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ABSTRACT

We discuss head-on collisions of neutron stars and disks of dust (‘‘galaxies’’) following the ideas of equilibrium
thermodynamics, which compares equilibrium states and avoids the description of the dynamical transition processes
between them. As an always present damping mechanism, gravitational emission results in final equilibrium states
after the collision. In this paper we calculate selected final configurations from initial data of colliding stars and disks
by making use of conservation laws and solving the Einstein equations. Comparing initial and final states, we can
decide for which initial parameters two colliding neutron stars (nonrotating Fermi gas models) merge into a single
neutron star and two rigidly rotating disks form again a final (differentially rotating) disk of dust. For the neutron star
collision we find a maximal energy loss due to outgoing gravitational radiation of 2.3% of the initial mass, while the
corresponding efficiency for colliding disks has the much larger limit of 23.8%.

Subject headinggs: equation of state — galaxies: general — gravitation — gravitational waves — stars: neutron

1. INTRODUCTION

Collisions of compact objects are an important source of grav-
itational radiation. Much effort has recently been made to de-
velop numerical methods and codes describing and simulating
the underlying hydrodynamical and gravitational phenomena.
After the pioneering work on numerical black hole evolutions
by Eppley and Smarr in the 1970s (see, e.g., Eppley 1975; Smarr
et al. 1976), head-on collisions were reinvestigated in the 1990s
(Anninos et al. 1993, 1995; Anninos & Brandt 1998) with good
agreement between numerical and perturbation theoretical re-
sults. Long-term stable evolutions of black hole and neutron star
collisions were successfully performed in the last 2 years (Sperhake
et al. 2005; Fiske et al. 2005; Zlochower et al. 2005; Sperhake 2006;
Löffler et al. 2006).

From amathematical point of view collision processes are typ-
ical examples for initial boundary problems. In particular, we
discuss head-on collisions of spheres and disks1 (see Fig. 1).
Starting with bodies separated by a large (‘‘infinite’’) distance,
wemaymodel the initial situation by a quasi-equilibrium config-
uration of two isolated bodies. Corresponding solutions for spheres
and (rigidly rotating) disks can be found in the literature (see,
e.g., Misner et al. 2002; Shapiro & Teukolsky 1983; Neugebauer
& Meinel 1993, 1994, 1995). The dynamical phase of the col-
lision process is always accompanied by gravitational radiation.
This damping mechanism results again in the formation of an
equilibrium configuration after the collision. The rigorous math-
ematical description of the dynamical transition phase is difficult
and requires extensive numerical investigations. However, inter-
esting information about the collision can be obtained by compar-
ing the initial and final (equilibrium) states. This thermodynamic
idea avoids the analysis of the transition process and reduces the
mathematical effort to solving the Einstein equations for the end
products, which are stationary and axisymmetric in our case. The

solution makes use of conservation laws that transfer data ex-
tracted from the initial configurations (spheres and disks before
the collision) to the final configurations.
While the initial configurations are available, the calculation

of the final states is rather difficult. To cope with this problem for
head-on colliding stars and disks, we make use of two heuristic
principles:

1. Perfect fluid configurations at rest are spherically sym-
metric. Hence, the end product of two head-on colliding spheres
without angular momentum is again a sphere (a fluid ball or a
Schwarzschild black hole).
2. Dust configurations are two-dimensional (‘‘extremely flat-

tened’’) and axisymmetric (with nonvanishing angular momen-
tum). Consequently, the dust matter after a head-on collision of
two disks of dust is again two-dimensional and axisymmetric (a
compact disk, a disk surrounded by dust rings, or a black hole
surrounded by dust rings).

Although plausible, these principles have not been proved rig-
orously so far.2 For proofs under special assumptions see Beig &
Simon (1992) and Lindblom & Masood-Ul-Alam (1994).
As illustrated in Figure 1, we confine ourselves to two prob-

lems: (1) head-on collisions of two identical spheres (stars) merg-
ing into a single fluid ball, and (2) head-on collisions of two
identical disks of dust (galaxies) merging into a single disk. We
will be able to formulate necessary conditions for the formation
of these balls or disks. Obviously, the conditions will restrict the
parameters of the initial configuration; a violation of the condi-
tions would necessarily lead to other final states such as black
holes or central disks surrounded by rings. To express the param-
eters of the final configuration in terms of the admissible initial
parameters (the first goal of this paper), we have to solve the
Einstein equations (numerically but) rigorously and to make use
of the conservation laws for baryonic mass and angular mo-
mentum. There is no obstacle to an extension of the method. One
could start a systematic investigation of other possible final states1 Disklike matter configurations play an important role in astrophysics, e.g.,

as models for galaxies, accretion disks, or intermediate phases in the merger
process of two neutron stars. 2 In this context we refer to a new approach by Masood-Ul-Alam (2007).
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after the collision (black holes, black holes with rings, etc.) mak-
ing use of symmetries, conservation laws, and the heuristic prin-
ciples 1 and 2. An important point of the procedure would be the
stability analysis of the end products. As for our investigation,
there is important evidence from Newtonian gravity that rigidly
or differentially rotating disks of dust are unstable. Nevertheless,
we can expect that ‘‘stabilizing’’ effects (pressure due to internal
kinetic energy) do not falsify our other goal: to estimate the
maximal contribution of gravitational radiation to the total en-
ergy loss�M . In general, the total energy loss calculated via the
comparison of initial and final equilibrium configurations is only
an upper limit for the energy loss (efficiency) due to gravitational
emission. (It includes energy loss due to nongravitative radiation
or mass ejection during the collision.) We present a disk collision
model that is exclusively damped by gravitational radiation. The
resulting differentially rotating disk is compared with a rigidly
rotating disk of the same baryonic mass and angular momentum
formed from the same initial disks under the additional influence
of dissipative processes in the matter (see x 3.2). Thus, we can
compare the efficiencies of the two forms of dissipation.

In x 2 we discuss, as introductory examples, the merger of two
Schwarzschild stars and the collision of two (Fermi gas) neutron
stars. Section 3 contains the main part of this paper, which is
dedicated to the investigation of disk collisions. These discus-
sions are based on a novel solution of the Einstein equations de-
scribing the final configuration. Here we continue the analysis of
a previous paper (Hennig&Neugebauer 2006), in whichwe dis-
cussed the collisions of rigidly rotating disks of dust with parallel
(or antiparallel ) angular momenta under the simplifying assump-
tion that the final disk be again a rigidly rotating (or rigidly counter-
rotating) disk of dust. This assumption can only be justified if
friction processes between the disk rings provide for a constant
angular velocity throughout the disk. This model seems to be
somewhat artificial and unsuited to determining the contribution
of gravitational radiation to the total energy loss. Interestingly, our
present investigation shows that the frictional contribution to the
total energy loss for colliding rigidly rotating disks is comparably
small.

2. STAR COLLISIONS

2.1. Introductory Example: Schwarzschild Stars

In order to demonstrate the method, we study the collision of
two Schwarzschild stars, i.e., spherically symmetric perfect fluid
stars with a constant mass density, � ¼ constant. Although not
very realistic, this model illustrates the main steps of the method.

The matter of a Schwarzschild star is described by the perfect
fluid energy momentum tensor

T i j ¼ �þ pð Þuiu j þ pg i j; ð1Þ

with the pressure

p rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��=3ð Þr 2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��=3ð Þr 20

p
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��=3ð Þr 20

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��=3ð Þr 2

p �; ð2Þ

where ui, r, and r0 are the four-velocity, the radial coordinate,
and the coordinate radius of the star, respectively. The interior
Schwarzschild metric can be written as

ds2 ¼ dr 2

1� 8��=3ð Þr 2 þ r 2 d#2 þ sin2# d’2
� �

� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��

3
r 20

r
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��

3
r 2

r !
dt 2; ð3Þ

and the exterior Schwarzschild solution is

ds2 ¼ dr 2

1� 2M=r
þ r 2 d#2 þ sin2# d’2

� �
� 1� 2M

r

� �
dt 2:

ð4Þ

Note that we use the normalized units where c ¼ 1 for the speed
of light and G ¼ 1 for Newton’s gravitational constant.

The gravitational mass M,

M ¼ 4��

3
r 30 ; ð5Þ

follows from the matching condition at the star’s surface, and the
baryonic mass M0 is given by

M0 ¼
Z
t¼t0

�ut
ffiffiffiffiffiffi�g

p
dr d# d’¼ 4��

Z r0

0

r 2 drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��=3ð Þr 2

p : ð6Þ

Now we apply these formulae to the head-on collision of two
stars.Restricting ourselves to collisions of two identical Schwarzschild
stars, we assume that again the final star is a Schwarzschild star

Fig. 1.—Model: collisions of (a) two spherically symmetric stars; (b) two rigidly rotating disks of dust.
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and has the same mass density (e.g., nuclear matter density),

�̃ ¼ �; ð7Þ

where from now on tildes denote quantities after the collision.
The conservation of baryonicmass during the collision process

M̃0 ¼ 2M0 ð8Þ

allows one to calculate the parameters of the final star as a func-
tion of the initial parameters. With equations (5), (6), and (7) the
conservation equation (8) can be written as

arcsin

ffiffiffiffiffiffiffiffi
2M

r0

r
r̃0

r0

� �
�

ffiffiffiffiffiffiffiffi
2M

r0

r
r̃0

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r0

r̃ 20
r 20

s

¼ 2 arcsin

ffiffiffiffiffiffiffiffi
2M

r0

r
�

ffiffiffiffiffiffiffiffi
2M

r0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r0

r� �
; ð9Þ

i.e., the radius ratio r̃0 /r0 is a function of the initial mass-radius
ratio 2M /r0. Hence, we may express the efficiency � of conver-
sion of mass into gravitational radiation,

� ¼ 1� M̃

2M
¼ 1� 1

2

r̃0

r0

� �3

; ð10Þ

and the mass-radius ratio of the final star,

2M̃

r̃0
¼ 2M

r0

r̃0

r0

� �2

; ð11Þ

in terms of 2M /r0.
The resulting parameter relations are plotted in Figure 2.

For Schwarzschild stars the coordinate radius is restricted by the
Buchdahl condition, i.e.,

r0 >
9

8
2Mð Þ; r̃0 >

9

8
2M̃
� �

: ð12Þ

As a consequence, the first plot shows that ‘‘relativistic’’ ini-
tial stars with 2M /r0 > 0:6482: : : can never merge into a new
Schwarzschild star with the samemass density �. The ‘‘physical’’
parts of the parameter relations are shown as solid lines, while the
forbidden parts are dashed. According to the bottom panel, the
efficiency � cannot exceed a maximal value of �max � 19:7%.

2.2. Neutron Stars: Completely Degenerate Ideal Fermi Gas

In order to extend the discussion of the previous section to
a more realistic star model, we replace the equation of state
� ¼ constant by the equation for a completely degenerate ideal
Fermi gas of neutrons.

The (interior) line element of a spherically symmetric star can
be written as

ds2 ¼ e2k rð Þ dr 2 þ r 2 d#2 þ sin2# d’ 2
� �

� e2� rð Þ dt 2; ð13Þ

and the matter is again described by the perfect fluid energy
momentum tensor

T i j ¼ �þ pð Þuiu j þ pg i j: ð14Þ

Fig. 2.—Parameter relations for colliding Schwarzschild stars. The final
mass-radius ratio 2M̃ /r̃0, the radius ratio r̃0 /r̃, and the efficiency � are plotted as
functions of the initial mass-radius ratio 2M /r0. Dashed parts of the lines mark
regions inaccessible due to the Buchdahl inequality 2M̃ /r̃0 <

8
9
.

HENNIG, NEUGEBAUER, & ANSORG452 Vol. 663



With the definition of a new metric function m(r) by

e2k( r) ¼ 1

1� 2m(r)=r½ � ; ð15Þ

the field equations can be written in the TOV form (see, e.g.,
Shapiro & Teukolsky 1983),

dm

dr
¼ 4�r 2�; m(0) ¼ 0; ð16Þ

dp

dr
¼ � m

r 2
� 1þ p

�

� �
1þ 4�r 3p

m

� �
1� 2m

r

� ��1

; p(0) ¼ pc;

ð17Þ

d�

dr
¼ � 1

�

dp

dr
1þ p

�

� ��1

; ð18Þ

where pc is the pressure in the center of the star.
We solve these equations for the completely degenerate ideal

Fermi gas of neutrons with the equation of state (see, e.g., Shapiro
& Teukolsky 1983)

p ¼ c1 f (x); � ¼ c2x
3; � ¼ �þ c1g (x); ð19Þ

where

f xð Þ ¼ x 2x2 � 3
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

þ 3 ln xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p� �
; ð20Þ

g xð Þ ¼ 8x3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� 1

� �
� f xð Þ; ð21Þ

c1 ¼
�m4

n

3h3
; c2 ¼

8�m4
n

3h3
; ð22Þ

with the neutron mass mn ¼ 1:6749286 ; 1027 kg and Planck’s
constant h ¼ 6:626076 ; 10�34 J s. By solving the TOV equa-
tions (16) and (17) with the equation of state given by equation (19)
for a sequence of values of the central density, one can calculate the
corresponding radii of the stars as the first zero r0 of p(r), their
gravitational mass from M ¼ m(r0), and their baryonic mass as

M0 ¼ 4�

Z r0

0

� rð Þr 2 drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m rð Þ=r

p : ð23Þ

The resulting mass-radius relations are shown in the top left
panel of Figure 3.

Fig. 3.—Parameter relations for the collisions of neutron stars made up of degenerate neutrons (see eq. [19]). Top left : Mass-radius relations for the baryonic massM0

and the gravitational mass M. Top right : Initial radius r0 and final radius r̃0 as functions of the mass-radius ratio 2M /r0. Bottom left : Change of the coordinate radius.
Bottom right: Efficiency � compared to the efficiency of the collision of Schwarzschild stars (dashed line).
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Again the baryonic mass is an invariant of the collision, i.e.,

M̃0 ¼ 2M0 ð24Þ

for the collision of two identical initial stars. This equation has to
be analyzed together with the mass-radius relations. [Thereby
we take into account only stars in the monotonic decreasing part
of the mass-radius relationM0(r0).] The resulting parameter rela-
tions are shown in the remaining panels of Figure 3. For themax-
imum of the efficiency one finds �max � 2:3%, i.e., a comparably
small value in view of the maximal efficiency �max � 19:7% for
collisions of Schwarzschild stars. The reason is the relatively
small maximal mass of Mmax � 0:7 M� permitted by the equa-
tion of state given by equation (19) that excludes highly relativ-
istic values for the mass-radius ratio 2M /r0. However, compared
to Schwarzschild stars with the same parameter 2M /r0, the col-
lisions of neutron stars are more efficient (see the bottom right
panel of Fig. 3).

Another difference is the change of the coordinate radii. While
two Schwarzschild stars merge into a Schwarzschild star with
a coordinate radius bigger than the initial radius, r̃0 /r0 > 1 (see
Fig. 2), the resulting neutron star is smaller than the initial neu-
tron stars, r̃0 /r0 < 1 (see Fig. 3).

3. DISK COLLISIONS

Collisions of disks of dust require more effort. In particular,
the discussion of the final equilibrium state is based on a solution
of a free boundary value problem to the Einstein equations. At
the first glance, the conservation laws for baryonic mass and an-
gular momentum are not sufficient to formulate a complete set of
boundary conditions for the configuration after the collision. How-
ever, excluding nongravitational dissipation, we may replace the
global conservation laws, as used in x 2, by local ones. Due to the
geodesic motion of dust particles, the baryonic mass and the an-
gular momentum of each of the rings forming the disk are con-
served separately (see Fig. 5 below). Using such local conservation
laws, we are able to solve (numerically) the boundary value prob-
lem for the final state after the head-on collision of two aligned
rigidly rotating disks of dust with parallel angular momenta (see
Fig. 1).

3.1. Initial Disks: Rigidly Rotating Disks of Dust

The free boundary value problem for the relativistic rigidly
rotating disk of dust (RR disk) was discussed by Bardeen &
Wagoner (1969, 1971) using approximationmethods and analyt-
ically solved in terms of ultraelliptic theta functions by Neugebauer
& Meinel (1993, 1994, 1995) using the inverse scattering method.
The line element of the stationary (Killing vector: � i) and axi-
symmetric (Killing vector: � i) spacetime may be written in the
Weyl-Lewis-Papapetrou standard form

ds2 ¼ e�2U e2k d�2 þ d� 2
� �

þ �2 d’2
� 	

� e2U dt þ a d’ð Þ2;
� i ¼ � it ; � i ¼ � i

’; ð25Þ

where the metric potentials U ¼ U (�; � ), k ¼ k(�; � ), and a ¼
a(�; � ) are given in terms of ultraelliptic theta functions.

The matter of the disk of dust is described by the energy mo-
mentum tensor

Ti j ¼ " �ð Þ� �ð Þuiu j; ð26Þ

where "(�)�(� ) is the mass density with �(� ) as Dirac’s
�-distribution. Due to the symmetries, the four-velocity of the
dust particles is a linear combination of the two killing vectors,

ui ¼ e�V0 � i þ �0�
i

� �
; uiui ¼ �1; ð27Þ

whence

� i þ �0�
i

� �
�i þ �0�ið Þ ¼ �e2V0 ; ð28Þ

where �0 is the angular velocity of the particles forming the
disk and V0 is a redshift parameter. Rigid rotation means �0 ¼
constant in the disk. Since dust particles move geodesically, this
assumption implies V0 ¼ constant in the disk. Hence, the bound-
ary condition given by equation (28) and as a consequence the
RR disk solution contain two constant parameters. Alternatively
to�0 andV0, onemay choose the coordinate radius �0 of the disk
and a centrifugal parameter � ¼ 2�2

0�
2
0 e

�2V0 (� ! 0 turns out to
be the Newtonian limit and � ! 4:62966: : : the ultrarelativistic
limit, where the disk approaches the extreme Kerr black hole;
for these and further properties see Neugebauer & Meinel 1994;
Neugebauer et al. 1996).

3.2. Final Disk: Differentially Rotating Disk of Dust

In a previous paper (Hennig & Neugebauer 2006) we dis-
cussed head-on collisions of two (identical) rigidly rotating disks
of dust merging into one rigidly rotating disk of dust. The model
excluded mass ejection and made use of the conservation of
baryonic mass and angular momentum (axisymmetry). From a
thermodynamic point of view rigid rotation of the final disk
means thermodynamic equilibrium, which is a result of dissipa-
tive processes during the dynamical phase. Hence, the energy
difference between the initial state (two separated disks) and the
final state (one rigidly rotating disk) is influenced by irreversible
processes in the matter and outgoing electromagnetic radiation,
as well as by emission of gravitational waves. The intention of
this paper is to compare the contribution of these two effects by
calculating the end product of a purely gravitational collision
process, which we expect to be a differentially rotating disk of
dust. Note that our thermodynamic analysis enables us to formu-
late necessary conditions for the parameters of the initial disks (�
restricted) to permit the formation of a final disk. To obtain suf-
ficient conditions, one would have to solve the Einstein equa-
tions for the time-dependent transition phase, which is outside
the scope of this paper.
In the next subsectionwe give a brief summary of the previous

paper. After that, we see that the local conservation of baryonic
mass and angular momentum is sufficient to calculate the final
differentially rotating disk (numerically). Differentially rotat-
ing disks with arbitrary rotation law have already been studied
(Ansorg &Meinel 2000; Ansorg 2001). The point made here is
that we are able to formulate a physically motivated rotation law
as a result of a collision process.

3.2.1. Formation of Rigidly Rotating Disks

For the formation of an RR disk from two colliding RR disks
under the influence of friction processes the conservation equa-
tions for baryonic mass and angular momentum,

M̃0 ¼ 2M0; J̃ ¼ 2J ; ð29Þ

are sufficient to calculate the parameters of the final disks as
functions of the initial parameters. These equations and explicit
formulae connecting the gravitational massM, the baryonicmass
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M0, and the angular momentum J of the RR disk allowed us to
calculate the efficiency �RR ¼ 1� M̃ /2M as a function of the ini-
tial centrifugal parameter � (see Fig. 4). It should be emphasized
once again that this efficiency measures the total energy loss in-
cluding friction. Therefore, � is only an upper limit for the energy
of the gravitational emission. We obtained a maximal value of
�RRmax � 23:8% (Hennig & Neugebauer 2006).

Furthermore, it turned out that the formation of RR disks from
two colliding RR disks is only possible for a rather restricted in-
terval 0 < � < 1:954: : : of the initial centrifugal parameter �. If
� exceeds this limit, the collision must lead to other final states,
e.g., black holes or black holes surrounded by matter rings.

3.2.2. Local Conservation Equations

Wenow turn to themain goal of this paper and analyze the for-
mation of a disk of dust under the influence of gravitational forces
as the only form of interaction. Comparing the resulting differ-
entially rotating disk of dust with the rigidly rotating disk of the
same baryonic mass M0 and angular momentum J formed from
the same initial disks, we may separate gravitational damping
due to the emission of gravitational waves from frictional pro-
cesses in the matter.

We may interpret a disk of dust as a superposition of infini-
tesimally thin dust rings. Considering the geodesic motion of a
single mass element, one can show that for corresponding rings
in the two initial disks (see Fig. 5) the baryonic mass and the an-
gular momentum are conserved,

dM̃0 ¼ 2 dM ; dJ̃ ¼ 2 dJ ; ð30Þ

i.e., the baryonic masses dM0 and the angular momenta d J of
the rings with radius �, taking up the interval ½�; �þ d��, in each
of the two initial disks sum up to dM̃0 ¼ 2 dM0 and dJ̃ ¼ 2 dJ
of the corresponding ring in the final disk (with radius �̃, taking
up the interval ½�̃; �̃þ d�̃�; see Fig. 5). It should be emphasized
that the local conservation laws given by equation (30) would be
violated by dissipative processes in thematter or, mathematically
speaking, by dissipative terms in the total energymomentum ten-
sor as the source of the Einstein equations during the collision
phase. Having reached a final equilibrium configuration (e.g., a
rigidly rotating disk of dust), the system ‘‘forgets’’ the dissipative
terms and behaves like cold dust with an energy momentum ten-
sor of the form given by equation (26). During the interaction

phase, angular momentum will be transported within the disk by
viscous forces and only the total angular momentum (axisym-
metry!) and the total baryonic mass are conserved (eq. [29]). The
ringwise conservation of baryonic mass and angular momentum
given by equation (30) is characteristic for purely gravitational
damping processes. They arise from collision processes gov-
erned by an energy momentum tensor of dust without dissipative
terms. In this case the geodesic motion of the volume elements
implies the conservation of baryonic mass and angular momen-
tum in each volume element and therefore implies equation (30).

Equation (30) provides us with a subset of the boundary con-
ditions to be discussed in the next subsection. It will turn out that
these conditions, together with conditions resulting from the field
equations, determine a unique solution of the Einstein equations
describing a final disk with differential rotation (DR disk) as the
end product of the collision process.

3.2.3. Boundary Value Problem for the Final DR Disk

The line element given by equation (25), which may also be
used to describe any axisymmetric and stationary differentially
rotating disk, can be reformulated to give

ds̃2¼ e 2	̃ d�̃2þ d�̃ 2
� �

þ �̃2e�2�̃ d’̃� !̃ d t̃ð Þ2� e2�̃ d t̃ 2; ð31Þ

where the usage of the functions 	̃, �̃, and !̃ (instead of Ũ , k̃, and
ã as in eq. [25]) avoids numerical issues with ergospheres (where
e2Ũ < 0). According to equation (26), the energy momentum
tensor is

T̃ i j ¼ "̃ �̃ð Þ� �̃
� �

ũiũ j ð32Þ

and the four-velocity is again (see eq. [27]) a linear combination
of the killing vectors,

ũ i ¼ e�Ṽ �̃ i þ �̃�̃ i
� �

; ð33Þ

where Ṽ ¼ Ṽ ( �̃) and �̃ ¼ �̃( �̃) are functions of �̃ (constancy
of Ṽ and �̃ defines rigid rotation; see eq. [27]).3

3 All quantities of the final DR disk are tilded.

Fig. 4.—Efficiency �RR for the formation of an RR disk from two initial RR
disks as a function of the centrifugal parameter � of the initial disks. Parameter
�RR is an upper limit for the energy loss due to gravitational radiation.

Fig. 5.—Illustration of the local conservation equations. Two corresponding
rings of the initial disks merge into a ring in the final disk. The baryonic mass
dM0 and the angular momentum dJ of these rings are conserved.
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The vacuum field equations for �̃ and !̃ are (see Bardeen 1973)

41�̃ ¼ �̃2

2
e�4�̃ !̃2

;�̃ þ !̃2
;�̃

� �
; 43!̃ ¼ 4 �̃;�̃!̃;�̃ þ �̃;�̃ !̃;�̃

� �
;

ð34Þ

with

4n � @ 2
�̃ þ @ 2

�̃
þ n

�̃
@�̃: ð35Þ

The matter appears only in the boundary conditions along the
disk (�̃ ¼ 0, �̃ < �̃0),

�̃;�̃ j�̃¼0þ ¼ 2�
̃
1þ ṽ2

1� ṽ2
; ð36Þ

!̃;�̃ j�̃¼0þ ¼ �8�
̃
�̃� !̃

1� ṽ2
; ð37Þ

�̃ �̃� !̃
� �2¼ 1þ ṽ2

� �
e4�̃ �̃;�̃ þ �̃2 �̃� !̃

� �
!̃;�̃; ð38Þ

where

ṽ � �̃e�2�̃ �̃� !̃
� �

; 
̃ � "̃e2	̃: ð39Þ

Thus, we have to deal with a boundary value problem for Einstein’s
vacuum equations.

As already mentioned, the local conservation equations given
by equation (30) of the previous subsection lead to additional
boundary conditions along the disk. From dM̃0 ¼ 2 dM0 with
dM0 ¼ 2�
e�V0� d� and dM̃0 ¼ 2�
̃e�Ṽ �̃ d�̃ we obtain


̃ ¼ 2

�eV0

�̃eṼ
d�

d�̃
: ð40Þ

Likewise, d J̃ ¼ 2 dJ with d J ¼ 2�
e�V0ui�i� d�, d J̃ ¼
2�
̃e�Ṽ ũ i�̃i�̃ d�̃, u

i�i ¼ �ve�V0 , and ũ i�̃i ¼ �̃ṽe�Ṽ leads to

�̃ṽe�Ṽ ¼ �ve�V0 : ð41Þ

Equations (40) and (41) relate the boundary values of the DR
disk to the analytically known mass density and the metric po-
tentials of the RR disk (see the Appendix). The function Ṽ ( �̃) can
be calculated from ũiũi ¼ �1,

e2Ṽ ¼ 1� ṽ2
� �

e2�̃ : ð42Þ

The remaining boundary conditions describe the behavior at
infinity, where the metric approaches the flat Minkowski metric,

	̃ ¼ �̃ ¼ !̃ ¼ 0; ð43Þ

and in the plane �̃ ¼ 0 outside the disk (�̃ > �̃0), where equa-
tions (36) and (37) lead to vanishing normal derivatives,

�̃;�̃ j�̃¼0þ ¼ 0; !̃;�̃ j�̃¼0þ ¼ 0: ð44Þ

In addition, we have to ensure regularity along the axis of sym-
metry �̃ ¼ 0.

Equations (34), (36)Y(38), (40), and (41) form a complete set
of equations to determine the unknown functions uniquely: there
are two two-dimensional functions, �̃(�̃; �̃ ) and !̃(�̃; �̃ ), which

have to satisfy the two elliptic partial differential equations given
by equation (34) with the boundary conditions given by equa-
tions (36) and (37), and three additional one-dimensional func-
tions in the disk, �̃( �̃), 
̃( �̃), and �( �̃), which have to obey the three
boundary conditions given by equations (38), (40), and (41). (The
metric function 	̃ can be calculated by a line integral afterward but
is not needed for the computation of the efficiency � in our col-
lision scenario.)

3.2.4. Numerical Method

In order to prepare numerical investigations, we map the re-
gion 0 � �̃ � 1, 0 � �̃ � 1 to a unit square, thus reaching a
compactification of infinity (see Fig. 6). (Due to the reflection
symmetry with respect to the plane �̃ ¼ 0, we can restrict our-
selves to the region �̃ � 0.) To do this, we introduce in a first step
elliptical coordinates

�̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � 2ð Þ 1� � 2ð Þ

p
; �̃ ¼ ��; �2 0; 1½ �; �2 0; 1½ �

ð45Þ

(without loss of generality, we may choose units where �̃0 ¼ 1).
In a second step we stretch the coordinates by the transformation

� ¼ cot
�

2
s

� �
; � ¼

ffiffiffiffiffiffiffiffiffiffi
1� t

p
; s 2 ½0; 1�; t 2 ½0; 1�: ð46Þ

The coordinates s and t form a unit square with the following
boundaries:

s ¼ 0 : 1;

s ¼ 1 : disk; �̃ � 1; �̃ ¼ 0;

t ¼ 0 : axis of symmetry; �̃ ¼ 0;

t ¼ 1 : disk plane E outside the matter; �̃ > 1; �̃ ¼ 0:

ð47Þ

The unknown functions in the boundary value problem are ana-
lytic functions in this square (as is known for the case ofMaclaurin
disks or the RR disks). Hence, it is convenient to use spectral
methods for the numerical solution of the boundary value prob-
lem. We expand the unknown potentials in terms of Chebyshev
polynomials Tj to a predetermined order in the form

f s; tð Þ ¼
X
j; k

cjkTj 2s� 1ð ÞTk 2t � 1ð Þ;

f tð Þ ¼
X
k

ckTk 2t � 1ð Þ boundaryð Þ ð48Þ

Fig. 6.—Coordinate transformation given by eqs. (45) and (46 ) mapping the
part �̃ � 0 of the ( �̃, �̃ )-plane to a unit square in the (s, t)-plane. E denotes the
equatorial plane outside the disk, �̃ ¼ 0, �̃ > �̃0.
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and formulate the Einstein equations at the extrema of the
Chebyshev polynomials. This leads to an algebraic system of
equations for the Chebyshev coefficients (or, alternatively, for the
values of the potentials at these points) that can be solved with
the Newton-Raphson method. The iteration starts with an initial
‘‘guessed’’ solution (for example, the Newtonian approxima-
tion; see x 3.2.6).

The calculations show a decreasing accuracy of the numerical
solution for increasingly large values of the initial parameter �.
The reason are large gradients of the metric potentials for strong
relativistic DR disks that make the Chebyshev approximation
more costly. To reach a better convergence, we perform an addi-
tional coordinate transformation

s ¼ sinh �s̃

sinh �
; ð49Þ

introducing a new coordinate s̃, where � is a suitably chosen
parameter. As shown in Ansorg & Petroff (2005), this transfor-
mation smooths the gradients of the metric functions. The con-
vergence is illustrated in Figure 7.

3.2.5. Results

Using this numerical algorithm, we are able to solve the
boundary value problem for the final DR disk. In particular, we
could calculate, for each value of the initial parameter�, allmetric
coefficients of this final disk. However, we restrict ourselves to the
discussion of the relations between the initial and final parameters
and the efficiency of the collision process. Especially, we compare
the final DR disk with an RR disk having the same baryonic mass
and angular momentum. The point made here is that such a rigidly
rotating disk represents the state of ‘‘thermodynamic equilibrium’’
for disks of dust as the end point of their thermodynamic evolu-
tion. As sketched in Figure 8, there are at least two possibilities for
the formation of this final RR disk: the direct process (scenario A)
including friction from the beginning or the equivalent thermo-
dynamic process (scenario B) where, in a first step, a differen-
tially rotating disk is formed (by gravitational damping alone,
no friction) and, in a second step, the angular velocity becomes
constant (due to friction). Note that baryonic mass and angu-
lar momentum are conserved in both processes. By comparing
scenarios A and B, we may extract the contribution of friction
in scenario A.

In the following discussion, tilded quantities, as before, be-
long to the final DR disk of scenario B in Figure 8, a superscript
‘‘RR’’ denotes quantities of the final RR disk in scenario A, and
the centrifugal parameter � without any additions characterizes
the initial RR disks.

The rotation curve of the final DR disk, i.e., its (normalized)
angular velocity �̃�̃0 as a function of the (normalized) radius
�̃/�̃0, is shown in the top panels of Figure 9. For small parameters
� ( post-Newtonian regime) the function �̃�̃0 is almost constant
(top left panel ). Interestingly, strongly relativistic disks (�k1:5)
show the same property (top right panel ). Moreover, �̃�̃0 tends
to zero in the ultrarelativistic limit in analogy to the relation
�RR�RR0 ! 0, which holds for RR disks in the ultrarelativistic
limit �RR ! 4:62966 : : : .

The ‘‘centrifugal parameter’’ �̃ ¼ 2�̃2�̃2
0 e

�Ṽ ¼ �(�̃) is shown
in the middle left panel of Figure 9. Like the angular velocity, �̃ is
almost constant for small �. For strongly relativistic DR disks, �̃
in the center of the disk exceeds the limit �RR

max ¼ 4:62966: : : of
RR disks.

Themiddle right panel of Figure 9 shows the quantity �̃M̃ as a
function of �/�0. For strongly relativistic DR disks �̃M̃ becomes
constant and approaches the limit 0.5. On the other hand, this
is a characteristic value for extreme Kerr black holes where
�HMBH ¼ 0:5 (�H: angular velocity of the horizon;MBH: black
hole mass). Indeed, one can show that there is a phase transition
between RR disks and Kerr black holes (Bardeen & Wagoner

Fig. 7.—Convergence properties of the numerical code for the example �DR.
The values of the efficiency �DR for different orders ns ¼ nt ¼ n of the Chebyshev
expansion are related to the order n ¼ 32. The plot shows 1� �DR

n /�DR
32



 

 as a
function of n.

Fig. 8.—Two models for disk collisions: (A) Under the influence of a small
amount of friction, RR disks merge again into an RR disk. This scenario was
discussed in Hennig & Neugebauer (2006 ); see x 3.2.1. (B) In the absence of
friction, the sameRR disksmerge into a DR disk. Allowing for friction afterward,
the systemwould again arrive at the RR disk of scenario A after a sufficiently long
time.
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1971; Neugebauer & Meinel 1994). This inspires the conjecture
that the DR disk exhibits the same phase transition. There is no
obstacle for a (numerical ) proof of this assumption in principle.
To extend our present code to study the parametric collapse of
the DR disk including the formation of a horizon, we would have

to follow the ideas of Bardeen &Wagoner (1971), who analyzed
this problem for the RR disks. However, such investigations are
outside the scope of this paper.
The bottom left panel of Figure 9 shows the redshift z̃ for a

photon emitted from the disk center as a function of the initial

Fig. 9.—Parameter relations for the collision of RR disks. We performed numerical calculations for values of the initial centrifugal parameter � in the interval ½0; 1:9�.
The dotted part of the line in the bottom right panel is an extrapolation for larger �. This extrapolation and the rapidly growing redshift in the bottom left panel indicate that
the initial parameter � in scenario B is limited (approximately, or perhaps even exactly) to the same interval as in scenario A, 0 < � < 1:954: : : (see x 3.2.1).
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centrifugal parameter �. For increasing values of � (relativistic
DR disks) z̃ grows rapidly.

An important result is the efficiency �DR of the formation of
DR disks that measures the amount of energy converted into grav-
itational radiation. The difference �F ¼ �RR � �DR, as shown in
the bottom right panel of Figure 9, compares this value with the
efficiency �RR of the RR disk-forming process as sketched in sce-
nario A of Figure 8. Thereby, �F is the part of energy lost due to
friction during the formation of a final RR disk. We find �F ¼
�RR � �DR < 1:5 ; 10�4, i.e., the contribution of friction is ex-
tremely small, �FT�RR, such that the gravitational radiation
dominates the collision process A.

3.2.6. Analytical Treatment of the Newtonian Limit

Our numerical investigations have shown that the angular ve-
locity of the final DR disk becomes closer and closer to a con-
stant over the whole range of �̃/�̃0 as the centrifugal parameter �
tends to zero (see Fig. 9, top left panel ). This leads one to sus-
pect that a final disk with a strictly constant angular velocity will
solve the boundary value problem as discussed in x 3.2.3 in
Newtonian theory. Interestingly, we can treat this problem ana-
lytically. This is demonstrated here. Strictly speaking, there is
no gravitational radiation in Newton’s theory. However, this
Newtonian boundary value problem can be seen as the limit of
a sequence of relativistic collisions with decreasing �, all reach-
ing a final equilibrium state due to gravitational emission. More-
over, the Newtonian solution can be used as a starting point for
the iterative calculation of the final relativistic DR disk.

Since the Newtonian limit of the RR disk is the Maclaurin
disk, we have to study the collision of two identical Maclaurin
disks using the local conservation laws given by equation (30).
The Newtonian potential Ũ of the final disk is a solution of the
Poisson equation

4Ũ ¼ 4�
̃� �ð Þ ð50Þ

with the boundary condition

Ũ;�̃ j�̃¼0þ ¼ 2�
̃; ð51Þ

where 
̃ ¼ 
̃(�̃) is the surface mass density of the final disk.With
dM ¼ 2�
 d� and dJ ¼ ��2 dM , equation (30) leads to the ad-
ditional boundary conditions


̃ �̃ð Þ ¼ 2
 �ð Þ �
�̃

d�

d�̃
; �̃ �̃ð Þ�̃2 ¼ �0�

2: ð52Þ

The initial surface mass density of the Maclaurin disk is


(�) ¼ 3M

2��2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

�2
0

s
; ð53Þ

and the initial constant angular velocity�0 is related to the initial
mass by

�2
0 ¼ 3�M

4�3
0

: ð54Þ

Using these relations, together with the Euler equation

Ũ;�̃j�̃¼0 ¼ �̃2 �̃ð Þ�̃; ð55Þ

wefind that a (rigidly rotating)Maclaurin diskwith the parameters

�̃ ¼ 4�0; �̃0 ¼ 1
2
�0 ð56Þ

indeed solves the boundary value problem given by equa-
tions (50)Y(52).

4. DISCUSSION

In this paper we have performed the analysis of collision
processes in the spirit of equilibrium thermodynamics. Avoiding
the solution of the full dynamical problem, we compared initial
and final equilibrium configurations to obtain a ‘‘rough’’ picture
of these processes. In this way we were able to calculate the en-
ergy loss by the emission of gravitational waves and to find con-
ditions (‘‘parameter relations’’) for the formation of final stars
and disks.

The application of this method to collisions of perfect fluid
stars and collisions of rigidly rotating disks of dust leads to re-
strictions of the initial parameters. It turned out that the formation
of final stars/disks from stars/disks is only possible for a subset of
the parameter space of the initial objects. Otherwise, the collision
of spheres and disks would lead to other final states, e.g., to black
holes.

Our main result is the numerical solution of the Einstein equa-
tions for the differentially rotating (DR) disk formed by the col-
lision of two identical rigidly rotating (RR) disks with parallel
angular momenta. We calculated the characteristic quantities of
the final DR disk, as for example the rotation curve �̃( �̃), as it
depends on the centrifugal parameter � of the initial RR disks. It
turned out that the angular velocity �̃ is almost constant (as
shown in x 3.2.6, it is strictly constant in the Newtonian limit).
Therefore, the simplified model of the formation of an RR disk
from the collision of two RR disks as presented in Hennig &
Neugebauer (2006), which has to allow frictional processes
to reach constant angular velocity, turns out to be a good
approximation to our present purely gravitational (frictionless)
model (scenario B).

For each of the studied collision scenarios, we calculated an
upper limit for the energy of the emitted gravitational waves. A
summary of the maximal efficiencies is given in Table 1. The
value �max � 2:3% for the collision of neutron stars is relatively
small compared to the other examples. The reason is the restricted
equation of state (completely degenerate ideal Fermi gas) that
does not allow for strongly relativistic stars.

We would like to thank David Petroff for many valuable
discussions. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) through the SFB/TR7
‘‘Gravitationswellenastronomie.’’

TABLE 1

Upper Limits for the Efficiency �
of Different Collision Processes

Colliding Objects

�max

(%)

Schwarzschild BHs ................... 29.3

RR disks.................................... 23.8

Schwarzschild stars................... 19.7

Neutron stars ............................. 2.3

Notes.—Upper limits for the efficiency �
of different collision processes, including the
Hawking & Ellis (1973) limit for the colli-
sion of two spherically symmetric black holes.
According to the bottom right panel of Fig. 9
[�F (1:954: : :) ¼ 0], the two efficiencies �RR

and �DR coincide with a maximum value
�RR
max ¼ �DR

max � 23:8%.
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APPENDIX

POTENTIALS OF THE RIGIDLY ROTATING DISK OF DUST

For the numerical calculation of the DR disk that is formed by the collision of two RR disks we need some formulae for quantities of
the RR disk of dust.

The coefficient V0 in the four-velocity given by equation (27) as a function of the parameter � can be calculated from a very rapidly
converging series (see Kleinwächter 1995),

coth
V0

2
¼� 4

�
þ 0:0294938052100425142�þ 5:4681333461446 ; 10�6�3

� 1:07467432587 ; 10�9�5 þ 2:1127368 ; 10�13�7 � 4:154 ; 10�17�9 þO �11
� �

: ðA1Þ

The disk values (� ¼ 0, � � �0) of the metric functions U and a and the mass density 
 are given by the equations

e2U ¼ e2V0(�̂) � ��2

2�2
0

; ðA2Þ

1þ �0að Þe2U ¼ eV0 �ð ÞeV0 �̂ð Þ; ðA3Þ


 ¼ � �0

2�eV0 �ð Þ
b00 �̂ð Þ
eV0�̂

; ðA4Þ

with

�0 ¼
ffiffiffiffi
�

2

r
eV0

�0
; b0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e4V0 � 4�2

0�
2
0

q
ðA5Þ

(see Neugebauer & Meinel 1994). The notation V0( �̂), b
0
0( �̂) indicates that the argument � in the parameter functions V0(�) and b

0
0(�)

has to be replaced by �̂ ¼ (1� �2 /�2
0 )�. Here b

0
0( �̂) means db0( �̂)/d�̂.
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