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Abstract. Gravastars have been recently proposed as potential alternatives to explain the
astrophysical phenomenology traditionally associated toblack holes, raising the question of
whether the two objects can be distinguished at all. Leavingaside the debate about the
processes that would lead to the formation of a gravastar andthe astronomical evidence
in their support, we here address two basic questions: Is a gravastar stable against generic
perturbations? If stable, can an observer distinguish it from a black hole of the same mass? To
answer these questions we construct a general class of gravastars and determine the conditions
they must satisfy in order to exist as equilibrium solutionsof the Einstein equations. For such
models we perform a systematic stability analysis against axial-perturbations, computing the
real and imaginary parts of the eigenfrequencies. Overall,we find that gravastars are stable to
axial perturbations, but also that their quasi-normal modes differ from those of a black hole of
the same mass and thus can be used to discern, beyond dispute,a gravastar from a black hole.

PACS numbers: 04.40.Dg, 04.30.Nk, 04.25.Nx

http://arxiv.org/abs/0706.1513v2


How to tell a gravastar from a black hole 2

1. Introduction

The gravastar model was proposed by Mazur and Mottola [1] andhas attracted attention as
a possible alternative to black holes. Within this model, infact, a massive star in its late
stages could end its life as a gravastar, namely a very compact object whose radius would be
very close to the Schwarzschild radius (indeed arbitrarilyclose to it) without having an event
horizon or a central singularity. For this to happen, a phasetransition is expected to take place
at or near the location where the event horizon would have been formed otherwise [2]. The
interior of what would have been the black hole is replaced bya suitably chosen portion of
de-Sitter spacetime with an equation of state (EOS)p = −ρ, surrounded by a thin shell of
ultra-stiff matter with EOSp = +ρ, and which is then suitably matched to a Schwarzschild
vacuum. In practice, the Mazur-Mottola gravastar model, hereafter the MM model [1], is a
spherically symmetric and static five-layer solution of theEinstein equations, including two
infinitesimally thin shells needed by the junction conditions of the metric [3].

For as much as it is ingenious, the gravastar model also challenges a building block in
modern astronomy, namely the existence of astrophysical black holes. In spite of the many
observational evidences in favour of black holes, it may indeed be fundamentally impossible
to give an irrefutable observational proof for the existence of a black-hole horizon if only
electromagnetic radiation is received [4] and thus tell apart a black hole from a gravastar,
if the latter existed. Such a challenge has obviously attracted a lot of attention and several
related models have been recently proposed in the attempt ofproviding answers to two basic
questions: Once produced, is a gravastar stable to generic perturbations? If stable, can an
external obverver distinguish a gravastar from a black holeof the same mass?

In ref. [1] it was argued that the MM solution is thermodynamically stable, but other
stability analysis are not so easy to perform because of the model’s structure. Visser and
Wiltshire [5] have analyzed the radial stability of a simplified model with three layers and the
stability was shown to hold for a number of configurations. This stability was generalized
by Carter [6] for gravastar models with different exteriors. Other possibilities for the interior
solution have also been considered: Bilićet al [7] replaced the de-Sitter interior by a Born-
Infeld phantom, while Lobo replaced the interior solution by one that is governed by the
dark-energy EOS [8], and Lobo and Arellano matched interiornonlinear electrodynamic
geometries to the Schwarzschild exterior [9].

To remove in part the complications produced by the infinitesimal shells in the MM
model, Cattoenet al [10] have found that fluid gravastars can be built if the fluid is confined
to a given layer and has there anisotropic pressures. The latter essentially replace the surface
tension which was introduced in the original model MM model by the matching of the metric
in the infinitesimally thin shells. Although anisotropic and with rather arbitrary equations of
state, these pressures have the appealing property of beingcontinuous and thus of allowing
one to build equilibrium models without the presence of infinitesimally thin shells and thus
look more seriously into the issue of stability. Indeed, as astep to go beyond the construction
of equilibrium models, DeBenedictiset al [11] made a first attempt to investigate the stability
of gravastars through a qualitative analysis of axial perturbations.

In order to provide more definitive answers to the questions mentioned above, we
have constructed a general class of fluid gravastars with finite shell thickness and variable
compactness. While this class is similar and has been inspired by the one proposed in [10, 11],
it also differs in two important aspects. Firstly, while we also consider a fluid gravastar with
anisotropic pressures, we try and reproduce the most salient features of the original MM model
by creating an internal and an external region which reproduce a de-Sitter and a Schwarzschild
spacetime at finite radii and not only asymptotically. Secondly, for these models we determine
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precise bounds for the properties of the metric functions and the compactness of the gravastar
that yield equilibrium solutions, thus restricting considerably the class of possible solutions.

Using these models we have carried out a systematic investigation of the stability analysis
of gravastars against axial-perturbations [12, 13], thus extending the results discussed in [14]
to our gravastar model and computing explicit eigenfrequencies. In this way we were able
to conclude that: a gravastaris stableto axial perturbations and indeedit is possibleto
distinguish it from a black hole if gravitational radiationis produced. More specifically,
we have found that for all the models considered the imaginary part of the eigenfrequencies
is always negative, thus indicating stability against these perturbations. Furthermore, while
it is always possible to build a gravastar with given compactness and thickness such that
it will have the same oscillation frequency as that of a blackhole with the same mass,
the corresponding decaying time will be different. Our results thus provide a way of
distinguishing observationally and beyond dispute a gravastar from a black hole.

The paper is organized as follows: in section 2 we review the main features of the
original MM model and obtain numerical solutions which enable us to impose bounds
for the parameters of the MM solution. In section 3, instead,we present our model for
a fluid gravastar with anisotropic pressures and discuss thebounds derived from general
conditions imposed by the EOS and the properties of the metric functions. In Section 4 we
outline the perturbation equations and the numerical methods employed in the study of axial
perturbations of our model. In section 5 we discuss the results obtained for the QNMs and in
section 6 we present our final conclusions.

2. The MM gravastar model

We first present a quick review on the main features of the original MM model [1] for they
will be used in further developments in this paper and highlight that precise bounds exist for
the existence of solutions even for the simplest gravastar model.

In general, we consider a static and spherically symmetric line element

ds2 = −f(r)dt2 +
dr2

h(r)
+ r2dΩ2 , (1)

and the Einstein equations must be solved for a perfect fluid at rest, such that there are three
different regions with the three different equations of state

I. Interior: 0 ≤ r ≤ r1 , ρ = −p ,

II. Shell: r1 ≤ r ≤ r2 , ρ = +p ,

III. Exterior: r2 ≤ r , ρ = p = 0 .

(2)

In region I,ρ is a constant given byρv = 3H2
0/8π, and the metric is that of a de-Sitter

spacetime, so

f(r) = Ch(r) = C(1 −H2
0r

2) , 0 ≤ r ≤ r1 . (3)

whereC is an integration constant, whose value will be determined later [cf. eq. (8)].
In region II, a new dimensionless variablew is defined asw ≡ 8πr2p, in order to obtain

the following set of equations

dr

r
=

dh

1 − w − h
, (4)
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dh

h
= −

(

1 − w − h

1 + w − 3h

)

dw

w
, (5)

wf

r2
= const. (6)

An analytical solution can be obtained in the case of a very thin shell, i.e., for r1 → r2. It is
easy to see that (4) is satisfied if we takeh = 1− m̄/r anddm̄(r) = 2dm(r) = 8πρr2dr2 =
wdr. Therefore, in the thin-shell limit, (4) can be integrated to yield

h ≡ 1 −
m̄

r
≃ ǫ

(1 + w)2

w
≪ 1 , (7)

whereǫ is an integration constant. From the continuity of the metric coefficientsf andh at
r1 andr2, it can be shown that the integration constantsǫ, C,M andH0 are given in terms of
r1, r2, w1 andw2 by the relations

ǫ = − ln
r2
r1

(

ln
w2

w1
−

1

w2
+

1

w1

)

−1

, (8)

C =

(

1 + w2

1 + w1

)2

, (9)

M =
r2
2

[

1 −
ǫ(1 + w2)

2

w2

]

= m(r2) , (10)

H2
0 =

1

r21

[

1 −
ǫ(1 + w1)

2

w1

]

. (11)

Finally, in region III and because of Birkhoff’s theorem, the spacetime is described by
the Schwarzschild metric,

f(r) = h(r) = 1 −
2M

r
, r2 ≤ r . (12)

Clearly, region II is the most interesting one from a physical point of view since it is
where a non-trivial model for the gravastar can be specified.In the case of a “thick shell”,
that is away from the thin-shell limit, the gravastar solution in region II can be obtained in
the same way as for ordinary spherical stars, namely throughthe numerical solution of the
Tolman-Oppenheimer-Volkoff (TOV) equations forρ(r) = p(r) andm(r). We recall that in
the MM modelρ(r) andp(r) are discontinuous inr1 andr2 and thatm(r1) must, of course,
be less thanr1/2

By specifyingr1, r2, and thus the shell thicknessδ ≡ r2 − r1, as well as the initial
conditions for the pressurep(r1) and massm(r1), the numerical solution of the TOV
equations providesm(r) andρ(r) for r1 < r ≤ r2. A systematic analysis has revealed
that a limit exists on the compactnessµ ≡ M/r2 of the gravastar and in particular that, for
given r1, r2 andm(r1) very close to the limitr1/2, there exists a value forρ(r1) which
provides the largestM . In other words, it is not possible to achieve arbitrary values forM .
On the other hand, if we fixr2 and decreaser1 so as to increase the thickness of the shell, we
must also decreasem(r1), and we have verified that the maximum value obtained forM also
decreases. Overall, therefore, each shell thicknessδ also selects a maximum compactness of
the gravastarµ, above which no solution of the TOV equations can be found.

All of this is shown in figure 1 which reports the space of parameters(δ, µ) where
equilibrium solutions can be found. The solid curve, in particular, is computed numerically
and distinguishes the region where equilibrium models can be found (i.e., the region below
the curve), from the region where no solutions can be found (i.e., the region above the
curve). Stated differently, for any given shell thicknessδ, the solid curve marks the
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maximum compactness (i.e., the largest value ofµ) for which gravastar models can be
built. Interestingly, therefore, it is not possible to build a very compact gravastar with a
very thick matter shell. Rather, gravastars have either large compactness and thin shells,
or small compactness and thicker shells, as shown in figure 1.This figure, and its inset in
particular, also illustrates that gravastars can be built with arbitrarily large compactness,i.e.,
with µ → 1/2 and thus with the outer radiusr2 being only infinitesimally larger than the
corresponding Schwarzschild radius. It is exactly this property that makes gravastars hard to
distinguish from a black hole if only electromagnetic radiation is available.
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Figure 1. Limits in the compactness and thickness of a gravastar in theMM model. The curve
shows the maximum compactness for a given thicknessδ of the shell, that is, in the light gray
area below the curve we have the possible solutions, while inthe area above the curve solutions
are no longer possible. The dark gray area highlights the typical compactnesses for neutron
stars. The inset shows a comparison between the numerical solution of the TOV equations
with the analytical solution in the thin-shell limit.

3. The gravastar model with anisotropic pressures

3.1. The field equations

We now discuss our suggestion for a fluid gravastar model in which we follow the spirit of
the original MM model and consider a spacetime consisting ofthree different regions with
the internal and external ones reproducing a de-Sitter and aSchwarzschild spacetime at finite
radii, r1 andr2, respectively. In addition, we follow the suggestion made in [10] and use
a thick shell with a continuous profile of anisotropic pressures to avoid the introduction of
infinitesimally thin shells of matter as demanded by the MM [1]. We start therefore with a
metric of the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 , (13)

and a fluid stress-energy tensorT µ
ν = diag[−ρ, pr, pt, pt], wherepr andpt are the radial and

tangential pressures, respectively. The Einstein field equations for this spacetime geometry
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and matter distribution are

e−λ

(

λ′

r
−

1

r2

)

+
1

r2
= 8πρ , (14)

e−λ

(

ν′

r
+

1

r2

)

−
1

r2
= 8πpr , (15)

e−λ

(

ν′′

2
−
λ′ν′

4
+
ν′2

4
+
ν′ − λ′

2r

)

= 8πpt . (16)

It is now convenient to transform the above equations into a form where the hydrodynamical
properties of the system are more evident and that reduces tothe TOV equations for systems
with isotropic pressure,i.e.,

e−λ = 1 −
2m(r)

r
, (17)

ν′ =
2m(r) + 8πr3pr

r(r − 2m(r))
, (18)

p′r = −(ρ+ pr)
ν′

2
+

2(pt − pr)

r
, (19)

where

m(r) ≡

∫ r

0

4πr2ρdr . (20)

Combining (18) and (19), we obtain the anisotropic TOV equation

p′r = −(ρ+ pr)
m(r) + 4πr3pr

r(r − 2m(r))
+

2(pt − pr)

r
, (21)

which is reminescent of the Newtonian hydrostatic-equilibrium equation and where the last
term is obviously zero in the case of isotropic pressures,i.e., pt = pr.

3.2. Equation of state

In order to adopt the model suggested in [10], and still maintain the simple structure of the
MM model, we make the following choices for our density function ρ(r)

ρ(0) = ρ(r1) = ρ0, ρ(r2) = 0 , ρ′(r1) = ρ′(r2) = 0 . (22)

A simple way to satisfy the above conditions is to consider a cubic dependence inr,

ρ(r) =







ρ0 , 0 ≤ r ≤ r1 region I.
ar3 + br2 + cr + d , r1 < r < r2 region II.
0 , r2 ≤ r region III.

, (23)

with the coefficientsa, b, c, d given by

a =
2ρ0

(r2 − r1)3
, (24)

b = −
3ρ0(r2 + r1)

(r2 − r1)3
, (25)

c =
6ρ0r1r2

(r2 − r1)3
, (26)

d =
ρ0(r

3
2 − 3r1r

2
2)

(r2 − r1)3
. (27)
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To obtain the density in the terms of the total massm(r2) = M , we write

ρ0 = M
(r2 − r1)

3

4π

[

(r62 − r61)

3
−

3(r2 + r1)(r
5
2 − r51)

5
+

3r1r2(r
4
2 − r41)

2
+

+
(r32 − 3r1r

2
2)(r

3
2 − r31)

3
+
r31(r2 − r1)

3

3

]−1

. (28)

For the radial pressurepr, we follow the suggestion made in refs. [15, 11] and use an EOSof
the type

pr(ρ) =

(

ρ2

ρ0

)

[

α− (1 + α)

(

ρ

ρ0

)2
]

. (29)

Clearly, the EOS (29) cannot be derived from basic principles and serves here essentially as
a closure relation for the system of the equations. Yet, suchan EOS can be constrained and
the parameterα is determined by demanding that the maximum sound speedd2pr/dρ

2 = 0
coincides with the speed of light to rule out a superluminal behaviour. Because the sound
speed

cs ≡
dpr

dρ
= 2

(

ρ

ρ0

)

[

α− 2(1 + α)

(

ρ

ρ0

)2
]

, (30)

has a maximum for̄ρ = ρ0

√

α/(2(1 + α)), requiring cs(ρ̄) = 1 yields α ≃ 2.2135.
Despite being not particularly realistic, the EOS (29) has the advantage of being simple and
of possessing the needed physical limits sincepr → −ρ for r → r1 andpr → 0 for r → r2
(cf. right panel of figure 2 for a typical gravastar model).
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 0

 0.5

 1

 1.7 r1 = 1.8  1.9  2  2.1 r2 = 2.2

r

ρ/ρ0
pr/ρ0

(pt/ρ0)/10
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2.5r2 = 2.2 r1 = 1.8 1.5 1 0.5 0

r

m
grr

Figure 2. Left panel: Behaviour of the functionsρ(r), pr(r) andpt(r) for a representative
gravastar model withM = 1, r1 = 1.8 andr2 = 2.2. The functionpt(r) is scaled by 0.1 for
better visualization but provides the dominant contribution in eq. (21).Right panel:Behaviour
of the mass functionm(r) and of the metric coefficientgrr for the same solution shown in the
left panel.

Once the solutions for the energy density and the radial pressure are known, the
tangential pressurept can be computed through the anisotropic TOV equation (21) as

pt = pr +
r

2
p′r +

1

2
(pr + ρ)

[

m(r) + 4πr3pr

r(1 − 2m(r)/r)

]

. (31)

The set of equations (22)–(31) fully determines our gravastar model which will have a finite
core described by the de-Sitter metric, a crust of matter andan exterior described by the
Schwarzschild solution.
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The behaviour of the energy density and of the pressures is shown in the left panel of
figure 2 for a representative gravastar model withM = 1, r1 = 1.8M andr2 = 2.2M . The
right panel on the same figure, instead, shows the mass function and the metric coefficientgrr

for the same representative model.

3.3. Conditions on the metric functions

While equations (22)–(31) allow to construct gravastar models, additional constrains need to
be imposed to guarantee that the metric functionsgtt andgrr (and their first derivatives) have
the expected properties once our choice for the EOSpr(ρ) andρ(r) is made. In particular, it
is not difficult to conclude thatm(r) andm′(r) are continuous for the choice ofρ(r) made in
equation (23), so that using equation (17)grr and its first derivative are continuous throughout
the spacetime.

Similar considerations apply for the metric functiongtt, for which we note that in
obtaining the solution forν by integrating equation (18) we must allow for a constant of
integrationν0 so that

ν =

∫ r

0

2m(r) + 8πr3pr

r(r − 2m(r))
dr + ν0 . (32)

The integration constant can then be determined through thecondition that, at the surface of
the gravastar,gtt(r2) = − (1 − 2M/r2), thus giving

gtt = −eν(r) = −

(

1 −
2M

r2

)

eΓ(r)−Γ(r2) , (33)

where

Γ(r) ≡

∫ r

0

2m(r) + 8πr3pr

r(r − 2m(r))
dr . (34)

In this waygtt andg′tt are continuous acrossr2 and throughout the spacetime.
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r1 = 1.0
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-0.05

 0
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 0.15
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 0  0.5  1  1.5  2  2.5

(1
-2

m
/r

) m
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δ

r2 = 2.4
r2 = 2.3
r2 = 2.2
r2 = 2.1

Figure 3. Left panel:Behaviour of1 − 2m(r)/r for M = 1 and different values ofr1 and
r2 = 2.2. Right panel:Dependence onδ of the minimum value of1−2m(r)/r for gravastars
with M = 1 and different values ofr2. Note that for sufficiently large models, the minimum
is always positive.

The requirement for the metric functions of being continuous with continuous first
derivatives is, in general, not sufficient to guarantee the existence of acceptable equilibrium
models. The three free parametersM , r1 andr2, in fact, cannot be chosen arbitrarily but in
such a way thatgrr is always positive. In the left panel of figure 3 we show a typical example
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of the behaviour of the function1 − 2m(r)/r, where different lines refer to different values
of the inner radiusr1 while the outer oner2 is held fixed. Clearly, an incorrect choice ofr1
andr2 leads to negative values forgrr and thus to the unphysical appearance of horizons. The
right panel of figure 3 shows how the minimum value of the function1−2m(r)/r depends on
the gravastar’s thicknessδ and that gravastars with large thicknesses can be built if the outer
radiusr2 is chosen to be sufficiently large, that is, if the compactnessµ is sufficiently small.

As a more systematic characterization of this problem, we have constructed a large
number of gravastar models in which we have varied both the compactnessµ and the thickness
δ. In this way we can extend the diagram presented in figure 1 forthe existence of MM
models to our thick-shell gravastar model and define the region in the (δ, µ) parameter
space where equilibrium solutions can be found. In particular, by definining the parameter
ǫ as the dimensionless distance of the gravastar’s surface from a Schwarzschild horizon,
i.e., ǫ ≡ r2/M − 2, we find that forǫ > ǫc ≈ 0.3085, the function1 − 2m(r)/r is always
positive, so that the thicknessδ can be as large asr2 (i.e., r1 can also be taken to be zero).
On the other hand, forǫ ≤ ǫc there exists a critical thicknessδc = δc(r2,M) above which
equilibrium models cannot be found because of the appearance of horizons. Forǫ = ǫc, we
have found thatδc = 2.30685M .

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20

µ 
=

 M
/r

2

δ/M

δ/M = 2.30685

MM model

neutron stars

Figure 4. Limit on the compactnessµ of the gravastar with the thickness of the shellδ. This
figure compares the results obtained for the MM model in the lower curve (see figure 1) and
the results obtained for our model in the upper curve.

Figure 4 summarizes these results by showing the region of the parameter space(δ, µ)
where equilibrium models can be calculated. Equilibrium solutions for our model can be
found in the region below the solid line, andδ/M = 2.30685 is the boundary between the
two distinct behaviors discussed above. Indicated with a dashed line is the corresponding
threshold for the MM model (cf. figure 1). Overall, the data in the figure reveals that our
thick-shell model obeys similar but less restrictive bounds than the MM model.
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4. Perturbation equations and numerical methods

In order to assess the stability of gravastars against axialperturbations we have followed the
standard procedure to study non-radial oscillations of stars [12, 13, 16, 17]. This approach
differs from the one adopted in ref. [11], where the analysisof the axial perturbations of a
gravastar was made following the standard procedure for Schwarzschild black holes (see [18]
for a review) in order to study only the asymptotic properties of the potential and determine
whether it has compact support and is everywhere positive.

We note that the pressure anisotropy in the shell does not play an important role in the
study of axial tensor perturbations since these perturbations hardly excite fluid motions. As
a result, the standard analysis for stars with isotropic pressures can be used here. This is no
longer true for polar perturbations (for which the pressureanisotropy plays an important role)
and a study on radial perturbations of stars with anisotropic pressures was recently presented
in [19, 20].

As for Schwarschild black holes or spherical relativistic stars, the propagation of axial
perturbations in the gravastar spacetime is governed by thewave equation in a scattering
potential

∂2ψ

∂r2
∗

−
∂2ψ

∂t2
= Vℓ(r)ψ , (35)

where the “tortoise” coordinate is here defined as

r∗ ≡

∫ r

0

e(λ−ν)/2dr , (36)

and the scattering potential is given by the expression

Vℓ(r) ≡
eν

r3
[

ℓ(ℓ+ 1)r + 4πr3(ρ− pr) − 6m
]

. (37)

The potential vanishes forr → ∞ and diverges as1/r2 for r → 0, as a result of the centrifugal
term proportional toℓ(ℓ + 1)/r2. This is an important difference that the potentialVℓ(r) has
with respect to its counterpart for a Schwarzschild black hole, whereVℓ(r) → 0 at the horizon
r = 2M . Note also thateν → 1 for r → ∞ (the spacetime is the Schwarzschild one for
r > r2) and, from eqs. (33) and (34),eν → (1 − 2M/r2)e

−Γ(r2) for r → 0.
Unlike for black-hole spacetimes, both the tortoise coordinate and the scattering potential

are here not expressed through simple algebraic relations but need to be computed as solutions
of ordinary differential equations. We have done so using a 4th order Runge-Kutta method to
obtaineν andr∗ from equations (33) and (36), respectively.

Introducing now the “light-cone” (null) variablesu ≡ t − r∗ andv ≡ t + r∗, the wave
equation (35) can be written in the more compact form as

− 4
∂2ψ

∂u∂v
(u, v) = Vℓ(r)ψ(u, v) , (38)

and thus be integrated numerically. In particular, we have used a variation of the method used
in [21] and in many other works, and derived a strict second-order accurate discretization
given by

ψ
N

= (ψ
E

+ ψ
W

)
16 − ∆2V

S

16 + ∆2V
S

− ψ
S

+ O(∆4) , (39)

where the indicesN , S, E andW refer to the grid-points defined asN ≡ (u + ∆, v + ∆),
S ≡ (u, v), E ≡ (u, v + ∆), andW ≡ (u + ∆, v). Equation (38) was then numerically
integrated in the(u, v) plane with the algorithm (39) using a triangular grid limited by the
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linesr∗ = rmin
∗

andu = 0, wherermin
∗

is a small value which we have set asrmin
∗

= ∆/2.
A schematic representation of the null grid is presented in fig. 5, where the black points
represent the grid points where the solution is known, whilethe red ones are those where the
solution is to be calculated.

2r*
min

-2r*
min

v

u

NW

S E

Figure 5. Diagram of the numerical grid and the domain of interest. Theblack points represent
the grid points where the value of the field is known. The red points represent the grid points
to be calculated.

In a linear regime the eigenfrequencies of the gravastar arenot sensitive to the choice of
the initial data and thus we have modelled the initial perturbation with the simplest possible
choice,i.e. a Gaussian pulse centred aroundvc and with witdthσ

ψ(u = u0, v) = exp

[

−
(v − vc)

2

2σ2

]

, (40)

where, to satisfy the regularity condition at the origin, weset

ψ(rmin
∗

, t) = ψ(u = v − v0, v) = 0 , ∀t . (41)

During the integration of eq. (38) we extract the values of the fieldψ along a line of
constantr∗, i.e., at the points(u = v − 2r∗, v). We let the field evolve for large values of
t, until the transient is over and possible contributions of the higher overtones have died off.
Only then, when the signal consists of the fundamental mode (the slowest decaying mode)
and of its overtones, we can compute the realω

R
and imaginary partω

I
of its eigenfrequency

with a least-squares fit of the function

ψfit(t) = Anexp(ωn
I
t) cos(ωn

R
t+ φ) , (42)

whereA andφ are constant coefficients andn represents the order of the mode and this
is not meant as an exponent. Once the properties of the fundamental mode are known,
the eigenfrequencies of the overtones are obtained using the method proposed in [22],
which consists of subtracting from the numerical solution the fitted function relative to the
fundamental moden = 0. This reveals then = 1 mode and the procedure can be iterated
for obtaining higher overtones, depending on their dampingrate. Of course, very rapidly
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decaying modes cannot be obtained by this procedure, but this approach is a very efficient
and easy way to obtain the first overtones in a signal, which are the ones expected to be
detected from any astrophysical sources.

The numerical setup described above has been first tested by performing a perturbation
analysis of Schwarzschild stars,i.e., uniform-density spherical stars, obtaining results thatare
in very good agreement with the values reported in the literature [13, 23].

5. Results

Before discussing the results of the perturbative analysis, we note that the axial potential given
in (37) shows features which are similar to those that are well-known in compact uniform-
density stars [13]. Quite generically, in fact, the potential exhibits at least a minimum and
a maximum, thus indicating the possibility of having modes that are trapped in the potential
well.

In figure 6 we present some typical examples of the scatteringpotentialVℓ(r) when
ℓ = 2 and which, in general, depends on both the compactnessµ (as for relativistic stars) and
on the thickness of the shellδ. The left panel of figure 6, in particular, shows the potential
of gravastar models having the same compactnessµ = 0.46 but increasing thickness of the
shell, while the right panel reports how the potential changes for gravastar models with the
same shell-thicknessδ = 0.2 but increasing compactness. Clearly, in the exterior regionVℓ(r)
is just the Schwarzschild potential for axial perturbations and the depth of the potential well in
the interior region increases with bothµ andδ. Furthermore, given the chosen EOS (29), it is
also possible to select the parametersr1, r2, andM such thatVℓ(r) has two local minima very
close to each other. This is shown by the curve withµ = 0.35 in the right panel of figure 6.
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Figure 6. Left panel:The scattering potentialVℓ(r) with ℓ = 2 of gravastar models with the
same compactnessµ = 0.46 but increasing thickness of the shell.Right panel:The same as
in the left panel but gravastar models with the same shell-thicknessδ = 0.2 but increasing
compactness.

Following the procedure outlined in the previous Section, we have integrated the
perturbation equation (38) for a large variety of gravastarmodels differing in mass,
compactness and thickness. Figure 7 reports some typical results and shows the time evolution
of the perturbations for a representative gravastar withM = 1, and radiir1 = 1.96, r2 = 2.26.
The left panel, in particular, reports the total solutionψ(t) as extracted atr∗ = 10 during
the initial stages of the scattering off the potential and allows one to discern the “beating”
caused by the superposition of overtones and other rapidly decaying components of the signal.
Interestingly, this beating of the fundamental mode with overtones becomes more pronounced
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Table 1. Some typical values obtained for the the first overtones of the gravastars QNM
eigenfrequencies for axial perturbations withℓ = 2. The gravastars haveM = 1, r2 = 2.26
and δ given in the Table. We also show for comparison the equivalent frequencies for a
Schwarzschild black hole of the same mass and for a standard TOV star with uniform density
with M = 1 andR = 2.26M (note that for these stars one must haveR/M > 2.25 [13]).

n = 0 n = 1 n = 2

model ω
R

−ω
I

ω
R

−ω
I

ω
R

−ω
I

δ = 0.30 0.3281 2.481e-3 0.4865 6.264e-2 0.6534 1.590e-1
δ = 0.35 0.2943 7.081e-4 0.4459 3.202e-2 0.5922 1.093e-1
δ = 0.40 0.2575 1.543e-4 0.4011 1.227e-2 0.5384 5.814e-2
Schwarzchild black hole 0.3737 8.896e-2 0.3467 2.739e-1 0.3011 4.783e-1
Schwarzchild star 0.1090 1.239e-9 0.1484 3.950e-8 0.1876 5.470e-7

with increasingµ andδ, underlining that the contribution of the overtones increases (i.e., the
modes decay more slowly) with bothµ andδ (i.e., as the the depth of the potential well
increases). A similar relation between the decay rate of themodes and the potential well is
known for the “trapped modes” of compact uniform-density stars [23].
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Figure 7. Left panel: Evolution of the axial perturbationsψ(t) as extracted atr∗ = 10
and during the initial stages of the scattering for a gravastar withM = 1, r1 = 1.96 and
r2 = 2.26. Right panel: The same as in the left panel but when the contribution of the
fundamental moden = 0, is distinguished from that of the overtonesn = 1, 2 and 3.

The right panel of figure 7, on the other hand, shows the evolution of the perturbations
over a longer timescale and when the overtones have been “removed” from the general signal
using the approach discussed in the previous Section. Note that, for increasingn, the period
of the oscillations becomes smaller, and the decaying timescale shorter. Using a least-squares
fit of the numerical data to theansatz(42) we have computed the real and imaginary parts of
the QNM eigenfrequencies and the numerical results for sometypical cases are presented in
table 1, where they are also compared to the corresponding values for a Schwarzschild black
hole of the same mass and a Schwarzschild star of the same compactness. The tabulated
values are all for anℓ = 2 perturbation and refer to the fundamental mode and to the first
two overtones since the third one does not usually have a sufficiently clear slope to allow for
an accurate measurement. If necessary, an increase in spatial resolution would improve the
decay of higher overtones and allow for their computation.

Figure 8 is the most important of this paper and it reports thevariation of theℓ = 2,n = 0
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QNM eigenfrequencies as a function of the parameters of the gravastar:µ andδ. The two
panels report separately the behaviour of the real and imaginary parts and indicate that both
the period of the oscillationsτ

R
≡ 2π/ω

R
and the the damping timeτ

I
≡ 2π/|ω

I
| increase

with increasingδ andµ. The two thick horizontal lines represent instead the corresponding
frequencies for a Schwarzschild black hole of the same mass,i.e., Mω

R
= 0.37367 and

Mω
I

= −0.08896 [16]. Clearly, while it is always possible to select the thickness and
compactness of the gravastar such that it will have the same oscillation frequency of a black
hole with the same mass (cf., left panel), the corresponding decaying time will be different
and about one order of magnitude larger (cf., right panel). Stated differently, a gravastar and
a black hole with the same mass cannot have the same complex QNM eigenfrequency when
subject to axial perturbations. This result, which we have here presented for the fundamental
mode, can be shown to be true also for the first two overtones.
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Figure 8. Left panel: Behaviour of the real partω
R

of the ℓ = 2, n = 0 QNM
eigenfrequencies as functions ofδ for different values ofµ. Right panel: The same as in
the left panel but for the imaginary partω

I
of the eigenfrequencies. In both panels, the thick

horizontal lines represent the corresponding frequenciesfor a Schwarzschild black hole.

6. Conclusions

Although the gravastar model of Mazur and Mottola [1] represents an ingenious solution
of the Einstein equations in spherical symmetry, it has alsochallenged one of the most
cherished foundations of modern astrophysics:i.e.,the existence of astrophysical black holes.
Gravastars, in fact, can be constructed to be arbitrarily compact, with an external surface
which is only infinitesimally larger than the horizon of a black hole with the same mass. As a
result, the electromagnetic emission from the surface of a gravastar will suffer of essentially
the same gravitational redshift as that of a black hole, thusmaking it difficult, if possible at
all, to distinguish the two when only electromagnetic radiation is available.

Without entering the relevant debate about the physical processes that would lead to the
formation of a gravastar or the astronomical evidence in support of their existence [24], we
have here considered two more fundamental questions: Is a gravastarstableagainst generic
perturbations? If so, can an external observerdistinguishit from a black hole? The short
answers to these questions are that: a gravastaris stableto axial perturbations and indeedit is
possibleto distinguish it from a black hole if gravitational radiation is produced.

To reach the first of these conclusions we have constructed a general class of
gravastar models that extends the one proposed by Mazur and Mottola by replacing the
infinitesimal shell of matter with one having finite sizeδ and variable compactnessµ. These
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equilibrium solutions of the Einstein equations have then been analyzed when subject to axial
perturbations and the eigenfrequencies of the corresponding QNMs have been computed
explicitely. For all of the cases considered, the imaginarypart of the eigenfrequencies has
always been found to be negative, thus indicating the stability of these objects with respect to
this type of perturbations.

To reach the second conclusion, instead, we have shown that the QNM spectra of a
gravastar and that of a black hole of the same mass differ considerably. In particular, while it
is always possible to selectδ andµ such that the gravastar has the same oscillation frequency
as that of a black hole with the same mass, the corresponding decaying time will be different.
As a result, the gravitational radiation produced by an oscillating gravastar can be used to
distinguish it, beyond dispute, from a black hole of the samemass.

We plan to extend our stability analysis also to polar perturbations and determine whether
or not these intriguing objects possess modes of oscillation that do not have a counterpart in
compact relativistic stars and may therefore hint to new solutions of the Einstein equations.
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