravastars have eithgelamompactness and thin shells,
or small compactness and thicker shells, as shown in figurghis figure, and its inset in
particular, also illustrates that gravastars can be buih @rbitrarily large compactnesise.,
with ¢ — 1/2 and thus with the outer radius being only infinitesimally larger than the
corresponding Schwarzschild radius. It is exactly thigpprty that makes gravastars hard to
distinguish from a black hole if only electromagnetic rditia is available.
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Figure 1. Limits in the compactness and thickness of a gravastar iMttfienodel. The curve
shows the maximum compactness for a given thickiesisthe shell, that is, in the light gray
area below the curve we have the possible solutions, whitesiarea above the curve solutions
are no longer possible. The dark gray area highlights thiedygompactnesses for neutron
stars. The inset shows a comparison between the numericaiosoof the TOV equations
with the analytical solution in the thin-shell limit.

3. Thegravastar model with anisotropic pressures

3.1. The field equations

We now discuss our suggestion for a fluid gravastar model iiciwive follow the spirit of
the original MM model and consider a spacetime consistinthade different regions with
the internal and external ones reproducing a de-Sitter @whaarzschild spacetime at finite
radii, r; andrs, respectively. In addition, we follow the suggestion maaddli0] and use
a thick shell with a continuous profile of anisotropic pressuto avoid the introduction of
infinitesimally thin shells of matter as demanded by the MYl [lVe start therefore with a
metric of the form

ds? = —e"Ma? + N dr? + 12402 , (13)

and a fluid stress-energy tensot, = diag—p, p,, p:, p:], wherep, andp; are the radial and
tangential pressures, respectively. The Einstein fieldgous for this spacetime geometry
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and matter distribution are

(N1 1

e’\<7—ﬁ>+r—2:87rp, (14)
A 1 1

e )\<7+ﬁ>—ﬁ:8ﬂ'pr, (15)
_ l/// )\/l// V/Q V/ _ )\/

e)‘<7— Tt Tt >:87rpt. (16)

It is now convenient to transform the above equations intarenfwhere the hydrodynamical
properties of the system are more evident and that redudhe fBOV equations for systems
with isotropic pressure.e.,

e =1 2m0). (17)
T
, 2m(r) + 87rip,
or(r—2m(r)) (18)
v 2(ps — pr
p’r=—(p+pr)5+M, (19)
T
where
m(r) = / 4rpdr . (20)
0
Combining [I8) and{19), we obtain the anisotropic TOV eiunmt
m(r) + 4nrp,.  2(p: — pr
s = —(p+ p) 2 Pr . 2o pr) (21)

r(r —2m(r)) r ’
which is reminescent of the Newtonian hydrostatic-eqtiilim equation and where the last
term is obviously zero in the case of isotropic pressuresp; = p,..

3.2. Equation of state

In order to adopt the model suggested[inl [10], and still neamnthe simple structure of the
MM model, we make the following choices for our density fuanty(r)

p(0) = p(r1) = po, p(rz) =0, pl(ri)=p'(r2) =0.  (22)
A simple way to satisfy the above conditions is to consideutsicdependence in

00 , 0<r<mr region I.
p(r)=1< ar* +br*+er+d, rm<r<ry regionll. | (23)
0, ro <7 region Ill.
with the coefficients, b, ¢, d given by
2po
o= ——, 24
(T‘Q — T1)3 ( )
3
p= S0l tr) (25)
(ra —r1)
6,007’17"2
c= "= 26
(T‘Q — T1)3 ( )

po(rs — 3rir3)

d =
(rg —71)?

(27)
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To obtain the density in the terms of the total masg,) = M, we write

(ra — 1) [(7‘3 —19)  3(ra+r)(3 —r}) | 3rira(ry — 1)

pQZM - + +
47

3 5 2

—1
(3~ 33§ %) rlra—n)?

3 3
For the radial pressure., we follow the suggestion made in refs. [15] 11] and use an &0S

the type
nio - (2) [a ~(1+a) (pﬁ)] | (29)

Clearly, the EOS[(29) cannot be derived from basic prinsijpled serves here essentially as
a closure relation for the system of the equations. Yet, sucBOS can be constrained and
the parameter is determined by demanding that the maximum sound spéed/dp? = 0

coincides with the speed of light to rule out a superlumiretidviour. Because the sound

speed
dp, ( P )
Cs = =2 —
dp Po

has a maximum fop = po/a/(2(1 + «)), requiringes(p) = 1 yields o ~ 2.2135.
Despite being not particularly realistic, the EQS](29) hesadvantage of being simple and
of possessing the needed physical limits since~ —p for » — r; andp,, — 0 forr — ro
(cf. right panel of figur&R for a typical gravastar model).

+

(28)

a—2(1+a) (ﬁﬂ , (30)

Po
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Figure 2. Left panel: Behaviour of the functiong(r), p,-(r) andp¢(r) for a representative
gravastar model witd/ = 1, r; = 1.8 andry = 2.2. The functionp () is scaled by 0.1 for
better visualization but provides the dominant contritiiin eq. [Z1) Right panel:Behaviour
of the mass functiomn(r) and of the metric coefficient, for the same solution shown in the
left panel.

Once the solutions for the energy density and the radialspresare known, the
tangential pressung can be computed through the anisotropic TOV equalich (21) as

r, 1 m(r) + 4mrp,
3P+ 5 et p) L«a —2m(r)/r)|
The set of equation§ (22)—(31) fully determines our grarastodel which will have a finite

core described by the de-Sitter metric, a crust of matter amexterior described by the
Schwarzschild solution.

Pt =pr + (31)
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The behaviour of the energy density and of the pressureisrsin the left panel of
figure[2 for a representative gravastar model with= 1, r; = 1.8 M andry = 2.2 M. The
right panel on the same figure, instead, shows the mass durantid the metric coefficient. .
for the same representative model.

3.3. Conditions on the metric functions

While equations{22)E(31) allow to construct gravastar etedadditional constrains need to
be imposed to guarantee that the metric functigpandg,.,. (and their first derivatives) have
the expected properties once our choice for the lQg) andp(r) is made. In particular, it
is not difficult to conclude that:(r) andm/’(r) are continuous for the choice pfr) made in
equation[(2B), so that using equatibnl(%y) and its first derivative are continuous throughout
the spacetime.

Similar considerations apply for the metric functigp, for which we note that in
obtaining the solution for by integrating equatior (18) we must allow for a constant of
integrationy so that

B /T 2m(r) + 87rip,
o r(r—2m(r))
The integration constant can then be determined througbahdition that, at the surface of
the gravastam,;(r2) = — (1 — 2M /r2), thus giving

dr+uvyp. (32)

g = —e"") = — <1 — ﬂ) el =T(r2) (33)
T2
where
" 2m(r) + 87rip,
I'(r) = — —dr. 34
0= 59

In this wayg:: andg;, are continuous across and throughout the spacetime.
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Figure 3. Left panel: Behaviour ofl — 2m(r)/r for M = 1 and different values of; and
ro = 2.2. Right panel:Dependence ofiof the minimum value of —2m/(r) /r for gravastars
with M = 1 and different values afz. Note that for sufficiently large models, the minimum
is always positive.

The requirement for the metric functions of being continuauith continuous first
derivatives is, in general, not sufficient to guarantee ttistence of acceptable equilibrium
models. The three free paramet@rs r; andr,, in fact, cannot be chosen arbitrarily but in
such a way thag,.,. is always positive. In the left panel of figurk 3 we show a tgpexample
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of the behaviour of the functioh — 2m(r)/r, where different lines refer to different values
of the inner radiug; while the outer ones is held fixed. Clearly, an incorrect choice qf
andr, leads to negative values fgf, and thus to the unphysical appearance of horizons. The
right panel of figur€l3 shows how the minimum value of the fiorct — 2m(r)/r depends on

the gravastar’s thicknegsand that gravastars with large thicknesses can be buileibther
radiusr, is chosen to be sufficiently large, that is, if the compacipes sufficiently small.

As a more systematic characterization of this problem, wee t@nstructed a large
number of gravastar models in which we have varied both thgpaatnesg and the thickness
d. In this way we can extend the diagram presented in figlire threxistence of MM
models to our thick-shell gravastar model and define theoregi the (9, 1) parameter
space where equilibrium solutions can be found. In pariculy definining the parameter
e as the dimensionless distance of the gravastar's surface & Schwarzschild horizon,
i.e.,e = ro/M — 2, we find that fore > €. ~ 0.3085, the functionl — 2m(r)/r is always
positive, so that the thicknesscan be as large as (i.e., r; can also be taken to be zero).
On the other hand, far < ¢, there exists a critical thickness = J.(r2, M) above which
equilibrium models cannot be found because of the appeai@iitorizons. Foe = ¢., we
have found that, = 2.30685 M .
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0.45 i | 8IM = 2.30685 1
04t } 1
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Figure 4. Limit on the compactnesg of the gravastar with the thickness of the sléellThis
figure compares the results obtained for the MM model in thestacurve (see figurlel 1) and
the results obtained for our model in the upper curve.

Figure[4 summarizes these results by showing the regioneopdinameter spade, 1)
where equilibrium models can be calculated. Equilibriurusons for our model can be
found in the region below the solid line, andM = 2.30685 is the boundary between the
two distinct behaviors discussed above. Indicated with shed line is the corresponding
threshold for the MM modelcf. figure[1). Overall, the data in the figure reveals that our
thick-shell model obeys similar but less restrictive bagitithn the MM model.



How to tell a gravastar from a black hole 10
4. Perturbation equations and numerical methods

In order to assess the stability of gravastars against pgialirbations we have followed the
standard procedure to study non-radial oscillations akdte2,[ 13/ 16| 17]. This approach
differs from the one adopted in ref._J11], where the analgsithe axial perturbations of a
gravastar was made following the standard procedure fov&dschild black holes (sele [18]
for a review) in order to study only the asymptotic propertié the potential and determine
whether it has compact support and is everywhere positive.

We note that the pressure anisotropy in the shell does ngtgolamportant role in the
study of axial tensor perturbations since these pertwhbsathardly excite fluid motions. As
a result, the standard analysis for stars with isotropisqurees can be used here. This is no
longer true for polar perturbations (for which the pressanisotropy plays an important role)
and a study on radial perturbations of stars with anisotrppéssures was recently presented
in [19,120].

As for Schwarschild black holes or spherical relativistiars, the propagation of axial
perturbations in the gravastar spacetime is governed byvdve equation in a scattering
potential

0%y 0%
5—7‘% - W = Ve(?“)?% (35)
where the “tortoise” coordinate is here defined as
re = / P12y (36)
0

and the scattering potential is given by the expression

v

w@nggww+1y+4m3@_pg_6m}. (37)

The potential vanishes fer— oo and diverges as/r? for» — 0, as a result of the centrifugal
term proportional t&(¢ + 1) /r2. This is an important difference that the potentia{r) has
with respect to its counterpart for a Schwarzschild bladke hehereV, (r) — 0 at the horizon

r = 2 M. Note also that” — 1 for » — oo (the spacetime is the Schwarzschild one for
r > r5) and, from eqs[(33) anf(B4, — (1 — 2M/ry)e~1(2) forr — 0.

Unlike for black-hole spacetimes, both the tortoise camaitk and the scattering potential
are here not expressed through simple algebraic relatidnmseled to be computed as solutions
of ordinary differential equations. We have done so usinthadder Runge-Kutta method to
obtaine” andr, from equations(33) an@ (B6), respectively.

Introducing now the “light-cone” (null) variablas = t — r, andv = t + r., the wave
equation[(3b) can be written in the more compact form as

2
S ,0) = Vil (s v). (39
and thus be integrated numerically. In particular, we haesla variation of the method used
in [21] and in many other works, and derived a strict secorttboaccurate discretization
given by

—4

16 — A2V,
Yy = Yy + ¢w)m

where the indicesV, S, E andWW refer to the grid-points defined 86 = (u + A,v + A),
S = (u,v), E = (u,v+ A),andW = (u+ A,v). Equation[(3B) was then numerically
integrated in thgu, v) plane with the algorithm{39) using a triangular grid linditby the

— e + O(AY), (39)
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linesr, = ™" andu = 0, wherer™™ is a small value which we have setids™ = A/2.

A schematic representation of the null grid is presentedgn3i where the black points
represent the grid points where the solution is known, wihiéered ones are those where the
solution is to be calculated.

7 gr,min s E v

2r min |
-2r

Figure5. Diagram of the numerical grid and the domain of interest. Alaek points represent
the grid points where the value of the field is known. The reiditsaepresent the grid points
to be calculated.

In a linear regime the eigenfrequencies of the gravastanatrsensitive to the choice of
the initial data and thus we have modelled the initial pérdtion with the simplest possible
choice,i.e. a Gaussian pulse centred aroundnd with witdtho

_ 2
b = wo,0) = exp |-l (40)
202
where, to satisfy the regularity condition at the origin, se¢
() = (u = v —vg,v) =0, vt (41)

During the integration of eq[{B8) we extract the values &f field ¢/ along a line of
constantr,, i.e, at the pointu = v — 2r,,v). We let the field evolve for large values of
t, until the transient is over and possible contributionshef higher overtones have died off.
Only then, when the signal consists of the fundamental mtideglowest decaying mode)
and of its overtones, we can compute the tgabnd imaginary parb, of its eigenfrequency
with a least-squares fit of the function

Vyit(t) = Apexp(w]'t) cos(wit + @) , (42)

where A and ¢ are constant coefficients andrepresents the order of the mode and this
is not meant as an exponent. Once the properties of the fusrtaimmode are known,
the eigenfrequencies of the overtones are obtained usiagmithod proposed i [22],
which consists of subtracting from the numerical solutiba fitted function relative to the
fundamental mode = 0. This reveals thes = 1 mode and the procedure can be iterated
for obtaining higher overtones, depending on their dampatg. Of course, very rapidly
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decaying modes cannot be obtained by this procedure, lmuafiproach is a very efficient
and easy way to obtain the first overtones in a signal, whiehtlze ones expected to be
detected from any astrophysical sources.

The numerical setup described above has been first testeerfoyming a perturbation
analysis of Schwarzschild stars., uniform-density spherical stars, obtaining results #uat
in very good agreement with the values reported in the liteeg[13/23].

5. Results

Before discussing the results of the perturbative analy@sote that the axial potential given
in (37) shows features which are similar to those that ard-kvedwn in compact uniform-
density stars[[13]. Quite generically, in fact, the potain¢ixhibits at least a minimum and
a maximum, thus indicating the possibility of having modwat tare trapped in the potential
well.

In figure[® we present some typical examples of the scattquatgntialV;(r) when
¢ = 2 and which, in general, depends on both the compacinéss for relativistic stars) and
on the thickness of the shell The left panel of figurgl6, in particular, shows the poténtia
of gravastar models having the same compactpess0.46 but increasing thickness of the
shell, while the right panel reports how the potential clemnfpr gravastar models with the
same shell-thicknegs= 0.2 but increasing compactness. Clearly, in the exterior rebior)
is just the Schwarzschild potential for axial perturbasiand the depth of the potential well in
the interior region increases with bqthands. Furthermore, given the chosen EQS](29), it is
also possible to select the parametgrs-o, andM such thal/;(r) has two local minima very
close to each other. This is shown by the curve witk 0.35 in the right panel of figurgl6.

0.2 0.2

0.15 0.15

V(r)

0.1

0.05 0.05

Figure 6. Left panel: The scattering potentidly (r) with £ = 2 of gravastar models with the
same compactnegs = 0.46 but increasing thickness of the sheRight panel: The same as
in the left panel but gravastar models with the same shiglktiessd = 0.2 but increasing

compactness.

Following the procedure outlined in the previous Sectiorg kave integrated the
perturbation equation[ (88) for a large variety of gravastawdels differing in mass,
compactness and thickness. Fidure 7 reports some typstatsend shows the time evolution
of the perturbations for a representative gravastar With- 1, and radiir; = 1.96, o = 2.26.
The left panel, in particular, reports the total solutiv(t) as extracted at. = 10 during
the initial stages of the scattering off the potential arldved one to discern the “beating”
caused by the superposition of overtones and other rapéisydng components of the signal.
Interestingly, this beating of the fundamental mode withreenes becomes more pronounced
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Table 1. Some typical values obtained for the the first overtones efgtavastars QNM
eigenfrequencies for axial perturbations with= 2. The gravastars havel = 1, ro = 2.26
and ¢ given in the Table. We also show for comparison the equivdieaguencies for a
Schwarzschild black hole of the same mass and for a stand@vdstar with uniform density
with M = 1 andR = 2.26 M (note that for these stars one must ha&@\/ > 2.25 [13]).

n=0 n=1 n=2
model wp —w,; Wp —w,; Wp —w;
6 =0.30 0.3281 2.481e-3 0.4865 6.264e-2 0.6534  1.590e-1
6=0.35 0.2943 7.081e4  0.4459 3.202e-2 0.5922 1.093e-1
6 =0.40 0.2575 1.543e4  0.4011 1.227e-2 0.5384 5.814e-2
Schwarzchild black hole 0.3737  8.896e-2  0.3467 2.739e-1  0.3011 4.783e-1
Schwarzchild star 0.1090 1.239e9 0.1484 3.950e-8 0.1876  5.470e-7

with increasingu andd, underlining that the contribution of the overtones inse=a(.e., the
modes decay more slowly) with bofhand (i.e, as the the depth of the potential well
increases). A similar relation between the decay rate ofitbhdes and the potential well is
known for the “trapped modes” of compact uniform-densigrs{23].
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Figure 7. Left panel: Evolution of the axial perturbationg(t) as extracted at. = 10

and during the initial stages of the scattering for a grarasith M/ = 1, r; = 1.96 and

ro = 2.26. Right panel: The same as in the left panel but when the contribution of the
fundamental mode = 0, is distinguished from that of the overtones= 1, 2 and 3.

The right panel of figurg]l7, on the other hand, shows the eeolwif the perturbations
over a longer timescale and when the overtones have beewVesthfrom the general signal
using the approach discussed in the previous Section. Natgfor increasing:, the period
of the oscillations becomes smaller, and the decaying tialeshorter. Using a least-squares
fit of the numerical data to thensatz{42) we have computed the real and imaginary parts of
the QNM eigenfrequencies and the numerical results for dypieal cases are presented in
table1, where they are also compared to the correspondings/for a Schwarzschild black
hole of the same mass and a Schwarzschild star of the sameactmaps. The tabulated
values are all for af = 2 perturbation and refer to the fundamental mode and to thee firs
two overtones since the third one does not usually have aiguffly clear slope to allow for
an accurate measurement. If necessary, an increase ialgpatlution would improve the
decay of higher overtones and allow for their computation.

Figure[® is the mostimportant of this paper and it reportséhnition of the = 2,n = 0
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QNM eigenfrequencies as a function of the parameters of thaeagtar:i andé. The two
panels report separately the behaviour of the real and maagparts and indicate that both
the period of the oscillations, = 27 /w,, and the the damping time = 27 /|w,| increase
with increasingd and . The two thick horizontal lines represent instead the smoading
frequencies for a Schwarzschild black hole of the same niass)Mw, = 0.37367 and
Mw, = —0.08396 [16]. Clearly, while it is always possible to select the riess and
compactness of the gravastar such that it will have the sati#adion frequency of a black
hole with the same massf(, left panel), the corresponding decaying time will be dfet
and about one order of magnitude largef, (right panel). Stated differently, a gravastar and
a black hole with the same mass cannot have the same compleke@énfrequency when
subject to axial perturbations. This result, which we haseelpresented for the fundamental
mode, can be shown to be true also for the first two overtones.

: : : : : ‘ : 0 :
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Figure 8. Left panel: Behaviour of the real parw, of the/ = 2, n = 0 QNM
eigenfrequencies as functions &ffor different values ofu. Right panel: The same as in
the left panel but for the imaginary past, of the eigenfrequencies. In both panels, the thick
horizontal lines represent the corresponding frequerfoies Schwarzschild black hole.

6. Conclusions

Although the gravastar model of Mazur and Mottdla [1] reprégs an ingenious solution
of the Einstein equations in spherical symmetry, it has alsallenged one of the most
cherished foundations of modern astrophysies;the existence of astrophysical black holes.
Gravastars, in fact, can be constructed to be arbitrarimparct, with an external surface
which is only infinitesimally larger than the horizon of a thehole with the same mass. As a
result, the electromagnetic emission from the surface ahwagtar will suffer of essentially
the same gravitational redshift as that of a black hole, thaking it difficult, if possible at
all, to distinguish the two when only electromagnetic réidiais available.

Without entering the relevant debate about the physicalgsges that would lead to the
formation of a gravastar or the astronomical evidence irpstiof their existence [24], we
have here considered two more fundamental questions: lavagfaistableagainst generic
perturbations? If so, can an external obsewistinguishit from a black hole? The short
answers to these questions are that: a gravissséableto axial perturbations and indeéds
possibleto distinguish it from a black hole if gravitational radiatiis produced.

To reach the first of these conclusions we have constructecereergl class of
gravastar models that extends the one proposed by Mazur attbI® by replacing the
infinitesimal shell of matter with one having finite sizeind variable compactnegs These



How to tell a gravastar from a black hole 15

equilibrium solutions of the Einstein equations have thearbanalyzed when subject to axial
perturbations and the eigenfrequencies of the correspgn@NMs have been computed
explicitely. For all of the cases considered, the imaginzast of the eigenfrequencies has
always been found to be negative, thus indicating the dabil these objects with respect to
this type of perturbations.

To reach the second conclusion, instead, we have shownhba®NM spectra of a
gravastar and that of a black hole of the same mass diffeidenmably. In particular, while it
is always possible to seleg¢tand;: such that the gravastar has the same oscillation frequency
as that of a black hole with the same mass, the corresponduaythg time will be different.
As a result, the gravitational radiation produced by anlladitig gravastar can be used to
distinguish it, beyond dispute, from a black hole of the samass.

We plan to extend our stability analysis also to polar pédtions and determine whether
or not these intriguing objects possess modes of oscitldtiat do not have a counterpart in
compact relativistic stars and may therefore hint to newtsmis of the Einstein equations.
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