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1. Introduction

Supergravity theories, when compactified on tori, exhibit so-called hidden symmetries

which extend the näıve torus symmetries [1 – 3]. In the case of pure gravity in (3 + n)

dimensions reduced on an n-torus, there is a hidden SL(n+1)/SO(n+1) symmetry which

occurs when dualising the field strengths of the Kaluza-Klein vectors obtained in the dimen-

sional reduction to gradients of scalar fields in the three remaining space-time dimensions.

This was first observed in the case of (3 + 1) dimensions a long time ago and the enhanced

symmetry SL(2, R) is known as Ehlers symmetry [4]. Many supergravity theories arise

as the low energy limit (α′ → 0) of string theory. String theory predicts in such cases

also corrections to the two-derivative supergravity actions. These corrections are a dou-

ble expansion in the string coupling gs and the squared string scale α′ = ℓ2
s, potentially

with non-perturbative contributions. Since α′ is dimensionful, higher powers of α′ must be

accompanied by a higher number of derivatives than the supergravity approximation, for

example higher powers of the curvature tensors. Some of these terms have been computed

from string scattering and supersymmetry, see for example [5 – 9]. It is interesting to study

if the hidden symmetries of the lowest order supergravity action are preserved by these

higher order derivative corrections.

Recently this question has been studied, with results mostly suggesting that the hidden

symmetries are broken by higher order in derivatives corrections [10 – 13]. The purpose of

this note is to show that at least in the case of pure gravity reduced from four to three

space-time dimensions the R2 extension to fourth order in derivatives does not affect the

symmetry enhancement. One argument for the breakdown of the symmetry has been the

appearance of dilaton pre-factors in the reduced higher derivative correction terms which

seem to spoil the invariance under the enhanced symmetry groups since dilaton scaling
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is one of the hidden symmetry transformations. However, working in the context of a

perturbative α′ formulation we find here that the transformation laws themselves can be

modified at next order in α′ in precisely the right way to restore the invariance. The case

treated here is very simple, and has no good string theory origin, but can be seen as a first

step towards the more complicated cases arising in string theory and serves to illustrate a

mechanism for preserving the hidden symmetries in the presence of higher derivative terms.

Our analysis is similar in spirit to that of [14, 15].

This note is structured as follows. In section 2 we study pure gravity in four dimensions

extended to fourth order in derivatives and show that in this case the most general such

correction (expressed in terms of the Riemann and Ricci tensors) is actually trivial in the

sense that it can be made to vanish by means of local field redefinitions. This implies

in particular that it cannot break Ehlers symmetry. We then proceed to consider the

reduction of the R2 terms in general and exhibit explicitly a large set of field redefinitions

that effectively eliminate the higher derivative correction and restore the explicit Ehlers

symmetry of the action. In section 4 we discuss the modified SL(2, R) action on the fields,

in particular the subset of global scaling transformations, and explain how the problem

of different scaling is resolved in this case such that the symmetry is restored. Finally, in

section 5 we offer some comments on the general case which is currently under investigation.

In the appendix we list the curvature tensors that arise in the reduction.

2. R2 corrected action in (3 + 1) dimensions

Pure gravity in a four-dimensional space-time has a hidden SL(2, R) symmetry [4]. It

is exhibited by performing a dimensional reduction of the theory to three dimensions and

dualising the degree of freedom of the obtained Kaluza-Klein vector to a scalar. This scalar,

called the axion, together with the dilaton obtained also from the dimensional reduction,

parametrizes the coset space SL(2, R)/SO(2). We are interested in investigating if this

hidden symmetry is affected by higher derivative corrections.

Our starting point is then the Einstein-Hilbert action in four dimensions and its cor-

rection by fourth order in derivative terms. The most general such action that one can

write is1

Ŝ =

∫

d4xÊ
[

R̂ + α′
(

m1R̂
MNPQR̂MNPQ + m2R̂

MN R̂MN + m3R̂
2
) ]

, (2.1)

with {mi} three arbitrary real constants and α′ a dimensionful parameter, with dimensions

(Length)2. Hatted objects and capital letters denote four-dimensional quantities while

small characters are generally reserved for three-dimensional quantities. We work in a

vielbein formalism so that
√

−Ĝ = det(ÊM
A) =: Ê.

To see that the correction to the Einstein-Hilbert action in four dimensions is trivial,

one uses field redefinitions of the metric and the fact that the Gauss-Bonnet combination

R̂GB = R̂MNPQR̂MNPQ − 4R̂MN R̂MN + R̂2, (2.2)

1We do not consider the self-dual and anti-self-dual parts of the Weyl tensor separately but only the

combination in which they appear in the Riemann tensor since this is the expression which generalizes to

higher dimensions.
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is a topological invariant in four dimensions and does not contribute to the dynamics. This

fact can be used to eliminate the correction term proportional to the contraction of the

Riemann tensor with itself by subtracting from the action (2.1) a term proportional to the

Gauss-Bonnet combination that cancels it. The remaining fourth order contributions can

be eliminated by performing the following field redefinition of the four-dimensional metric

ĜMN −→ ĜMN + α′δĜMN = ĜMN + α′
(

n1R̂MN + n2ĜMN R̂
)

, (2.3)

with n1 = −(4m1 + m2) and n2 = (m1 + 1
2m2 + m3). The action in the redefined

metric is simply the original Einstein-Hilbert action and therefore there is a choice of fields

after dimensional reduction such that the Ehlers symmetry of (2.1) is preserved. Instead of

using this field basis, we will continue considering the action (2.1) and perform explicitly its

dimensional reduction to three dimensions, as an example of the more general computation

for higher dimensions and as a tool to describing the resolution to the problematic different

scaling properties of the various orders in α′ below. In the higher-dimensional case the

Gauss-Bonnet combination is no longer a topological invariant and one cannot use it to

eliminate a term in the correction and the action (2.1) is no longer equivalent to the

Einstein-Hilbert action. There are, however, simplifications to the problem that occur in

the compactification to three dimensions in the general case. For the reduction from four

to three dimensions further simplifications arise since the local hidden symmetry SO(2) is

abelian.

3. The reduced corrected action

We consider now the dimensional reduction of the corrected Einstein-Hilbert action (2.1)

to three dimensions along a space-like direction. The coordinates split as xM = (xm, z̃),

M = 0, . . . , 3, m = 0, . . . , 2 with z̃ the compact direction. Our ansatz for the reduction of

the four-dimensional metric is

dŝ2 = e−φds2 + eφ(dz̃ + Amdxm)2. (3.1)

The three-dimensional metric is ds2 = gmndxmdxn and the dilaton dependence in this

ansatz has been chosen such that the reduced action is in Einstein frame with standard

normalization for the terms in the lowest order reduced action. Our results are independent

of this choice but we adopt it for convenience. The reduction of the corrected gravity

action (2.1) gives the following three-dimensional action

S =

∫

d3xe

{

R −
1

2
(∂φ)2 −

1

4
e2φF 2 (3.2)

+α′

[

eφ

(

(−m1 + m3)R
2 + (4m1 + m2)R

mnRmn

−(4m1 + m2)R
mn∂mφ∂nφ − (2m1 + m2 + 2m3)D

mR∂mφ

−(m1 + m2 + 3m3)R(∂φ)2 − (3m1 + m2 + m3)∂
mφ∇m(¤φ)

−

(

4m1 +
3

2
m2 + 2m3

)

¤φ(∂φ)2 +
1

4
(3m1 + m2 + m3)(∂φ)4

)
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+e3φ

(

−

(

6m1 +
3

2
m2

)

RmnFmpFn
p +

1

2

(

3m1 +
1

2
m2 − m3

)

RF 2

−

(

m1 +
1

4
m2

)

Fmn
¤Fmn −

1

2
(4m1 + m2)F

mpFn
p∇m∂nφ

+(4m1 + m2)F
mpFn

p∂mφ∂mφ −
1

8
(16m1 + 5m2 + 4m3)F

2
¤φ

+
1

4

(

5m1 +
3

2
m2 + m3

)

F 2(∂φ)2
)

+ e5φ 1

16
(11m1 + 3m2 + m3)(F

2)2
]}

.

The curvature tensors and covariant derivatives are constructed from the three-dimensional

metric gmn. The complete decomposition of the four-dimensional curvature tensors in

terms of the three-dimensional fields is given for completeness in the appendix. To ob-

tain the expresion (3.2) we have used Bianchi identities and the special properties of the

three-dimensional space-time and of the abelian gauge transformations of the Kaluza-Klein

vector in addition to some integrations by parts on the action obtained directly using the

dimensional reduction ansatz (3.1). These manipulations are convenient because in (3.2) all

order α′ terms vanish for the Gauss-Bonnet values, illustrating the fact that they constitute

a total derivative.

As mentioned before the lowest order terms in (3.2) possess a hidden SL(2, R) symme-

try. To observe it one has to dualise the Kaluza-Klein vector field strength to the gradient

of a scalar field χ, the axion. This can be done by the introduction of a Lagrange multiplier

term
∫

e1
2ǫmnp∂mχFnp exchanging the Bianchi identity of the antisymmetric tensor field for

the equation of motion of the axion field χ. One can then consider Fmn rather than Am as

an independent field and eliminate it in favour of χ by solving its equation of motion which

is only algebraic. The presence of higher order corrections will affect the duality relation

but in a perturbative analysis one can use at each order in α′ the lower order solution.

Additionally, at first order in α′ the corrections to the duality relation cancel out in the

action, so that we can safely use the lowest order relation to exchange the two fields. The

lowest order action can then be written in an explicitly symmetric way by formulating it

as a non-linear σ-model on the coset space SL(2, R)/SO(2) parametrized by the dilaton

and axion. In terms of the Cartan-Killing trace it is given by

S̃0 =

∫

d3xe (R − tr(PmPm)) =

∫

d3xe

(

R −
1

2
(∂φ)2 −

1

2
e−2φ(∂χ)2

)

. (3.3)

Here Pm is the projection along the coset directions of the Cartan form whose parametriza-

tion in terms of the scalar fields is given by

Pm =

(

1
2∂mφ 1

2e−φ∂mχ
1
2e−φ∂mχ −1

2∂mφ

)

. (3.4)

The SL(2, R) transformations only act on the scalar sector leaving the three-dimensional

metric and curvature tensors invariant.

The first order in α′ terms in (3.2) seem hard to reconcile with this symmetry. However,

they can be brought into a symmetric form by performing redefinitions on the fields, as
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was also done in [14]. We consider the following general fourth order action exhibiting

explicitly Ehlers symmetry,

S̃s =

∫

d3xe

[

R − tr(PmPm) + α′

(

a tr(PmPm)2 + b tr(PmPnPmPn) + cR2
c

)]

(3.5)

=

∫

d3xe

{

R −
1

2
(∂φ)2 −

1

2
e−2φ(∂χ)2

+α′

[

(a+b)

(

(∂φ)4+2e−2φ(∂φ)2(∂χ)2+
1

4
e−4φ(∂χ)4

)

+4be−2φ∂aφ∂bφ∂aχ∂bχ+cR2
c

]}

.

Here a, b and c are arbitrary real constants and the R2
c term refers to any pure curvature

fourth order in derivatives terms, the contractions are suppressed for simplicity.2 Ex-

pressed in terms of the graviphoton field strength and up to fourth order in derivatives the

action (3.5) becomes

Ss =

∫

d3xe

{

R −
1

2
(∂φ)2 −

1

4
e2φF 2 + α′

[

(a + b)
(

(∂φ)4 − e2φ(∂φ)2F 2

+
1

4
e4φ(F 2)2

)

+ 4be2φFmpFn
p∂mφ∂nφ + cR2

c

]}

. (3.6)

On this action we perform the following class of field redefinitions

δφ = a1(∂φ)2 + a2¤φ + a3R + a4F
2,

δFmn = b1¤Fmn + b2F
l
[n Rm]l + b3F

l
[n ∂m]φ∂lφ + b4F

l
[n∇m]∂lφ

+b5Fmn(∂φ)2 + b6Fmn¤φ + b7FmnR + b8FmnF 2,

δgmn = c1Rmn + c2∂mφ∂nφ + c3∇m∂nφ + c4FmpFn
p +

+gmn

(

d1(∂φ)2 + d2¤φ + d3R + d4F
2
)

. (3.7)

The coefficients {ai, bi, ci, di} are real parameters and may have a dilaton dependence in

the form of an exponential prefactor. These are the most general field redefinitions that

produce terms in the action like the ones appearing in the reduced higher order action (3.2).

The redefinition of Fmn is not integrable to a local field redefinition of the underlying vector

potential Am for all values of the coefficients bi. However, it will turn out below that there

are choices for bi such that the symmetry is preserved and that an interpretation in terms

of a local redefinition of Am is possible.

Under these redefinitions the symmetric action (3.6) gets modified at non-zero orders

2For bigger symmetry groups, like the ones arising when compactifying gravity in more than four dimen-

sions down to three, there can be four independent contributions of quartic traces, with tr(P mPmP nPn)

and tr(P mP n)tr(PmPn) apparently missing in (3.5). However, in the case of SL(2, R) only two of these

structures are linearly independent. We also disregard terms of the form tr(P mPm)R or tr(P mP n)Rmn

since they are not needed here and they have a different scaling behaviour.
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in α′ to become, to first order

Ss = S0 + α′

∫

d3xe

{

(a + b)

(

(∂φ)4 − e2φ(∂φ)2F 2 +
1

4
e4φ(F 2)2

)

(3.8)

+4be2φFmpFn
p∂mφ∂nφ + cR2

c −
1

2
e2φFmnδFmn −

(

1

2
e2φF 2 − ¤φ

)

δφ

−δgmn

[

Rmn −
1

2
gmn

(

R −
1

2
(∂φ)2 −

1

4
e2φF 2

)

−
1

2
∂mφ∂nφ −

1

2
e2φFmpFn

p

]}

.

Inserting the redefinitions (3.7) and performing some integrations by parts brings (3.6)

into the form of the action (3.2) allowing one to compare the coefficients in both expressions

term by term, which results in a system of linear equations for the arbitrary coefficients

in (3.7) in terms of {φ,m1,m2,m3}. The system turns out to be solvable for arbitrary

values of m1,m2 and m3, as was expected from the general considerations of the previous

section. This is sufficient to show that Ehlers symmetry is not broken by a general order

α′ correction to the Einstein-Hilbert action.

The actual solution is not unique, there turns out to be some arbitrariness in the choice

of some of the coefficients. The general result is

δφ =

[

1

2
c3 +

1

4
d2 −

1

2
eφ(2m1 + m2 + 2m3)

]

(∂φ)2 + eφ (3m1 + m2 + m3)¤φ

+

[

−
1

2
d2 + eφ(2m1 + m2 + 2m3)

]

R + a4F
2,

δFmn =
1

2
eφ(4m1 + m2)¤Fmn + e−2φ

[

−2c4 + 2e3φ(4m1 + m2)
]

F l
[n Rm]l

+e−2φ

[

e2φc3 + c4 + 8e2φb −
3

2
e3φ(4m1 + m2)

]

F l
[n ∂m]φ∂lφ

+
[

c3 + eφ(4m1 + m2)
]

F l
[n∇m]∂lφ + e−2φ

[

−
3

4
e2φc3 −

1

4
e2φd2 −

1

2
c4 −

1

2
d4

−
1

4
e3φ(9m1 + 2m2 − m3)

]

Fmn(∂φ)2

+
1

4

[

−c3 + d2 + 8e−2φa4 + eφ(4m1 + m2)
]

Fmn¤φ

+
1

2
e−2φ

[

e2φd2 + 2c4 + 2d4 − e3φ(7m1 + 2m2 + m3)
]

FmnR

+
1

4

[

−4a4 + c4 + d4 −
1

2
e3φ(11m1 + 3m2 + m3)

]

FmnF 2,

δgmn = −eφ(4m1+m2)Rmn+

[

c3+
1

2
eφ(4m1+m2)

]

∂mφ∂nφ+c3Dm∂nφ+c4FmpF
p
n

+gmn

[

−
1

2
eφ(2m1+m2+2m3)(∂φ)2+d2¤φ+eφ(2m1+m2+2m3)R+d4F

2

]

,

a = −b, c = 0. (3.9)

The six parameters (b, a4, c3, c4, d2, d4) are free, the solution is highly degenerate. For

consistency one expects that the particular field redefinition (2.3) which eliminated the
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whole correction term at the four-dimensional level should be an allowed solution. In

fact, one can compute the redefinitions on the three-dimensional fields induced by (2.3)

after performing the dimensional reduction and show that these correspond to (3.9) for a

particular choice of the six free parameters given by

a4 = −
1

4
e3φ(5m1 +

3

2
m2 + m3), c3 = 0, c4 =

1

2
e3φ(4m1 + m2),

d2 = eφ(2m1 + m2 + 2m3), d4 = −
1

2
e3φ(3m1 + m2 + m3), b = 0.

(3.10)

For this choice the correction δFmn can be traced back to a correction to the Kaluza-Klein

vector potential Am.

Now that we have proved that the fourth order correction does not affect the hidden

symmetry of the action, we will describe in some more detail the action of a subset of the

SL(2, R) transformations and show how they are modified by fourth order terms.

4. Corrected SL(2, R) transformations

At lowest order the Ehlers SL(2, R) transformations include scaling transformations of

the fields, φ −→ φ + σ, χ −→ eσχ, associated with the Cartan generator of SL(2, R).

One can then read off the transformation of the four-dimensional curvature objects from

their expresions in terms of the lower-dimensional fields obtained when performing the

dimensional reduction. One finds that the scalar curvature and four-dimensional measure

transforms under this lowest order global rescaling as (cf. formulas in the appendix)

R̂ −→ eσR̂, Ê = e−φe −→ e−σÊ. (4.1)

Clearly the combination ÊR̂ is then invariant, however, the higher order contribution ÊR̂2

is not invariant and therefore seems to break the SL(2, R) symmetry. This presents an

apparent contradiction with our previous results where we showed that the symmetry is

preserved by general R2 order curvature corrections and, moreover, that these are trivial

in this case.

The problem arises from the appearance of overall exponential prefactors of the dilaton

carried by the expansion of the higher dimensional curvature objects after dimensional

reduction, as is evident from the explicit results in the appendix. At lowest order these

prefactors can be made to cancel out with the ones coming from the reduction of the

measure by choosing an appropriate frame, most conveniently the Einstein frame as in (4.1).

However, then they will not cancel for the higher order curvature terms. This is a generic

feature of the dimensional reduction of supergravity actions and is related to the observation

in [16, 10, 17] according to which higher curvature terms are associated with the weights of

the hidden symmetry algebra rather than its roots which occur in the usual parametrization

of the coset space. The dilaton prefactors are at the same time associated to the volume

of the compactified space and are central when trying to complete the weight structure by

an automorphic form of the discrete version of the hidden symmetry algebra [11 – 13].
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However, in this simple case the symmetry as we have seen is not broken. The solution

to the puzzle is that the transformation rules for the original φ, χ and the metric gmn

are only correct up to lowest order and change once α′ terms are considered, giving new

contributions to the transformation of the action that restore the symmetry. To derive

the modification of the transformation rules of the three-dimensional fields one needs to

notice that the redefined fields, in terms of which the symmetry of the action is manifest,

transform by construction just under the usual (lowest order) Ehlers transformations. The

original fields then have an expansion in terms of the redefined ones. From this fact one

can derive the α′ corrections to the transformation laws of the original fields. The result

in the case of the scaling transformation is the following,

φ −→ φ + σ + α′δφ(1 − eσ),

Fmn −→ e−σFmn + α′δFmn(e−σ − 1),

gmn −→ gmn + α′δgmn(1 − eσ). (4.2)

It is easy to see that, when acting on the lowest order Einstein-Hilbert action, the α′ terms

in the transformations (4.2) generate a term that reconstructs the original correction to

the action globally rescaled by a factor of eσφ, which precisely cancels the actual correction

terms transformed at lowest order as follows from (4.1). The symmetry is then restored up

to fourth order in derivatives. The other transformations that make up the SL(2, R) group

can be analysed in a similar way and order α′ modifications to them also appear. Since

the transformations of the redefined fields close to form the group SL(2, R) the α′ modified

transformations of the original fields naturally form an SL(2, R) up to order α′.

5. Outlook

The case of four-dimensional gravity reduced to three dimensions studied in this paper

contains a number of non-generic features. It is not clear to what extent the result that

the hidden symmetry is unbroken by general R2 corrections carries over to the reduction

of R2 extended (3 + n)-dimensional gravity to three dimensions. Nevertheless we believe

that the techniques used in this paper can be employed to address this question and our

results emphasise that α′-corrections to the symmetry transformations are an important

feature to be considered.

One of the special properties of R2 corrections in (3 + 1) dimensions is the topological

nature of the Gauss-Bonnet combination which can be used to remove the square of the full

Riemann tensor. The remaining terms are then proportional to the lowest order equations

of motion and can be removed by field redefinitions in (3 + 1) dimensions. This clearly is

no longer possible in the general case since R̂ABCDR̂ABCD is not part of a total derivative.

Furthermore, one cannot generate such a term from a field redefinition in (3+n) dimensions

before reduction for n > 1. We still deem it likely that this term can be accounted for

in a symmetric action by a field redefinition after reduction to three dimensions since the

Weyl tensor vanishes identically and the three-dimensional Riemann tensor therefore can

be expressed in terms of the Ricci tensor and scalar, both of which do arise from field
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redefinitions. First computations indicate that this can be implemented and that also the

other terms arising in the reduction can be treated in a similar fashion. We plan to report

on this in more detail in the near future.

String effects and in particular string loops are expected to break the hidden symmetry

arising in dimensional reduction to its arithmetic version [18, 19]. This is consistent with

the present analysis where we only considered perturbative α′ corrections to gravity. In

the full theory it seems likely that automorphic forms are needed in order to maintain the

discrete symmetry.
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A. Reduction of curvature tensors

Here, for completeness, we list the results of the dimensional reduction of the curvature

tensors from four to three dimensions derived from the general ansatz

dŝ2 = e2αφds2 + e2βφ(dz̃ + Amdxm)2. (A.1)

Again, hatted objects and capital letters denote four-dimensional quantities while small

characters are reserved for three-dimensional ones. The coordinates split as xM =

(xm, z̃), M = 0, . . . , 3, m = 0, . . . , 2 with z̃ the space-like compact direction. Flat

indices are denoted by letters at the beginning of the alphabet and split as A =

(a, z), A = 0, . . . , 3, a = 0, . . . , 2. They are contracted using the flat Minkowski metric

η̂AB = diag(−,+,+, . . .). In (A.1) α, β are arbitrary real constants, in general we choose

them to have values α = −β = −1
2 in order for the the lowest order reduced gravity action

to be in the Einstein frame. The tangent space components of the curvature tensors then

are

R̂azbz = e−2αφ

[

−βDa∂bφ + β(2α − β)∂aφ∂bφ − αβηab(∂φ)2 +
1

4
e(−2α+2β)φFacFbc

]

,

R̂azbc = e(−3α+β)φ

[

−
1

2
DaFbc + α∂eφFe[bηc]a + (α − β)∂aφFbc − (α − β)∂[bφFc]a

]

,

R̂abcd = e−2αφ

[

Rabcd − 2αDa∂[cφηd]b + 2αDb∂[cφηd]a

+2α2∂aφ∂[cφηd]b − 2α2∂bφ∂[cφηd]a − 2α2(∂φ)2ηa[cηd]b

−
1

2
e(−2α+2β)φFabFcd +

1

2
e(−2α+2β)φFa[cFd]b

]

,

R̂zz = e−2αφ

[

− β¤φ −
(

β2 + αβ
)

(∂φ)2 +
1

4
e(−2α−2β)φF 2

]

,
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R̂za = −
1

2
e(−3α+β)φ

[

DcFca + (−α + 3β) ∂cφFca

]

,

R̂ab = e−2αφ

[

Rab − (α + β)Da∂bφ +
(

2αβ − β2 + α2
)

∂aφ∂bφ − αηab¤φ

−
(

α2 + αβ
)

ηab(∂φ)2 −
1

2
e(−2α+2β)φFacFbc

]

,

R̂ = e−2αφ

[

R − 2 (2α + β)¤φ −
1

4
e(−2α+2β)φF 2 − 2

(

αβ + α2 + β2
)

(∂φ)2
]

. (A.2)

Here, Da is the SO(1, 2) Lorentz covariant derivative in three dimensions, e.g. Da∂bφ =

∂a∂bφ + ωab
c∂cφ. A good review on the subject of dimensional reduction can be found

in [20].
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