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Abstract. We present results from the first 2+1 and 3+1 simulations of the collapse

of rotating stellar iron cores in general relativity employing a finite-temperature

equation of state and an approximate treatment of deleptonization during collapse.

We compare full 3+1 and conformally-flat spacetime evolution methods and find that

the conformally-flat treatment is sufficiently accurate for the core-collapse supernova

problem. We focus on the gravitational wave (GW) emission from rotating collapse,

core bounce, and early postbounce phases. Our results indicate that the GW signature

of these phases is much more generic than previously estimated. In addition, we track

the growth of a nonaxisymmetric instability of dominant m = 1 character in two of

our models that leads to prolonged narrow-band GW emission at ∼ 920 – 930 Hz over

several tens of milliseconds.

PACS numbers: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Bw

1. Introduction

For more than two decades astrophysicists have struggled to compute the gravitational

wave (GW) signal produced by rotating stellar iron core collapse and the subsequent

supernova evolution. Besides the coalescence of black hole and neutron star binaries,

core-collapse events are considered to be among the most promising sources of

detectable GWs. Theoretical predictions of the core-collapse supernova GW signature

are still hampered by three major problems: (i) The rotational configuration prior

to gravitational collapse is still uncertain since multi-D evolutionary calculations of

rotating massive stars have not yet been performed; (ii) reliable waveform estimates

require a general relativistic (GR) treatment, since both high densities and velocities

http://arxiv.org/abs/astro-ph/0612638v1
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in combination with strong gravitational fields are encountered in this problem;

and (iii) an adequate treatment of the nuclear equation of state (EOS) and the

neutrino microphysics/radiative transfer is crucial for obtaining realistic collapse,

bounce, and postbounce dynamics and waveforms. GW emission from core-collapse

supernovae may arise from rotating collapse and bounce, postbounce neutrino-driven

convection, anisotropic neutrino emission, nonaxisymmetric rotational instabilities

of the protoneutron star (PNS), or from the recently proposed PNS core g-mode

oscillations [1]. Previous estimates of the GW signature of core-collapse supernovae have

relied either on Newtonian simulations [2, 3, 4, 5, 6] (to some extent approximating GR

effects [7, 8]), or GR simulations with simplified analytic (so-called hybrid) EOSs and no

neutrino treatment [9, 10, 11, 12]. Depending on the rotation strength, the softness of

the EOS at subnuclear densities, and the inclusion of GR effects, the collapse dynamics

and, accordingly, the GW signatures can differ significantly.

In previous studies, at least three “types” of dynamics and resulting GW signatures

of rotating collapse were identified: Type I dynamics is characterized by little influence

of centrifugal effects during collapse and bounce. Type I models undergo core bounce

governed by the stiffening of the nuclear EOS at nuclear density and “ring down”

quickly into postbounce equilibrium. Their waveforms exhibit one pronounced large

(negative) spike at bounce and then show a gradually damped ring-down wave signal

at early postbounce times. Type II models, on the other hand, are rotation dominated

and undergo core bounce at densities below (or slightly above) nuclear matter density

under the strong influence of centrifugal forces. Their dynamics generally exhibits

multiple harmonic-oscillator-like damped slow cycles of coherent bounce–re-expansion–

collapse (“multiple bounces”), which is reflected in the waveform by distinct signal

peaks associated with every bounce. Type III dynamics is characterized by fast collapse

(owing to very efficient electron capture for instance in accretion-induced collapse or

large artificial initial pressure reduction in polytropic core-collapse models), extremely

small masses of the inner homologous core, and low-amplitude GW emission.

In this article we present new results from GR simulations, focussing on the

rotating collapse, bounce, and early postbounce phases. As a first stage we perform 2D

(axisymmetric) and 3D calculations with polytropic initial models and a hybrid EOS in

order to compare results obtained in the conformally-flat approximation to GR (CFC;

conformal-flatness condition [13, 14]) with results from full Cauchy free evolutions in 3+1

GR. The second stage encompasses the first ever multi-D simulations of rotating stellar

iron core collapse in GR with presupernova models from stellar evolution calculations, a

finite-temperature nuclear EOS, and a simple, but effective treatment of electron capture

and neutrino radiation effects during collapse. In this way, we obtain the most accurate

estimates of the GW signature of rotating stellar core collapse in full GR to date.

This article is organized as follows. In section 2, we delineate the methods and

numerical tools employed and present the initial model data that we utilize in our

calculations. In section 3, we present the numerical results of our calculations, focussing

on the CFC–full-GR comparison in section 3.1, on the GW signature of axisymmetric
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rotating core collapse with microphysics in section 3.2, and on the development of

nonaxisymmetric structures and dynamics in section 3.3. In section 4, we summarize

our results and discuss the detectability of the GWs from our models.

2. Methods and Initial Model Data

We base this work on two independent numerical codes: The CoCoNuT code of

Dimmelmeier et al. [15, 9, 16] which treats GR in the conformally-flat approximation

and which we employ in 2D (axisymmetric) mode and Cactus/Carpet/Whisky

(CCW) [17, 18, 19, 20] for 3 + 1 full free Cauchy-evolution GR calculations. CCW

uses mesh-refined Cartesian grids while CoCoNuT operates in spherical coordinates.

Both codes employ the same formulation of GR hydrodynamics which is outlined in

the following section 2.1. Code details and the different methods for time-updating

the GR curvature fields are discussed in section 2.2 for CCW and in section 2.3 for

CoCoNuT. In section 2.4, we discuss the EOSs that we utilize, while section 2.5 deals

with the deleptonization and neutrino pressure treatment that we implement in our

codes. In section 2.6 we introduce the initial model data used for our calculations, and

in section 2.7 we discuss the GW extraction method.

2.1. GR Hydrodynamics

We adopt the ADM 3 + 1 foliation of spacetime [21]. All equations assume c = G = 1.

In the following, Latin indices run from 1 to 3 while Greek ones run from 0 to 3. We

adhere to abstract index notation. gµν is the 4-metric and γij is the 3-metric.

The hydrodynamic evolution of a perfect fluid in GR with four-velocity uµ, rest-

mass current J µ = ρuµ, where ρ is the rest-mass density, and stress-energy tensor

T µν = ρhuµu ν + Pg µν is determined by a system of local conservation equations,

∇µJ
µ = 0, ∇µT

µν = 0, (1)

where ∇µ denotes the covariant derivative with respect to the 4-metric. The quantity

h = 1 + ǫ + P/ρ is the specific enthalpy, P is the fluid pressure, and the 3-velocity is

given by v i = u i/(αu 0) + βi/α, where α is the lapse function and βi is the coordinate

shift. We define the set of conserved variables as

D = ρW, Si = ρhW 2vi, τ = ρhW 2 − P − D.

In the above expressions W = αu0 is the Lorentz factor, which satisfies the relation

W = 1/
√

1 − vivi.

The local conservation laws (1) are written as a first-order, flux-conservative system

of hyperbolic equations [22],

∂
√

γ U

∂t
+

∂
√−g F

i

∂x i
=

√−g S, (2)
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with

U = [D, Sj, τ ],

F
i =

[

Dv̂ i, Sj v̂
i + δ i

j P, τ v̂ i + Pv i
]

,

S =

[

0, T µν

(

∂gνj

∂xµ
− Γλ

µνgλj

)

, α

(

T µ0 ∂ ln α

∂xµ
− T µνΓ 0

µν

)]

.

Here, v̂ i = v i −βi/α, and g and γ are the determinant of gµν and γij, respectively, with√−g = α
√

γ. Γλ
µν are the 4-Christoffel symbols.

The above equations are solved in semi-discrete fashion. The spatial discretization

is performed by means of a high-resolution shock-capturing (HRSC) scheme employing

a second-order accurate finite-volume discretization. We employ the Marquina

flux formula for the local Riemann problems and piecewise-parabolic cell interface

reconstruction (PPM). For a review of such methods in the GR context, see [23].

The time integration and coupling with curvature are carried out with the Method

of Lines [24] in combination with a second-order accurate explicit Runge–Kutta scheme

in CoCoNuT and a second-order accurate explicit iterated Crank–Nicholson [25]

integrator in CCW.

2.2. Cactus/Carpet/Whisky

In York’s variant of the ADM 3 + 1 Cauchy-evolution formalism [21], the Einstein

equations split into a coupled set of first-order evolution equations for the 3-metric γij

and the extrinsic curvature Kij ,

∂tγij = − 2αKij + ∇iβj + ∇jβi, (3)

∂tKij = −∇i∇jα + α
(

Rij + KKij − 2KikK
k
j

)

+ βk∇kKij (4)

+ Kik∇jβ
k + Kjk∇iβ

k − 8πα
(

Sij −
γij

2

(

Sk
k − ρADM

)

)

,

and constraint equations,

0 = R + K2 − KijK
ij − 16πρADM, (5)

0 = ∇i

(

Kij − γijK
)

− 8πSj. (6)

In the above equations, Rij is the 3-Ricci tensor and R is the scalar 3-curvature.

The projection of the stress-energy tensor onto the spatial hypersurface is Sij =

ρhW 2vivj + γijP , the ADM energy density is given by ρADM = ρhW 2 − P , and

Sj = ρhW 2vi is the momentum density as measured by an Eulerian observer moving

orthogonally to the spacelike hypersurfaces.

In CCW we employ the AEI-BSSN code that implements the BSSN recast of the

ADM equations in the fashion detailed in [26, 27]. Here, we mention only that the BSSN

formalism makes use of a conformal decomposition of the 3-metric, γ̃ij = e−4φγij, and the

trace-free part of the extrinsic curvature, Aij = Kij − γijK/3, with the conformal factor

φ chosen to satisfy e4φ = γ1/3. In this formulation, in addition to the evolution equations

for the conformal three-metric γ̃ij and the conformal traceless extrinsic curvature Ãij ,
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there are evolution equations for the conformal factor φ, for the trace of the extrinsic

curvature K, and for the “conformal connection functions” Γ̃i ≡ ∂γ̃ij/∂xj .

We employ the common 1 + log slicing condition and a Γ-driver type condition for

the shift [27], ∂/∂t βi = (Γ̃i + ∆t ∂/∂t Γ̃i), which is similar to that used in [10].

Mesh refinement in CCW is provided by the Carpet driver [28] which implements

full Berger–Oliger mesh refinement [29] with subcycling in time. In the calculations

presented here we employ box-in-box refinement hierarchies with a maximum of 9 levels

of refinement and a factor of 2 increase in resolution from one level to the next. We

run Carpet in progressive mesh refinement mode and activate predefined refinement

levels based on a density criterion as the collapse proceeds [20]. The grids extend to a

maximum outer diagonal radius of ∼ 5000 km and the finest grid has a linear zone size

of ∼ 350 m.

2.3. CoCoNuT

In the CoCoNuT code we employ the CFC approximation to GR introduced by

Isenberg [13] and first used in a pseudo-evolutionary context by Wilson et al. [14]. Details

on the CFC GR equations and implementation specifics can be found in [15, 16]. Here

we mention only the salient features of CFC which replace the ADM spatial 3-metric

with the conformally-flat 3-metric, γij = φ4γ̂ij, where γ̂ij is the flat-space metric. Hence

γ̂ij = δij in Cartesian coordinates and γ̂ij = diag (1, r2, r2 sin θ) in spherical coordinates.

φ is the conformal factor.

In the CFC approximation the ADM equations (3–6) reduce to a set of elliptic

equations for φ, α, and βi, if additionally maximal slicing is assumed: K = 0. The

extrinsic curvature becomes a function of these variables and the shift is to leading order

(for matter-dominated spacetimes) identical to the minimal distortion condition [21].

The CFC approximation is exact in spherical symmetry. In 2 and 3 dimensions

a CFC spacetime may be approximately regarded as GR minus the dynamical degrees

of freedom of the gravitational field that correspond to the GW content [30]. Yet this

statement is not sufficient to describe CFC in general: Even stationary spacetimes

that do not contain GWs can be non-conformally flat. Prime examples are Kerr black

holes [31] and rotating neutron stars [49] in equilibrium.

In CoCoNuT we use Eulerian spherical coordinates and assume axisymmetry for

the core-collapse simulations discussed here. The computational grids consist of 250

logarithmically-spaced and centrally-condensed radial zones with a central resolution of

250 m and 45 equidistant angular zones covering 90◦.

2.4. Equations of State

For calculations employing polytropes in rotational equilibrium, we utilize the hybrid

polytropic–ideal-fluid EOS first introduced by [33]. It was discussed and used in many

previous studies involving polytropic iron core models (see, e.g., [3, 15, 9, 16, 10]). At

densities below nuclear matter density ρnuc & 2 × 1014 g cm−3, we choose a polytropic
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Γ = Γ1 . 4/3 from the set {1.325, 1.320, 1.310, 1.300, 1.280} corresponding to labels

{G1, G2, G3, G4, G5} (see also section 2.6.1). Above ρnuc, Γ is set to Γ2 = 2.5 to mimic

the stiffening of the nuclear EOS. The hybrid EOS provides for a smooth transition

between the two density regimes. A thermal contribution owing to shock heating after

core bounce is modelled via a Γ-law EOS with Γth set to 1.5.

In our more realistic model calculations we employ the tabulated finite-temperature

nuclear EOS by Shen et al. [34] (Shen EOS) in the variant of Marek et al. [35] which

includes baryonic, electronic, and photonic pressure components. The Shen EOS returns

the fluid pressure (and additional thermodynamic quantities) as a function of (ρ, T, Ye),

where T is the temperature and Ye is the electron number fraction per baryon for which

we additionally solve the advection equation

1√−g

(

∂(
√

γDYe)

∂t
+

∂ (
√−gDYe(αvi − βi))

∂xi

)

= SYe
, (7)

where SYe
is a sink term owing to electron captures discussed in the next section 2.5.

Since the codes operate with the specific internal energy ǫ, we determine the

corresponding temperature T iteratively with a Newton–Raphson scheme and the EOS

table. All interpolations are carried out in tri-linear fashion and the table is sufficiently

densely spaced to lead to an artifical entropy increase in adiabatic collapse by not more

than ∼ 2%.

2.5. Deleptonization and Neutrino Pressure

Electron capture during collapse reduces Ye (i.e. “deleptonizes” the collapsing core)

and consequently decreases the size of the homologously collapsing inner core that

roughly has a Y 2
e dependence (see, e.g., [36]). The material of the inner core is in

sonic contact and determines the dynamics and the GW signal at core bounce and

in the early postbounce phases. Hence, it is important to include deleptonization

during collapse. Since multi-D GR radiation hydrodynamics calculations are still

computationally infeasible, in the simulations using the Shen EOS we employ a recently

proposed scheme [37] in which deleptonization is parametrized based on data from

detailed 1D radiation-hydrodynamics calculations carried out with the Vertex code

and the standard set of electron capture rates on free protons and protons bound in

heavy nuclei [38]. Following [37], deleptonization is turned off at core bounce (defined

as the point in simulation time when the specific entropy per baryon s at the edge of the

inner core reaches 3kB). After core bounce Ye is passively advected, but the postbounce

deleptonization of the PNS is not tracked.

Neutrino pressure is included only in the neutrino optically-thick regime (at

ρ & ρtrapping = 2×1012 g cm−3) where we treat the neutrino pressure contribution Pν as

an ideal Fermi gas as discussed in [37], and include the radiation stress via source terms

in the momentum and energy equations. Concretely, we add in fully-coupled Method-of-

Lines-fashion −α
√

γ∂Pν/∂xi and −α
√

γ vi∂Pν/∂xi as a source term to the right-hand
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side of the momentum and energy equation, respectively. A detailed discussion of our

implementation, identical in both CoCoNuT and CCW, can be found in [20].

2.6. Initial Models

2.6.1. Polytropes in Rotational Equilibrium For the comparison between CFC

(CoCoNuT) and full GR (CCW) we employ Γ = 4/3 (i.e. n = 3) polytropes in

rotational equilibrium that are obtained via Hachisu’s relativistic self-consistent field

method [40]. The polytropes are set up with the rotation law discussed in [3, 15] and

are parametrized via the differential rotation parameter A and the initial ratio βi of

rotational kinetic energy T to gravitational binding energy |W |. We employ the model

names of [3] that relate {A1, A2, A3, A4} with {A = 50,000 km, A = 1000 km, A =

500 km, A = 100 km} and {B1, B2, B3, B4, B5} with {βi = 0.25%, βi = 0.50%, βi =

0.90%, βi = 1.80%, βi = 4.00%}. Note that the degree of differential rotation decreases

with increasing A. The model names are constructed based on the values of A and

βi employed and on the value of the polytropic Γ1 used in the subnuclear regime (see

section 2.4). Hence, model A1B3G5, for example, has A = 50,000 km, βi = 0.90% and

is evolved with Γ1 = 1.280.

For the comparison study we choose models A1B3G3 (yielding Type I dynamics

and waveform), A3B3G2 (Type I/II transitional), A2B4G1 (Type II), and A1B3G5

(Type III) as a representative subset of the models considered by [9].

2.6.2. Presupernova Models from Stellar Evolutionary Calculations All presupernova

stellar models available to-date are end products of Newtonian spherically symmetric

(1D) stellar evolutionary calculations from hydrogen burning on the main sequence to

the onset of core collapse by photo-dissociation of heavy nuclei and electron captures

(see, e.g., [41]). Recently, the first presupernova models that include rotation in an

approximate 1D fashion have become available [42, 43]. Here, we employ a solar-

metallicity 20 M⊙ (at zero-age main sequence) model of [41] (in the following, model

s20) and set it into rotation according to the rotation law specified in [3] and with the

same rotation nomenclature employed for the above polytropes (such as A2B4). In

addition, we perform calculations with the “rotating” presupernova model E20A of [42],

which we map onto our computational grids under the assumption of constant rotation

on cylindrical shells of constant coordinate radius. We point out that due to their 1D

nature, none of the considered models are in rotational equilibrium. This should not

limit the quality of our results, since the collapse proceeds slowly on a timescale of

more than 100 ms and, hence, the star has sufficient time for the adjustment to the

appropriate angular stratifications for its rate of rotation [3, 2]. Initial curvature data

in CCW are obtained via the Newtonian metric approximation [44] and in CoCoNuT

via the CFC ADM equations.

In this study, we focus on the collapse of massive presupernova iron cores with at

most moderate differential rotation and precollapse rotation rates that lead to PNSs
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Table 1. Summary of the models including microphysics. ρb is the density at bounce,

the maximum characteristic GW strain [47] hchar,max is at a distance of 10 kpc, and

Egw is the energy emitted in GWs (see, e.g., [16]). Models s20A2B4 and E20A are

evolved to ∼ 90 ms and ∼ 70 ms after bounce, respectively. The table columns with

model names that have the subscript ‘axi’ include only the GW emission from their

axisymmetric phases up to ∼ 10 – 20 ms after bounce.

Model A βi βb ρb hchar,max Egw

[108 cm] [%] [%]

[

1014 g

cm3

]

[10−21] [10−9M⊙c2]

s20A1B1 50.0 0.25 0.90 3.29 1.46 0.6

s20A1B5 50.0 4.00 10.52 2.90 9.68 26.9

s20A2B2 1.0 0.50 6.72 3.07 8.77 22.0

s20A3B3 0.5 0.90 16.57 2.33 4.58 12.4

s20A2B4axi 1.0 1.80 16.33 2.35 4.28 9.4

s20A2B4 64.23 169.0

E20Aaxi — 0.37 11.31 2.79 12.18 36.9

E20A 24.23 75.4

that are likely spinning too fast to yield cold NS spin periods in agreement with

observationally inferred injection periods of young pulsars into the P/Ṗ diagram [43, 45].

However, they may be relevant in the collapsar-type gamma-ray burst scenario [45, 46].

In table 1, we summarize the parameters of the models including microphysics

calculated in this work.

2.7. Gravitational Wave Extraction

We employ the Newtonian quadrupole formula in the first-moment of momentum density

formulation as discussed in [16] to extract the GWs generated by aspherical accelerated

fluid motions. We point out that though the quadrupole formula is not gauge invariant

and is only valid in the Newtonian slow-motion limit, it yields results that agree very

well in phase and to ∼ 10 – 20% in amplitude with more sophisticated methods [39].

3. Results

3.1. Simple hybrid EOS: Comparison between CFC and full GR

In the following, we compare the time evolution of the maximum rest-mass density ρmax

and the GW signals of a set of models obtained in CFC with CoCoNuT and in full

GR with CCW. When carrying out such a comparison of generally coordinate-dependent

quantities, it is important to understand in what way differences in the gauge conditions

might affect the comparison. Since CFC is exact in spherical symmetry we compare the

CFC gauge with the gauge conditions employed in CCW in a spherically symmetric

calculation and find that both slicing and spatial coordinate conditions match very well,
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Figure 1. Comparison of the time evolution of ρmax and of GW signals (in units of

cm; rescaled by observer distance R) obtained in full GR (red curves) and CFC (black

curves) for models A1B3G3 (Type I), A2B4G1 (Type II), and A1B3G5 (Type III).

independent of the assumption of spherical symmetry in the case of matter-dominated

spacetimes [20]. It is hence safe to employ coordinate-dependent quantities for the

comparison of results from CoCoNuT and CCW in the stellar core collapse scenario,

provided the gauge conditions presented in sections 2.2 and 2.3 are used.

In figure 1, we compare time evolutions of ρmax and GW signals obtained in CFC and

full GR for models A1B3G3 (Type I), A2B4G1 (Type II), and A1B3G5 (Type III). The

CFC and full GR results agree very well for all models, modulo small differences varying

from model to model in the degree to which small features in ρmax and in the waveforms

are resolved. These differences are most likely due to (i) differences in the numerical

implementations, (ii) different artificial numerical damping due to the different choices

of computational coordinates (spherical vs. Cartesian), and (iii) slight under-resolution

of the dynamics by either CCW or CoCoNuT. Importantly, our results show no signs

of errors in the dynamics that could be caused by the CFC approximation of GR in core

collapse. This finding is in agreement with previous results [10, 12].

In order to more quantitatively assess how far a given core-collapse spacetime

deviates from conformal flatness, we calculate the Cotton–York tensor [30, 48, 6]

Y ij = ǫilm∇l

(

Rj
m − 1

4
δj
mR

)

, (8)

which vanishes on conformally-flat slices. Following [48], we use its matrix norm

normalized by the covariant derivative of the 3-Ricci tensor, H = ‖Yij‖/(∇iRjk ∇iRjk),
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Figure 2. Density-weighted volume integral of the matrix norm of the Cotton–

York tensor (8, 9) at times shortly before and after core bounce in models A1B3G3

and A3B3G2. In addition, we plot 〈H〉ρ in a calculation of model A3B3G2 with a

resolution increased overall by 20% (labeled HR). The numerics are reasonably well

converged. Note that the more rotationally flattened Type I/II transitional model

A3B3G2 achieves higher prebounce 〈H〉ρ, but, owing to smaller compactness, lower

postbounce 〈H〉ρ than the Type I model A1B3G3.

to construct the rest-mass density weighted integral quantity

〈H〉ρ =

∫

d3xH
√

γρW
∫

d3x
√

γρW
(9)

as a measure of the deviation from conformal flatness. We perform test calculations

with the Cotton–York analysis for models A1B3G3 and A3B3G2 and plot the time

evolution of 〈H〉ρ in figure 2. If one can (in a quantitative way) trust the normalization

proposed by [48], then the core-collapse spacetimes studied here deviate from conformal

flatness by not more than a few percent at and shortly after core bounce (which is in

agreement with previous work [49, 12]. The situation is very likely to be different at

later postbounce times (not considered here) when the PNS has accreted a significant

amount of mass, cooled, and shrunk, and is thus more compact.

3.2. Calculations with Presupernova Models and Microphysics:

Axisymmetric Collapse Dynamics and Waveforms

In this section, we present new results for the GW signature of axisymmetric rotating

collapse, core bounce, and the early postbounce epoch of core-collapse supernovae.

These results are obtained with CCW, the Shen EOS, deleptonization during collapse,

and neutrino pressure effects, as delineated in section 2. For all models, counterpart

calculations are carried out with CoCoNuT in axisymmetry for verification. The results

compare as well as (or better than) those discussed for the models with simple hybrid

EOS in the previous section 3.1 (see also [19]).

A first and important result of our study is that all models considered and listed

in table 1 remain essentially axisymmetric during collapse, bounce, and the immediate
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Figure 3. GW strain h+ along the equator for all model calculations employing

presupernova models from stellar evolutionary studies, the Shen EOS, deleptonization

during collapse, and neutrino pressure in the neutrino optically-thick regime. Note the

generic shape of the waveforms that is largely independent of precollapse rotation rate

and degree of differential rotation in the parameter space chosen here.

postbounce phase (most models are evolved to ∼ 10 – 20 ms after bounce). The highest

β reached at core bounce is ∼16.6%. This is much below the threshold value of β ∼ 27%

for the high-T/|W | dynamical rotational bar-mode instability and only slightly above the

threshold for secular (viscosity and/or GW-reaction driven) rotational instability that

would develop on much longer timescales than considered here. Furthermore, and in

agreement with previous results [50, 5, 45], our calculations indicate a natural centrifugal

barrier that limits the maximum value of β that can be reached during core collapse

when a microphysical EOS and presupernova models from stellar evolution calculations

are employed.

In figure 3, we present gravitational waveforms of models with varying initial degree

of differential rotation A and rotation rate βi. This figure demonstrates that largely

independent of the initial rotational configuration in the parameter space considered

here, the GW signal of core bounce in rotating collapse has a generic shape: a slow

signal increase in the prebounce phase, a large negative amplitude at core bounce when

the motion of the quasi-homologously collapsing inner core is reversed, followed by

a ring-down. This is a clear Type I signature corresponding to a baryonic pressure-

dominated bounce. All our models undergo core bounce dominated by the stiffening of

the EOS at nuclear density and their GW energy spectra show peaks at frequencies in

the range ∼ 300 – 800 Hz.

This is in stark contrast to the studies using the hybrid EOS [3, 9, 10, 11] (see

also section 3.1), where initial models with rotation rates in the range investigated

here develop sufficient centrifugal support during contraction to stop the collapse at

subnuclear densities, resulting in several consecutive centrifugal bounces separated
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by phases of coherent re-expansion of the inner core. While in GR such models

exhibiting a multiple centrifugal bounce and the corresponding Type II GW signals

are only rarer compared to Newtonian gravity [9] if a hybrid EOS is used (which is

identical to a polytrope before bounce), we do not observe any such model in our

microphysical models. An evident example is model s20A2B4: In previous studies

without microphysics, the corresponding model with identical initial rotation parameters

and a subnuclear Γ1 close to 4/3 like A2B4G1 with Γ1 = 1.325 (or A2B4G2 with

Γ1 = 1.320 not presented here) showed clear Type II behavior in both Newtonian and

GR calculations [3, 9].

The suppression of the multiple centrifugal bounce scenario is due to two physical

effects: On the one hand, GR results in a stronger gravitational pull as compared to a

purely Newtonian treatment, thus forming a smaller, more compact PNS with higher

maximum density. This effectively stronger gravity in GR severely limits the region in

rotational parameter space which permits multiple centrifugal bounces [9]. Additionally,

and even more importantly, in contrast to the simple hybrid EOS, in our case the mass

and dynamics of the inner core (which is most important for the GW emission) is not

merely determined by the adiabatic index Γ = d lnP/d ln ρ (at constant entropy) of the

EOS, but also by deleptonization during collapse. This leads to considerably smaller

inner cores with less angular momentum and weaker pressure support [51], which again

suppresses multiple centrifugal bounces in a very efficacious way. However, even when

including the effects of deleptonization, the mass of the inner core is still substantially

larger than when a hybrid EOS with Γ1 . 1.300 at subnuclear densities is used. This

explains why we do not observe any Type III waveforms in the microphysical models,

as these require an extremely small mass of the inner core [3, 9].

An instructive example for the impact of deleptonization and GR on the collapse

dynamics is the Type II model D from the Newtonian study of Mönchmeyer & Müller [2],

where a microphysical finite-temperature EOS and an approximate deleptonization

scheme were employed (including only electron capture on protons and neglecting

captures on heavy nuclei which leads to larger Ye and inner core masses at core

bounce than observed in our models). By either abandoning the previous restriction

in deleptonization using the more modern capture rates [38] or by applying GR (and

certainly by combining both effects), we find that this models exhibits unambigous

pressure-dominated collapse dynamics with a Type I GW signal. A detailed analysis

of the interplay and quantitative influence of the above two effects responsible for the

elimination of multiple centrifugal bounces in the rotating stellar core-collapse scenario

is discussed in [20] and will be presented in a future publication [52].

3.3. Calculations with Presupernova Models and Microphysics:

Nonaxisymmetric Dynamics

In recent studies dynamical rotational instabilities of m = 2 and/or m = 1 character

where found in equilibrium polytropic stellar models (in Newtonian gravity and GR;
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Figure 4. Normalized mode amplitudes Am in the equatorial plane extracted at a

radius of 15 km at postbounce times (upper half of the panels), and GW strains h+

and h× along the poles (lower half of the panels) at postbounce times in models E20A

(upper panel) and s20A2B4 (lower panel). The times are given relative to the time of

core bounce in each model.

see, e.g., [53, 54, 10, 56], and references therein) and in simplified postbounce PNS

models [57] at low β in the range of ∼ 1 – 15%. In contrast to the classical high-T/|W |
instability, this new kind of dynamical instability appears to be related to resonant

amplification of azimuthal fluid modes at corotation points, where the pattern speed of

the mode σp = σ/m (where σ is the mode frequency), coincides with the local angular

velocity [58, 54, 53, 57].

In the light of the previous results on low-T/|W | corotation instabilities, we continue
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Figure 5. Angular velocity profiles along the positive x-axis in the equatorial plane

in model E20A at various postbounce times. The pattern speed of the m = 1 mode is

marked with a bar. It is in corotation with the PNS at ∼ 10 – 15 km. Note that out to

∼ 10 km the PNS core is in approximate solid body rotation. This is a consequence of

the quasi-homologous collapse of the inner iron core [45]. Model s20A2B4 (not shown

here) exhibits qualitatively and quantitatively similar features and its m = 1 mode is

in corotation in the same equatorial radial interval.

the postbounce evolution of models E20A and s20A2B4 in order to investigate the

development of nonaxisymmetric structure in the PNS and postshock regions of our

physically more realistic models. Models E20A and s20A2B4 are both relatively quickly

spinning and bracket a range of postbounce βs of ∼ 9 – 13%. We perform an analysis

of azimuthal density modes ∝ eimϕ in the equatorial plane by computing the complex

Fourier amplitudes Cm = 1
2π

∫ 2π

0
ρ(̟, ϕ, z = 0) eimϕ dϕ on rings of constant coordinate

radius. In the top panels of figure 4 we display the normalized mode amplitudes

Am = |Cm|/C0 extracted in the two models at 15 km radius. Without adding artificial

seed perturbations to our calculations, discretization errors and the finite accuracy of

the Newton–Raphson scheme employed in the EOS routines trigger m = {1, 2, 3} modes,

which rise to a level of ∼ 10−5 during the collapse phases lasting ∼ 170 ms and ∼ 200 ms

in models s20A2B4 and E20A, respectively.

In both models, the m = 1 mode grows fastest and with a dynamical rate at core

bounce and surpasses the ambient Cartesian m = 4 grid mode at ∼ 20 – 30 ms after

bounce, reaching maximum normalized amplitudes of up to 10−1. m = {2, 3} modes

grow as well, but at a lower rate, and reach smaller amplitudes than the m = 1 mode.

Note that both models remain dynamically stable to the m = 4 grid mode.

In the lower panels of figure 4 we plot the GW strains h+ and h× as seen by

an observer located on the polar axis at 10 kpc distance. The rotational symmetry

prevailing at bounce and early postbounce times is apparent from the fact that h+
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as well as h× at the pole are essentially zero until the models develop considerable

nonaxisymmetry at ∼ 30 ms (in E20A) and ∼ 50 ms (in s20A2B4) after bounce. The

GW emission along the polar axis is entirely due to the quadrupole components of the

nonaxisymmetric dynamics and, hence, the time at which the GW signals become strong

is correlated with the evolution of the m = 2 mode amplitude. This fact is most clearly

portrayed by model s20A2B4 whose GW emission sets in at the time when the m = 2

mode amplitude crosses that of the background m = 4 mode. The GW emission is in

a very narrow frequency band, with energy spectra peaked at ∼ 928 Hz in model E20A

and at ∼ 918 Hz in model s20A2B4. In remarkable agreement with expectations for a

simple spinning-bar model, h+ and h× in both models oscillate at the same frequency

and are phase-shifted by a quarter cycle.

We analyzed the nonaxisymmetric mode structure in both models and find (i) that

the pattern speeds of the m = {2, 3} modes agree with that of the m = 1 mode,

indicating non-linear mode coupling and (ii) that the GW emission occurs at exactly

twice the pattern speed of the m = 1 mode. In figure 5, we compare the m = 1 pattern

speed with equatorial angular velocity profiles in model E20A. The m = 1 mode is in

corotation with the fluid throughout the postbounce phase at the edge of the PNS core

at ∼ 10 – 15 km, where the shear energy stored in differential rotation is large. This

is evidence for the corotation low-T/|W | nature of the rotational instability observed

here [53, 54, 57, 58].

4. Summary and Conclusions

The study presented in this article relies on 3+1 full GR and 2+1 CFC-GR calculations

of the collapse of rapidly rotating stellar iron cores to PNSs. The 3 + 1 calculations are

the first of their kind that are carried out in fully self-consistent fashion on mesh-refined

Cartesian grids. Our calculations are the first ever multi-D calculations of core collapse

in GR that include a finite-temperature nuclear EOS, presupernova models from stellar

evolutionary studies, deleptonization during collapse, and neutrino pressure effects.

We compared results from fully GR and CFC-GR collapse calculations and found

no significant deviations that could be attributed to systematic deficiencies of the CFC

approximation in the stellar iron core collapse context. By means of the Cotton–

York tensor that vanishes on conformally-flat spacelike slices, we find that at least the

prebounce and early postbounce spacetimes do not deviate from conformal flatness by

more than a few percent. The CFC approximation employed in CoCoNuT is, hence,

an excellent choice for the modeling of rotating core collapse. The quality of the CFC

approximation in the late postbounce phase remains to be investigated.

Our results show that the GW signature of the collapse, core bounce, and early

postbounce phases of the core-collapse supernova evolution is much more generic than

previously thought. We find that the dynamics of core bounce are dominated by gravity

and microphysics, reducing the relevance of centrifugal support for the wide range of

initial rotation rates and degrees of differential rotation considered here. Importantly, for
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our model set we do not observe rotationally-induced multiple core bounces as proposed

by previous studies that did not include a microphysical finite-temperature nuclear EOS

and a deleptonization treatment in combination with GR.

All considered models stay axisymmetric throughout collapse, bounce, and the

very early postbounce phase. Models s20A2B4 and E20A, which we evolve to later

postbounce times, exhibit the dynamical growth of a nonaxisymmetric low-T/|W |
corotation-type m = 1 instability [53, 54, 57, 58]. We also observe m = {2, 3} daughter

modes that apparently grow to significant amplitudes via non-linear mode coupling.

Strong GWs are emitted by the quadrupole components of the nonaxisymmetric

dynamics. While we carried out long-term postbounce evolutions only for models

s20A2B4 and E20A, we point out that other models with similar postbounce PNS

structures and rotational configurations are likely to experience the same kind of

instability. Our results, which remove the limitations of previous studies, demonstrate

that the development of nonaxisymmetric structures is neither limited to Newtonian

gravity, simple matter models, equilibrium configurations, nor high values of β above the

classical instability thresholds, but may rather be a phenomenon occurring generically

in differentially rotating compact stars.

For an assessment of the detectability of the GW emissions from our models by

initial and advanced LIGO detectors, we consider the characteristic GW strain spectra

hchar = R−1
√

2π−2Gc−3dEGW/df [47] and compare them to the optimal LIGO rms

noise curves [59] in figure 6. Considering only the axisymmetric GW burst from core

bounce, hchar reaches values up to ∼ 10−20 and has its maximum between 300 and

800 Hz. The GW emission from the nonaxisymmetric dynamics tracked in models

E20A and s20A2B4 occurs at lower GW amplitudes than that from core bounce, but



Rotating Collapse of Stellar Iron Cores in General Relativity 17

over a prolonged period of many tens of milliseconds and in almost monotone fashion

centered around ∼ 920 – 930 Hz. In total emitted energy and in hchar the GW emission

from the nonaxisymmetric instability dwarfs that associated with the axisymmetric core

bounce and greatly enhances the GW detectability of these models. Importantly, we

point out that at the end of our simulations the nonaxisymmetric dynamics in models

E20A and s20A2B4 show no sign of decay. They could potentially continue for hundreds

of milliseconds until the supernova explosion puts an end to the infusion of high angular

momentum material through the stalled shock and sufficient angular momentum is

redistributed by the instability to break corotation.

Based on figure 6 we conclude that the GW signal from axisymmetric core bounce of

all models investigated here is likely to be detectable by current and future LIGO-class

detectors from anywhere in the Milky Way. Models that become nonaxisymmetrically

unstable may be detectable out to much larger distances if the instability persists for a

sufficiently long time.

We point out that owing to the nature of the approximate deleptonization treatment

employed in this study we are unable to capture postbounce neutrino effects and cannot

track the sudden drop in electron fraction inside the PNS core associated with the

neutrino burst at shock breakout a few milliseconds after bounce. Hence, our treatment

of the late-time postbounce evolution is of limited quality, but will be improved in future

work.
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