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Abstract: We derive the q-deformation of the chiral Gross-Taylor holomorphic string
large N expansion of two dimensional SU (N ) Yang-Mills theory. Delta functions on
symmetric group algebras are replaced by the corresponding objects (canonical trace
functions) for Hecke algebras. The role of the Schur-Weyl duality between unitary groups
and symmetric groups is now played by q-deformed Schur-Weyl duality of quantum
groups. The appearance of Euler characters of configuration spaces of Riemann sur-
faces in the expansion persists. We discuss the geometrical meaning of these formulae.
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1. Introduction and Summary of the Results

Two-dimensional Yang-Mills theory, on a Riemann surface of genus G and of area A,
can be solved exactly. The partition function is

ZYM(G, A) =
∑

R

(dim(R))2−2Ge−g2
YM A C2(R) . (1.1)

This result was first obtained using the lattice formulation, followed by a continuum
limit [1]. The sum is over all irreducible representations of the gauge group, the cases
U (N ) or SU (N ) will be of interest here.

Gross and Taylor [2–4] studied the large N expansion of two-dimensional Yang-Mills
theory with gauge group U (N ) and SU (N ) and showed that it is equivalent to a string
theory. They showed that the large N expansion is given by a non-chiral expansion,
which is a sum involving chiral and anti-chiral factors. The chiral expansion of (1.1)1 is
given by

Z+
YM(G) =

∞∑

n=0

1

N (2G−2)n

∑

si ,ti ∈Sn

1

n! δ

(
�2−2G

n

G∏

i=1

si ti s
−1
i t−1

i

)
. (1.2)

It is a sum consisting of delta functions over symmetric groups, which count homomor-
phisms from the fundamental group of punctured Riemann surfaces to the symmetric
groups. These homomorphisms are known to count branched covers of �G . It was shown
in [5, 6] that the chiral sum actually computes an Euler character of moduli spaces of
holomorphic maps with fixed target space. This was done by expanding the � factors,
and recognising that the coefficients in the expansion are Euler characters of configu-
ration spaces of (branch) points on �G . Topological string theory constructions were
then used to derive a path integral which localizes to an integral of the Euler class on the
moduli space of holomorphic maps. For simplicity we are discussing only the chiral part
of the partition function here, but there is an analogous expansion for the full partition
function. A different string action involving harmonic maps was proposed in [7].

Two-dimensional Yang-Mills has recently found a surprising new application in con-
nection with topological strings on a non-compact Calabi-Yau and black hole entropy
[8]. The q-deformation of two-dimensional Yang-Mills has also found an application in
this context [9, 10]. The partition function of q-deformed Yang-Mills has been obtained
by replacing the scalar dual field of the Yang-Mills field strength by a compact scalar.

1 In this paper we work at zero area. The computations can be generalized to the case of finite area along
the lines of [3, 4].
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Such a compact scalar is natural from the point of view of the worldvolume of D4-branes
wrapping a 4-cycle of the non-compact Calabi-Yau. New connections with Turaev invar-
iants have also been suggested [11]. The q-deformation of two-dimensional Yang-Mills
theory was studied earlier [12, 13] (see also [14]).

The q-deformation of the zero area partition function of two-dimensional Yang-Mills
is

ZqYM(G) =
∑

R

(dimq R)2−2G . (1.3)

In the context of [10] this is the limit where the degree p of one of the line bundles is zero.
In the q-deformed Yang-Mills, the universal enveloping algebra of U (N ) is replaced by
Uq(u(N )). The exact partition function for a closed Riemann surface, which is expressed
in terms of dimensions of irreducible representations of U (N ), is now expressed in terms
of q-dimensions of Uq(u(N )) representations. The same remarks apply to Uq(su(N )).

The underlying algebraic relation which leads to the relation between the sum over
U (N ) representations in (1.1) and the delta functions over symmetric groups in (1.2)
is Schur-Weyl duality, which we describe further in Sect. 2. The q-deformation of the
Schur-Weyl duality between U (N ) and Sn is known [15]. In this q-deformation, the role
of the group algebra of Sn ( denoted by CSn ) is played by the Hecke algebra Hn(q).

In this paper, we show that the large N , chiral Gross-Taylor expansion, in terms of
symmetric group data can be q-deformed to give an expansion in terms of Hecke algebra
data. In this case we find the following result:

ZqYM(G) =
∞∑

n=0

∑

si ti ∈Sn

1

g
[N ](2−2G)n δ

×
(

D �2−2G
n

G∏

i=1

q−l(si )−l(ti )h(si )h(ti )h(s−1
i )h(t−1

i )

)
. (1.4)

Here, h(s) ∈ Hn is the Hecke algebra element associated to s ∈ Sn . That such an expan-
sion is possible at all in the quantum case is highly non-trivial and very much suggestive
of a geometric interpretation in terms of deformations of maps, on which we comment
in Sect. 6. The possibility of the expansion (1.4) depends crucially on the existence of
suitable central elements of the Hecke algebra (like D and �n , to be defined later). These
central elements play an important role in that they also determine the data on manifolds
with closed boundary:

Z(�G; C1, . . . , CB) =
∑

R

[N ](2−2G−B)n
∑

si ti

1

g

× δ

⎛

⎝D1−B �2−2G−B
n

G∏

i=1

q−l(si )−l(ti )h(si )h(ti )h(s−1
i )h(t−1

i )

B∏

j=1

C j

⎞

⎠ . (1.5)

In this formula, the central elements of the Hecke algebra take over the role of the
holonomies of the gauge field around the B boundaries of �G .

We also work out the case of non-intersecting Wilson loops. We develop an analog of
the Verlinde formula for the tensor product multiplicity coefficients of SU (N ) in terms
of characters of the Hecke algebra. To our knowledge, this formula has not appeared in
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the literature. Expectation values of Wilson loops can now again be written as Hecke
delta functions which are natural deformations of the symmetric group delta functions.

In four appendices we give some of the facts and proofs about Hecke algebras that we
use in the main text. To our knowledge, some of the formulas proven in these appendices
are not available in the mathematical literature before.

2. Hecke Algebras and the Chiral Expansion of q-Deformed 2dYM

2.1. Review of the Gross-Taylor expansion. Before we do the q-deformed case, we will
review the main tools used in the derivation of the partition function of 2d Yang-Mills as
a topological theory counting branched covers of the Riemann surface. For full details
we refer to [5]. For simplicity, we discuss the case of zero-area and no Wilson loops in
this section. We start writing out the partition function as a sum over Young tableaux:

Z2dYM(�G; A) =
∑

R

(dim(R))2−2G =
∞∑

n=0

∑

Y∈Y N
n

(dim(R(Y )))2−2G , (2.1)

where we sum over the set Y N
n of SU (N ) Young diagrams with n boxes and number of

rows less than N . Of course, we also sum over diagrams with arbitrary number of boxes.
The chiral expansion is derived by dropping the constraint on the number of rows. Next
we use Schur-Weyl duality to derive the following fomula:

dim(R) = N n

n! χR(�n) . (2.2)

We are using a notation where R = R(Y ) denotes both the SU (N ) and the Sn repre-
sentation corresponding to a Young tableau with n boxes, Y . χR is a character of the
symmetric group, and �n is a particular central element in CSn given in [3, 4]. The
chiral Gross-Taylor expansion is obtained as

Z2dYM(�G; A) =
∞∑

n=0

∑

R

N (2−2G)n
(

dR

n!
)2−2G 1

dR
χR(�2−2G

n )

=
∞∑

n=0

N (2−2G)n 1

n!
∑

si ,ti ∈Sn

δ

(
�2−2G

n

G∏

i=1

si ti s
−1
i t−1

i

)
. (2.3)

The fact that �n is a central element in the group algebra CSn is important. This is
explained in more detail and generalized to the q-deformed case in Sect. (2.3). Another
important identity which enters (2.3) is

∑

s,t∈Sn

1

dR
χR(sts−1t−1) =

(
n!
dR

)2

, (2.4)

where it is easy to see that
∑

s,t sts−1t−1 is a central element of CSn . We find (2.50),
which gives the q-deformation of this equation, and we prove related centrality properties
for Hn(q) in Appendix A.
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2.2. Hecke algebras and Schur-Weyl duality. There is a natural generalization of the
previous formulas using Hecke algebras. In this subsection we review basic facts about
Hecke algebras and derive some formulas that we will use in what follows.

The symmetric group Sn can be defined in terms of generators si (i = 1, . . . , n − 1),
which obey relations

s2
i = 1 for i = 1, . . . , n − 1,

si si+1 si = si+1 si si+1 for i = 1, . . . , n − 2,

si s j = s j si for |i − j | ≥ 2. (2.5)

The minimal length of a word in the si which is equal to a permutation σ is called the
length of the permutation and is denoted as l(σ ).

The Hecke algebra Hn(q) is defined in terms of generators gi which obey [16]

g2
i = (q − 1) gi + q for i = 1, . . . , n − 1,

gi gi+1 gi = gi+1 gi gi+1 for i = 1, . . . , n − 2,

gi g j = g j gi for |i − j | ≥ 2. (2.6)

The Hecke algebra has, as a vector space, a basis h(σ ) labelled by the elements σ of
Sn . This is often called the “standard basis” in the literature. These elements h(σ ) are
obtained by expressing the σ as a minimal length word in the si and then replacing the si
by gi . These Hecke algebras arise as the algebra of operators on V ⊗n , the n-fold tensor
product of the fundamental representation of U (N ) or SU (N ), which commute with the
action of Uq(u(N )) or Uq(su(N )), the q-deformation of the universal enveloping alge-
bra of u(N ) or su(N ), respectively. The action of the q-deformed enveloping algebras
on V ⊗ V is given by the co-product �. This obeys the following relations with respect
to the R-matrix:

�R = �′ R,

(P R)� = �(P R) . (2.7)

For h ∈ Uq , if we write �(h) = h1 ⊗ h2, then �′(h) = h2 ⊗ h1. P is the permutation
operator. P R is also commonly denoted by Ř. For the R-matrix we will use the conven-
tions of [17]. To make that explicit, we write RFRT. The Hecke algebra is related to the
algebra of the ŘFRT as:

g = √
q ŘFRT

(
qFRT = √

q
)

. (2.8)

gi corresponds to ŘFRT acting in the tensor product Vi ⊗ Vi+1 and is sometimes called
a braid operator.

Since the centralizer of Uq is the Hecke algebra, we can construct the projectors for
irreducible representations of Uq in terms of words in the gi . g1 acts on the product
space V1 ⊗ V2, therefore there are two possible projectors that we can construct [17]:

P = q−1

q + q−1 (1 + q Ř) = 1

1 + q
(1 + g),

P = q

q + q−1 (1 − q−1 Ř) = q

1 + q
(1 − q−1g) , (2.9)
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which project onto the totally symmetric and antisymmetric tensor products of the fun-
damental representation, respectively. Using (2.6), one easily checks that they satisfy

P2
R = PR . (2.10)

The symmetric projector is illustrated in Appendix D in terms of properties of Clebsch-
Gordan coefficients of Uq(su(2)).

Projectors are useful to compute characters in a particular representation in terms of
lower-dimensional representations. For example, taking the trace of the above,

Tr U = q−1

q + q−1

(
(trU )2 + q tr ⊗ tr

(
Ř (U ⊗ 1)(1 ⊗ U )

))
,

Tr U = q

q + q−1

(
(trU )2 − q−1 tr ⊗ tr

(
Ř (U ⊗ 1)(1 ⊗ U )

))
, (2.11)

where the traces on the right-hand side are taken in the fundamental representation,
Tr = trV = tr. From now on we will indicate such traces by trn = trV ⊗n = tr⊗ . . .⊗ tr.
The U ’s in (2.11), which are matrix elements of representations of Uq , generate the
dual algebra to Uq denoted by Funq(SU (N )) or Funq(U (N )) (see for example [18, 19,
13] ).

Using known facts about Hecke algebras and the q-deformation of the Schur-Weyl
duality between U (N ) and Sn , we will now derive the generalization for arbitrary irre-
ducible representations:

PR = dR(q)

g

∑

σ

q−l(σ )χR(h(σ−1)) h(σ ) , (2.12)

where l(σ ) is the length of the permutation, i.e. the number of elements in the minimal
presentation of the permutation as a product of simple transpositions. The character is
taken in the Hecke algebra Hn . Without danger of confusion, we will denote Hn and
Funq(SU (N )) characters with the same symbol. The characters for low values of n can
be read off from the tables in [16, 20]. dR(q) is the q-deformation of the dimension of
a representation of the symmetric group, and g reduces to n! in the classical limit:

dR(q) =
∏

i〈 j (q
li − ql j )

∏m
i=1(q − 1)(q2 − 1) . . . (qli − 1)

(q − 1)(q2 − 1) . . . (qn − 1)

q
m(m−1)(m−2)

6

,

g = (1 − q)(1 − q2) . . . (1 − qn)

(1 − q)n
, (2.13)

where li = λi + m − i and λ1 ≥ λ2 ≥ ..λm ≥ 0 are the row lengths of the Young
diagram, and m is the number of non-zero λ’s.

In order to derive (2.12), recall the familiar relation in the q = 1 case:

χR(U ) = 1

n!
∑

σ

χR(σ ) trn(σU ) . (2.14)

Here R is both the U (N ) reprsentation corresponding to a Young diagram and the Sn rep
corresponding to the same diagram. The trace on the right-hand side is taken in V ⊗n ,
that is U acts as U ⊗ U ⊗ ... ⊗ U and σ acts by permuting the vectors of the tensor
product.
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The above is obtained from the fact that, if V is the fundamental representation of
U (N ) or the universal enveloping algebra U (u(N )), then V ⊗n can be decomposed on
the terms of the product group U (N ) × Sn as

V ⊗n = ⊕R V U (N )
R ⊗ V Sn

R . (2.15)

The sum is over Young diagrams of Sn , V Sn
R is the irrep of Sn corresponding to the Young

diagram R, while V U (N )
R is the irrep of U (N ) corresponding to the same Young diagram.

Similar relations hold when U (N ) is replaced by SU (N ). An immediate consequence
of the above expansion is

tr (σU ) =
∑

R

χR(σ ) χR(U ). (2.16)

Then we can use orthogonality of characters of Sn ,
∑

σ

χR(σ ) χS(σ
−1) = n! δRS, (2.17)

to obtain (2.14). From (2.15) it also follows that

dR χR(U ) = trn(PRU ) , (2.18)

hence we can read off

PR = dR

n!
∑

σ

χR(σ−1) σ . (2.19)

The decomposition analogous to (2.15) holds for Uq(u(N )), when CSn is replaced
by the Hecke algebra Hn(q) [15]:

V ⊗n = ⊕R V
Uq
R ⊗ V Hn

R . (2.20)

Here V
Uq
R is the irrep of Uq(u(N )) corresponding to the Young diagram R and V Hn

R
is the representation of Hn corresponding to the same Young diagram. It follows from
(2.20) that

trn (h(σ ) U ) =
∑

R

χR(h(σ )) χR(U ). (2.21)

U lives in the deformed algebra of functions on U (N ) denoted as Funq(U (N )). This
can be defined as the dual to Uq(U (N )). For further discussion on the duality see for
example [18, 19, 13]. In (2.21) U acts as

(U ⊗ 1⊗ 1⊗ · · · )(1⊗ U ⊗ 1 ⊗ · · · )(1⊗ 1⊗ U ⊗ 1⊗ · · · ) · · · (1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ U ).

(2.22)

This product of n U ’s is dual to the co-product which defines the action of Uq on V ⊗n .
As will be explained in Sect. 5 (see also Appendix D), quantum traces contain the

u-element associated to the Hopf algebra Uq(su(N )). We get the quantum trace if we
take a trace of the action of u U on the left-hand side of (2.20) to get

trn (h(σ ) ρn(u U )) =
∑

R

χR(h(σ )) χR(u U ). (2.23)



324 S. de Haro, S. Ramgoolam, A. Torrielli

Here ρn(u) = u⊗n and U acts as above. For the case of diagonal U , the formula (2.21)
is used in [20].

Multiplying the left- and right-hand side of (2.21) with q−l(σ )χS(h(σ−1)), and using
the orthogonality relation [21] for Hecke characters

∑

σ

q−l(σ )χR(h(σ )) χS(h(σ−1)) = g
dR(1)

dR(q)
δRS , (2.24)

we get
∑

σ

q−l(σ )χR(h(σ−1)) trn(h(σ )U ) = g
dR(1)

dR(q)
χR(U ) . (2.25)

This means that the character can be expressed as

χR(U ) = 1

g

dR(q)

dR(1)

∑

σ

q−l(σ )χR(h(σ−1)) trn(h(σ )U ) . (2.26)

This equation can be interpreted as giving us the projection on a fixed Young diagram
from the sum in (2.15). Indeed, note that (2.20) implies, by projecting on a fixed Young
diagram:

dR(1) χR(U ) = trn(PRU ) . (2.27)

Comparing with (2.26) we see that the projector is

PR = 1

g
dR(q)

∑

σ

q−l(σ ) χR(h(σ−1)) h(σ ) , (2.28)

as claimed above. In the appendix we check that it satisfies (2.10).
If we use orthogonality starting from (2.23) rather than (2.21), then we get

χ
(q)
R (U ) ≡ χR(u U ) = 1

g

dR(q)

dR(1)

∑

σ

q−l(σ ) χR(h(σ−1)) trn(h(σ )(u U )) . (2.29)

Note that u⊗n commutes with h(σ ). We will specialize to U = 1 in order to get a new
formula for the q-dimension in Sect. (2.3).

2.3. A Hecke formula for the q-dimension . Recall that in the case q = 1 there is a
very useful formula for the dimension of SU (N ) reps which follows from Schur-Weyl
duality [5]. This formula can be obtained by specializing (2.14) to U = 1. To that end
we need to compute the trace of a permutation acting on V ⊗n . If σ = 1, we just get N n .
If σ = (12)(3)(4)..(n), we get N n−1. In general we get one factor of N for each cycle
in the permutation. If the permutation has cycles of length i occuring with multiplicity
ki the power of N is N

∑
ki . In the 2d Yang-Mills literature this is also denoted as N Kσ .

So the useful formula for the dimension in 2d Yang-Mills [3, 4] is

dim(R) = 1

n!
∑

σ

χR(σ ) N Kσ

= N n

n!
∑

σ

χR(σ ) N−n+
∑

i ki (σ ) . (2.30)

= N n

n! χR(�n). (2.31)
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The last line defines the element �n . It is convenient to write this as a sum over con-
jugacy classes. Let T be a conjugacy class, which is given by specification of the cycle
decomposition of the permutations involved. We will write CT = ∑

σ∈T σ . Note this is
a central element of the group algebra CSn , i.e. it commutes with all the elements of Sn .
So the above can be rewritten as

dim(R) = 1

n!
∑

T

χR(CT ) N
∑

i ki (T ) . (2.32)

We can now find the q-generalization of this formula by setting U = 1 in (2.29), to
obtain

dimq(R) = 1

g

dR(q)

dR(1)

∑

σ∈Sn

q−l(σ ) χR

(
h(σ−1)

)
trn(h(σ )u) . (2.33)

We can manipulate the above sum, using cyclicity of the trace and the Hecke relations, to
reduce it to a sum over conjugacy classes T in Sn , with the only terms appearing inside
trn being the trn(u h(mT )). mT are permutations in the conjugacy class T which have
minimal length when expressed in terms of generators. They are the minimal words in
[16]. For n = 3, mT are 1, g1, g1g2 for the 3 conjugacy classes. We prove in Appendix
B (B.7),

trn (u h(mT )) = q
N+1

2 l(T ) [N ]
∑

i ki , (2.34)

where the q-number is

[N ] = q N/2 − q−N/2

q1/2 − q−1/2 , (2.35)

and l(T ) is the length of the permutation mT .
We will explain below that the Hecke algebra elements CT appearing as the coeffi-

cients of q−l(T )tr(u h(mT )) are central. Hence the formula for the q-dimension becomes

dimq(R) = 1

g

dR(q)

dR(1)

∑

T

χR(CT (q)) [N ]
∑

i ki (T ) q
N−1

2 l(T ) . (2.36)

Examples of this formula are described in Appendix B, along with checks against the
standard formula in terms of a product of q-numbers over the cells of the Young diagram.

We now explain the centrality property of CT . Starting from the formula for the pro-
jector (2.12) we can express it in a reduced form using cyclicity and Hecke relations,
where we only have the characters of the minimal words in each conjugacy class:

PR = 1

g
dR(q)

∑

T

χR(h(mT )) CT . (2.37)

Here T runs over conjugacy classes, and mT are the minimal words. For the formulas
up to n = 4, see Appendix C. We can get the projector to the form (2.37) because, by
using cyclicity of χR and the Hecke relations, the Hecke characters can be expressed in
terms of these basic characters [16]. Now for every R, PR is a central element of the
Hecke algebra since it is a projector for the irreducible representation R. There are as
many conjugacy classes T as irreducible representations R. Hence CT must be central
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elements. When we calculate the q-dimension we get (2.33). When we manipulate the
expression to express it in terms of q−l(T ) trn(u h(mT )), we are using the same Hecke
relations and cyclicity (of trn this time):

dimq(R) = 1

g

dR(q)

dR(1)

∑

T

q−l(T ) χR(CT ) trn(h(mT ) u) . (2.38)

This immediately leads to (2.36). Incidentally, (2.37) seems to give a relatively efficient
way of calculating the central class elements compared to the ones we are aware of in
the mathematical literature. Some interesting papers with explicit formulae for Hecke
central elements, which we found useful, are [22, 23].

2.4. Hecke q-generalization of sums over symmetric groups of 2d Yang Mills. The string
theory interpretation of 2d Yang Mills at q = 1 is centred on formulae derived from
Schur-Weyl duality. The character relations following from Schur-Weyl give rise to a
formula for dimensions of SU (N ) reps in terms of Sn reps. Then some group theory
manipulations lead to an expression of the chiral partition function in terms of delta
functions over the symmetric group.

The delta function is defined over the symmetric group or, more generally, over the
group algebra of the symmetric group:

δ(σ ) = 1 if σ = 1,

δ(σ ) = 0 otherwise . (2.39)

A useful property of this delta function is that it can be expressed in terms of characters,

n! δ(σ ) =
∑

R

dR χR(σ ) . (2.40)

The expressions arising in the 2d Yang-Mills string take the form

δ (σ1σ2 · · · σk) , (2.41)

and the weights depend on the genus G and on N in precisely such a way that the chiral
partition function can be expressed in terms of a sum of Euler characters of moduli
spaces of holomorphic maps (see Sect. 7 of [5]).

Now we will describe a q-generalization of this story, where the Hecke algebra will
replace the group algebra of the symmetric group. A q-analog of the delta function on
the symmetric group is known in the theory of Hecke algebras [21]. It is defined as:

δ(h(σ )) = 1 if σ = 1,

δ(h(σ )) = 0 otherwise . (2.42)

Our δ(h(σ )) is 1
g tr(h(σ )) in the notation of [21] for the canonical trace function tr(h(σ )).

This q-deformed delta function reduces exactly to the delta function on the symmetric
group defined above when q → 1. It can be expressed as

g δ(h(σ )) =
∑

R

dR(q) χR(h(σ )) , (2.43)
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where R runs over partitions of n or Young diagrams with n boxes, and g is given in
(2.13).

An important fact we will use in what follows is that for C a central element of the
Hecke algebra, and for arbitrary σ ∈ Sn ,

χR(C) χR (h(σ )) = dR(1) χR (C h(σ )) , (2.44)

which follows simply from Schur’s lemma applied to the Hecke algebra.
We now have all the elements we need in order to rewrite the quantum dimensions

in terms of central elements of the Hecke algebra. Using (2.36), we can write

dimq(R) = [N ]n

g

dR(q)

dR(1)
χR(�n) . (2.45)

In the quantum case the �’s are expressed as

�n =
∑

T

[N ]KT −n q
N−1

2 l(T ) CT

= 1 +
∑

T

′ [N ]KT −n q
N−1

2 l(T ) CT

≡ 1 + �′
n , (2.46)

where the unprimed sum runs over the central elements of Hn . The restricted sum
(denoted by the prime) runs over all central elements associated with conjugacy classes
of Sn which are not the identity. The last line is a definition of �′

n . Making repeated use
of (2.44), we find that for a central element we have:

(
χR(C)

dR(1)

)m

= χR(Cm)

dR(1)
. (2.47)

It now follows from (2.45) that

(dimq(R))m =
=

( [N ]n dR(q)

g

)m
χR(�m)

dR(1)
(2.48)

=
( [N ]n dR(q)

g

)m ∞∑

	=0

d(m, 	)

dR(1)
χR

×
⎛

⎝
	∏

i=1

∑

Ti

′CTi

⎞

⎠ [N ]
∑

i KTi −nq
N−1

2

∑
i l(Ti ),

where d(m, 	) = 
(m+1)

(	+1)
(m−	+1)

, and we wrote out the definition of �′.
Let us develop the q-deformed chiral Gross-Taylor expansion

Z =
∞∑

n=0

∑

R∈Yn

(
dimq(R)

)2−2G

=
∞∑

n=0

∑

R∈Yn

[N ](2−2G)n
(

dR(q)

g

)2−2G 1

dR(1)
χR

(
�2−2G

)
. (2.49)
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Now we can show (see Appendix A) that
(

g

dR(q)

)2

=
∑

s,t∈Sn

q−l(s)−l(t) 1

dR(1)
χR

(
h(s)h(t)h(s−1)h(t−1)

)
. (2.50)

We also show in the appendix that the element
∑

s,t∈Sn

q−l(s)−l(t) h(s)h(t)h(s−1)h(t−1) (2.51)

is central in Hn . Hence we have

(
g

dR(q)

)2G

=
∑

s1,t1···sG ,tG

q−∑
i (l(si )+l(ti )) 1

dR(1)
χR

(
G∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i )

)
.

(2.52)

Now we employ this equation in (2.49) to get

Z =
∞∑

n=0

∑

R∈Yn

∑

si ti

q−∑
i (l(si )+l(ti )) [N ](2−2G)n

(
dR(q)

g dR(1)

)2

×χR

(
G∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i )

)
χR(�2−2G)

=
∞∑

n=0

∑

R∈Yn

∑

si ti

[N ](2−2G)n
(

dR(q)

g

)2 q−∑
i (l(si )+l(ti ))

dR(1)

×χR

(
�2−2G

G∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i )

)
, (2.53)

where we sum over Sn permutations s1, t1, . . . , sG , tG . At this point the manipulations
performed in the classical case do not generalize straightforwardly to the quantum case
because of the different powers of dR(q) and dR(1). We need to introduce an element
D of the Hecke algebra with the property

χR(D) = dR(q) . (2.54)

The existence of this element is proven in Appendix A, where an explicit expression is
given for it in terms of an infinite sum. Let us find it explicitly for low values of n. For
n = 2, 3, we can solve the above equation explicitly. We find for n = 2,

D = 1 + q2

1 + q
+

1 − q

1 + q
g1,

and for n = 3,

D = 1 + q2 + 2q3 + q4 + q6

(1 + q)(1 + q + q2)
+

(1 − q)(2 + 2q + q2 + 2q3 + 2q4)

(1 + q)(1 + q + q2)
g1

+
(1 + q)(1 − q)2

1 + q + q2 g1g2 . (2.55)
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We note that D → 1 in the classical limit. Using the form of D in the appendix we can

write dR(q)2

dR(1)
= dR(q)

χR(D)
dR(1)

, which allows us to rewrite (2.53),

Z =
∞∑

n=0

∑

si ti

1

g
[N ](2−2G)n δ

(
D �2−2G

G∏

i=1

q−l(si )−l(ti )h(si )h(ti )h(s−1
i )h(t−1

i )

)
.

(2.56)

In the last step we used (2.43). This is the q-analog of the Gross-Taylor expansion. We
can expand the �-factors as follows:

Z =
∞∑

n=0

∑

si ti

q−∑
i (l(si )+l(ti ))

∞∑

	=0

∑

T1...T	

′ 1

g
[N ](2−2G)n+

∑
i (K (Ti )−n) q

N−1
2

∑	
i=1 l(Ti )

×d (2 − 2G, 	) δ

(
D CT1 . . . CT	

G∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i )

)
. (2.57)

As explained in [5], the factor of d(2−2G, 	) is the Euler character of the configuration
space of 	 points on �G , denoted as χ(�G,	). Hence we can write

Z =
∞∑

n=0

∑

si ti

q−∑
i (l(si )+l(ti ))

∞∑

	=0

∑

T1...T	

′ 1

g
[N ](2−2G)n+

∑	
j=1(K (Tj )−n) q

N−1
2

∑	
j=1 l(Tj )

×χ(�G,	) δ

(
D CT1 . . . CT	

G∏

i=1

q−(l(si )+l(ti ))h(si )h(ti )h(s−1
i )h(t−1

i )

)
. (2.58)

3. Manifolds with Boundary

We now describe the chiral large [N ] expansion of q-deformed 2d Yang-Mills theory
on manifolds with boundary, in terms of Hecke algebras. We recall the classical case
first. For a Riemann surface of genus G with B boundaries and boundary holonomies
U1, . . . , UB in SU (N ), the parition function is

ZYM(G, B; U1, . . . , UB) =
∑

R

(dim R)2−2G−BχR(U1) χR(U2) . . . χR(UB) . (3.1)

It is useful in that case to multiply by ( 1
n! )

B trn(T1 U †
1 ) trn(T2 U †

2 ) . . . tr(TB U †
B) and inte-

grate over the holonomies, where T1, . . . , Tn are sums of permutations in fixed conjugacy
classes in Sn . Then the chiral Gross-Taylor expansion becomes

ZYM(G, B; T1, . . . , TB)=
∑

si ,ti

1

n! N n(2−2G−B)δ

(
T1 . . . TB�2−2G−B

n

G∏

i=1

si ti s
−1
i t−1

i

)
.

(3.2)

This is basically a Fourier transformation, and the derivation is explained in [24].
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For q-deformed 2d Yang-Mills, the holonomies along the boundaries are specified
by the quantum characters [13, 12] of Uq(SU (N )):

ZqYM(G, B; U1, . . . , UB) =
∑

R

(dimq R)2−2G−BχR(U1) χR(U2) . . . χR(UB). (3.3)

Now we can insert ( 1
g )B trn(CT1 U †

1 ) trn(CT2 U †
2 ) . . . tr(CTB U †

B). In this case, CT1 , . . . ,

CTB are central elements in Hn(q) which approach the class sums T1, T2, . . . , TB in the
limit q → 1. They have appeared in the formulae for the q-dimension earlier. We use
the expansion

tr(CT U †) =
∑

S

χS(CT ) χS(U †) , (3.4)

where χS(CT ) is the Hecke algebra character in the representation S. Then we integrate
the quantum group elements U1, . . . , UB , and use the orthogonality [13, 12]

∫
dU χR(U ) χS(U

†) = δRS . (3.5)

The result is

ZqYM(G, B; CT1 , . . . , CTB )

=
∑

R∈Yn

(
dimq R

)2−2G−B
B∏

j=1

(
χR(CTj )

g

)

=
∑

R

[N ](2−2G−B)n
(

dR(q)

g

χR(�)

dR(1)

)2−2G−B B∏

j=1

(
χR(CTj )

g

)
(3.6)

= 1

g
[N ](2−2G−B)n

∑

si ti

δ

×
⎛

⎝
(

E

g

)B−1

�2−2G−B
G∏

i=1

q−l(si )−l(ti ) h(si )h(ti )h(s−1
i )h(t−1

i )

B∏

j=1

CTj

⎞

⎠ .

In the second line we used (2.48), and in the last line we employed (2.52). The element
E is defined in (A.14). As in manipulations of the partition function we repeatedly used
(2.44) to combine products of characters. Finally to obtain the delta function from the
Hecke characters, we used (2.43).

In the q = 1 limit (3.6) reduces to a delta function over the group algebra of Sn , count-
ing maps with specified conjugacy classes of permutations at the boundaries. There is
now some deformation of this geometry, involving central elements of the Hecke algebra
Hn(q) associated with the boundaries. It is very intersting that for B = 1 we do not have
the E

g factors. Recall also that E
g = 1 in the q = 1 limit.

In the q-deformed theory there is a notion of a delta-function over the quantum group
-valued holonomies [13]. It is the partition function on the disk, therefore the case G = 0,
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B = 1 of the above. We compute directly:

δ(U, 1) =
∑

n;σ∈Sn

1

g
[N ]n q−l(σ )δ(D� h(σ−1)) trn(h(σ ) u U )

=
∑

n;σ∈Sn

1

g
[N ]n Qσ trn(h(σ ) u U ) , (3.7)

where we defined D� = ∑
σ Qσ h(σ ). Using (3.5), we can integrate this expression

against any test function to obtain a form that depends purely on the Hecke algebra. In
particular, the above gives another expression for the quantum dimensions. Thus, in the
q-deformed theory the partition function on a disk of zero area continues to be associated
to a flat connection, in the quantum group sense [13].

4. Chiral Large N Expansion for Wilson Loops

After having computed the partition function on closed Riemann surfaces and Riemann
surfaces with boundaries, we should now discuss the chiral expansion of Wilson loops.
For simplicity, we will consider non-intersecting Wilson loops in this section. The basic
object we need to take into account are the SU (N ) tensor multiplicity coefficients [13,
12]. Indeed, consider a surface of genus G = G1 + G2 with a Wilson loop in representa-
tion S, where G1 and G2 are the genera of the inner and outer faces of the Wilson loop.
The expectation value of this Wilson loop is

WS(G) =
∑

R1 R2

∫
dU

(
dimq R1

)1−2G1
(
dimq R2

)1−2G2 χR1(U ) χS(U ) χR2(U
†) ,

(4.1)

where R1 and R2 are the representations of the inner and outer faces, respectively. Since
we are discussing the case of q non-root of unity, the result of the above quantum integral
is the usual SU (N ) tensor multiplicity coefficients (Littlewood-Richardson coefficients).
Thus we are set to compute

WS(G) =
∑

R1 R2

(dimq R1)
1−2G1(dimq R2)

1−2G2 N R2
R1 S . (4.2)

Our next task is to look for an expression for the Littlewood-Richardson coefficients
that we can interpret as a deformation of the Riemann surface. Thus, we want to write
them as delta functions on the Hecke algebra. We start from the definition:

N R3
R1 R2

=
∫

dU χR1(U ) χR2(U ) χR3(U
†), (4.3)

and observe that the above is a trace of the following operator acting in R1 ⊗ R2:

∫
dU χR3(U

†) ρR1⊗R2(U ) . (4.4)
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Now R1 can be realized in V ⊗n1 with multiplicity dR1(1) when we project on the given
Young diagram, and likewise for R2. It is also useful to note that the above operator is
proportional to a projector for the representation R3,

∫
dU χR3(U

†) ρR1⊗R2(U ) = 1

dimq R3
ρR1⊗R2(PR3) . (4.5)

Using the expression for the projectors for R1 and R2 in terms of the Hecke algebra, we
obtain

N R3
R1 R2

= 1

g1g2g3

dR1(q)

dR1(1)

dR2(q)

dR2(1)

∑

σ1σ2

q−l(σ1)−l(σ2) χR1(h(σ−1
1 )) χR2(h(σ−1

2 ))

× 1

dimq R3
trV ⊗n1⊗V ⊗n2

(
(h(σ1) · h(σ2)) PR3

)
. (4.6)

Here and in what follows we take σi ∈ Sni for i = 1, 2, 3. Writing out the projector
(2.28), we get

N R3
R1 R2

= 1

g1g2g3

dR1(q)

dR1(1)

dR2(q)

dR2(1)

×
∑

σ1σ2σ3

q−l(σ1)−l(σ2)−l(σ3) χR1(h(σ−1
1 )) χR2(h(σ−1

2 )) χR3(h(σ−1
3 ))

× dR3(q)

dimq R3
trV ⊗n1⊗V ⊗n2

(
(h(σ1) · h(σ2)) h(σ3)

)
, (4.7)

and expanding the trace in a basis of Young tableaux with n1 + n2 boxes, we get

N R3
R1 R2

= 1

g1g2g3

dR1(q)

dR1(1)

dR2(q)

dR2(1)

×
∑

σ1σ2σ3

q−l(σ1)−l(σ2)−l(σ3) χR1(h(σ−1
1 )) χR2(h(σ−1

2 )) χR3(h(σ−1
3 ))

× dR3(q)

dimq R3

∑

S∈Yn1+n2

χS

(
(h(σ1) · h(σ2)) h(σ3)

)
dimq S . (4.8)

If we now use the projector property

χS(PR3 h(σ )) = δR3 S χR3(h(σ )) (4.9)

and the explicit form of the projector in (2.12) then we have the useful orthogonality
relation

∑

σ3

q−l(σ3)
dR3(q)

g3
χR3(h(σ−1

3 )) χS

(
h(σ3)(h(σ1) · h(σ2))

)

= χR3(h(σ1) · h(σ2)) δR3 S . (4.10)

This can be used to simplify the expression (4.8) further to

N R3
R1,R2

= 1

g1g2

dR1(q)

dR1(1)

dR2(q)

dR2(1)

∑

σ1σ2

q−l(σ1)−l(σ2)

×χR1(h(σ−1
1 )) χR2(h(σ−1

2 )) χR3(h(σ1) · h(σ2)). (4.11)
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This formula is reminiscent of the Verlinde formula for the fusion coefficients of orbifold
conformal field theories [25], or alternatively of Chern-Simons theory with finite groups
[26, 27]. It would be interesting to understand the connection.

If we go from the character basis to the basis in terms of central elements of the
Hecke algebra, and using the above, we get

1

g1g2g3

∑

R1 R2 R3

N R3
R1 R2

χR1(C1) χR2(C2) χR3(C3)

= 1

g1g2

∑

σ1σ2

δ(h(σ−1
1 )C1) δ(h(σ−1

2 )C2) q−l(σ1)−l(σ2)

×
∑

R3

1

g3
dR3(1) χR3(h(σ1) · h(σ2)C3)

= 1

g1g2

∑

σ1σ2

δ(h(σ−1
1 )C1) δ(h(σ−1

2 )C2) q−l(σ1)−l(σ2)
1

g3
δ
(

E C3 (h(σ1) · h(σ2))
)

= 1

g1g2g3

∑

σ1

∑

σ2

Cσ1
1 Cσ2

2 δ
(

E C3 (h(σ1) · h(σ2))
)

. (4.12)

E is the element defined in (A.14) of Appendix A. We have denoted by Cσ the coeffi-
cients which appear in the expansion of the central element C ,

C =
∑

σ

C σ h(σ ) , (4.13)

and we used the following property of the trace [21]:

δ(h(σ )h(σ ′)) = ql(σ ) if σσ ′ = 1,

δ(h(σ )h(σ ′)) = 0 otherwise. (4.14)

Consider now the computation of a simple Wilson loop, in the representation S,
separating a region with G1 handles from another region with G2 handles,

WS =
∑

n1,n2

∑

R1 R2

(dimq R1)
1−2G1(dimq R2)

1−2G2 N R2
R1 S

=
∑

R1

[N ]n1(1−2G1)

(
dR1(q)

g1dR1(1)

)1−2G1

(χR1(�))1−2G1

×
∑

R2

[N ]n2(1−2G2)

(
dR2(q)

g2dR2(1)

)1−2G2

(χR2(�))1−2G2 N R2
R1 S . (4.15)

We now use (4.11) with the fusion coefficient, multiply by the character of some central
element C in HnS (q) and sum over S

W (C, G1, G2) =
∑

S

χS(C)

gS
WS . (4.16)
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Collecting all S dependences we have

∑

S

1

gS

dS(q)

dS(1)
χS(C) χS(h(σ−1

2 )) = δ(C h(σ−1
2 )). (4.17)

Hence we obtain

W (C; G1, G2) =
∑

n1,n2

1

g1g2
δn1+nS ,n2 [N ]n1(1−2G1)+n2(1−2G2)

∑

σ1σ2

q−l(σ1)−l(σ2)

× δ(C h(σ−1
2 )) δ

(
D �

G1
1 �1−2G1 h(σ−1

1 )
)

(4.18)

× δ
(
�

G2
1 �1−2G2(h(σ1) · h(σ2))

)
.

The factors of [N ] are as above. We have defined

�
G1
1 =

∑

s1,t1..sG1 ,tG1

q−∑
i l(si )−l(ti )

G1∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i ),

�
G2
1 =

∑

s1,t1..sG2 ,tG2

q−∑
i l(si )−l(ti )

G2∏

i=1

h(si )h(ti )h(s−1
i )h(t−1

i ). (4.19)

Expanding

C =
∑

σ

C σ h(σ )

P = D �1−2G1�
G1
1 =

∑

σ

P σ h(σ ) , (4.20)

we finally get

W (C; G1, G2)=
∞∑

n1=0

1

g1g2
[N ]γ

∑

σσ ′
Pσ Cσ ′

δ
(
�1−2G2�

G2
1 (h(σ ) · h(σ ′))

)
. (4.21)

We defined γ = n1 + n2 − 2(n1G1 + n2G2) = (2 − 2G)n1 + nS(1 − 2G2), where we
used n2 = n1 + nS .

5. On the Role of Quantum Characters in q-Deformed 2d YM

In this paper we have used quantum Uq(SU (N ), characters rather than classical SU (N )

characters. For the computations in [10] it seemed enough to consider classical SU (N )

characters. So one can ask: does one need to compute with quantum characters, or do
the classical ones suffice? In this section we argue that quantum characters are needed
in the generic situation; in fact, they are extremely natural and they provide the simplest
solution to the problem of crossings and gluing along open lines. Our arguments are con-
sistent with [10], where the dimensions appearing in the partition function (1.3) were
quantum dimensions but the characters associated with boundaries and Wilson loops
were classical SU (N ) characters. In particular, this paper did not consider crossings
on the surface, and gluing constructions involved closed curves only. In the absence
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of crossing points, both the classical and the quantum characters lead to a topological
invariant theory. It is a well-known fact from Chern-Simons theory that one can do with-
out R-matrices or other quantum group structure as long as one considers simple Wilson
loops – for example, toric ones, whose expectation value follows from surgery. In the
2d Yang-Mills case, the basic gluing formula along circles is (3.5), which is valid both
for classical and quantum characters, and ensures topological invariance of the gluing
construction along circles. More precisely, the need for quantum characters in qYM can
be seen:

1) in the presence of Wilson loops with non-trivial crossings;
2) when gluing along open lines.

The original definition of qYM is well-known [13, 12] and it involves quantum char-
acters. In the following subsections we collect several arguments that show the need for
quantum characters.

5.1. Consistency of Wilson loops. One of the basic consistency conditions to be imposed
on a Wilson loop is that, if the charge of the particle is zero, the expectation value of the
Wilson loop should be that of the unit operator; in other words, it should give back the
partition function of the theory. In our case, if WR(G; C) is the Wilson loop operator in
representation R around the curve C on the Riemann surface of genus G, consistency
requires

WR=ρ(G; C) = 〈1〉 = ZqYM(�G), (5.1)

where ρ is the Weyl vector labeling the trivial representation. Thus, we should reproduce:

Wρ(G; C) =
∑

S

(dimq S)2−2gq− 1
2 A C2(S) . (5.2)

We will check whether quantum dimensions and classical characters are consistent with
this for a Wilson loop with crossings.

Consider the expectation value of the Wilson loop WR(G; C) in Fig. 1. In this case
we have A = A1 + A2 + A3, where A1 is the area of the outer face, which has genus G.
We get:

WR(G; C)

=
∑

R1 R2 R3

(dimq(R1))
1−2g dimq(R2) dimq(R3) q− 1

2 (A1C2(R1)+A2C2(R2)+A3C2(R3))

×
∫

dUdV χR1(U
−1V −1) χR2(U ) χR3(V )χR(U V −1), (5.3)

where, since we are dealing with classical characters, dU is the Haar measure. Let us
compute this in the trivial case: R = ρ. We can compute the integrals using the character
formula

∫
dU χR2(U )χR3(U

−1V ) = δR2 R3

χR2(V )

dim(R2)
. (5.4)

We get

∑

S

(dimq(S))3−2g

dim(S)
q− 1

2 AC2(S), (5.5)
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Fig. 1. A Wilson loop with a crossing.

which disagrees with (5.2). The reason that the dimensions do not come out right is that
we were forced to use formula (5.4). We conclude that this procedure is not consistent.
On the other hand, the same computation can be carried out with quantum characters,
and in that case we do get the quantum dimension in (5.4).

5.2. Gauge invariance of Wilson loops. There is a short proof of gauge invariance for
the Wilson loops and boundary elements we have discussed in previous sections. Let
U ∈ Funq(SU (N )) (for more details on this see Appendices B and D), and consider the
ad-action of Funq(SU (N )) on itself:

ad : U �→ h U S(h) , (5.6)

where we are considering Funq(SU (N )) as a Hopf algebra with antipode S [17]. It is
easy to see that the quantum trace

Tr (u U ) (5.7)

is left invariant under this action (for the definition of the u-element, see Appendix B).
We get:

Tr (u hU S(h)) = Tr (S2(h)uU S(h)) = (S2(h))i j (uU ) jk(S(h))ki

= (S2(h))i j (S(h))ki (uU ) jk = S(hki (S(h))i j )(uU ) jk

= Tr (u U ) , (5.8)

where we used ε(h) = 1, and the fact that u satisfies

u x = S2(x) u (5.9)

for any x ∈ Funq(SU (N )). Thus, gauge invariance in Funq(SU (N )) is ensured provided
we include the u-element.
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We have proven that the triple
(

Migdal gluing , quantum dimensions , classical characters
)

(5.10)

is inconsistent in the generic case. To get a consistent theory, we need to modify one of
the above. If instead of quantum dimensions we use classical dimensions, we of course
get back the usual 2d Yang-Mills. If we want the dimensions to be quantum, we either
need quantum characters, or a modification of the gluing rules. The possibility to have
quantum characters has been discussed at length in this paper, and it has been shown to
be consistent in [13]. In particular, the theory is gauge invariant and independent of the
triangulation. We do not exclude that there might be a complicated modification of the
gluing rules that would allow to keep quantum dimensions and classical characters even
in the presence of crossings.

Additional features of the quantum characters are the following. The natural expan-
sion of the quantum dimensions is in terms of quantum characters, which are most easily
expressed in terms of a Hecke algebra, as we have shown. This gives a natural deforma-
tion of the symmetric group description of covering maps of the Riemann surface. Also
in the case with boundaries, the use of quantum characters was essential for this. Finally,
q-deformed 2d Yang-Mills computes invariants of knots in Seifert manifolds [28, 11].
This is also expected from open-closed string duality in the A-model with branes. This
relation will however only work if on the qYM side we deform the gauge symmetry as
well so as to get quantum characters, since only that will give the quantum 6j-symbols
that appear in the Reshetikhin-Turaev invariant relevant for knots in Chern-Simons [11].

6. Discussion and Outlook

We have shown that the chiral large N expansion ( note that the q-number [N ] appears
as the natural expansion parameter ) for q-deformed Yang-Mills can be described by
Hecke algebras. The full large N expansion is expected to be given by a coupled product
of chiral and anti-chiral contributions. We expect that techniques of this paper can be
extended to give a precise description of this non-chiral expansion in terms of Hecke
algebras.

The string interpretation of q-deformed 2d Yang-Mills on �G has been developed in
[9, 10]. The leading order terms in the expansion, obtained by setting the � factors to 1,
were shown to compute Gromov-Witten invariants of a Calabi-Yau space X which is a
direct sum of line bundles L p ⊕ L2g−2−p fibered over �G . The sub-leading terms, due
to the � factors were intepreted in terms of D-brane insertions at 2G − 2 points. This
picture develops the Gross-Taylor interpretation (at q = 1) of the � factors in terms of
fixed points on the Riemann surface [3, 4]. An alternative interpretation of the � factors
underlies the topological string theory developed in [5, 6] for q = 1. The latter topolog-
ical string is different from the standard one. It has been labelled a balanced topological
string and has been observed to be an example of a general class of balanced topological
field theories naturally related to Euler characters of moduli spaces [29]. It integrates
over the moduli space of holomorphic maps the Euler class of the tangent bundle to that
moduli space.

The concrete connection between Euler characters and the large N expansion of two
dimensional Yang-Mills is manifest when one expands the � factors and recognizes
the binomial coefficients as Euler characters of configuration spaces of points on the
Riemann surface �G [5]. Our treatment of the � factors in the q-deformed case, which
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has expressed it in terms of central elements of the Hecke algebra, naturally lends itself
to this interpretation. Euler characters of configuration spaces continue to appear in the
expansion for the same reasons as at q = 1. This suggests that a closed topological
string interpretation exists for the large N expansion of q-deformed two-dimensional
Yang-Mills in terms of a balanced topological string. The simplest proposal along these
lines is that the balanced topological string with target space X would give a closed
string interpretation for the all orders expansion of q-deformed two-dimensional Yang-
Mills. The relation of such a picture to the D-brane insertions of [10] would involve an
interesting incarnation of open-string/closed-string duality. Developing these relations
requires a clearer understanding of the coupling between holomorphic and anti-holomor-
phic sectors in the context of the balanced topological string. The connection between
the Gross-Taylor expansion and the Gromov-Witten invariants appearing in [9, 10] has
also been discussed in [30, 31].

Given the rather simple Hecke q-deformation we have uncovered, of the sums over
symmetric group delta functions related to the classical Hurwitz counting of branched
covers, it is also natural to speculate that there is an intrinsically two-dimensional picture
which would account for the Hecke delta functions, without appealing to the Calabi-Yau
X . One possiblity is that we have q-deformed Riemann surfaces and maps between
such Riemann surfaces. In fact q-deformed planes, known as Manin planes, have been
studied and holomorphy has been discussed ( see for example [32]). One could construct
Riemann surfaces which, in some sense, locally look like Manin planes, and consider
holomorphic maps between them. As far as we are aware, such a theory of Hurwitz
spaces for q-deformed Riemann surfaces has not yet been developed.

While Hecke algebras are more familiar to mathematical physicists as centralizers of
quantum groups acting in tensor spaces, they have another pure mathematical origin (see
for example [33]). Hn(q) is an algebra of double cosets Bn(Fq) \ GLn(Fq)/Bn(Fq).
Here Fq is the finite field with q elements, where q is a power of a prime p. (If q = p
then Fq is just the field of residue classes modulo p.) GLn(Fq) is the group of n × n
matrices with entries in Fq . Bn(Fq) is the subgroup of the upper triangular matrices. This
generalises the fact that Sn appears from double cosets Bn(C) \ GLn(C)/Bn(C). Hence
the deformation of CSn to the Hecke algebra Hn(q) corresponds to going from C to Fq .
This suggests that, at least for q equal to a power of a prime, our Hecke-q-deformed
Hurwitz counting problem might be related to Riemann surfaces over Fq . It is interesting
that, in this context, fundamental groups can be defined and they still take the form

a1 b1 a−1
1 b−1

1 a2 b2 a−1
2 b−1

2 · · · aG bG a−1
G b−1

G u1 · · · u B = 1 . (6.1)

There are also results on the moduli spaces of branched covers in this set-up, general-
izing properties of classical Hurwitz space [34]. An interesting direction for the future
is to determine if there is a relation between Hecke algebras Hn(q) and these moduli
spaces, and if such a relation provides the geometrical meaning for the q-deformed
Hecke counting problems in (2.56), (2.57).

Classical and q-deformed 2d Yang-Mills are closely connected to Chern-Simons the-
ory on Seifert manifolds [35, 11, 10, 36, 37]. On the other hand, some of the formulas
in this paper, such as (4.11) , are suggestive of some connection of the chiral large
N expansion of q-deformed 2d Yang-Mills and orbifold conformal field theories [25]
or Chern-Simons theory for finite gauge groups [26, 27]. It is known that the Chung-
Fukuma-Shapere three-dimensional topological field theory [38] is the absolute value
squared of the partition function of the Dijkgraaf-Witten theory. It seems very likely
that the chiral expansion in terms of Hecke characters worked out in this paper can
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be formulated in the two-dimensional topological field theory framework of [39, 38]
with additional insertions coming from the branch points. It would be interesting to see
in detail to what extent the chiral q-deformed 2d Yang-Mills theory is related to the
Dijkgraaf-Witten theory. In view of the connection to Chern-Simons theory, it will be
interesting to explore the q-deformed chiral as well when q approaches roots of unity.
q-Schur Weyl duality at roots of unity has been discussed in [40, 41].
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A. Central Elements

A.1. Centrality of q-deformed conjugation sum . We want to show that
∑

s

q−l(s)h(s)h(t)h(s−1) (A.1)

is central in Hq(n). Since Hq(n) is generated by g1, ...gn−1, it suffices to show that the
above element commutes with these generators. We will first show it for g1, and it will
be clear the same proof can be repeated for g2, etc.

First recall how this works in the case q = 1. We write
∑

s

s1sts−1 =
∑

s

(s̃)t s̃−1s1

=
∑

s̃

s̃t s̃−1s1 ,

where we defined s̃ = s1s. The cancellation only uses a pair of terms at a time. For a
fixed s,

s1sts−1 = s̃t s̃−1s1,

s1s̃t s̃−1 = sts−1s1 ,

which means that

[s1, sts−1] + [s1, s̃t s̃−1] = 0 . (A.2)

It turns out that the same pairwise cancellation works for q 
= 1. It is instructive to
check it explicitly for n = 3, 4. Below we give the general argument.

Suppose s is of the form s1u, where u is a word in the generators. Now recall that
before applying the map h to s we must express it in reduced form. This means that if
s = s1u, the leftmost term in u is not s1. The following can be derived easily

h(s) = g1h(u),

l(s) = l(u) + 1,

h(s−1) = h(u−1)g1 .
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Then s̃ = s1s = u. Now we write the pair of elements from (A.1) for the fixed s, s̃.

q−l(s)h(s)h(t)h(s−1) = q−l(u)−1g1h(u)h(t)h(u−1)g1,

q−l(s̃)h(s̃)h(t)h(s̃−1) = q−l(u)h(u)h(t)h(u−1) . (A.3)

The commutator with the first term is

[g1, q−l(s)h(s)h(t)h(s−1)]
= q−l(u)h(u)h(t)h(u−1)g1 + q−l(u)−1(q − 1)g1h(u)h(t)h(u−1)g1

− q−l(u)g1h(u)h(t)h(u−1) − q−l(u)−1(q − 1)g1h(u)h(t)h(u−1)g1 . (A.4)

The commutator with the second term in (A.3) is

[g1, q−l(u)h(u)h(t)h(u−1)] = q−l(u)g1h(u)h(t)h(u−1) − q−l(u)h(u)h(t)h(u−1)g1 .

(A.5)

Combining the terms in (A.4) and (A.5) we see that the terms proportional to a power of
q cancel between the two equations (as they must for this to work at q = 1). The terms
containing a factor q − 1 cancel within (A.4).

This proves that the sum (A.1) commutes with g1. It has been done by decomposing
the sum over Sn into a sum over left coset elements by the subgroup S2 generated by s1,
and a sum over representatives in each coset. The vanishing of the commutator with g1
works within the sum over representatives in each coset. To prove that it commutes with
g2 · · · gn−1 we similarly decompose with respect to left cosets of s2, · · · sn−1. Hence
(A.1) is central in Hq(n). It follows that its matrix representation in any irreducible
representation must be diagonal. Using the matrices given in [16], we have checked this
explicitly up to n = 4.

A special case of (A.1) is given by the choice t = 1. Based on evidence described
below, we conjecture that its character in an irreducible representation is

∑

s

q−l(s) χR

dR(1)
(h(s−1)h(s)) = g dR(1)

dR(q)
, (A.6)

with dR(q) and g as given in (2.13). Since the Hecke element in the character is cen-
tral ( after summation over s ), it suffices to calculate it on one state in the irrep. We
have checked this for general completely symmetric reps and completely antisymmetric
reps, as well as for all representations up to n = 4, using the explicit matrices given in
[16]. Another check of this formula is to multiply by dR(q)dR(1) and sum over young
diagrams R with n boxes. Using (2.43), the LHS becomes

g δ

(
∑

s

q−l(s) h(s−1)h(s)

)
. (A.7)

But from [21] δ(h(s−1)h(s)) = ql(s). Hence the LHS is equal to (g n!). On the RHS we
have g

∑
R(dR(1))2 = (g n!) . This gives a consistency check of (A.6) for any n.
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Using (A.6) and (2.44),
∑

s

q−l(s) χR

dR(1)
(h(s)h(t)h(s−1)) =

∑

s

q−l(s) χR

dR(1)
(h(s)h(s−1)h(t))

= g dR(1)

dR(q)

χR

dR(1)
(h(t))

= g

dR(q)
χR(h(t)) . (A.8)

Hence
∑

s,t

q−l(t)−l(s)χR

dR(1)
(h(s)h(t)h(s−1)h(t−1))

=
∑

s,t

q−l(t)q−l(s) χR

dR(1)
(h(s)h(t)h(s−1))

χR

dR(1)
(h(t−1))

= g

dR(q)

∑

t

q−l(t) χR(h(t))
χR

dR(1)
(h(t−1))

= g

dR(q)dR(1)

∑

t

q−l(t) χR(h(t))χR(h(t−1))

= g

dR(q)dR(1)

gdR(1)

dR(q)
=

(
g

dR(q)

)2

. (A.9)

The last sum over characters was done by using orthogonality (2.24). This shows the
desired identity (2.50)

A.2. Centrality of q-deformed commutator sum . We prove that the element

C ≡
∑

s,t

q−l(s)−l(t)h(s)h(t)h(s−1)h(t−1) (A.10)

of the Hecke algebra Hn(q) is central. In the q = 1 limit, this is
∑

s,t sts−1t−1, a sum
of commutators of all group elements. Hence C is a q-deformed sum of commutators.
Since Hn(q) is generated by g1 . . . gn−1 it suffices to prove that gi C = Cgi for any gi .
We will start with g1 and it will be clear how to generalize to the other generators.

Given the centrality of the q-deformed conjugation sum (A.1) we can write

�1 ≡ g1C − Cg1

=
∑

s,t

q−l(s)−l(t)h(s)h(t)h(s−1)g1h(t−1)

−
∑

s,t

q−l(s)−l(t)h(s)g1h(t)h(s−1)h(t−1) . (A.11)

We want to prove �1 = 0. For q = 1 this can be proved as follows. If we define
t = t̂ s1, s = ŝs1, we can write

∑

s,t

ss1ts−1t−1 =
∑

ŝ,t̂

ŝ t̂ ŝ−1s1 t̂−1. (A.12)
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This shows that it is useful to think about the sums over Sn in terms of the cosets Sn/S2,
where the S2 is generated by s1. Let us choose expressions for the elements of Sn in
terms of words of minimal length in s1..sn . Let S+ be the set of words not ending with
s1 on the right, and S− the set of elements of the form ŝs1. Clearly ŝ does not end with
s1 : if it did s would not be in reduced form. Hence ŝ ∈ S+. For such s = ŝs1, it is easy
to see that

h(s) = h(ŝ)g1,

l(s) = l(ŝ) + 1,

h(s−1) = g1h(ŝ−1). (A.13)

We can write �1 as

�1 = (
∑

s∈S+

+
∑

s=ŝs1∈S− ; ŝ∈S+

) (
∑

t∈S+

+
∑

t=t̂ s1∈S− ; t̂∈S+

) h(s)h(t)h(s−1)g1h(t−1)q−l(s)−l(t)

−(
∑

s∈S+

+
∑

s=ŝs1∈S− ; ŝ∈S+

) (
∑

t∈S+

+
∑

t=t̂ s1∈S− ; t̂∈S+

) h(s)g1h(t)h(s−1)h(t−1)q−l(s)−l(t)

=
∑

s,t∈S+

q−l(s)−l(t)h(s)h(t)h(s−1)g1h(t−1) +
∑

s,t̂∈S+

q−l(s)−l(t̂)−1h(s)h(t̂)g1h(s−1)g2
1h(t̂−1)

+
∑

ŝ,t∈S+

q−l(ŝ)−l(t)−1h(ŝ)g1h(t)g1h(ŝ−1)g1h(t−1) +
∑

ŝ,t̂∈S+

q−l(ŝ)−l(t̂)−2h(ŝ)g1h(t̂)g2
1h(ŝ−1)g2

1h(t̂−1)

−
∑

s,t∈S+

q−l(s)−l(t)h(s)g1h(t)h(s−1)h(t−1) −
∑

s,t̂∈S+

q−l(s)−l(t̂)−1h(s)g1h(t)g1h(s−1)g1h(t−1)

−
∑

ŝ,t∈S+

q−l(ŝ)−l(t)−1h(ŝ)g2
1h(t)g1h(ŝ−1)h(t−1) −

∑

ŝ,t̂∈S+

q−l(ŝ)−l(t̂)−2h(ŝ)g2
1h(t̂)g2

1h(ŝ−1)g1h(t−1) .

This can be simplified by using g2
1 = (q −1)g1 +q. We get terms with powers q−l(s)−l(t)

in the summand but without powers of (q − 1), terms proportional to (q − 1) and terms
proportional to (q − 1)2. The terms without powers of (q − 1) cancel pairwise among
the 8 terms. The other terms can be written out explicitly, and seen to cancel. This proves
that [g1, C] = 0. When checking for commutation with gi , we organise the sums over
Sn according to cosets of the S2 subgroup generated by si . Then the same argument as
above applies to show that any of the generating gi commute with C . Hence C is central.

A.3. The elements D and E of Hn(q) . Equation (A.6) also allows us to give an expres-
sion for D defined in (2.54). Let us write

E =
∑

s

q−l(s)h(s−1)h(s)

= 1 +

′∑

s

q−l(s)h(s−1)h(s)

≡ 1 + E ′.

The primed sum extends over elements in Sn excluding the identity. Then we can write

χR(E)

dR(1)
= gdR(1)

dR(q)
. (A.14)
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Using that E is central
(

χR(E)

dR(1)

)m

= χR(Em)

dR(1)
=

(
g dR(1)

dR(q)

)m

. (A.15)

Now let m = −1 to get

χR(E−1) = dR(q)

g
. (A.16)

Hence

D = gE−1

= g
∞∑

k=0

(−1)k(E ′)k

= g
∞∑

k=0

(−1)k
′∑

u1,u2...uk

q−l(u1)−l(u2)−...−l(uk )h(u−1
1 )h(u1) · · · h(u−1

k )h(uk) (A.17)

B. Quantum Dimensions

The irreducible representations R of Uq(U (N )) can be realized as subspaces of V ⊗n ,
where V is the fundamental representation. The matrix elements of the fundamental
representation are denoted by U , with entries U j

i (see Appendix D for explicit expres-
sions), and the algebra generated by the U ’s is dual to Uq(U (N )) and is denoted by

Funq(U (N )). The commutation relations of the U j
i are given in terms of the R-matrix

in the reference we denote as FRT [17] (we are using U for T of this reference).
We first derive formula (2.34), used in Sect. 2 to obtain a Hecke formula for the

quantum dimensions. Thus we need to compute the trace trn(u h(mT )) that comes from
the quantum character expression. The element u is:

u = q
2

∑N
i=1

(
N+1

2 −i
)

Eii
. (B.1)

The Ei j act on the fundamental representation in the usual way

Ei j vk = δ jk vi . (B.2)

Now we can use the FRT formula for the R-matrix to show that

(tr ⊗ 1)(u ⊗ 1) P R = q N 1 , (B.3)

and tr(u) = q N −q−N

q−q−1 . This means that

(tr ⊗ tr)(u ⊗ u) P R = q N q N − q−N

q − q−1 . (B.4)

Going back to the Hecke algebra conventions using (2.8) (q → √
q ), we get

(tr ⊗ 1)(u ⊗ 1) g1 = q
N+1

2 1,

(tr ⊗ tr)(u ⊗ u) g1 = q
N+1

2 [N ] . (B.5)
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More generally, tensor products of traces act on uh(mT ) as

(tr ⊗ tr ⊗ . . . ⊗ tri )(u ⊗ u ⊗ · · · ⊗ u)(g1g2 · · · gi−1) = q(i−1) N+1
2 [N ] . (B.6)

We now need to find out how to built h(mT ) out of the gi ’s. Consider a conjugacy
class in Sn , denoted by T , made of permutations which have Ki cycles of length i . When
expressed in terms of the generators si , the minimal length permutation in this conjugacy
class, denoted by mT , has length

∑
i (i − 1)Ki . The minimal permutations are given in

terms of words of the form gi gi+1...gi+ j , such as the one appearing in (B.6). For such
minimal words, we can use (B.6) to obtain

trn(u h(mT )) ≡ tr⊗n (
u⊗nh(mT )

) = q
N+1

2

∑
i (i−1)Ki [N ]

∑
i Ki = q

N+1
2 l(mT ) [N ]

∑
i Ki .

(B.7)

This is the formula (2.34) used in the derivation of the q-dimension formula in Sect. 2.
We now show explicitly how formula (2.29) works in some examples, and that it

leads to a q-dimension formula in terms of central elements (2.36). For q-traces in V ⊗3,
i.e traces with u⊗3 inserted, we have

trq (1) = [N ]3,

trq (g1) = [N ]2 q
N+1

2 ,

trq (g1g2) = [N ] q N+1 , (B.8)

therefore

trq(g2g1g2) = (q − 1) trq(g2g1) + q trq(g1)

= (q − 1) q N+1 [N ] + q q
N+1

2 [N ]2 . (B.9)

Now (2.29) gives for the q-dimension

dimq(R) = 1

g

dR(q)

dR(1)

(
[N ]3χR(1) + 2q−1 q

N+1
2 [N ]2 χR(g1)

+ q−3 χR(g1g2g1) trq(g2g1g2)

+ q−2 χR(g1g2) q N+1 [N ] + q−2 χR(g2g1) q N+1[N ]
)

. (B.10)

Filling in the above, we finally find

dimq(R) = 1

g

dR(q)

dR(1)

(
[N ]3 χR(1) + q

N−1
2 [N ]2χR(g1 + g2 + q−1g1g2g1)

+ q N−1 [N ] χR(g1g2 + g2g1 + q−1(q − 1)g1g2g1)
)

= 1

g

dR(q)

dR(1)

(
[N ]3 χR(1) + q

N−1
2 [N ]2 χR(CT (2,1)) + q N−1 [N ] χR(CT (3))

)
.

(B.11)

The final expression contains central elements CT associated to conjugacy classes of Sn .
There is the trivial conjugacy class containing the identity element, for which CT (q) = 1.
There is C(2,1)(q) = g1 + g2 + q−1g1g2g1, for the conjugacy class corresponding to a
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single transposition. Finally there is C(3)(q) = g1g2 + g2g1 + (q−1)
q g1g2g1. It is easy to

check that these elements commute with g1, g2. The above central elements and their
generalizations are described in [43, 44]. They approach the correct classical limit of a
sum of permutations in the appropriate conjugacy class.

Using the Hecke characters given in [16, 20], we have checked that the above is
consistent with the standard formula for the q-dimension as a product over the cells of
the Young diagram:

dimq R =
∏

1≤i〈 j≤N

q(λi −λ j + j−i)/2 − q−(λi −λ j + j−i)/2

q( j−i)/2 − q−( j−i)/2
, (B.12)

where λ1, . . . , λN are the lengths of the rows of the Young tableau, and, for SU (N ),
λN = 0. For n = 2, an easy check gives for the symmetric representation :

[N ][N + 1]
[2] , (B.13)

and for the antisymmetric representation :

[N ][N − 1]
[2] . (B.14)

We have also obtained by the above manipulations, explicit formulae for central ele-
ments for n = 4 which agree with those given in [22]. We have also checked that our
formula for the quantum dimensions (2.36) agrees with the standard formula (B.12) for
all representations up to n = 4.

C. Projectors

Below we give explicit checks that (2.28) indeed defines projectors. We do this for n = 3
and n = 4, that is for the Hecke algebras of H3 and H4, and outline the method of [21]
for the general case.

C.1. H3. We work out the projector for a general representation of H3. It contains 3! = 6
independent terms, corresponding to the six elements of H3. Using (B.9), we get

PR = 1

cR

(
χR(1) +

1

q
χR(g1) (g1 + g2) +

(
q − 1

q3 χR(g1g2) +
1

q2 χR(g1)

)
g1g2g1

+
1

q2 χR(g1g2) (g1g2 + g2g1)

)
, (C.1)

where the term g1g2g1 corresponds to the (13) permutation. Notice that in Sn , s1s2s1
is in the same conjugacy class as s1. Indeed, in the classical case where q = 1 the first
term in (B.9) is absent and tr(g1g2g1) = tr(g1). In the quantum case, g1g2g1 has contri-
butions from both χ(g1g2) and χ(g1). This implies that it contributes to two different
class elements.
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Using the expressions for the characters in [16], we get for the three H3 representa-
tions:

P = 1

c
(1 + g1 + g2 + g1g2 + g2g1 + g1g2g1) ,

P = 1

c

(
2 +

q − 1

q
(g1 + g2) − 1

q
(g1g2 + g2g1)

)
,

P = 1

c

(
1 − 1

q
(g1 + g2) +

1

q2 (g1g2 + g2g1) − 1

q3 g1g2g1

)
. (C.2)

We have checked by explicit computation that they satisfy the projection equation (2.10)
provided

c = q2 + q + 1

q
,

c = (q + 1)(q2 + q + 1),

c = (q + 1)(q2 + q + 1)

q3 . (C.3)

This agrees exactly with the values given in [21], Eq. (C.7) below.

C.2. H4. For H4, the projector contains 4! = 24 independent terms. The projector is:

cR PR = a + b(g1 + g2 + g3) + c(g1g2 + g2g3 + g2g1 + g3g2) + dg1g3

+ f (g1g2g3 + g1g3g2 + g2g1g3 + g3g2g1) + h(g1g2g1 + g2g3g2)

+ k(g1g2g1g3 + g1g2g3g2 + g1g3g2g1 + g2g3g2g1) + lg2g1g3g2

+ m(g1g2g1g3g2 + g2g1g3g2g1) + ng1g2g3g2g1 + pg2g1g3g2g1g3 . (C.4)

The coefficients a, b, c, d, f, h, k, l, m, n, p depend on the representation. They are
characters of q−l(σ )χ(h(σ−1)) which can be simplified, using cyclicity and the Hecke
relations, to

a = χ(1) , b = q−1χ(g1) , c = q−2χ(g1g2),

d = q−2χ(g1g3) , f = q−3χ(g1g2g3),

h = q−3[(q − 1)χ(g1g2) + qχ(g1)],
k = q−4[(q − 1)χ(g1g2g3) + qχ(g1g2)],
l = q−4[(q − 1)χ(g1g2g3) + qχ(g1g3)],

m = q−5[(q2 − q + 1)χ(g1g2g3) + q(q − 1)χ(g2g3)],
n = q−5[(q − 1)2χ(g1g2g3) + 2q(q − 1)χ(g1g2) + q2χ(g1)],
p = q−6[(q − 1)(q2 + 1)χ(g1g2g3) + q(q − 1)2χ(g1g2) + q2χ(g1g3)] . (C.5)

Again, the mixing between different terms comes from using formulas like (B.9) and
is related to the contribution of a single term to different central elements. In the limit
q = 1, each of the a, d, . . . , p depend on a single character, the one corresponding to
the conjugacy class of the element that a, d, . . . , p multiply in the projector.
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Using computer algebra, we have checked that the above are projectors for the five
n = 4 representations, provided

c = (q + 1)(q2 + q + 1)(q3 + q2 + q + 1),

c = (q + 1)(q3 + q2 + q + 1)

q
,

c = (q + 1)2(q2 + q + 1)

q2 ,

c = (q + 1)(q3 + q2 + q + 1)

q3 ,

c = (q + 1)(q2 + q + 1)(q3 + q2 + q + 1)

q6 . (C.6)

C.3. The construction for Hn. In the general case, the projector contains n! elements.
Gyoja has given a formula for the coefficients2 cR :

cR =
∏m

i=1(q − 1)(q2 − 1) . . . (qλi +m−i − 1)
∏

1≤i〈 j≤m(qλi +m−i − qλ j +m− j )
q

1
6 m(m−1)(m−2)(q − 1)−n . (C.7)

From (C.3) and (C.6) we easily see that the coefficients satisfy

cR(q−1) = cRT (q) , (C.8)

where RT is the representation with transposed Young tableau. This is indeed a general
property of the projectors (C.7) [45].

It is easy to see that in the classical limit,

cR(q = 1) =
∏m

i=1 li !∏
1≤i〈 j≤m(li − l j )

, (C.9)

where li = λi + m − i . This is the coefficient of the Young symmetrizer, and is given
by the hook formula. Also the quantum coefficients (C.7) can be expressed in terms of
a hook formula.

For high n, it is tedious to check idempotency of the projector. Also, it relies on
having explicit formulas for the characters of the Hecke algebra. Gyoja [21] has given
a construction to compute projectors in general without recourse to characters. In this
construction, to associate a projector to a particular representation R, we first associate
a projector to every state of the representation. Every state is represented by a standard
tableau T . A standard tableau is a tableau where the entries (numbered with elements
from {1, . . . , n}) are increasing across each row and down each column. The number
of states in a given representation is dR(1). Thus, PR will be a sum of dR(1) primitive
projectors, which we call ET , where T is the standard tableau they correspond to. The
construction proceeds by defining two special tableaux, T+ and T−. These are the tab-
leaux where the entries of the tableaux are numbered from 1 to n successively across
the first row (column), then the second, third, etc. I+ and I− are the subgroups of Sn that

2 We corrected a typo in the formula in [21].
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preserve the rows (columns) of T+ (T−). We associate to them parabolic subgroups W±
of Sn and define

e+ =
∑

w∈W+

h(w),

e− =
∑

w∈W−
(−q)−l(w)h(w) . (C.10)

The primitive projector (up to normalization) associated to T is then

E(T ) = h−e−h−1− h+e+h−1
+ , (C.11)

where h+ = h+(T ) and h− = h−(T ) are the elements of the Hecke algebra correspond-
ing to the permutation that transforms T+ (resp. T−) to the standard tableau T . Gyoja
showed that the E’s are idempotents. The projector is then the sum of the orthogonal
primitive idempotents:

PR = 1

cR

dR(1)∑

i=1

E(Ti ) , (C.12)

where cR was given before3. We checked the previously constructed projectors for n up
to 4 using this construction. The first non-trivial case for n = 3 is the representation .
There are two standard tableaux: T+ = [{1, 2}{3}] and T− = [{1, 3}{2}]. The permuta-
tion relating both is (23), which is h((23)) = g2. In this case the parabolic subgroups
are W+ = W− = {1, s1}, and

e+ = 1 + g1,

e− = 1 − 1

q
g1. (C.13)

We further have h+(T+) = 1, h−(T+) = g2, therefore

E(T+) = 1 + g1 +
q − 1

q
g2 − 1

q
g1g2 +

q − 1

q
g2g1 − 1

q
g1g2g1 . (C.14)

For E(T−), h+ = g2 and h− = 1, so

E(T−) = 1 − 1

q
g1 − g2g1 +

1

q
g1g2g1. (C.15)

The primitive idempotents are automatically orthogonal. We get

P = q

q2 + q + 1
(E(T+) + E(T−))

= q

q2 + q + 1

(
2 +

q − 1

q
(g1 + g2) − 1

q
(g1g2 + g2g1)

)
, (C.16)

3 Gyoja showed that the primitive idempotents are orthogonal using a certain ordering. In order for (C.12)
to be a projector, they must be orthogonal independently of the ordering. This can be done defining new
primitive idempotents in terms of the old ones, see Theorem 4.5 in [21]. For n up to 4, however, we found that
the primitive projectors are automatically orthogonal.
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in agreement with the formula obtained earlier.
As another example, we do n = 4 for the representation . There are three standard

tableaux: T+ = [{1, 2, 3}, {4}], T− = [{1, 3, 4}, {2}], and T3 = [{1, 2, 4}, {3}]. We have
I+ = {1, s1, s2} and I− = {1, s1}, so

e+ = 1 + g1 + g2 + g1g2 + g2g1 + g1g2g1,

e− = 1 − 1

q
g1 . (C.17)

In this case h+(T+) = 1, h−(T+) = g3g2. Thus:

E(T+) = g3 g2 e−(T ) g−1
2 g−1

3 e+(T ) , (C.18)

which we worked out with the help of computer algebra. In the same way we have
h−(T−) = 1, h+(T−) = g2g3, so

E(T−) = e−(T ) g2 g3 e+(T ) g−1
3 g−1

2 . (C.19)

For T3, h−(T3) = g2, h+(T3) = g3, hence

E(T3) = g2 e−(T ) g−1
2 g3 e+(T ) g−1

3 . (C.20)

The projector is the sum of the three, with the appropriate coefficient, and it agrees with
the one computed directly. Notice that the primitive idempotents were automatically
orthogonal in this case as well.

D. q-Schur-Weyl Duality and q-Characters

In this appendix, we explain concretely the relation between quantum characters of the
q-deformed SU (N ) and the symmetric group, in the special case of SU (2). We will use
the quantum group conventions of [46] and [47].

We will use the formulae for matrix elements of spin-one representations from [46]
in terms of spin-half representations and show that they are consistent with expressing
the characters in spin-one in terms of the characters of spin half, using the Hecke algebra
generators, or R-matrices. For the R-matrix we will use the notation of [47].

D.1. Uq(su(2)) conventions. We first summarize some of the formulas of [46, 47] that
we will use later. The Uq(su(2)) algebra and coproduct are [46]:

He − eH = 2e,

H f − f H = −2 f,

e f − f e = q H/2 − q−H/2

q1/2 − q−1/2 ,

�(e) = e ⊗ q H/4 + q−H/4 ⊗ e . (D.1)

For later convenience, we note that the map to the notation of [47] is

q → q,

e → X+,

f → X−,

H → H. (D.2)



350 S. de Haro, S. Ramgoolam, A. Torrielli

The universal R-matrix in this basis is [47]

R = q
H⊗H

4

∞∑

n=0

(1 − q−1)n

[n]! (q H/4 X+)n ⊗ (q−H/4 X−)n, (D.3)

where [n] is as in (2.35). Together with the action of the generators on spin-half states,

e |1

2
,−1

2
〉 = |1

2
,

1

2
〉,

f |1

2
,

1

2
〉 = |1

2
,−1

2
〉,

H |1

2
,±1

2
〉 = ±|1

2
,

1

2
〉 , (D.4)

this determines the R-matrix as follows:

R
1
2 , 1

2
1
2 , 1

2
= R

− 1
2 ,− 1

2

− 1
2 ,− 1

2
= q1/4,

R
1
2 ,− 1

2
1
2 ,− 1

2
= R

− 1
2 , 1

2

− 1
2 , 1

2
= q−1/4,

R
1
2 ,− 1

2

− 1
2 , 1

2
= q−1/4 (q1/2 − q−1/2) . (D.5)

D.2. Schur-Weyl duality in spin-one. As in the classical case, the q-characters in higher
representations can be written in terms of q-characters of lower representations. Con-
sider for concreteness the case of spin-one, which is contained in the tensor product of
two spin-half representations V . There is a projector (2.9) acting on V ⊗ V that leads
to the symmetric representation. In the classical case it is just 1

2 (1 + P), where P is the
permutation of the two tensor factors. In the quantum case P does not commute with
the coproduct, but P R ≡ Ř does:

�Ř = Ř�. (D.6)

When Ř acts on the tensor product of two spin half irreps, it satisfies a relation of the
form

Ř2 = q−1/4(q1/2 − q−1/2) Ř + q−1/2. (D.7)

A rescaling g = q3/4 Ř can be done to map to the standard form of the Hecke algebra
used in the main text. A matrix element of some element h of Uq(su(2)) in the spin 1
representation can be written in terms of a product of spin half reps by using the Cle-
bsch-Gordan coefficients. Consider now the following matrix element in the spin-one
representation:

〈 j = 1, n|h| j = 1, m〉 = dn
j=1;m(h) = 〈h, dn

j=1;m〉. (D.8)

dn
j;m is the representation matrix in representation j with indices n, m, and dm

j;m its trace.
In the last equation we have expressed the fact that the matrix elements can be viewed as
living in the dual space Uq(su(2)), denoted by Funq(SU (2)). For more details on this
duality see for example [18, 19, 13].
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We now express this in terms of matrix elements of the fundamental representation.
They generate Funq(SU (2)), the deformed algebra of functions on SU (2). Using the
Clebsch-Gordan coefficients, we can rewrite the above as follows:

〈 j =1, n|h| j =1, m〉=
∑

m1,m2;n1,n2

Cn
n1n2

Cm1m2
m

×〈 j = 1

2
, n1| ⊗ 〈 j = 1

2
, n2|(h1⊗h2)| j = 1

2
, m1〉⊗| j = 1

2
, m2〉

=
∑

m1,m2;n1,n2

Cn
n1n2

Cm1m2
m dn1

j= 1
2 ;m1

(h1) dn2

j= 1
2 ;m2

(h2)

=
∑

m1,m2;n1,n2

Cn
n1n2

Cm1m2
m 〈h, dn1

j= 1
2 ;m1

dn2

j= 1
2 ;m2

〉 . (D.9)

In the first equality, the co-product �(h) = h1 ⊗ h2 gives the action of h on the tensor
product V ⊗ V . In the last equality, we used the fact that the dual pairing of a product of
two elements in Funq(SU (2)) is given by the co-product. Now we can sum over m and
use the identity between Clebsch-Gordan coefficients and projectors (see for example
[42])

∑

m

Cm
n1n2

Cm1m2
m = Pm1m2

n1n2

(
1

2
,

1

2
; 1

)
. (D.10)

The projector is a linear combination of the identity and the Ř. For j = 1, the projector
is in the tensor product of two spin-half representations. It has to be a linear combination
of 1 and Ř since the Hecke algebra generates the centralizer of the quantum group action
in the tensor product:

P

(
1

2
,

1

2
; 1

)
= a + b Ř, (D.11)

and for the matrix elements we have

dn
j=1;m =

∑

m1,m2;n1,n2

dn1

j= 1
2 ;m1

dn2

j= 1
2 ;m2

Cm1m2
m Cn

n1n2
. (D.12)

To compute the character, we want the trace of this equation. Using (D.10), and expand-
ing the projector in terms of the R-matrix as in (D.11), we get:

tr1d = a (tr 1
2

d) (tr 1
2

d) + b tr1(Ř(d 1
2

⊗ 1)(1 ⊗ d 1
2
)) , (D.13)

which, written out in indices, reads:
∑

m

dm
j=1;m =

∑

m1,m2;n1,n2

(
a δm1

n1
δm2

n2
+ b Rm2m1

n1n2

)
dn1

1
2 ;m1

dn2
1
2 ;m2

. (D.14)

We will show that the above equation can indeed be solved for constants a, b. The
left-hand side can be calculated to give:

∑

m

dm
j=1;m = x2 + (xy +

√
quv) + y2

= x2 + y2 + xy(1 + q) − q, (D.15)



352 S. de Haro, S. Ramgoolam, A. Torrielli

where we have used Eqs. (36-40) of [46] ( recalling that x, y, u, v are the matrix entries
of d in the fundamental representation). For the right-hand side of (D.14) we get

(a + bq1/4)(x2 + y2) + axy + 2buvq−1/4 + (a + bq−1/4(
√

q − 1/
√

q))yx . (D.16)

Using the relations

yx = (1 − q) + qxy,

uv = q1/2(xy − 1), (D.17)

we can rewrite (D.16) in terms of x2, y2, xy, 1. Comparing with (D.15) and considering
the coefficient of x2 + y2 we immediately see that

a + b q1/4 = 1 . (D.18)

With this condition the coefficient of xy becomes (q + 1) as desired. Comparing coeffi-
cients of the constant term then determines

a = 1

1 + q
, b = q3/4

1 + q
. (D.19)

Putting everything together, and going back to the notation used in the main text, we
get:

tr1 U = 1

1 + q
tr U tr U +

q3/4

1 + q
tr ⊗ tr

(
Ř (U ⊗ 1)(1 ⊗ U )

)
(D.20)

which is q-Schur-Weyl duality (2.20) for n = 1. By comparing (D.7) and with the first
of (2.6) we can see that we can define g = q3/4 Ř. Then the projector can be read from
above,

P = 1

1 + q
(1 + g), (D.21)

and agrees with (2.9) and the general form (2.28).

D.3. Quantum characters in spin-one representation. The quantum characters can be
obtained from the above by including the u-element (B.1) in the trace, which is basi-
cally q−H . In fact, we will do a slightly more general computation of the trace with an
insertion of q AH . Thus, we consider the matrix element in the spin one representation
of hq AH where A is an arbitrary number and h is an arbitrary element o Uq(su(2)) :

〈 j = 1, n|h q AH | j = 1, m〉 = q Amdn
j=1;m(h). (D.22)

As before, we now rewrite this in spin-half matrix coefficients using the Clebsch-Gordan
coefficients:

〈 j = 1, n|hq AH | j = 1, m〉 =
∑

m1,m2;n1,n2

Cn
n1n2

C
m1m2
m

× 〈 j = 1

2
, n1|⊗〈 j = 1

2
, n2|(h1⊗h2)(q AH ⊗q AH )| j= 1

2
, m1〉⊗| j = 1

2
, m2〉

=
∑

m1,m2;n1,n2

Cn
n1n2

C
m1m2
m d

n1
j=1/2;m1

(h1) d
n2
j= 1

2 ;m2
(h2) q Am1+Am2

=
∑

m1,m2;n1,n2

Cn
n1n2

C
m1m2
m q Am1+Am2 〈h, d

n1
j= 1

2 ;m1
d

n2
j= 1

2 ;m2
〉 .
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Again, we can sum over m = n to take the trace (notice the presence of q AH so this
gives the quantum trace) and use (D.10) to get

∑

m

q Am dm
j=1;m =

∑

m1,m2;n1,n2

q A(m1+m2)
(
a δm1

n1
δm2

n2
+ b Rm2m1

n1n2

)
dn1

1
2 ;m1

dn2
1
2 ;m2

.

(D.23)

For comparison to the classical formulae, it is useful to rewrite it as

tr1 (q AH U ) = a tr (q AH U ) tr (q AH U ) + b tr ⊗ tr
(

q AH Ř (U ⊗ 1)(1 ⊗ U )
)

. (D.24)

In the q → 1 limit, Ř goes to the permutation P and the second term becomes 1
2 tr(U 2).

We still need to compute the constants a, b in this case. Writing out the traces using
[46], we get:

tr1 (q AH U ) = q Ax2 + q−A y2 + 1 + (q1/2 + q−1/2)uv,

tr ⊗ tr
(

q A H⊗H (U ⊗ 1)(1 ⊗ U )
)

= (tr (q AH U ))2 = q Ax2 + q−A y2 + 2 + (q1/2 + q−1/2)uv,

tr ⊗ tr
(

q A H⊗H Ř (U ⊗ 1)(1 ⊗ U )
)

= q1/4[q Ax2 + q−A y2 + 1 − q−1 + (q1/2 + q−1/2)uv],
(D.25)

where A denotes an arbitrary power. It is now easy to see that the values of a, b (D.19)
are still the same, independently of the value of A.

From the explicit computation (D.25) we also get the special N = 2 relations,

Tr U = 1,

Tr U = (tr U )2 − 1 . (D.26)
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