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1. Introduction and preliminaries

The largest of the finite-dimensional exceptional Lie groups, E8, with Lie algebra e8, is

an interesting object, both from a mathematical and a physical point of view. It is an

extraordinarily symmetric object, which e.g. is reflected by the fact that its root lattice

is the unique even self-dual lattice in eight dimensions (in euclidean space, even self-dual

lattices only exist in dimension 8n). This property is essential for the existence of the E8×E8

heterotic string. Because of self-duality, there is only one conjugacy class of representations,

the weight lattice equals the root lattice, and there is no “fundamental” representation

smaller than the adjoint. As one in the E-series of algebras, E8 is relevant as a U-duality

group of symmetries for compactification of M-theory to three dimensions (see e.g. ref. []).

In contrast to the large amount of elegance, calculations involving E8 and represen-

tations of E8 are generically very complicated. Anything resembling a tensor formalism is

completely lacking. A basic ingredient in a tensor calculus is a set of invariant tensors, or

“Clebsch–Gordan coefficients”. The only invariant tensors that are known explicitly for E8

are the Killing metric and the structure constants (which by definition take analogous forms

for any semi-simple Lie algebra in a Cartan–Weyl basis). The goal of this paper is to take

a first step towards a tensor formalism for E8 by explicitly constructing an invariant tensor

with eight symmetric adjoint indices. The motivation for our work is partly mathemati-

cal and partly physical. On the mathematical side, the disturbing absence of a concrete

expression for this tensor is unique among the finite-dimensional Lie groups. Even for the

smaller exceptional algebras g2, f4, e6 and e7, all invariant tensors are accessible in explicit

forms, due to the existence of “fundamental” representations smaller than the adjoint and

to the connections with octonions and Jordan algebras. On the physical side, we anticipate

applications to U-duality in the presence of higher-derivative terms [].

The orders of Casimir invariants are known for all finite-dimensional semi-simple Lie

algebras. They are polynomials in U(g), the universal enveloping algebra of g, of the form

tA1...Ak
T A1 . . . T Ak , where t is a symmetric invariant tensor and T are generators of the

algebra, and they generate the center U(g)g of U(g). The Harish-Chandra homomorphism

is the restriction of an element in U(g)g to a polynomial in the Cartan subalgebra h, which

will be invariant under the Weyl group W (g) of g. Due to the fact that the Harish-Chandra

homomorphism is an isomorphism from U(g)g to U(h)W (g) one may equivalently consider

finding a basis of generators for the latter, a much easier problem. The orders of the invariants

follow more or less directly from a diagonalisation of the Coxeter element, the product of

the simple Weyl reflections (see e.g. refs. [,]). For infinite-dimensional algebras, one has to

consider a completion of the universal enveloping algebra in order to find invariants beyond

the Killing metric [].

In the case of e8, the center U(e8)
e8 of the universal enveloping subalgebra is generated

by elements of orders 2, 8, 12, 14, 18, 20, 24 and 30. The quadratic and octic invariants corre-
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spond to primitive invariant tensors in terms of which the higher ones should be expressible.

While the quadratic invariant is described by the Killing metric, the explicit form of the

octic invariant is previously not known (see ref. [], p. 304). It is reasonable to assume that

it will have an application in the construction of higher-derivative deformations of M-theory

compactified to three (and lower) dimensions.

Lifting an element in U(h)W (g) back to U(g)g when g is not a matrix algebra and the

corresponding invariant tensors are not known may be a tedious problem. We would like to

spend a moment considering the choice of method. An obvious path to follow is to consider

manifest symmetry only under a maximal subgroup F ⊂ G = E8, and make an Ansatz

for the invariant in terms of F -invariants. E8 has a number of maximal subgroups, but one

of them, Spin(16)/Z2, is natural for several reasons. Considering calculational complexity,

this is the subgroup that leads to the smallest number of terms in the Ansatz. Considering

the connection to the Harish-Chandra homomorphism, K = Spin(16)/Z2 is the maximal

compact subgroup of the split form G = E8(8). The Weyl group is a discrete subgroup of K,

and the Cartan subalgebra h lies entirely in the coset directions g/k (these statements apply

in general). Finally, considering physical applications, G/K cosets, with K the maximal

compact subgroup of the split form of G, are the ones occurring in sigma models for M-

theory compactifications.

There is indeed a significant intermediary step in the Harish-Chandra homomorphism.

Consider it as the decomposition f ◦ e of e: U(g)g → U(g/k)k and f : U(g/k)k → U(h)W (g),

where both e and f act as restrictions (the notation U(g/k) is of course not to be interpreted

in the sense of a universal enveloping algebra, it is the space of polynomials on g/k). The

operator e obviously exists for any subalgebra, not only k, and f exists thanks to h ⊂

g/k and W (g) ⊂ K. Since the Harish-Chandra homomorphism is an isomorphism, both

e and f are isomorphisms as well. This is relevant for higher-derivative terms in sigma

model actions, which (modulo multiplication by automorphic forms) then can equivalently

be written as terms in U(g)g with a k-valued Lagrange multiplier gauge connection, or

as terms in U(g/k)k with the gauge connection eliminated. One conceivable approach to

finding the full invariant would be to start from U(e8/so(16))so(16) and use an E8 group

element formed by exponentiating the spinor generators to conjugate the spinor out in the

full algebra. Our impression is that such a calculation would be at least as difficult as the

direct check of invariance performed below.

2. The invariant

We thus consider the decomposition of the adjoint representation of E8 into representations

of the maximal subgroup Spin(16)/Z2. The adjoint decomposes into the adjoint 120 and a

chiral spinor 128. We often use Dynkin labels for highest weights to label representations;
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these have labels (01000000) and (00000010), respectively. Our convention for chirality is

Γa1...a16
φ = +εa1...a16

φ. The e8 algebra becomes

[T ab, T cd] = 2δ
[a
[c T

b]
d] ,

[T ab, φα] = 1
4 (Γabφ)α ,

[φα, φβ ] = 1
8 (Γab)

αβT ab .

(.)

The coefficients in the first and second commutators are related by the so(16) algebra. The

normalisation of the last commutator is free, but is fixed by the choice for the quadratic

invariant, which for the case above is X2 = 1
2TabT

ab + φαφα. Spinor and vector indices

are raised and lowered with δ. Equation (.) describes the compact real form, E8(−248).

By letting φ → iφ one gets E8(8), where the spinor generators are non-compact, which is

the real form relevant as duality symmetry in three dimensions (other real forms contain a

non-compact Spin(16)/Z2 subgroup). The Jacobi identities are satisfied thanks to the Fierz

identity (Γab)[αβ(Γab)αβ] = 0, which is satisfied for so(8) with chiral spinors, so(9), and

so(16) with chiral spinors (in the former cases the algebras are so(9), due to triality, and f4).

The Harish-Chandra homomorphism tells us that the “heart” of the invariant lies in

an octic Weyl-invariant of the Cartan subalgebra. A first step may be to lift it to a unique

Spin(16)/Z2-invariant in the spinor, corresponding to applying the isomorphism f−1 above.

It is gratifying to verify (using e.g. LiE []) that there is indeed an octic invariant (other than

(φφ)4), and that no such invariant exists at lower order. Using Fierz identities (more below

and in the appendix), it is straightforward to show that the new invariant is proportional to

(φΓab
cdφ)(φΓcd

efφ)(φΓef
ghφ)(φΓgh

abφ)

or εa1...a16(φΓa1a2a3a4
φ)(φΓa5a6a7a8

φ)(φΓa9a10a11a12
φ)(φΓa13a14a15a16

φ)
(.)

(the two expressions are proportional modulo (φφ)4). This is the expression that would go

into a deformation of the sigma model without an so(16) gauge field. Making an Ansatz

for the entire E8 invariant, we need to include also the generators T ab, and write down the

most general so(16)-invariant with terms of orders T 8, T 6φ2, T 4φ4, T 2φ6, φ8. The number

of these are 6, 11, 12, 5 and 2, respectively. We then have to check invariance only under

the action of the spinorial generators. Out of the 36 coefficients in the general Ansatz, we

expect 34 to become determined in terms of the remaining two, giving a linear combination

of the fourth power of the quadratic invariant and a traceless octic invariant.

The counting can be refined to determine the coinciding irreducible so(16) representa-

tions in T 8−2k and φ2k. This will give us a concrete guideline in writing down the Ansatz. At

this stage, exact Fierz identities are not needed, just the knowledge that they exist to make

the Ansatz complete. Let us take some examples. At order T 8, the 6 independent terms
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are Pf(T ), trT 8, trT 6trT 2, (trT 4)2, trT 4(trT 2)2 and (trT 2)4. At order T 6φ2, φ2 contains the

representations ⊗2
s(00000010) = (00000000)⊕(00000020)⊕(00010000) (see the appendix for

Fierz identities). These have to be contracted to singlets with the same representations in

⊗6
s(01000000) = 3(00000000)⊕ 2(00000020)⊕ 6(00010000)⊕ . . . . How these considerations

go into the Ansatz is easily read off from the final expression for the invariant below. Going

to higher order in φ and lower in T makes things more involved, although all one really has

to take care of is to choose a linearly independent set of expressions in φ when a representa-

tion occurs with multiplicity greater than one. We should mention that we do not actually

work with irreducible representations. Forming an element of an irreducible representation

containing a number of spinors involves symmetrisations and subtraction of traces, which

can be rather complicated. This becomes even more pronounced when we are dealing with

transformation of terms in our Ansatz under the spinor generators, which will transform

as spinors. Then irreducibility also involves gamma-trace conditions. Instead we use simple

expressions that we know contain the irreducible ones. To take an example at order φ4, just

considering the structure of the vector indices in the expression (φΓab
ijφ)(φΓcdijφ) tells us

that it may contain the representations (00000000), (00010000), (02000000) and (20000000).

However, φ4 contains no (02000000) and only one (00010000), which means that (02000000)

vanishes and (00010000) can be represented by a “simpler” expression, (φφ)(φΓabcdφ), as

we will see in the appendix. The (00000000) represents a trace that we do not subtract

explicitly. We simply use the above expression to ensure that the representation (02000000)

is present. So, our expressions in the Ansatz, and also in the equations, which we will not

display in detail, will be related to irreducible representations by a (block-)triangular matrix.

The results of all these considerations can be read off from the resulting invariant below.

The transformation of the Ansatz under the action of the spinorial generator is an

so(16) spinor. The vanishing of this spinor is equivalent to e8 invariance. The spinorial

generator acts similarly to a supersymmetry generator on a superfield, giving terms at order

T 7−2kφ1+2k from T 8−2kφ2k and T 6−2kφ2+2k. Here, it is necessary to use the full machinery

of Fierz identities, some of which are described in the appendix. Even though all identities

may be derived from the ones at φ3, it becomes increasingly difficult to do so by hand as the

number of φ’s increases. We have used a combination of manual calculation and calculations

in the Mathematica package GAMMA [], based on representation contents obtained with

LiE []. The number of equations is the number of spinors that can be formed as T 7−2kφ1+2k.

For k = 0, 1, 2, 3 these numbers are 15, 37, 25 and 5, respectively. It is satisfying to see that

of these 82 equations, only 34 are linearly independent, as anticipated above. In addition,

the result is consistent with the form of the quadratic invariant, and it is possible to form a

traceless octic invariant tensor. All of this is obvious seen from an E8 perspective, but acts

as a (much needed) consistency check on the calculations. None of the coefficients in the

Ansatz is determined by a single relation, most by several, so we are quite confident that

our result is correct.
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The final result for the octic invariant is, up to an overall multiplicative constant:

X8 = 1
3072εa1...a16Ta1a2

. . . Ta15a16

− 30trT 8 + 14trT 6trT 2 + 35
4 (trT 4)2 − 35

8 trT 4(trT 2)2 + 15
64 (trT 2)4

+
[

2trT 6
− trT 4trT 2 + 1

8 (trT 2)3](φφ)

+
[(

5
4 trT 4

−
1
2 (trT 2)2

)

T abT cd + 27
4 trT 2T ab(T 3)cd

− 15T ab(T 5)cd
− 15(T 3)ab(T 3)cd

]

(φΓabcdφ)

+
[

1
16 trT 2T abT cdT efT gh

− 5
8T abT cdT ef(T 3)gh

]

(φΓabcdefghφ)

−
1

192T abT cdT efT ghT ijT kl(φΓabcdefghijklφ)

+
[

7trT 4
−

31
8 (trT 2)2

]

(φφ)2

−
3
64T abT cdT efT gh(φφ)(φΓabcdefghφ)

+
[

5
64T abT cdT efT gh

−
15
16T abT ceT dfT gh

+ 5
8T aeT bfT cgT dh

]

(φΓabcdφ)(φΓefghφ)

+
[

3
2 (T 3)abT cd

− 1
8 trT 2T abT cd

]

(φφ)(φΓabcdφ)

+
[

15
16 (T 3)abT cd

− 3
16 trT 2T abT cd + 5

4 (T 2)ac(T 2)bd
]

(φΓab
ijφ)(φΓcdijφ)

+ 15
8 T abT cd(T 2)ef (φΓabe

iφ)(φΓcdfiφ)

+ 1
2 trT 2(φφ)3 + 55

32T abT cd(φφ)2(φΓabcdφ)

+ 1
8T abT cd(φφ)(φΓab

ijφ)(φΓcdijφ)

+
[

−
1

384T abT cd + 7
192T acT bd

]

(φΓab
ijφ)(φΓcd

klφ)(φΓijklφ)

−
57
32 (φφ)4 + 1

12288 (φΓab
cdφ)(φΓcd

efφ)(φΓef
ghφ)(φΓgh

abφ)

+ β[− 1
2 trT 2 + (φφ)]4 .

(.)

Here, β is an arbitrary constant multiplying the fourth power of the quadratic invariant.

The trace vanishes for β = 9
127 (that such a value exists at all is non-trivial and provides a

further check on the coefficients). The occurrence of the prime 127 is not incidental; taking

the trace of δ(ABδCDδEF δGH) gives δGHδ(ABδCDδEF δGH) = (1
7 · 248 + 6

7 )δ(ABδCDδEF ) =
2·127

7 δ(ABδCDδEF ). The actual technique we use for calculating the trace is not to extract

the eight-index tensor, but to act on the invariant with 1
2

∂
∂Tab

∂
∂T ab + ∂

∂φα

∂
∂φα . We remind

that eq. (.) gives the octic invariant for the compact form E8(−248). The corresponding

expression for the split form E8(8) is obtained by a sign change of the terms containing

φ4k+2.

It would of course be of great use if one could extend the present investigation to a

tensor formalism for E8. Part of that project would be to identify all relations that the octic

invariant tensor fulfills. For example, there is no new invariant at order 10. This means that

t(A1...A5
BCDtA6...A10)BCD = at(A1...A8δA9A10)+bδ(A1A2 . . . δA9A10). It is not within our power

to check this to all orders. We have checked (using Mathematica, due to the complexity of
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differentiating and tracing the expressions in T ) that it, quite non-trivially from an so(16)

perspective, happens at lowest order in φ, T 10. When t is traceless the coefficients are

a = 3·5·13·23·29/(2·7·127), b = 33 ·5·13·19·37/(22 ·1272). We then have expressions also for

the invariants at orders 12 and 14, namely t(A1...A6
BCtA7...A12)BC and t(A1...A7

BtA8...A14)B.

In order to form higher invariants, one will need expressions with more than two t’s.

In conclusion, it is satisfactory that the octic invariant can be constructed. What one

really would like to use it for is to derive identities for it, so that its explicit form in some

basis can be dropped. In the present framework this task looks very difficult, unless one may

find a way of automating the calculations. A possible refinement of the present formalism,

inspired by the Harish-Chandra homomorphism, would be to derive higher Fierz identities

in a specific Spin(16)/Z2 frame, where the spinor lies entirely in the Cartan subalgebra.

Such a formalism would presumably be straightforward to implement in Mathematica, and

would lead to much less time-consuming calculations.

Appendix: Fierz identities

In this appendix we will describe the Fierz identities that we have used to find the linear

dependence between representations at order φn for n ≥ 3. As explained above, for even n

we only have to make sure that the basis elements in the Ansatz are linearly independent,

while for odd n, we need to know the exact dependence for determining the equations that

the coefficients in the Ansatz must satisfy.

Fierz identities relate different expressions with the same index structure. Our strategy

is to go from lower to higher powers of φ and, for each order, with increasing number of

indices. In this way, higher identities can be derived by hand from the lower ones, but the

calculations will also generically be more and more complicated. Some of the identities have

instead been obtained directly using the Mathematica package GAMMA. We will not write

down all the Fierz identities here, but explain the method with some examples, starting

from the bottom. The symmetric product of two spinor representations decomposes into

irreducible representations as

⊗
2
s(00000010) = (00000000)⊕ (00010000)⊕ (00000020) , (A.)

where the terms on the right hand side correspond to the basis elements φφ, φΓabcdφ and

φΓabcdefghφ at order φ2. We do not need any Fierz identities here, but proceed to φ3 where

we have

⊗
3
s(00000010) = (00000010)⊕ (01000010)⊕ (00010010)⊕ (00000030) . (A.)
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Again all the irreducible representations come with multiplicity one. The corresponding

terms will have one spinor index each, and 0, 2, 4 and 8 antisymmetric vector indices,

respectively. From the basis elements at φ2 we can construct three expressions with no free

vector indices by multiplying by a spinor and an antisymmetric product of gamma matrices.

Since there is only one (00000010), any two of them must be linearly dependent and we

make the Ansatz

φ(φφ) = A
4!Γ

abcdφ(φΓabcdφ) = B
8!Γ

abcdefghφ(φΓabcdefghφ) , (A.)

or equivalently, writing out the spinor indices,

δα(βδγδ) = A
4! (Γ

abcd)α(β(Γabcd)γδ) = B
8! (Γ

abcdefgh)α(β(Γabcdefgh)γδ) . (A.)

Contracting the equations with δβγ gives A = 1
28 and B = 1

198 . We choose φ(φφ) as a basis

element corresponding to (00000010), but we could of course also choose Γabcdφ(φΓabcdφ)

or Γabcdefghφ(φΓabcdefghφ). This method of contracting the spinor indices in an Ansatz

to determine the coefficients is the one that we have implemented in GAMMA for direct

calculations. In this example it is easily done by hand, but for more terms we have to

contract not only with δ, but also with Γijkl or Γijklmnpq , and for higher orders in φ we have

to perform multiple contractions, since each contraction removes two spinor indices. This

complicate the calculations considerably, but the principle is the same.

We return to the representations at order φ3. For expressions with free vector indices,

we have to take into account that the irreducible representations are all gamma-traceless.

This means that, in order to obtain (01000010), we must combine any of the two expressions

Γcdφ(φΓabcdφ) and Γcdefghφ(φΓabcdefghφ), constructed from the basis elements at φ2, with

Γabφ(φφ), from the one that we already have at φ3. However, we do not need these gamma-

traceless linear combinations, only the relation between them. Since (01000010) occurs with

multiplicity one, they must be proportional to each other, which means that the three ex-

pressions Γcdφ(φΓabcdφ), Γcdefghφ(φΓabcdefghφ) and Γabφ(φφ) are linearly dependent. This

Ansatz leads to the Fierz identity

1
6!Γ

cdefghφ(φΓabcdefghφ) = −Γcdφ(φΓabcdφ) − 49Γabφ(φφ) , (A.)

and we choose Γcdφ(φΓabcdφ) as a new basis element. This will in the same way give rise to

terms corresponding to gamma-traces in Ansätze for expressions with more than two indices.

Since there is no (10000001) or (00100001), the expressions with one or three antisymmetric
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indices are pure gamma-traces. We write only two of the four identities here:

Γbcdφ(φΓabcdφ) = 42Γaφ(φφ) ,

Γdφ(φΓabcdφ) = 1
4Γ[aΓdeφ(φΓbc]deφ) + 1

2Γabcφ(φφ) .
(A.)

Both of them can be used to obtain Fierz identities at φ4. The first one (multiplied by a

gamma matrix and a spinor) shows that the (20000000) part of (φΓab
ijφ)(φΓcdijφ) vanishes.

The second one is very useful for deriving higher Fierz identities in general. For example,

we can apply it to the (00010000) part of the same expression,

(φΓ[ab
ijφ)(φΓcd]ijφ) = (φΓ[ab

iΓjφ)(φΓcd]ijφ)

= 1
12 (φΓ[ab

iΓcΓ
klφ)(φΓd]iklφ) + 1

6 (φΓ[ab
iΓ|i|Γ

klφ)(φΓcd]klφ)

+ 1
2 (φΓ[ab

iΓcd]iφ)(φφ)

= 2(φΓ[ab
klφ)(φΓcd]klφ) + 4(φΓabcdφ)(φφ) ,

(A.)

and we see that the (00010000) at φ4 is indeed represented by the “simpler” expression

(φφ)(φΓabcdφ).

We end with an example of a φ5 identity, with a degree of complexity which is typical

for the ones we use at this level, obtained by means of GAMMA. The identity, which relates

seemingly different expressions for (02000010)⊕ 2(00010000), reads

Γijklφ(φΓabijφ)(φΓcdklφ) = −10φ(φΓab
ijφ)(φΓcdijφ) + 24φ(φφ)(φΓabcdφ)

− 4Γijφ(φΓ[abc
kφ)(φΓd]ijkφ)

− 6Γ[aΓiφ(φΓb]ijkφ)(φΓcd
jkφ) − 6Γ[cΓ

iφ(φΓd]ijkφ)(φΓab
jkφ)

+ ΓabΓ
ijφ(φΓcdijφ)(φφ) + ΓcdΓ

ijφ(φΓabijφ)(φφ)

+ 4Γ[a|[cΓ
ijφ(φΓd]|b]ijφ)(φφ)

+ 1
2ΓabΓ

ijφ(φΓcd
klφ)(φΓijklφ) + 1

2ΓcdΓ
ijφ(φΓab

klφ)(φΓijklφ)

+ 12Γabcdφ(φφ)2 .

(A.)

Here, everything except the first three terms on the right hand side represents gamma-traces,

whose exact form and coefficients are still important. They are deduced from the represen-

tation content in ⊕5
s(00000010) with fewer than four vector indices, namely (11000001) (line

3), 2(01000010) (lines 4-6) and (00000010) (line 7) (the full Ansatz contains another two

terms with (01000010) and (00000010), whose coefficients turn out to vanish). Rather than

tracing four spinor indices in an Ansatz with these terms, already containing free vector

indices, with products of symmetric elements in the Clifford algebra, we choose to form

scalars by tracing and contracting with a suitable number of elements with the same tensor
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structure as the terms themselves. This method turns out to be much less time-consuming.

It may seem that eq. (A.) gives rise to a φ6 identity for (φΓijklφ)(φΓabijφ)(φΓcdklφ) by

multiplying by a spinor, which would then make our basis at φ6 incomplete, but fortunately,

this expression will be cancelled by terms on the right hand side.
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