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The four-dimensional Gödel spacetime is known to have the structure M3 �<. It is also known that the
three-dimensional factor M3 is an exact solution of three-dimensional gravity coupled to a Maxwell-
Chern-Simons theory. We build in this paper a N � 2 supergravity extension for this action and prove
that the Gödel background preserves half of all supersymmetries.
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Gödel-type solutions to general relativity have recently
been under scrutiny due to the discovery [1] of their super-
symmetric properties. Black holes on these backgrounds
have also been found [2]. Since these black holes have
unusual asymptotics, issues like first law of thermodynam-
ics and the proper definition of charges are subtle and
require detailed analysis (see [3] and references therein
for a detailed discussion). Gödel spacetimes in string the-
ory have been considered in [4,5].

Most of the discussion that followed the work [1] con-
cerned a class of Gödel solutions existing in five dimen-
sions. As is well known this theory contains in its bosonic
sector the gravi-photon, that is the metric coupled to a
Maxwell theory with the addition of a Chern-Simons
term AdAdA.

On the other hand, the original four-dimensional Gödel
spacetime, discovered in 1949, has a direct product struc-
tureM4 � M3 �<where the three-dimensional factorM3

encodes most of its interesting properties. Motivated by [1]
it was shown in [6] that indeed theM3 factor is a solution to
three-dimensional gravity coupled to a Maxwell theory
including the 3d Chern-Simons term AdA. Particles and
black holes on this background were also discussed in [6].
The next step, which we take in this paper, is to study the
supersymmetric properties of this solution.

Consider the bosonic action,
 

I�g��; A�� �
1

16�G

Z
d3x

� �������
�g
p

�
R�

2

l2
�

1

4
F��F��

�

� �����A�@�A�

�
: (1)

The field,
 

ds2 � �dt2 � 4�rdtd’�
�

2r� ��2l2 � 1�
2r2

l2

�
d’2

�

�
2r� ��2l2 � 1�

2r2

l2

�
�1
dr2; (2)

 A �
�������������������
�2l2 � 1

p 2r
l
d’ (3)

is an exact solution of the equations deriving from (1) [6].
The metric represents the 3d factor M3 of the original
Gödel solution (actually, its generalization containing
two parameters, l and � [7]). Given the high symmetry
of this solution—it has four Killing vectors—it is a natural
question to ask whether it preserves some
supersymmetries.

Note the strong similarities between the 3d bosonic
action (1) and the corresponding 5d supergravity action.
Nonetheless, the supergravity theory corresponding to (1)
has some subtleties. In particular we would like to have the
cosmological radius l and Chern-Simons coupling � as
arbitrary parameters.

The minimal N � 1 supergravity extension to (1) con-
sists of two supermultiplets1: the gravity multiplet
fg��;  �g and a vector multiplet fA�; �g.  � is the spin
3=2 Rarita-Schwinger field, while � is a spin 1=2 fermion.
Both are Majorana fermions. However, it is easy to see
(assuming an action with no higher derivatives) that the
Gödel background cannot be a supersymmetric solution to
this system. In fact, the transformation for the Majorana
spinor field � has the form �� � F��	���. For the back-
ground (3) F�� is nonzero and one easily verifies that the
equation �� � 0 implies 	0� � 0 and hence � � 0.

We thus explore extended supergravity, or, more pre-
cisely, the three-dimensional N � 2 vector supermulti-
plet coupled to N � 2 supergravity. In three dimensions
the former consists of a vector, a real scalar, and complex
Dirac fermion, fA�;
; �g. The gravity multiplet contains
[8,9] the metric g��, a complex Rarita-Schwinger field  �,
and an Abelian U�1� gauge field B�. The field B� is
independent of A�. One might think that the gravity mul-
tiplet suffices for our purposes. However, at the level of at
most two derivatives, the gauge field only enters though the
Chern-Simons term and it does not allow for the free
parameter �.
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The full N � 2 Lagrangian (to quadratic order in the
fermions) is2

 L �
1

�2 L�2 � L0 � �L1 � �
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The covariant derivative D� is
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F�� is the field strength of A�. The Lagrangian is invariant,
up to a total derivative, under the following linearized
supersymmetry transformations,
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provided that the parameters �1, �2, and l0 satisfy the
condition

 �1 � �2 �
1

l0
: (6)

This action thus has two arbitrary parameters, the cosmo-
logical radius l0 and the Chern-Simons coupling �1.

For the construction of the Lagrangian and of the trans-
formation rules we followed the standard Noether method.
L�2 is the gravitational part. L0 contains the kinetic terms
and masses of all matter fields. L1 are the Noether currents
(of global supersymmetry) coupled to the complex Rarita-
Schwinger field. Finally L2 ensures linearized supersym-
metry. One may also check that the commutator of two
supersymmetry transformations is a combination of a dif-
feomorphism and a gauge transformation.

Setting all fermions and the bosons B� and 
 to zero,
the Lagrangian (4) reduces to the bosonic system (1) with
l � l0 and � � �1. Thus the metric and the U�1� gauge
field (2) and (3) also solve the equations of motion of the
supersymmetric theory. However, with this background we
meet the same problems as with the N � 1 theory. With

 � 0 we find again ��	 F��	���	 	0�, thus, �� � 0
implies � � 0.

We observe, however, that the real scalar field in the
N � 2 supersymmetric theory has a potential

 V�
� � �2�1�2
2 � �2�2
1
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This means that it could develop a nonzero vacuum expec-
tation value (vev)
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provided that the ratio �2=�1 is negative (
 is a real scalar
field). Let us assume this condition holds such that the vev
exists. In this case 
0 are the two maxima of a potential
which is unbounded from below. 
 � 0 is a local
minimum.

The vev 
0 has two effects. First, it contributes non-
trivially to the supersymmetry transformations (5), in par-
ticular, of the fermionic fields � and  �. Second, the value
of the potential on 
0 is not zero. Setting all fermions to
zero and B� � 0 and 
 � 
0 we recover the action (1)
with � � �1 and a shifted value for the cosmological
constant:
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Note that the effective cosmological constant 1=l2 can
be positive, negative, or zero. We will see below that in all
three cases half of the supersymmetries are preserved. Of
course, there arises the question of stability of this back-
ground. We will not try to answer it here but one should
keep in mind that experience with the AdS vacuum tells us
that the stability properties of fields in nontrivial back-
grounds should be analyzed with care [10]. de Sitter su-

2We have used the following conventions: Our metric g�� has
signature ��;�;��. The Dirac matrices satisfy f	�; 	�g � 2g��

and 	�	� � g�� � ����	�. ���� � 
1; ���� � �1. �� �
�y	0. �	��y � 	0	

�	0. In the 1.5 formalism the variation of
the spin connection is obtained from its algebraic equation of
motion, and not needed explicitly.
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pergravity theories in three dimensions have been studied
in [11].

We will now analyze the question whether the back-
ground specified by Eqs. (2), (3), and (8), with all other
fields set to zero, preserves some supersymmetry. For
convenience we will set

 �2 � 1
2 (10)

from now on.
The bosonic fields are of course invariant because all

fermions are zero on the background. The variations of �
and  � give rise to the equations
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which must be evaluated on the background defined by
Eqs. (2), (3), and (8) and, for supersymmetry to be pre-
served, must have a nontrivial solution for the supersym-
metry parameter �.

We start by evaluating (11), which is purely algebraic. A
straightforward calculation gives the condition

 �i�1
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q
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where 	0 is the Dirac matrix with flat (i.e. tangent space)
index. Since 	2

0 � �1, it has eigenvalues 
i and we find
that Eq. (13) requires
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which agrees with the extrema of the potential, Eq. (8).
Next, we analyze the Killing spinor equation (12). Using

that � is an eigenvector of 	0 with eigenvalue
iwe obtain
the three equations
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which can be easily solved

 � � �
0 e
��
i�=2���1��2

1l
2�=��1l2��t��i=2�
; (18)

where �
0 are constant eigenspinors of the flat 	0 with
eigenvalues 
i.

The third equation indicates that ��t; ’� is periodic in ’
with period 4�, as it must be for a regular spinor [12].

The Gödel background defined by Eqs. (2), (3), and (8)
is thus a supersymmetric solution. For a given choice of the
vev (8), i.e. for a given sign, there exists one Killing spinor.
In that sense, this solution preserves half of the
supersymmetries.

Let us now comment on the supersymmetric properties
of the other solutions to the action (1), constructed from (2)
via identifications [6]. As pointed out in that reference, the
theory described by the action (1) has two sectors �2l2 � 1
and �2l2 < 1. For �2l2 � 1, the identifications produce
‘‘particles’’ which have conical singularities at the origin.
The Killing spinors on these backgrounds do not have the
right periodicity, neither periodic nor antiperiodic, and thus
are singular in the quotient manifold. In other words there
are no globally defined supercharges. More details on this
point can be found in [13,14].

Identifications on the sector �2l2 < 1 produce black
holes [6]. However, it turns out that the vev (8) for the
scalar field is real only in the sector �2l2 > 1. In fact, from
(6) and (9) we can express �2 and l0 as functions of �1 and
l:
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From (20) we conclude that�2�2=�1 � ��
2
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2.
Thus, the vev (8) is real only in the sector �2

1l
2 > 1.

It would be interesting to find a supergravity theory
yielding supersymmetric backgrounds for �2l2 < 1. In
that sector black holes are present and one could then ask
whether extreme ones are supersymmetric or not.

We conclude with some comments. The action we have
constructed is supersymmetric at the linear order. In prin-
ciple, the higher fermionic terms in the action and the
transformation rules can be constructed via the Noether
procedure. But this is very tedious. A more promising
approach is to use superfields and we leave this for the
future. Another immediate question is how the three-
dimensional Gödel background which we have studied
here can be obtained from the five-dimensional solution
of [1] via compactification. Finally, as we have already
mentioned, the stability issue might be worth studying.
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