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Abstract
We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of
rotating stellar iron cores in general relativity employing a finite-temperature
equation of state and an approximate treatment of deleptonization during
collapse. We compare full 3 + 1 and conformally-flat spacetime evolution
methods and find that the conformally-flat treatment is sufficiently accurate for
the core-collapse supernova problem. We focus on the gravitational wave (GW)
emission from rotating collapse, core bounce and early postbounce phases. Our
results indicate that the GW signature of these phases is much more generic than
previously estimated. In addition, we track the growth of a nonaxisymmetric
instability of dominant m = 1 character in two of our models that leads to
prolonged narrow-band GW emission at ∼920–930 Hz over several tens of
milliseconds.

PACS numbers: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Bw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For more than two decades astrophysicists have struggled to compute the gravitational wave
(GW) signal produced by rotating stellar iron core collapse and the subsequent supernova
evolution. Besides the coalescence of black hole and neutron star binaries, core-collapse
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events are considered to be among the most promising sources of detectable GWs. Theoretical
predictions of the core-collapse supernova GW signature are still hampered by three major
problems: (i) the rotational configuration prior to gravitational collapse is still uncertain since
multi-D evolutionary calculations of rotating massive stars have not yet been performed;
(ii) reliable waveform estimates require a general relativistic (GR) treatment, since both high
densities and high velocities in combination with strong gravitational fields are encountered
in this problem; and (iii) an adequate treatment of the nuclear equation of state (EOS) and
the neutrino microphysics/radiative transfer is crucial for obtaining realistic collapse, bounce,
and postbounce dynamics and waveforms. GW emission from core-collapse supernovae may
arise from rotating collapse and bounce, postbounce neutrino-driven convection, anisotropic
neutrino emission, nonaxisymmetric rotational instabilities of the protoneutron star (PNS),
or from the recently proposed PNS core g-mode oscillations [1]. Previous estimates of the
GW signature of core-collapse supernovae have relied either on Newtonian simulations [2–6]
(to some extent approximating GR effects [7, 8]), or GR simulations with simplified analytic
(so-called hybrid) EOSs and no neutrino treatment [9–12]. Depending on the rotation strength,
the softness of the EOS at subnuclear densities, and the inclusion of GR effects, the collapse
dynamics and, accordingly, the GW signatures can differ significantly.

In previous studies, at least three ‘types’ of dynamics and resulting GW signatures of
rotating collapse were identified: type I dynamics is characterized by little influence of
centrifugal effects during collapse and bounce. Type I models undergo core bounce governed
by the stiffening of the nuclear EOS at nuclear density and ‘ring down’ quickly into postbounce
equilibrium. Their waveforms exhibit one pronounced large (negative) spike at bounce and
then show a gradually damped ring-down wave signal at early postbounce times. Type II
models, on the other hand, are rotation dominated and undergo core bounce at densities below
(or slightly above) nuclear matter density under the strong influence of centrifugal forces. Their
dynamics generally exhibits multiple harmonic-oscillator-like damped slow cycles of coherent
bounce–re-expansion–collapse (multiple bounces), which is reflected in the waveform by
distinct signal peaks associated with every bounce. Type III dynamics is characterized by
fast collapse (owing to very efficient electron capture, for instance, in accretion-induced
collapse or large artificial initial pressure reduction in polytropic core-collapse models),
extremely small masses of the homologously collapsing inner core and low-amplitude
GW emission.

In this paper we present new results from GR simulations, focusing on the rotating
collapse, bounce and early postbounce phases. As a first stage we perform 2D (axisymmetric)
and 3D calculations with polytropic initial models and a hybrid EOS in order to compare results
obtained in the conformally-flat approximation to GR (CFC; conformal-flatness condition
[13, 14]) with results from full Cauchy free evolutions in 3 + 1 GR. The second stage
encompasses the first ever multi-D simulations of rotating stellar iron core collapse in GR
with presupernova models from stellar evolution calculations, a finite-temperature nuclear
EOS, and a simple, but effective treatment of electron capture and neutrino radiation effects
during collapse. In this way, we obtain the most accurate estimates of the GW signature of
rotating stellar core collapse in full GR to date.

This paper is organized as follows. In section 2, we delineate the methods and numerical
tools employed and present the initial model data that we utilize in our calculations. In
section 3, we present the numerical results of our calculations, focusing on the CFC–full-
GR comparison in section 3.1, on the GW signature of axisymmetric rotating core collapse
with microphysics in section 3.2 and on the development of nonaxisymmetric structures and
dynamics in section 3.3. In section 4, we summarize our results and discuss the detectability
of the GWs from our models.
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2. Methods and initial model data

We base this work on two independent numerical codes: the COCONUT code of Dimmelmeier
et al [9, 15, 16] which treats GR in the conformally-flat approximation and which we
employ in 2D (axisymmetric) mode and CACTUS/CARPET/WHISKY (CCW) [17–20] for 3 + 1
full free Cauchy evolution GR calculations. CCW uses mesh-refined Cartesian grids while
COCONUT operates in spherical coordinates. Both codes employ the same formulation of GR
hydrodynamics which is outlined in section 2.1. Code details and the different methods for
time-updating the GR curvature fields are discussed in section 2.2 for CCW and in section 2.3
for COCONUT. In section 2.4, we discuss the EOSs that we utilize, while section 2.5 deals
with the deleptonization and neutrino pressure treatment that we implement in our codes. In
section 2.6 we introduce the initial model data used for our calculations, and in section 2.7 we
discuss the GW extraction method.

2.1. GR hydrodynamics

We adopt the ADM 3 + 1 foliation of spacetime [21]. All equations assume c = G = 1. In
the following, Latin indices run from 1 to 3 while Greek ones run from 0 to 3. We adhere to
abstract index notation. gµν is the 4-metric and γij is the 3-metric.

The hydrodynamic evolution of a perfect fluid in GR with 4-velocity uµ, rest-mass current
Jµ = ρuµ, where ρ is the rest-mass density, and stress–energy tensor T µν = ρhuµuν + Pgµν

is determined by a system of local conservation equations,

∇µJµ = 0, ∇µT µν = 0, (1)

where ∇µ denotes the covariant derivative with respect to the 4-metric. The quantity
h = 1 + ε + P/ρ is the specific enthalpy, P is the fluid pressure, and the 3-velocity is
given by vi = ui/(αu0) + βi/α, where α is the lapse function and βi is the coordinate shift.
We define the set of conserved variables as

D = ρW, Si = ρhW 2vi, τ = ρhW 2 − P − D.

In the above expressions W = αu0 is the Lorentz factor, which satisfies the relation
W = 1/

√
1 − vivi .

The local conservation laws (1) are written as a first-order, flux-conservative system of
hyperbolic equations [22],

∂
√

γU

∂t
+

∂
√−gF i

∂xi
= √−gS, (2)

with

U = [D, Sj , τ ],

F i = [
Dv̂i, Sj v̂

i + δi
jP , τ v̂i + Pvi

]
,

S =
[

0, T µν

(
∂gνj

∂xµ
− 
λ

µνgλj

)
, α

(
T µ0 ∂ ln α

∂xµ
− T µν
0

µν

)]
.

Here v̂i = vi − βi/α, and g and γ are the determinants of gµν and γij , respectively, with√−g = α
√

γ . 
λ
µν are the 4-Christoffel symbols.

The above equations are solved in semi-discrete fashion. The spatial discretization
is performed by means of a high-resolution shock-capturing (HRSC) scheme employing a
second-order accurate finite-volume discretization. We employ the Marquina flux formula for
the local Riemann problems and piecewise-parabolic cell interface reconstruction (PPM).
For a review of such methods in the GR context, see [23]. The time integration and
coupling with curvature are carried out with the method of lines [24] in combination with a
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second-order accurate explicit Runge–Kutta scheme in COCONUT and a second-order accurate
explicit iterated Crank–Nicholson [25] integrator in CCW.

2.2. CACTUS/CARPET/WHISKY

In York’s variant of the ADM 3 + 1 Cauchy-evolution formalism [21], the Einstein equations
split into a coupled set of first-order evolution equations for the 3-metric γij and the extrinsic
curvature Kij ,

∂tγij = −2αKij + ∇iβj + ∇jβi, (3)

∂tKij = −∇i∇jα + α
(
Rij + KKij − 2KikK

k
j

)
+ βk∇kKij

+ Kik∇jβ
k + Kjk∇iβ

k − 8πα
(
Sij − γij

2

(
Sk

k − ρADM
))

, (4)

and constraint equations,

0 = R + K2 − KijK
ij − 16πρADM, (5)

0 = ∇i (K
ij − γ ijK) − 8πSj . (6)

In the above equations, Rij is the 3-Ricci tensor and R is the scalar 3-curvature. The
projection of the stress–energy tensor onto the spatial hypersurface is Sij = ρhW 2vivj +γijP ,
the ADM energy density is given by ρADM = ρhW 2 − P and Sj = ρhW 2vi is the
momentum density as measured by an Eulerian observer moving orthogonally to the spacelike
hypersurfaces.

In CCW we employ the AEI-BSSN code that implements the BSSN recast of the ADM
equations in the fashion detailed in [26, 27]. Here, we mention only that the BSSN formalism
makes use of a conformal decomposition of the 3-metric, γ̃ij = e−4φγij , and the trace-free
part of the extrinsic curvature, Aij = Kij − γijK/3, with the conformal factor φ chosen to
satisfy e4φ = γ 1/3. In this formulation, in addition to the evolution equations for the conformal
3-metric γ̃ij and the conformal traceless extrinsic curvature Ãij , there are evolution equations
for the conformal factor φ, for the trace of the extrinsic curvature K, and for the ‘conformal
connection functions’ 
̃i ≡ ∂γ̃ ij /∂xj .

We employ the common 1 + log slicing condition and a 
-driver type condition for the
shift [27], ∂/∂tβi = (
̃i + �t∂/∂t
̃i), which is similar to that used in [10].

Mesh refinement in CCW is provided by the CARPET driver [28] which implements full
Berger–Oliger mesh refinement [29] with subcycling in time. In the calculations presented here
we employ box-in-box refinement hierarchies with a maximum of nine levels of refinement
and a factor of 2 increase in resolution from one level to the next. We run CARPET in progressive
mesh refinement mode and activate predefined refinement levels based on a density criterion as
the collapse proceeds [20]. The grids extend to a maximum outer diagonal radius of ∼5000 km
and the finest grid has a linear zone size of ∼350 m.

2.3. COCONUT

In the COCONUT code we employ the CFC approximation to GR introduced by Isenberg [13]
and first used in a pseudo-evolutionary context by Wilson et al [14]. Details on the CFC GR
equations and implementation specifics can be found in [15, 16]. Here we mention only the
salient features of CFC in which the ADM spatial 3-metric is replaced by the conformally-
flat 3-metric, γij = φ4γ̂ij , where γ̂ij is the flat-space metric. Hence γ̂ij = δij in Cartesian
coordinates and γ̂ij = diag(1, r2, r2 sin θ) in spherical coordinates. Here φ is the conformal
factor.
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In the CFC approximation the ADM equations (3)–(6) reduce to a set of elliptic equations
for φ, α and βi , if additionally maximal slicing is assumed: K = 0. The extrinsic curvature
becomes a function of these variables and the shift is to leading order (for matter-dominated
spacetimes) identical to the minimal distortion condition [21]. The CFC ADM equations do
not contain explicit time derivatives, and thus the CFC spacetime fields are evaluated in a fully
constrained approach and at each timestep anew.

Imposing CFC in a spherically symmetric spacetime is equivalent to solving the exact
Einstein equations. For nonspherically symmetric configurations the CFC approximation may
be roughly regarded as full GR minus the dynamical degrees of freedom of the gravitational
field that correspond to the GW content [30]. However, even spacetimes that do not contain
GWs can be non-conformally flat. Prime examples are the spacetime of a Kerr black hole [31]
or rotating fluids in equilibrium. For rapidly rotating stationary neutron stars the deviation
of certain metric components from conformal flatness has been shown to reach up to ∼5%
in extreme cases [50], while the fundamental oscillation frequencies of such models typically
deviate even less from the corresponding values obtained in full GR simulations [33].

Due to its fully constrained nature, the CFC approximation permits a straightforward
and numerically more robust implementation of the metric equations in coordinate systems
containing coordinate singularities (e.g., spherical polar coordinates in axisymmetry and 3D)
compared to the Cauchy free evolution scheme employed in CCW.

In COCONUT we use Eulerian spherical coordinates and assume axisymmetry for the core-
collapse simulations discussed here. The computational grids consist of 250 logarithmically-
spaced and centrally-condensed radial zones with a central resolution of 250 m and 45
equidistant angular zones covering 90◦.

2.4. Equations of state

For calculations employing polytropes in rotational equilibrium, we utilize the hybrid
polytropic–ideal-fluid EOS first introduced by [34]. It was discussed and used in many previous
studies involving polytropic iron core models (see, e.g., [3, 9, 10, 15, 16]). At densities below
nuclear matter density ρnuc = 2 × 1014 g cm−3, we choose a polytropic 
 = 
1 � 4/3 from
the set {1.325, 1.320, 1.310, 1.300, 1.280} corresponding to labels {G1, G2, G3, G4, G5} (see
also section 2.6.1). Above ρnuc, 
 is set to 
2 = 2.5 to mimic the stiffening of the nuclear
EOS. The hybrid EOS provides for a smooth transition between the two density regimes. A
thermal contribution owing to shock heating after core bounce is modelled via a 
-law ideal
gas EOS with 
th set to 1.5.

In our more realistic model calculations we employ the tabulated finite-temperature
nuclear EOS by Shen et al [35] (Shen EOS) in the variant of Marek et al [36] which includes
baryonic, electronic and photonic pressure components. The Shen EOS returns the fluid
pressure (and additional thermodynamic quantities) as a function of (ρ, T , Ye), where T is the
temperature and Ye is the electron number fraction per baryon for which we additionally solve
the advection equation

1√−g

(
∂(

√
γDYe)

∂t
+

∂
(√−gDYe(αvi − βi)

)
∂xi

)
= SYe

, (7)

where SYe
is a sink term owing to electron capture as discussed in section 2.5. Since the codes

operate with the specific internal energy ε, we determine the corresponding temperature T
iteratively with a Newton–Raphson scheme and the EOS table. All interpolations are carried
out in tri-linear fashion and the table is sufficiently densely spaced to lead to an artificial
entropy increase in adiabatic collapse by not more than ∼2%.
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2.5. Deleptonization and neutrino pressure

Electron capture during collapse reduces Ye (i.e. ‘deleptonizes’ the collapsing core) and
consequently decreases the size of the homologously collapsing inner core that roughly has
a Y 2

e dependence (see, e.g., [37]). The material of the inner core is in sonic contact and
determines the dynamics and the GW signal at core bounce and in the early postbounce
phases. Hence, it is important to include deleptonization during collapse. Since multi-D GR
radiation-hydrodynamics calculations are still computationally infeasible, in the simulations
using the Shen EOS we employ a recently proposed scheme [38] in which deleptonization is
parametrized based on data from detailed 1D radiation-hydrodynamics calculations. For this
we use the results obtained with the VERTEX code and the standard set of electron capture rates
on free protons and protons bound in heavy nuclei [39]. Following [38], deleptonization is
turned off at core bounce (defined as the point in simulation time when the specific entropy
per baryon s at the edge of the inner core reaches 3kB). After core bounce Ye is passively
advected, but the postbounce deleptonization of the PNS is not tracked.

Neutrino pressure is included only in the neutrino optically-thick regime (at ρ �
ρtrapping = 2 × 1012 g cm−3) where we treat the neutrino pressure contribution Pν as an
ideal Fermi gas as discussed in [38], and include the radiation stress via source terms in
the momentum and energy equations. Concretely, we add in fully-coupled method-of-lines
fashion −α

√
γ ∂Pν/∂xi and −α

√
γ vi∂Pν/∂xi as source terms to the right-hand side of the

momentum and energy equations, respectively. A detailed discussion of our implementation,
identical in both COCONUT and CCW, can be found in [20].

2.6. Initial models

2.6.1. Polytropes in rotational equilibrium. For the comparison between CFC (COCONUT)

and full GR (CCW) we employ 
 = 4/3 (i.e. n = 3) polytropes in rotational equilibrium
that are obtained with the relativistic extension of Hachisu’s self-consistent field method [41].
The polytropes are set up with the rotation law discussed in [3, 15] and are parametrized
via the differential rotation parameter A and the initial ratio βi of rotational kinetic energy
T to gravitational binding energy |W |. We employ the model names of [3] that relate
{A1, A2, A3, A4} with {A = 50 000 km, A = 1000 km, A = 500 km, A = 100 km} and
{B1, B2, B3, B4, B5} with {βi = 0.25%, βi = 0.50%, βi = 0.90%, βi = 1.80%, βi =
4.00%}. Note that the degree of differential rotation decreases with increasing A. The
model names are constructed based on the values of A and βi employed and on the value of the
polytropic index 
1 used in the subnuclear regime (see section 2.4). Hence, model A1B3G5,
for example, has A = 50 000 km, βi = 0.90% and is evolved with 
1 = 1.280.

For the comparison study we choose models A1B3G3 (yielding type I dynamics and
waveform), A3B3G2 (type I/II transitional), A2B4G1 (type II) and A1B3G5 (type III) as a
representative subset of the models considered by [9].

2.6.2. Presupernova models from stellar evolutionary calculations. All presupernova stellar
models available to date are end products of Newtonian spherically symmetric (1D) stellar
evolutionary calculations from hydrogen burning on the main sequence to the onset of core
collapse by photo-dissociation of heavy nuclei and electron capture (see, e.g., [42]). Recently,
the first presupernova models that include rotation in an approximate 1D fashion have become
available [43, 44]. Here, we employ a solar-metallicity 20M� (at zero-age main sequence)
model of [42] (in the following, model s20) and set it into rotation according to the rotation law
specified in [3] and with the same rotation nomenclature employed for the above polytropes
(such as A2B4). In addition, we perform calculations with the ‘rotating’ presupernova model
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Table 1. Summary of the models including microphysics. ρb is the density at bounce, the maximum
characteristic GW strain [48] hchar,max is at a distance of 10 kpc, and Egw is the energy emitted
in GWs (see, e.g., [16]). Models s20A2B4 and E20A are evolved to ∼90 ms and ∼70 ms after
bounce, respectively. The table columns with model names that have the subscript ‘axi’ include
only the GW emission from their axisymmetric phases up to ∼10–20 ms after bounce.

Model A (108 cm) βi (%) βb (%) ρb

(
1014 g

cm3

)
hchar,max (10−21) Egw (10−9M�c2)

s20A1B1 50.0 0.25 0.90 3.29 1.46 0.6
s20A1B5 50.0 4.00 10.52 2.90 9.68 26.9
s20A2B2 1.0 0.50 6.72 3.07 8.77 22.0
s20A3B3 0.5 0.90 16.57 2.33 4.58 12.4

s20A2B4axi 1.0 1.80 16.33 2.35 4.28 9.4
s20A2B4 64.23 169.0

E20Aaxi – 0.37 11.31 2.79 12.18 36.9
E20A 24.23 75.4

E20A of [43], which we map onto our computational grids under the assumption of constant
rotation on cylindrical shells of constant coordinate radius. We point out that due to their 1D
nature, none of the considered models are in rotational equilibrium. This should not limit
the quality of our results, since the collapse proceeds slowly on a timescale of more than
100 ms and, hence, the star has sufficient time for the adjustment to the appropriate angular
stratifications for its rate of rotation [2, 3]. Initial curvature data in CCW are obtained via the
Newtonian metric approximation [45] and in COCONUT via the CFC ADM equations.

In this study, we focus on the collapse of massive presupernova iron cores with at most
moderate differential rotation and maximum precollapse rotation rates that lead to PNSs that
are likely spinning too fast to yield cold NS spin periods in agreement with observationally
inferred injection periods of young pulsars into the P/Ṗ diagram [44, 46]. However, they
may be relevant in the collapsar-type gamma-ray burst scenario [46, 47].

In table 1, we summarize the parameters of the models including microphysics calculated
in this work.

2.7. Gravitational wave extraction

We employ the Newtonian quadrupole formula in the first-moment of momentum density
formulation as discussed in [16] to extract the GWs generated by aspherical accelerated fluid
motions. We point out that although the quadrupole formula is not gauge invariant and is only
valid in the Newtonian slow-motion limit, it yields results that agree very well in phase and to
∼10–20% in amplitude with more sophisticated methods [40].

3. Results

3.1. Simple hybrid EOS: comparison between CFC and full GR

In the following, we compare the time evolution of the maximum rest-mass density ρmax and
the GW signals of a set of models obtained in CFC with COCONUT and in full GR with
CCW. When carrying out such a comparison of generally coordinate-dependent quantities, it
is important to understand in what way differences in the gauge conditions might affect the
comparison. Since any spherically symmetric metric can be expressed as conformally-related
to the flat-space metric, CFC is an exact representation of full GR in spherical symmetry
(see section 2.3). Hence, we compare the CFC gauge with the gauge conditions employed in
CCW in a spherically symmetric calculation and find that both slicing and spatial coordinate
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Figure 1. Comparison of the time evolution of ρmax and of GW signals (in units of cm; rescaled by
observer distance R) obtained in full GR (red curves) and CFC (black curves) for models A1B3G3
(type I), A2B4G1 (type II) and A1B3G5 (type III).

conditions match very well, independent of the assumption of spherical symmetry in the
case of matter-dominated spacetimes [20]. It is hence safe to employ coordinate-dependent
quantities for the comparison of results from COCONUT and CCW in the stellar core collapse
scenario, provided the gauge conditions presented in sections 2.2 and 2.3 are used.

In figure 1, we compare time evolutions of ρmax and GW signals obtained in CFC and
full GR for models A1B3G3 (type I), A2B4G1 (type II) and A1B3G5 (type III). The CFC and
full GR results agree very well for all models, modulo small differences varying from model
to model in the degree to which small features in ρmax and in the waveforms are resolved.
These differences are most likely due to (i) differences in the numerical implementations,
(ii) different artificial numerical damping due to the different choices of computational
coordinates (spherical versus Cartesian) and (iii) slight under-resolution of the dynamics
by either CCW or COCONUT. Importantly, our results show no signs of errors in the dynamics
that could be caused by the CFC approximation of GR in core collapse. This finding is in
agreement with previous results [10, 12].

In order to more quantitatively assess how far a given core-collapse spacetime deviates
from conformal flatness, we calculate the Cotton–York tensor [6, 30, 49]

Y ij = εilm∇l

(
Rj

m − 1
4δj

mR
)
, (8)

which vanishes on conformally-flat slices. Following [49], we use its matrix norm normalized
by the covariant derivative of the 3-Ricci tensor, H = ‖Yij‖/(∇iRjk∇ iRjk), to construct the
rest-mass density weighted integral quantity

〈H 〉ρ =
∫

d3xH
√

γ ρW∫
d3x

√
γ ρW

(9)

as a measure of the deviation from conformal flatness. We perform test calculations with the
Cotton–York analysis for models A1B3G3 and A3B3G2 and plot the time evolution of 〈H 〉ρ
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Figure 2. Density-weighted volume integral of the matrix norm of the Cotton–York tensor (8)
and (9) at times shortly before and after core bounce in models A1B3G3 and A3B3G2. In
addition, we plot 〈H 〉ρ in a calculation of model A3B3G2 with a resolution increased overall by
20% (labelled HR). The numerics are reasonably well converged. Note that the rotationally more
flattened type I/II transitional model A3B3G2 achieves higher prebounce 〈H 〉ρ , but, owing to
smaller compactness, lower postbounce 〈H 〉ρ than the type I model A1B3G3.

in figure 2. If one can (in a quantitative way) trust the normalization proposed by [49], then
the core-collapse spacetimes studied here deviate from conformal flatness by not more than
a few per cent at and shortly after core bounce (which is in agreement with previous work
[12, 50]. The situation is very likely to be different at later postbounce times (not considered
here) when the PNS has accreted a significant amount of mass, cooled and shrunk, and is thus
more compact.

3.2. Calculations with presupernova models and microphysics: axisymmetric collapse
dynamics and waveforms

In this section, we present new results for the GW signature of the axisymmetric rotating
collapse, core bounce and early postbounce epoch of core-collapse supernovae. These results
are obtained with CCW, the Shen EOS, deleptonization during collapse and neutrino pressure
effects, as delineated in section 2. For all models, counterpart calculations are carried out with
COCONUT in axisymmetry for verification. The results compare as well as (or better than)
those discussed for the models with simple hybrid EOS in section 3.1 (see also [19]).

A first and important result of our study is that all models considered and listed in table 1
remain essentially axisymmetric during collapse, bounce and the immediate postbounce phase
(most models are evolved to ∼10–20 ms after bounce). The highest β reached at core
bounce is ∼16.6%. This is much below the threshold value of β ∼ 27% for the high-T/|W |
dynamical rotational bar-mode instability and only slightly above the threshold for secular
(viscosity and/or GW-reaction driven) rotational instability that would develop on much
longer timescales than considered here. Furthermore, and in agreement with previous results
[5, 46, 51], our calculations indicate a natural centrifugal barrier that limits the maximum value
of β that can be reached during core collapse when a microphysical EOS and presupernova
models from stellar evolution calculations are employed.

In figure 3, we present gravitational waveforms of models with varying initial degree of
differential rotation A and rotation rate βi. This figure demonstrates that, largely independent
of the initial rotational configuration in the parameter space considered here, the GW signal of
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Figure 3. GW strain h+ along the equator for all model calculations employing presupernova
models from stellar evolutionary studies, the Shen EOS, deleptonization during collapse, and
neutrino pressure in the neutrino optically-thick regime. Note the generic shape of the waveforms
that is largely independent of precollapse rotation rate and degree of differential rotation in the
parameter space chosen here.

core bounce in rotating collapse has a generic shape: a slow signal increase in the prebounce
phase, a large negative amplitude at core bounce when the motion of the quasi-homologously
collapsing inner core is reversed, followed by a ring-down. This is a clear type I signature
corresponding to a baryonic pressure-dominated bounce. All our microphysical models
undergo core bounce dominated by the stiffening of the EOS at nuclear density, and most
of them radiate the largest fraction of their GW energy in a relatively narrow band (with
δf ∼ 50 Hz) centred in the range between about 650 and 800 Hz. With increasing influence
of centrifugal effects, the peaks of the GW energy spectra shift to lower frequencies, reaching
∼300 Hz for the axisymmetric emission in model s20A2B4.

The above is in stark contrast to the studies using the hybrid EOS [3, 9–11] (see also
section 3.1), where initial models with rotation rates in the range investigated here develop
sufficient centrifugal support during contraction to stop the collapse at subnuclear densities,
resulting in several consecutive centrifugal bounces separated by phases of coherent re-
expansion of the inner core. While in GR such models exhibiting a multiple centrifugal
bounce and the corresponding type II GW signals are only rarer compared to Newtonian
gravity [9] if a hybrid EOS is used (which is identical to a polytrope before bounce), we
do not observe any such model in our microphysical models. An evident example is model
s20A2B4: in previous studies without microphysics, the corresponding model with identical
initial rotation parameters and a subnuclear 
1 close to 4/3 like A2B4G1 with 
1 = 1.325
(or A2B4G2 with 
1 = 1.320, not presented here) showed clear type II behaviour in both
Newtonian and GR calculations [3, 9].

The suppression of the multiple centrifugal bounce scenario is due to two physical effects.
On the one hand, GR results in a stronger gravitational pull as compared to a purely Newtonian
treatment, thus forming a smaller, more compact PNS with higher maximum density. This
effectively stronger gravity in GR severely limits the region in rotational parameter space
which permits multiple centrifugal bounces [9]. Additionally, and even more importantly,
in contrast to the simple hybrid EOS, in our case the mass and dynamics of the inner core
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(which is most important for the GW emission) is not merely determined by the adiabatic
index 
 = d ln P/d ln ρ (at constant entropy) of the EOS, but also by deleptonization during
collapse. This leads to considerably smaller inner cores with less angular momentum and
weaker pressure support [52], which again suppresses multiple centrifugal bounces in a very
efficacious way. However, even when including the effects of deleptonization, the mass
of the inner core is still substantially larger than when a hybrid EOS with 
1 � 1.300 at
subnuclear densities is used. This explains why we do not observe any type III waveforms in
the microphysical models, as these require an extremely small mass of the inner core [3, 9].

An instructive example for the impact of deleptonization and GR on the collapse dynamics
is the type II model D from the Newtonian study of Mönchmeyer and Müller [2], where
a microphysical finite-temperature EOS and an approximate deleptonization scheme were
employed (including only electron capture on protons and neglecting captures on heavy nuclei
which leads to larger Ye and inner core masses at core bounce than observed in our models).
When abandoning the restrictions of the deleptonization scheme or gravity in that work by
using a more modern prescription for electron capture [39] or including GR effects (and
certainly by combining both), we now find that their model D exhibits unambigous pressure-
dominated collapse dynamics with a type I GW signal. A detailed analysis of the interplay
and quantitative influence of the above two effects responsible for the elimination of multiple
centrifugal bounces in the rotating stellar core-collapse scenario is discussed in [20] and will
be presented in a future publication [53].

3.3. Calculations with presupernova models and microphysics: nonaxisymmetric dynamics

In recent studies dynamical rotational instabilities of m = 2 and/or m = 1 character were
found in equilibrium polytropic stellar models (in Newtonian gravity and GR; see, e.g.,
[10, 55, 56, 58], and references therein) and in simplified postbounce PNS models [59] at low
β in the range of ∼1–15%. In contrast to the classical high-T/|W | instability, this new kind of
dynamical instability appears to be related to resonant amplification of azimuthal fluid modes
at corotation points, where the pattern speed of the mode σp = σ/m (where σ is the mode
frequency) coincides with the local angular velocity [55, 56, 59, 60].

In the light of the previous results on low-T/|W | corotation instabilities, we continue the
postbounce evolution of models E20A and s20A2B4 in order to investigate the development
of nonaxisymmetric structure in the PNS and postshock regions of our physically more
realistic models. Models E20A and s20A2B4 are both relatively quickly spinning and
bracket a range of postbounce βs of ∼9–13%. We perform an analysis of azimuthal
density modes ∝ eimϕ in the equatorial plane by computing the complex Fourier amplitudes
Cm = 1

2π

∫ 2π

0 ρ(�, ϕ, z = 0) eimϕ dϕ on rings of constant coordinate radius. In the top panels
of figure 4 we display the normalized mode amplitudes Am = |Cm|/C0 extracted in the two
models at 15 km radius. Without adding artificial seed perturbations to our calculations,
discretization errors and the finite accuracy of the Newton–Raphson scheme employed in the
EOS routines trigger m = {1, 2, 3} modes, which rise to a level of ∼10−5 during the collapse
phases lasting ∼170 ms and ∼200 ms in models s20A2B4 and E20A, respectively.

In both models, the m = 1 mode grows fastest and with a dynamical rate at core bounce
and surpasses the ambient Cartesian m = 4 grid mode at ∼20–30 ms after bounce, reaching
maximum normalized amplitudes of up to 10−1. m = {2, 3} modes grow as well, but at a
lower rate, and reach smaller amplitudes than the m = 1 mode. Note that both models remain
dynamically stable to the m = 4 grid mode.

In the lower halves of the two panels of figure 4 we plot the GW strains h+ and h× as
seen by an observer located on the polar axis at 10 kpc distance. The rotational symmetry
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Figure 4. Normalized mode amplitudes Am in the equatorial plane extracted at a radius of 15 km
at postbounce times (upper half of the panels), and GW strains h+ and h× along the poles (lower
half of the panels) at postbounce times in models E20A (upper panel) and s20A2B4 (lower panel).
The times are given relative to the time of core bounce in each model.

prevailing at bounce and early postbounce times is apparent from the fact that h+ as well as
h× at the pole is essentially zero until the models develop considerable nonaxisymmetry at
∼30 ms (in E20A) and ∼50 ms (in s20A2B4) after bounce. The GW emission along the polar
axis is entirely due to the quadrupole components of the nonaxisymmetric dynamics and,
hence, the time at which the GW signals become strong is correlated with the evolution of the
m = 2 mode amplitude. This fact is most clearly portrayed by model s20A2B4 whose GW
emission sets in at the time when the m = 2 mode amplitude crosses that of the background
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Figure 5. Angular velocity profiles along the positive x-axis in the equatorial plane in model E20A
at various postbounce times. The pattern speed of the m = 1 mode is marked with a bar. It is in
corotation with the PNS at ∼10–15 km. Note that out to ∼10 km the PNS core is in approximate
solid body rotation. This is a consequence of the quasi-homologous collapse of the inner iron core
[46]. Model s20A2B4 (not shown here) exhibits qualitatively and quantitatively similar features
and its m = 1 mode is in corotation in the same equatorial radial interval.

m = 4 mode. The GW emission is in a very narrow frequency band (with δf ∼ 30 Hz). The
energy spectra peak at ∼928 Hz for model E20A and at ∼918 Hz for model s20A2B4. In
remarkable agreement with expectations for a simple spinning-bar model, h+ and h× in both
models oscillate at the same frequency and are phase-shifted by a quarter cycle.

By analysing the nonaxisymmetric mode structure in both models we find (i) that the
pattern speeds of the m = {2, 3} modes agree with that of the m = 1 mode, indicating non-
linear mode coupling and (ii) that the GW emission occurs at a frequency corresponding to
twice the pattern speed of the m = 1 mode. In figure 5, we compare the m = 1 pattern speed
with equatorial angular velocity profiles in model E20A. The m = 1 mode is in corotation with
the fluid throughout the postbounce phase at the edge of the PNS core at ∼10–15 km, where
the shear energy stored in differential rotation is large. This is evidence for the corotation
low-T/|W | nature of the rotational instability observed here [55, 56, 59, 60].

4. Summary and conclusions

The study presented in this paper relies on 3 + 1 full GR and 2 + 1 CFC-GR calculations
of the collapse of rapidly rotating stellar iron cores to PNSs. The 3 + 1 calculations are
the first of their kind that are carried out in fully self-consistent fashion on mesh-refined
Cartesian grids. Our calculations are the first ever multi-D calculations of core collapse in GR
that include a finite-temperature nuclear EOS, presupernova models from stellar evolutionary
studies, deleptonization during collapse and neutrino pressure effects.

By comparing results from fully GR and CFC collapse calculations we observe
no significant deviations that could be attributed to systematic deficiencies of the CFC
approximation in the stellar iron core collapse context. By means of the Cotton–York tensor
(which vanishes on conformally-flat spacelike slices) we find that the prebounce and early
postbounce spacetimes do not deviate from conformal flatness by more than a few per cent. The



S152 C D Ott et al

f (Hz)

h
ch

ar
at

 1
0 

kp
c

LIGO I

advanced LIGO

10 2 10 3

10 22

10 21

10 20

E20A

s20A2B1

s20A2B2

s20A2B4

s20A1B5

s20A3B3

Figure 6. Frequency spectra of the characteristic GW strain hchar of all models with microphysics
(scaled to 10 kpc distance) and the initial and advanced LIGO (optimal) rms noise curves [61].

CFC approximation employed in COCONUT is, hence, an excellent choice for the modelling
of rotating core collapse. In addition, we point out that the capability of COCONUT to perform
the evolution in spherical coordinates combined with its high computational efficiency in
axisymmetry makes it particularly well suited for studying matter-dominated spacetimes in
rotational symmetry.

Our results show that the GW signature of the collapse, core bounce and early postbounce
phases of the core-collapse supernova evolution is much more generic than previously thought.
We find that the dynamics of core bounce is dominated by gravity and microphysics, reducing
the relevance of centrifugal support for the wide range of initial rotation rates and degrees
of differential rotation considered here. Importantly, for our model set we do not observe
rotationally-induced multiple core bounces as proposed by previous studies that did not
include a microphysical finite-temperature nuclear EOS and a deleptonization treatment in
combination with GR.

All models stay axisymmetric throughout collapse, bounce and the very early postbounce
phase, and none of them reach the limit in T/|W | for the classical dynamical MacLaurin-type
rotational instability (see, e.g., [54] for a recent study and references therein). However,
models s20A2B4 and E20A, which we evolve to later postbounce times, exhibit the dynamical
growth of a nonaxisymmetric low-T/|W | corotation-type m = 1 instability [55, 56, 59, 60].
We also observe m = {2, 3} daughter modes that apparently grow to significant amplitudes
via non-linear mode coupling. Strong GWs are emitted by the quadrupole components of
the nonaxisymmetric dynamics. While we carried out long-term postbounce evolutions only
for models s20A2B4 and E20A, we point out that other models with similar postbounce PNS
structures and rotational configurations are likely to experience the same kind of instability.
Our results, which remove the limitations of previous studies, demonstrate that the development
of nonaxisymmetric structures is neither limited to Newtonian gravity, simple matter models,
equilibrium configurations, nor high values of β above the classical instability thresholds, but
may rather be a phenomenon occurring generically in differentially rotating compact stars.

For an assessment of the detectability of the GW emissions from our models by
initial and advanced LIGO detectors, we consider the characteristic GW strain spectra
hchar = R−1

√
2π−2Gc−3 dEGW/df [48] and compare them to the optimal LIGO rms noise

curves [61] in figure 6. Considering only the axisymmetric GW burst from core bounce,
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hchar reaches values up to ∼10−20 and has its maximum between 300 and 800 Hz. The
GW emission from the nonaxisymmetric dynamics tracked in models E20A and s20A2B4
occurs at lower GW amplitudes than that from core bounce, but over a prolonged period of
many tens of milliseconds and in almost monotone fashion centred around ∼920–930 Hz.
In total emitted energy and in hchar the GW emission from the nonaxisymmetric instability
dwarfs that associated with the axisymmetric core bounce and greatly enhances the GW
detectability of these models. Importantly, we point out that at the end of our simulations the
nonaxisymmetric dynamics in models E20A and s20A2B4 show no sign of decay. They could
potentially continue for hundreds of milliseconds until the supernova explosion puts an end
to the infusion of high angular momentum material through the stalled shock and sufficient
angular momentum is redistributed by the instability to break corotation.

Based on figure 6 we conclude that the GW signal from axisymmetric core bounce of all
models investigated here is likely to be detectable by current and future LIGO-class detectors
from anywhere in the Milky Way. Models that become nonaxisymmetrically unstable may be
detectable out to much larger distances if the instability persists for a sufficiently long time.

We point out that owing to the nature of the approximate deleptonization treatment
employed in this study we are unable to capture postbounce neutrino effects and cannot track
the sudden drop in electron fraction inside the PNS core associated with the neutrino burst
at shock breakout a few milliseconds after bounce. Hence, our treatment of the late-time
postbounce evolution is of limited quality, but will be improved in future work.
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