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1. Introduction

The D1-D5 system has been a target of much interest ever since the classic Strominger-Vafa

paper on its relation to black hole entropy [1], and its later inception in the AdS/CFT cor-

respondence. The worldsheet theory on the D1-brane — the boundary theory in AdS/CFT

— is an N = (4, 4) superconformal theory. It is textbook knowledge [2, Ch. 11.1] that in

addition to the N = 4 superconformal algebra, that has an SU(2) bosonic subalgebra,

there is the “large” N = 4 algebra, with an SU(2) × SU(2) subalgebra. The place of

this enlarged symmetry in the AdS/CFT correspondence, and how to break it, is the sub-

ject of this paper. Breaking this enlarged symmetry may ultimately help understanding

deformations of the original D1-D5 system broken down to N = (3, 3) supersymmetry.

Already in 1999, de Boer, Pasquinucci and Skenderis [3] (based on earlier work [4, 5])

initiated the study of AdS/CFT dual pairs with large N = (4, 4) symmetry, and found the

requisite solution of Type IIB supergravity: two orthogonal D5-brane stacks, intersecting

over a D-string. This is the D1-D5-D5′ system (figure 1b). Compared to the D1-D5 system,

the SO(4) symmetry of transverse rotations of the single D5-brane stack is doubled to

SO(4) × SO(4) to include independent transverse rotations of both D5-brane stacks. In
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Figure 1: a) D1-D5 system, for comparison. The D1-brane is delocalized on the D5-brane. b)

Orthogonal D1-D5-D5′ system with string inducing nonlocal interactions on D1-brane. c) Tilted

D1-D5-D5′ system. d) ρ-deformed D1-D5-D5′ system on the curved manifold M times the 1+1

intersection. As will be explained later, M is simply connected, despite appearances.

the near-horizon limit, the boundary theory on the D1-branes should be the large N =

(4, 4) theory. The D1-D5-D5′ system received some further attention [6, 7], but it remains

mysterious; simply decreasing the ratio of D5′ to D5 charge, one does not arrive at the

D1-D5 system, and the worldsheet theory is nonlocal [3], due to D5-D5′ interactions (the

open string shown in figure 1b).

Tilting the branes gave a new perspective on this. In the first of a series of three

papers [8 – 10], Gukov, Moore, Martinec and Strominger (GMMS) found1 that if the D5′-

branes are tilted at 45◦ relative to the D5-branes as shown in figure 1c (breaking supersym-

metry to 3/16), a new possibility appears; there is a supersymmetric noncompact manifold

M that the branes can reconnect along, as in figure 1d. GMMS identified a deformation

called ρ that would describe this reconnection, and pointed out that it would break the

rotational symmetry to the diagonal.

Although the deformed system is less symmetric, the complications of the D1-D5-D5′

system that come from nonlocal interactions should not arise when D5-branes and D5′-

branes are joined on M, and in fact the ρ-deformed system may have more in common

with the single D1-D5 system (e.g. its Higgs branch [8]) than the undeformed system did.

The corresponding deformed 10-dimensional solution with the branes extended along

the curved manifold M is not known explicitly. In section 3 we construct its near-horizon

limit (eq. (3.16)) by imposing the requisite symmetries perturbatively in the deformation

parameter ρ. Identifying the field ρ in the Kaluza-Klein spectrum of fluctuations around

the undeformed AdS3 × S3 × S3 × S1 background, we reduce to the three-dimensional

effective supergravity with SO(4) × SO(4) → SO(4)diag gauge symmetry breaking. In

section 5, we compute the scalar potential and show the (from a supergravity point of view

somewhat surprising) presence of a flat “valley”, i.e. a deformation marginal to all orders,

shown in figure 4. We verify that evolution of the scalars along the valley reproduces all

the properties expected for the ρ-deformation and in particular breaks supersymmetry to

N = (3, 3). We compute the conformal dimensions ∆ in the theory as functions of ρ,

1Earlier related work on intersecting branes in M-theory includes [11 – 13].
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by computing the spectrum along the flat valley. This spectrum naturally organizes into

N = 3 supermultiplets. In section 6, we give some remarks on the symmetric orbifold CFT

that was conjectured in [3, 8] to describe at least some aspects of the deformed boundary

theory for QD5 = QD5′ . We outline the computation of ρ-deformed correlators in this

theory, and probe computations in the ρ-deformed background.

To some readers, D-brane reconnection will be more familiar [2, Ch. 13.4] in the context

of D-branes at angles, where below a certain critical angle, a tachyonic mode develops and

the branes move apart. Clearly this is quite different from the marginal deformation we are

interested in, where the reconnected branes can be disconnected again by sending ρ → 0,

at no cost in energy (see also [14]). A more closely related kind of brane reconnection

along special Lagrangian manifolds has been extensively studied in the literature in other

contexts, like [15, 16] for M-theory on G2 manifolds.

2. The D1-D5-D5′ system intersecting at angles

We begin with a review of the D1-D5-D5′ system with SO(4) × SO(4)′ symmetry and

explain how its near-horizon limit AdS3 ×S3×S3×S1 arises. The boundary theory of the

AdS3 factor has large N = (4, 4) supersymmetry in 1 + 1 dimensions. The supergravity

solution for this system was studied for orthogonal intersection in [3], for D5-D5′ intersect-

ing at angles in [11], and for D1-D5-D5′ intersecting at angles in [8]. Here we summarize

the results without derivation.

We denote the 10-dimensional coordinates by {t, z, x1, x2, x3, x4, y1, y2, y3, y4}, and

number them by 0, 1, . . . , 9. We will often use the notation x2 = x2
1 + . . . + x2

4, y2 =

y2
1 + . . . + y2

4. The angles between D5 and D5′-branes are denoted θ26 for the angle in the

x1 − y1 plane, and so on. For D5-branes intersecting at equal angles in all four planes

θ26 = θ37 = θ48 = θ59 =: θ, we have the supersymmetry conditions [11]

Γ012345εR = εL , exp(θ(Γ26 + Γ37 + Γ48 + Γ59))εL,R = εL,R , (2.1)

that together preserve 6 Killing spinors, i.e. 3/16 supersymmetry. Including D1-branes

delocalized in the ~x and ~y directions adds the condition

Γ01εR = εL , (2.2)

that further breaks supersymmetry from 3/16 to 1/16, again at nonzero θ. The Type IIB

supergravity solution for angle θ is

ds2 = (H
(+)
1 H

(−)
1 det U)−1/2(−dt2 + dz2) +

√

H
(+)
1 H

(−)
1

U11√
det U

(d~x)2 (2.3)

+

√

H
(+)
1 H

(−)
1

U22√
detU

(d~y)2 +
2U12√
det U

d~x · d~y ,

with RR 3-form field strength

F3 = dt ∧ dz ∧ d(H
(+)
1 H

(−)
1 )−1 + ∗xdU11 + ∗ydU22 , (2.4)
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and dilaton

e−2φ =
1

g2
s

det U

H
(+)
1 H

(−)
1

, (2.5)

where the harmonic functions H
(+)
1 , H

(−)
1 are

H
(+)
1 = 1 +

gsQ1

x2
, H

(−)
1 = 1 +

gsQ1

y2
, (2.6)

and the matrix U is given by

U =









csc θ +
gsQ

+
5

x2 − cot θ

− cot θ csc θ +
gsQ

−
5

y2









. (2.7)

Here Q1 is the D1-brane charge, Q+
5 is the D5-brane charge, and Q−

5 is the D5′-brane

charge. We set Q+
5 = Q−

5 =: Q for reasons discussed in [3, 8]. The D1-brane charge Q1 is

fixed in terms of the D5-brane charges as Q1 = L
4π2 Q5.

The near-horizon limit of this solution was studied in the above papers [3, 8, 13].

Somewhat counterintuitively, the near-horizon limit is the same regardless of the rotation

angle θ. It is, setting gs = 1 and L = 4π2L̃,

ds2 =
x2y2

L̃Q2
(−dt2 + dz2) + QL̃

(

dx2

x2
+ dΩ2

+

)

+ QL̃

(

dy2

y2
+ dΩ2

−

)

. (2.8)

After a change of coordinates

r = (
√

2Q−1/2)xy , φ =
1√
2

log
y

x
, (2.9)

using that dx2/x2 + dy2/y2 = a dr2/r2 + b dφ2 for some constants a and b, and identifying2

φ to make an S1, the near-horizon metric becomes

ds2 =
r2

2R2
(−dt2 + dz2) +

R2

2r2
dr2 + R2dΩ2

+ + R2dΩ2
− + R2dφ2 , (2.10)

with R2 = QL̃, which we recognize as AdS3 × S3 × S3 × S1. The matter fields are

F3 = vol(AdS3) + vol(S3
+) + vol(S3

−) , eφ = 1/L̃2 . (2.11)

Here, we have N = (4, 4) supersymmetry. With the solution at hand, it is fairly clear

from (2.9) that the new coordinate system (r, φ) moves along with θ. Also, θ only occurs

in the constant part of the matrix U , which is neglected in the near-horizon limit. We see

that the dependence on the angle θ will be lost in the near-horizon limit.

Going back to the full solution, it is interesting to consider whether instead of flat

worldvolumes, there are any natural supersymmetric manifolds the branes could extend

along. One suitable manifold was found in [8], as we now discuss.

2This identification was performed in [3] and criticized in [8]. We will have nothing new to say about

this.
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Figure 2: ρ = xy(x2 − y2) for various values of ρ.

2.1 Brane reconnection

Let Cm have complex coordinates zk = xk + iyk, k = 1, . . . ,m. Consider the submanifold

given by

Im zn = const , (2.12)

where z = |xk| + i|yk|. It is special Lagrangian for m = n [17]. For the system described

in the previous section, the nonintersecting part of the D5-branes is R4 × R4 ' C4, so

combining the two lengths x2 = x2
1 + . . .+x2

4 and y2 = y2
1 + . . .+y2

4 into a complex number3

z = x + iy, we could consider letting the D5-branes extend along on the manifold (2.12)

for n = 4. In particular, let

ρ :=
1

4
Im z4 = xy(x2 − y2) , (2.13)

then we can define the noncompact special Lagrangian manifold M as [8]

M =
{

ρ = constant ,
xi

x
=

yi

y

}

i = 1, . . . , 4 . (2.14)

We plot (2.13) in figure 2 for a few values of ρ.

Note that the first quadrant is all there is, since x and y are lengths. Defining σ =

(1/4)Re z4, and noting that

ρ2 + σ2 =
(x2 + y2)4

16
=: r2 , (2.15)

we can go to cylindrical coordinates [r, θ, σ] with σ as the vertical axis. A plot in these

coordinates appears in figure 3.

For ρ > 0, the full manifold has topology R×S3, and this is represented by R×S1 in

figure 3. We see clearly that for ρ = 0, the manifold degenerates to two separate branches

R4 ×R4, represented by R2 ×R2 in the figure (the conical singularity is an artifact of the

embedding). We do not know of a supergravity solution for D5-branes extended along the

noncompact special Lagrangian manifold M.

3Note that this complex z has nothing to do with the coordinate z in the previous section.
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Figure 3: Cylindrical plot [r, θ, σ] from eq. (2.15) for various values of ρ. The surface at the center

represents ρ = 0. The apparent disconnectedness in figure 1 can now be understood as a hyperbolic

“conic section” of the connected ρ > 0 manifold.

Importantly, if we take the near-horizon limit of the solutions with the branes wrapped

on (2.13), we expect the symmetry to be reduced. In the undeformed brane system, the

SO(4)×SO(4)′ symmetry corresponds to independent transverse rotations of the two sets

of D5-branes. After deformation, we see in figure 3 that transverse rotations are no longer

independent; the two sets of branes are now wrapping a single connected manifold, with

the symmetry broken as [8]

SO(4) × SO(4)′
ρ>0−→ SO(4)diag . (2.16)

This is intriguing; through this deformation, one could hope to make progress in connecting

the D1-D5-D5′ system to the system of (presently) greater physical interest, the single D1-

D5 system. Since the deformation is only an N = 3 modulus and not an N = 4 modulus

— the deformation only exists in the tilted system, not the orthogonal system — this will

primarily apply to a version of the D1-D5 system broken to N = 3 supersymmetry. We

will comment on this in the Conclusions.

A valuable clue for understanding the ρ deformation by holography is parity. In (2.13),

ρ is odd under interchange of the two three-spheres (x ↔ y). This will be important in

each of the following sections.4

Even though we do not have a full deformed supergravity solution, we can attempt to

model its near-horizon limit by imposing the symmetry reduction (2.16). If the boundary

theory is to remain a CFT, we can try to look for deformations that leave the AdS3 part

of the dual geometry untouched. As we will see in the next section, such a deformation

exists and it breaks supersymmetry to N = (3, 3).

4The paper [18] even studied an orbifold under this parity. That orbifold preserves different symmetries

than we are interested in here.

– 6 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
3

3. The deformed near-horizon limit

In this section we construct the near-horizon limit of the (currently unknown) ρ-deformed

brane solution perturbatively in the deformation parameter ρ by exploiting the symmetries

preserved by the deformation.

Let us first consider what simplifications we can impose on the Type IIB field equations.

If we want a deformed solution where the dilaton is still constant, the source FMNKFMNK

in the dilaton equation of motion will have to stay zero. In the undeformed case, this was

ensured by tuning the three-form fluxes (2.4) as

FmnkF
mnk + Fm̄n̄k̄F

m̄n̄k̄ =
8

g2
, (3.1)

so this must still hold for the deformed flux. The remaining nontrivial field equations are

RAB =
1

4
F CD

A FBCD , DAFABC = 0 . (3.2)

Then we make the ten-dimensional metric ansatz

ds2 = ds2
AdS3

+ ds2
6 + R2dφ2 , (3.3)

where ds2
6 denotes the deformation of S3 × S3 that we will now construct. (The answer is

given in (3.16) below). Note that as previously stated, these equations are nontrivial only

along the sphere coordinates but leave the AdS3 part intact.

We now summarize the symmetries we want to impose. Recall that the isometry group

of the undeformed background AdS3 × S3 × S3 is given by

Giso = SO(2, 2) × SO(3)L × SO(3)′L × SO(3)R × SO(3)′R . (3.4)

Here SO(2, 2) = SL(2)L × SL(2)R describes the AdS3 isometries and SO(4) ≡ SO(3)L ×
SO(3)R and SO(4)′ ≡ SO(3)′L×SO(3)′R constitute the isometry groups of the two spheres.

The subscripts L,R, on the other hand, correspond to the splitting into left- and right-

movers in the two-dimensional boundary CFT. Out of the SO(3) factors in (3.4), the

deformation preserves only the diagonal subgroup

SO(4)(D) = SO(3)
(D)
L × SO(3)

(D)
R

≡ diag
(

SO(3)L × SO(3)′L

)

× diag
(

SO(3)R × SO(3)′R

)

. (3.5)

The solution can thus be constructed in terms of those S3 sphere harmonics that are left

invariant by the corresponding diagonal combinations of Killing vector fields. Moreover, as

pointed out in the previous section, the deformation parameter ρ is odd under exchange of

the two spheres. Together with the invariance requirements this puts very strong restric-

tions on the deformed solution.

To make this manifest, we need to introduce a little more notation. We parametrize

the upper hemispheres of the spheres by coordinates xm and ym̄, which are simply the

projections of the Cartesian coordinates of the embedding space R4,

XÂ = (xm,
√

1 − x2) , Y Â = (ym̄,
√

1 − y2) , (3.6)

– 7 –
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with x2 =
∑

i(x
i)2, y2 =

∑

i(y
i)2. The sphere metrics in these coordinates are given by

gmn = δmn +
xmxn

1 − x2
, gm̄n̄ = δm̄n̄ +

ym̄yn̄

1 − y2
. (3.7)

The SO(4) isometries on the first sphere are generated by 6 Killing vectors KL
i

(k), KR
i

(k),

which read

KL,R
i

(k) = −1

2

(

εi
kmxm ± δi

k

√

1 − x2
)

, (3.8)

and similarly for SO(4)′. The normalisation is chosen such that the Lie brackets close

according to the standard SO(3) algebra:

[KL (a),KL (b)] = ε c
ab KL (c) , etc. (3.9)

The computations are significantly simplified by use of the vielbein formalism. A convenient

SO(3) frame is given by either half of the Killing vectors themselves, e.g. the KL:

e m
a (x) := 2KL

m
(a)(x) , e m̄

ā (y) := 2KL
m̄

(ā)(y) . (3.10)

Because of the algebra (3.9), invariance under the diagonal combinations (3.5) of Killing

vector fields reduces to invariance under the three combinations

KD (k) ≡
√

1 − x2
∂

∂xk
+

√

1 − y2
∂

∂yk̄
, (3.11)

which upon commutation generate the full SO(4)(D). We will now construct these invariant

sphere harmonics.

Let us start with a ten-dimensional scalar field and consider its full Kaluza-Klein

expansion (A.3) in terms of S3 × S3 sphere functions X [j,j](x), Y [j′,j′](y) labeled by their

spins j, j′. Under the diagonal SO(4)D this expansion contains an infinite number of

singlet excitations, namely one in each product X [j,j]Y [j′,j′] for j = j′, corresponding to

the decomposition [j, j; j, j] → [0, 0] + . . . under the diagonal SO(4)D. Explicitly, this

corresponds to a truncation of (A.3) to an expansion

Φ(z, x, y) =
∑

j

ϕj(z)u2j , (3.12)

where u is the inner product of (3.6) in the embedding space:

u ≡ XÂY Â =
∑

m

xmym̄ +
√

1 − x2
√

1 − y2 . (3.13)

One immediately verifies that u and thus the entire series (3.12) is indeed invariant un-

der (3.11) and thus under the full diagonal SO(4)(D).

From these scalar invariants we can construct the invariant vector harmonics as

Xa = ea
m ∂mu = ea

m
(

ym̄ −
√

1 − y2

1 − x2
xm

)

, Xā = 0 ,

Yā = eā
m̄ ∂m̄u = eā

m̄
(

xm −
√

1 − x2

1 − y2
ym̄

)

, Ya = 0 ,

(3.14)

– 8 –
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in flat indices a, ā on S3 × S3. Under (3.11) they transform as under a Lorentz transfor-

mation. We note the useful relations XaX a = YāY ā = 1 − u2.

The invariant tensor harmonics Zab̄ can be constructed along the same lines. Begin

with a bivector (1, 1). It follows from (A.4) (and its analogue on the second S3) that

invariant tensors in the Kaluza-Klein tower on top of a bivector (1, 1) can arise from either

of the series of representations [j, j; j, j], [j+1, j+1; j, j], and [j, j; j+1, j+1]. Indeed, there

are three independent tensor harmonics Z0
ab̄

, Z±
ab̄

which can explicitly be constructed as

Z0
ab̄ ≡ e m

a ∂mYb̄ = e m̄
b̄ ∂m̄Xa , Z±

ab̄
≡ uZ0

ab̄ −XaYb̄ ± ε cd
a XcZdb̄ . (3.15)

The most general deformation of the metric (3.7) on S3 × S3 preserving the diagonal

isometries (3.11) can then be described by the six-dimensional vielbein (in triangular gauge)

E a
m = R e b

m (a(u)δ a
b + c1(u)XbX a) ,

E ā
m̄ = R e b̄

m̄

(

b(u)δ ā
b̄ + c2(u)Yb̄Y ā

)

,

E ā
m = R e b

m

(

d(u)Z0 ā
b + d+(u)Z+ ā

b + d−(u)Z− ā
b

)

, (3.16)

E a
m̄ = 0 ,

with a priori seven undetermined functions of u, and R is the S3 radius (the two radii being

equal). By fixing part of the diffeomorphism symmetry some of the free functions can be

set to zero. Namely, employing a diffeomorphism

ξm = f(u)Xm , ξm̄ = g(u)Ym̄ , (3.17)

the functions f(u) and g(u) can be chosen such that c1(u) = c2(u) = 0 in (3.16).

Similarly the most general ansatz for the 3-form flux compatible with the diagonal

isometries can be constructed. To this end, we write

Fmnk = κωmnk + 3∂[mcnk] , Fm̄n̄k̄ = κωm̄n̄k̄ + 3∂[m̄cn̄k̄] ,

Fmnk̄ = 3∂[mcnk̄] , etc. , (3.18)

with

cmn = b1(u)ωmnkX k , cm̄n̄ = b2(u)ωm̄n̄k̄Y k̄ , (3.19)

cmn̄ = b3(u)Zmn̄ + b+(u)Z+
mn̄ + b−(u)Z−

mn̄ . (3.20)

Here κ = 2R2 and ωmnk and ωm̄n̄k̄ denote the volume forms on the undeformed spheres S3,

respectively. The tensor gauge symmetry can be used to set the component b3(u) to zero.

With the most general ansatz compatible with the symmetry (3.5) at hand, we can

now solve the IIB field equations (3.2), with the deformed flux satisfying (3.1). This leads

to a highly complicated nonlinear system of differential equations for the functions a(u),

b(u), d(u), d±(u), b1,2(u), b±(u). Rather than attempting a solution in closed form we

expand the system in the deformation parameter ρ and solve it order by order in ρ (using
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Mathematica). Further imposing antisymmetry of ρ under exchange of the two spheres,

we find for the metric

a(u) = 1 + uρ + 1
2u2ρ2 + 1

2u3ρ3 + O(ρ4) , (3.21)

b(u) = 1 − uρ + 1
2u2ρ2 − 1

2u3ρ3 + O(ρ4) , (3.22)

d(u) = −2uρ2 (1 + uρ) + O(ρ4) , d±(u) = O(ρ4) , (3.23)

while for the 3-form solution we obtain

b1(u) = −2ρ
(

1 − uρ + (u2+ 2
3) ρ2

)

+ O(ρ4) , (3.24)

b2(u) = 2ρ
(

1 + uρ + (u2+ 2
3 ) ρ2

)

+ O(ρ4) , b±(u) = ±4
3 uρ3 + O(ρ4) . (3.25)

In particular, we see that to lowest order in ρ the deformation just corresponds to a relative

warping between the two spheres. At higher orders, also off-diagonal components of the

metric are excited.

4. The Kaluza-Klein spectrum

Before discussing the Kaluza-Klein spectrum of fluctuations around the deformed near-

horizon limit constructed in the previous section, we first have to review the spectrum on

the undeformed background (2.10). Its isometry supergroup under which the spectrum is

organized is the direct product of two N = 4 supergroups

D1(2, 1;α)L × D1(2, 1;α)R , (4.1)

in which each factor combines a bosonic SO(3) × SO(3) × SL(2, R) with eight real su-

percharges (see [19] for definitions). More precisely, the noncompact factors SL(2, R)L ×
SL(2, R)R = SO(2, 2) join into the isometry group of AdS3 while the compact factors

build up the isometry groups SO(4)×SO(4)′ of the two spheres. The parameter α of (4.1)

describes the ratio of the radii of the two spheres S3, i.e. the ratio of D5 brane charges,

which we have set to one. We note that D1(2, 1; 1) = OSp(4|2, R).

The massive Kaluza-Klein spectrum of maximal nine-dimensional supergravity on the

AdS3 × S3 × S3 background has been computed in [3]. We give a short review of the

computation in appendix A. The resulting three-dimensional spectrum can be summarized

as

⊕

`≥0,`′≥1/2

(`, `′; `, `′)S ⊕
⊕

`≥1/2,`′≥0

(`, `′; `, `′)S

⊕
⊕

`,`′≥0

(

(`, `′; `+ 1
2 , `′+ 1

2)S ⊕ (`+ 1
2 , `′+ 1

2 ; `, `′)S
)

, (4.2)

in terms of supermultiplets built from left-right tensor products of the short supermulti-

plets (`, `′)S of OSp(4|2, R) [20], summarized in table 1. Note that the resulting multiplets
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h

h0 (`, `′)

h0 + 1
2 (` − 1

2 , `′ − 1
2) (` + 1

2 , `′ − 1
2) (` − 1

2 , `′ + 1
2)

h0 + 1 (`, `′ − 1) (` − 1, `′) (`, `′)

h0 + 3
2 (` − 1

2 , `′ − 1
2)

Table 1: The generic short supermultiplet (`, `′)S of OSp(4|2, R), with h0 = 1
2
(` + `′).

hL

hR 1
4

3
4

1
4 (0, 1

2 ; 0, 1
2) (0, 1

2 ; 1
2 , 0)

3
4 (1

2 , 0; 0, 1
2) (1

2 , 0; 1
2 , 0)

hL

hR 1
2 1 3

2

1
2 (0, 1; 0, 1) (0, 1; 1

2 , 1
2 ) (0, 1; 0, 0)

1 (1
2 , 1

2 ; 0, 1) (1
2 , 1

2 ; 1
2 , 1

2) (1
2 , 1

2 ; 0, 0)

3
2 (0, 0; 0, 1) (0, 0; 1

2 , 1
2 ) (0, 0, 0, 0)

Table 2: The spin- 1
2

multiplet (0, 1
2
; 0, 1

2
)S, and the spin-1 multiplet (0, 1; 0, 1)S.

(`, `′; `, `′)S generically contain massive fields with spin running from 0 to 3
2 , whereas multi-

plets of the type (`, `′; `+1
2 , `′+1

2)S represent massive spin-2 multiplets. The lowest massive

multiplets in the spectrum (4.2) are somewhat degenerate and collected in table 2; we will

refer to these as the spin-1
2 matter multiplet and the (massive) YM multiplet, respectively.

Included in (4.2) is the massless supergravity multiplet (1
2 , 1

2 ; 0, 0)S⊕ (0, 0; 1
2 , 1

2)S which

contains no propagating degrees of freedom and consists of the vielbein, eight gravitinos

transforming as

ψI
µ : (1

2 , 1
2 ; 0, 0) ⊕ (0, 0; 1

2 , 1
2) (4.3)

under (3.4), and topological gauge vectors, corresponding to the SO(4)L × SO(4)R gauge

group of the effective three-dimensional theory. The effective three-dimensional theories

describing the coupling of the supergravity multiplet to the lowest massive supermultiplets

from (4.2) have been constructed in [21 – 23].

In order to study the deformation of the spectrum and the associated effective theory,

we need to identify the field corresponding to the deformation parameter ρ within (4.2).

Since the deformation breaks supersymmetry N = (4, 4) → N = (3, 3) and the isometry

group SO(4) × SO(4)′ down to the diagonal (3.5), it should be contained in a scalar

representation of the type (`L, `L; `R, `R), with `R and `L not both equal to zero. Moreover,

since the deformation preserves the AdS3 factor, the corresponding field should have no

AdS mass, i.e. come with boundary conformal dimension ∆ = 2. From table 7 we identify

four possible candidates with ∆ = 2: two in the (1
2 , 1

2 ; 1
2 , 1

2) representation and sitting in the

spin-1 (YM) multiplets of table 2, and two in the (1, 1; 1, 1) representation that originate

from higher supermultiplets. Note that these fields come with ∆ = 2 only for α = 1, i.e.

coinciding D5 brane charges, in accordance with the above remarks about the existence of

the brane reconnection.
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h

h0 (`)

h0 + 1
2 (`) + (`− 1)

h0 + 1 (`− 1)

Table 3: The generic short supermultiplet (`)S of OSp(3|2, R), with h0 = `/2.

To narrow down which of the representations (1
2 , 1

2 ; 1
2 , 1

2) and (1, 1; 1, 1) actually contain

the deformation, we make use of the fact that according to its definition (2.13) ρ should be

odd under exchange of the two spheres. The two (1
2 , 1

2 ; 1
2 , 1

2 ) descend from chiral multiplets

((0, 1; 0, 1)S and (1, 0; 1, 0)S), so will have one odd and one even combination, whereas

the two (1, 1; 1, 1) come from nonchiral multiplets. Thus, parity suggests that the only

combination of fields odd under exchange of the two spheres is a combination of the two

(1
2 , 1

2 ; 1
2 , 1

2) scalars. In order to study the ρ deformation in the effective three-dimensional

theory we will thus have to consider the coupling of two YM multiplets. This is the goal

of the next section. Indeed, in this effective theory we find a potential with a flat direction

(figure 4 below) for the aforementioned combination, along which supersymmetry is broken

from N = (4, 4) down to N = (3, 3). We take this as strong support of our claim that the

deformation in fact arises from the (1
2 , 1

2 ; 1
2 , 1

2) representation and not the (1, 1; 1, 1).

Let us close this section by a few general remarks on N = (4, 4) → N = (3, 3) super-

symmetry breaking. In terms of supergroups this corresponds to the natural embedding

OSp(3|2, R) ⊂ OSp(4|2, R). A short OSp(3|2, R) supermultiplet (`)S is defined by its high-

est weight state (`)h0 , where ` labels the SO(3) spin and h = h0 = `/2 is the charge under

the Cartan subgroup SO(1, 1) ⊂ SL(2, R). The short supermultiplet is generated from

the highest weight state by the action of two out of the three supercharges and carries 8`

degrees of freedom [24]. Its SO(3)± representation content is summarized in table 3.

The generic long multiplet (`)long is instead built from the action of all three super-

charges on the highest weight state and correspondingly carries 8(2`+1) degrees of freedom.

Its highest weight state satisfies the unitarity bound

h ≥ `/2 . (4.4)

Here it is worthwhile to pause and contrast the simplicity of this unitarity bound with the

nonlinear bound for the unbroken large N = 4 algebra. This nonlinearity was responsible

for many of the complications in constructing holographic dual pairs for the large N = 4

theory [3, 8]. For example, states that are classically BPS can receive quantum corrections

in the large N = 4 theory, an unusual situation. By comparison, a bound as simple as (4.4)

seems a compelling reason for studying N = 3 theories in further detail, both in their own

right and for their connection with N = 4 theories. (A nice summary is given in [25]).

When the bound (4.4) is saturated, the long multiplet decomposes into two short

multiplets according to

(`)long = (`)S ⊕ (`+1)S , (4.5)
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from which one may read off the SO(3) content of (`)long. A semishort N = 4 multiplet

(`+, `−)S breaks according to

(`, `′)S = (`+ `′)S ⊕ (`+ `′−1)long ⊕ . . . ⊕ (|`− `′|)long , (4.6)

into semishort and genuine long N = 3 multiplets. From (4.6) one may read off the

decomposition of the spectrum (4.2) after turning on the deformation. The masses of the

long multiplets are not protected and may acquire ρ-dependent deformation contributions.

In principle, even semi-short multiplets originating from different N = 4 multiplets may

recombine according to (4.5) into long N = 3 multiplets and lift off from the mass bound

along the deformation. We will see an example of this in the next section.

5. The effective action in D = 3

In this section we discuss the effective supergravity action in three dimensions, which de-

scribes the YM (spin-1) multiplets (1, 0; 1, 0)S ⊕ (0, 1; 0, 1)S discussed above. In particular,

we compute the scalar potential. At the origin of scalar field space we have the undeformed

background AdS3 ×S3 ×S3. We show that there is a flat direction along which supersym-

metry is broken down to N = (3, 3) and compute the deformation of the mass spectrum

along the valley.

5.1 Effective action for the YM multiplets

To start with, we note that in accordance with the amount of supersymmetry preserved by

the undeformed background, the relevant three-dimensional supergravity will be a gauged

N = 8 theory with gauge group SO(4) × SO(4). Here, we briefly review the construction

of the effective theory based on [21 – 23] to which we refer for details.

The field content of the two YM multiplets (1, 0; 1, 0)S ⊕ (0, 1; 0, 1)S is given in table 2,

in particular they contain 32 bosonic degrees of freedom each. Together with N = 8 super-

symmetry this implies that the scalar degrees of freedom of the three-dimensional theory

are described by a coset space SO(8, 8)/(SO(8) × SO(8)). (The massive vector degrees of

freedom appear through their Goldstone scalars). This in turn requires an embedding of the

gauge group SO(4)×SO(4) into SO(8)×SO(8), such that the corresponding branching of

the (8,8) representation of the latter reproduces the correct SO(4)×SO(4) representations

of table 2. The explicit embedding was given in [22, 23], and is described by a constant

SO(8, 8) tensor ΘMN = Θ(MN ) in the symmetric product of two adjoint representations

whose explicit form determines the entire Lagrangian.

Explicitly, the action is given by

L = −1

4

√
gR +

1

4

√
gPIr

µ Pµ Ir + LCS + Lferm −√
gV , (5.1)

where the individual ingredients are as follows. The scalar fields are described by an

SO(8, 8) valued matrix and its current

S−1(∂µ + ΘMNAM
µ tN )S = 1

2QIJ
µ X [IJ ] + 1

2Qrs
µ X [rs] + PIr

µ XIr , (5.2)
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decomposed into compact (Qµ) and noncompact (Pµ) contributions. Indices I, J, . . . and

r, s, . . . are vector indices of the two SO(8) subgroups; adjoint SO(8, 8) indices M,N thus

split into pairs ([IJ ], [rs], Ir). The vector fields couple by a Chern-Simons term

LCS = −1
4εµνρAM

µ ΘMN

(

∂νA
N

ρ + 1
3 fNP

L ΘPK AK

ν AL

ρ

)

, (5.3)

with the SO(8, 8) structure constants fNP
L. The potential V is given as a function of the

scalar fields as

V = − 1
48

(

T[IJ,KL]T[IJ,KL] +
1
4! εIJKLMNPQ TIJ,KLTMN,PQ − 2TIJ,KrTIJ,Kr

)

, (5.4)

in terms of the so-called T -tensor

TIJ,KL = VM
IJVN

KL ΘMN , TIJ,Kr = VM
IJVN

Kr ΘMN , (5.5)

where V defines the group matrix S in the adjoint representation:

S−1tMS ≡ 1
2 VM

IJ XIJ + 1
2 VM

rs Xrs + VM
Ir Y Ir . (5.6)

For the fermionic contributions Lferm we refer to [21].

5.2 The marginal N = (3, 3) deformation

We are mainly interested in the scalar potential (5.4). A ρ-dependent deformation that

preserves AdS3 while deforming the two spheres and breaking the symmetry according

to (3.5) should manifest itself in the existence of a corresponding flat direction of the

potential. The full potential (5.4), being a rather complicated function of the 64 scalar

fields, is not needed. For our purposes it will be sufficient to consider its truncation to

SO(4)(D) (defined in (3.5)) singlets. Indeed, extremal points in this truncated potential

will lift to extremal points of the full potential [26].

Under SO(4)(D), each YM multiplet contains two scalar singlets, i.e. we have a four-

dimensional manifold of scalars invariant under SO(3)
(D)
L ×SO(3)

(D)
R . At the origin, these

scalars come in two pairs with square masses 0 and 3, i.e. they correspond to operators of

conformal dimensions ∆ = 2 and ∆ = 3. In particular, there are two marginal operators,

in accordance with table 2, above. In order to describe the truncation of the Lagrangian

to this four-dimensional target space manifold, we parametrize the SO(8, 8) matrix S as

S = exp











0 0 v1 w2

0 0 w1 v2

v1 w1 0 0

w2 v2 0 0











, (5.7)

where each entry represents a multiple of the 4×4 unit matrix. Note that v1, v2 parametrize

the two SO(4) × SO(4)′ singlets. (Truncation to a single YM multiplet would correspond

to setting w1 = v2 = 0.) Unfortunately, even the truncation of the potential (5.4) to the

four-dimensional subspace (5.7) is a highly complicated function. We computed it using
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Mathematica but refrain from giving it here.5 Instead, we further truncate to the two-

dimensional subspace defined by v1 = v2, w1 = −w2. This again is a consistent truncation

as it corresponds to the fixed points of an inner automorphism that leaves ΘMN invariant.

In terms of the variables

z2 = v2
1 + w2

1 , φ = arctan(w1/v1) , (5.8)

this gives rise to a Lagrangian

1√
g
L = ∂µz ∂µz + sinh2z ∂µφ∂µφ − V , (5.9)

with the scalar potential

V = −2 + 8 sinh2z (sinhz − cos φ coshz)2 (1 + 2 cosh 2z − 2 cos φ sinh 2z) . (5.10)

Obviously, this potential is bounded from below (V ≥ −2). Further transforming to

coordinates

τ = sin φ sinh z , ζ = cos φ sinh z , (5.11)

we find that the minimum V = −2 is actually taken along a curve

ζ =
τ√

1 − τ2
, (5.12)

with τ running from 0 to 1, which thus constitutes a flat direction in the potential, depicted

in figure 4. We have verified by explicit computation that this extends to a flat direction in

the full four-dimensional target space (5.7) and thus of the full scalar potential. In terms

of the coordinates τ , ζ, exchange of the two spheres corresponds to τ → −τ , so the graph

shows that infinitesimally, the valley indeed points into an odd direction in accordance

with the odd parity of the deformation ρ discussed in earlier sections. In other words, we

can identify τ = ρ to lowest order.

By construction, any nonvanishing expectation value of the scalar fields corresponding

to (5.12) yields an AdS3 solution of the three-dimensional theory which breaks the original

SO(4) × SO(4)′ symmetry down to the diagonal and supersymmetry down to N = (3, 3)

as we shall see below. From a purely supergravity point of view the existence of this

flat direction is surprising, but it finds a natural interpretation in terms of the brane

reconnection described in earlier sections. Note further that in the three-dimensional theory

the deformation (5.12) is very simple (once the scalar potential (5.10) has been computed)

and exact to all orders in the deformation, whereas in 10 dimensions we have only been

able to perturbatively compute the corresponding solution. This shows how nontrivially

the effective theory (5.1) must be embedded within the IIB theory. Techniques such as

those employed in [27, 28] might prove useful to obtain the corresponding IIB solution in

closed form.

5It can be found at www.aei.mpg.de/∼mberg/physics/potential.
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Figure 4: Flat valley in the potential, the N = (4, 4) origin is located at (0, 0). Coordinates here

are (τ, ζ) as in (5.11).

5.3 Deformed spectrum

Having established a one-parameter class of solutions of the three-dimensional effective

theory, we can now study how the mass spectrum changes upon moving along the val-

ley (5.12), that we can parameterize by τ . As τ is odd under exchange of the two spheres,

the spectrum should be even in τ .

As the deformation preserves the diagonal subgroup (3.5), the deformed spectrum

organizes under SO(4)(D). Of particular interest is the remaining supersymmetry. This is

found by calculating the deformation of the gravitino masses as eigenvalues of [21]

AAB
1 = −δABθ − 1

48
ΓIJKL

AB TIJ |KL . (5.13)

As a result we find

mi = ±1
2 (×3) , mi = ±1

2f(τ) (×1) , (5.14)

where f(τ) is given in terms of the coordinate τ in figure 4 by

f(τ) =

√

1 + 15τ2

1 − τ2
. (5.15)

Thus, we see that when we move away from the origin along the valley (τ > 0), super-

symmetry is broken from N = (4, 4) down to N = (3, 3), confirming the arguments in
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hL

hR 1
2 1 3

2

1
2 (1; 1) (1; 0) + (1; 1) (1; 0)

1 (0; 1) + (1; 1) (0; 0) + (0; 1) + (1; 0) + (1; 1) (0; 0) + (1; 0)

3
2 (0; 1) (0; 0) + (0; 1) (0; 0)

Table 4: The short N = (3, 3) multiplet (1; 1)S.

earlier sections. From the point of view of the 3-dimensional effective theory, this was by

no means guaranteed.

By linearizing the full scalar potential (5.4) around the deformed solution, we obtain the

deformed scalar masses, most conveniently expressed in terms of the associated conformal

dimensions ∆ = 1 +
√

1 + m2:

∆i =















































1 (×9)

2 (×34)

3 (×1)
1
2 (−1 + f(τ)) (×1)
1
2 (1 + f(τ)) (×9)
1
2 (3 + f(τ)) (×9)
1
2 (5 + f(τ)) (×1)

(5.16)

From these values we can infer the entire spectrum in terms of N = (3, 3) supermulti-

plets. Comparing (5.16) to table 3 we conclude that the N = (3, 3) spectrum along the

deformation is given by

Hρ = (1; 1)S ⊕ (0; 0)hlong , (5.17)

where the mass of the long multiplet is given by h = 1
4 (−1 + f(τ)). We see that the entire

spectrum is indeed even in τ .

For convenience, we have collected the field content of these two multiplets in ta-

bles 4, 5. As τ tends to one, the long multiplet (0; 0)hlong becomes infinitely massive, and

we are left with the semi-short multiplet (1; 1)S whose coupling to N = (3, 3) supergravity

is described by a gauged theory with target space SU(4, 4)/S(U(4) × U(4)). Comparing

this multiplet to the original field content (table 2) one recognizes a diagonal combination

of the two N = 4 YM multiplets.

Now that we have the deformed spectrum, it is instructive to turn around and study

the behavior of (5.17) as the deformation is switched off (τ → 0). At this point, the long

N = (3, 3) multiplet hits the unitarity bound h = 0 and falls apart according to (4.6):

(0; 0)0long → (1; 1)S ⊕ (1; 0)S ⊕ (0; 1)S ⊕ (0; 0)S . (5.18)

Simple counting of states shows that for these low spins the formulae degenerate such that

(0; 0)S, (1; 0)S, and (0; 1)S denote unphysical multiplets without propagating degrees of
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hL

hR h h + 1
2 h + 1 h + 3

2

h (0; 0) (0; 1) (0; 1) (0; 0)

h + 1
2 (1; 0) (1; 1) (1; 1) (1; 0)

h + 1 (1; 0) (1; 1) (1; 1) (1; 0)

h + 3
2 (0; 0) (0; 1) (0; 1) (0; 0)

Table 5: The long N = (3, 3) multiplet (0; 0)h

long.

hL

hR 0 1
2 1

0 (0; 0) −(0; 0)

1
2

1 −(0; 0) (0; 0)

hL

hR 0 1
2 1

1
2 (1; 0) −(1; 0)

1 (0; 0) + (1; 0) −(0; 0) − (1; 0)

3
2 (0; 0) −(0; 0)

Table 6: Unphysical N = (3, 3) multiplets (0; 0)S, (1; 0)S.

freedom, given in table 6. The negative multiplicities should be understood as (first order

differential) constraints that eliminate the physical degrees of freedom. To understand the

role of these unphysical multiplets at τ = 0 we have to also consider the (non-propagating)

supergravity multiplet. Applying (4.6) to the (unphysical) N = (4, 4) supergravity multi-

plet (1
2 , 1

2 ; 0, 0)S ⊕ (0, 0; 1
2 , 1

2)S shows that under N = (3, 3) it decomposes as

(1
2 , 1

2 ; 0, 0)S ⊕ (0, 0; 1
2 , 1

2)S → (0long; 0S) ⊕ (0S; 0long) ⊕ (1; 0)S ⊕ (0; 1)S , (5.19)

where the first two terms represent the N = (3, 3) supergravity multiplet and in the second

two terms one recognizes the unphysical part of (5.18). Put together, at τ = 0 the long

N = (3, 3) multiplet splits according to (5.18), of which the first term coincides with an

N = (4, 4) YM multiplet (tables 2, 4), whereas the unphysical multiplets (1; 0)S ⊕ (0; 1)S
combine with the supergravity multiplet in order to reconstitute the N = (4, 4) supergravity

multiplet.

Having understood how things combine when we switch off the deformation τ , we

can now go back to the N = 4 theory and summarize in N = 3 language what happens

when we switch on the deformation. Then, N = 3 semi-short multiplets originating from

different N = 4 ancestors (gravity and YM multiplet) combine to form a long N = 3

multiplet and lift off the mass bound.6

6An analogous situation is encountered in the AdS5/CFT4 correspondence upon switching on the ’t Hooft

coupling λ. This breaks the higher spin symmetry present at λ = 0 down to PSU(2, 2|4). In the process,

semi-short multiplets originating from different higher-spin multiplets then combine into long multiplets of

PSU(2, 2|4) [29].
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6. D1-brane CFT

Using the holographic correspondence, we should be able to compare the spectrum (5.16)

computed from supergravity to those in the CFT on the D-brane intersection. Although a

full comparison is beyond the scope of this paper, we give some initial steps towards this

general goal.

First, we consider the symmetric product CFT SymN (S1 × S3), which consists of N

copies of S1 × S3 orbifolded by the symmetric group SN . For equal D5-brane and D5′-

brane charge, this was conjectured in [3, 8] to be the CFT dual of Type IIB string theory on

AdS3 ×S3×S3×S1. Orbifolds of this type have been extensively studied in the literature,

and we used results from [30, 31].

The bosonic part of the worldsheet action of a D1-brane on S1 × S3 is

Sws =
1

2π

∫

D1
d2z Gab∂Xa∂̄Xb +

∫

D1
C(2) , (6.1)

where Gab is the induced metric on S1 × S3, C(2) is the RR 2-form potential, and we have

suppressed labels of the N copies. This is the undeformed theory. Rather than considering

a sigma model SymN (M) on the full complicated ρ-deformed solution directly, we represent

the deformation by an operator Oρ, that we obtain by expanding the worldsheet action (6.1)

in the deformation parameter ρ in the full solution. As probe of the deformation, we then

consider an untwisted probe operator O3, one of the ∆ = 3 operators in the spectrum,

coupling to the deformation. We should then compute

〈O3O3〉ρ = 〈O3O3〉0 + 〈O3O3Oρ〉0 + . . . , (6.2)

where the subscript 0 refers to the undeformed theory. Since the bulk theory has an AdS3

factor also after deformation, the boundary theory will remain conformal, and we should

be able to compute corrections to ∆ this way:

∆(ρ) = ∆0 + ∆1ρ
2 + . . . . (6.3)

Since we have already computed this deformation for all ρ on the supergravity side in (5.16),

we could then compare results. For now, we will content ourselves with computing the first

term in the series (6.2), since for our case of Lorentzian AdS, we did not find this done

explicitly in the literature.

The worldsheet coordinate is z. The symmetric orbifold ground state has twist inser-

tions σ(1...n)(z) at z = 0,∞, and the coordinates of the n ≤ N copies cyclically permute

as Xa(z) encircles these points (see e.g. [30]). On the covering space z ∼ tn, however, all

fields are single-valued, so we have the ordinary 2-point function:

〈O3(t1)O3(t̄2)〉 =
1

(t1 − t2)3(t̄1 − t̄2)3
. (6.4)

Going back to the z variable, we obtain n correlators, one for each branch of the multiple

covering, that must be summed over. This is simpler in cylinder coordinates z = e−iw,
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2π

n − 1
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Figure 5: Jordan curve for the sum (6.5).

where the sum is over shifts in w:

〈O3(w1)O3(w̄2)〉 =

n−1
∑

k=0

1

(2n sin w−2πk
2n )3(2n sin w̄−2πk

2n )3
, (6.5)

where w = w1−w2. This finite sum can be performed by contour integration. To be precise,

it is performed by integrating an analytic function f(z) that has poles at z = 0, 1, . . . , n−1

(and possibly elsewhere) around a suitable contour. We pick the analytic function

f(z) =
π cot πz

(2n sin w−2πz
2n )3(2n sin w̄−2πz

2n )3
, (6.6)

and choose a square contour as in figure 5, where the integrals over γ1
n and γ3

n cancel by

periodicity under z → z + n, and the γ2
n and γ4

n can be moved off to infinity, where |f(z)|
vanishes exponentially. Hence the sum is the negative of the contribution from the two

remaining poles, which yields

〈O3(w1)O3(w̄2)〉 = − 1

64n3 sin3 w−w̄
2n

[(

cos w
2

sin3 w
2

− cos w̄
2

sin3 w̄
2

)

(6.7)

− 3

n cot w−w̄
2n

(

1

sin2 w
2

− 1

sin2 w̄
2

)

− 6 sin w−w̄
2

n2 sin2 w−w̄
2n sin w

2 sin w̄
2

+
4

n2

sin w−w̄
2

sin w
2 sin w̄

2

]

.

We note that all terms in the bracket except for the last persist in the large n limit, which
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yields7

〈O3(w1)O3(w̄2)〉 = − 1

8(w − w̄)3

[(

cos w
2

sin3 w
2

− cos w̄
2

sin3 w̄
2

)

−6(w − w̄)

(

1

sin2 w
2

− 1

sin2 w̄
2

)

− 24 sin w−w̄
2

(w − w̄)2 sin w
2 sin w̄

2

]

. (6.8)

The task to compute the first deformed correlator is clearly more formidable, and we will

not perform it here.

6.1 Probe approximation

For now, a less ambitious computation would be to probe the ρ-deformed background by a

“long” D1-brane probe in AdS3, and quantize it semiclassically along the lines of how it is

done in AdS5 (e.g. [32], that considers both static and conformal gauge). In fact, for massive

fluctuations in the warped region, we could use the simpler “effective string wavefunction”

argument, as for instance in [33]. We would not expect to be able to reproduce the full

contributions to the spectrum this way, of course. For the related NS5-brane configuration

in [34], D1-brane probes have been studied in [35 – 37].

For this purpose, we can consider the bosonic part of the D-brane action for a D1-brane

probe in the ρ-deformed background in section 3, with open-string vectors turned off:

SD1 =
1

2π

∫

D1
d2σ

√

− det(hab) +

∫

D1
C(2) , (6.9)

where hab is the 2-dimensional metric induced by our ρ-deformed AdS3 × S3 × S3 back-

ground:

hab = gAdS
µν ∂ax

µ∂bx
ν + Gij(X)∂aX

i∂bX
j . (6.10)

Here i, j = 1, . . . , 6 label the S3 × S3 coordinates, collectively denoted by Xi, and gAdS
µν

is the AdS3 metric. We consider a static configuration x0 = σ0, x1 = σ1, x2 = constant,

and allow for arbitrary fluctuations of Xi around the origin. To zeroth order, there is

no nontrivial static potential. To second order in fluctuations, the induced metric (6.10)

becomes8

hab =
R2

2r2
ηab + Gij(0)∂aX

i∂bX
j + O(X3) , (6.11)

with ηab denoting the flat 2d metric and Xi now meaning fluctuations. We define η̄ab =
R2

2r2 ηab. Expanding the square root of the determinant to linear order (which is then second

order in the fluctuations), we find

√

− det(hab) =
√

− det(η̄ab)

(

1 +
1

2
η̄abGij(0)∂aX

i∂bX
j

)

+ O(X3) . (6.12)

7Unlike in [31], the correlator in the large-n theory seems to have a higher-order pole than that in the

covering space.
8Here we used AdS3 coordinates ds2 = (R2/(2r2))(−dt2 + dr2 + dz2), unlike in (2.10).
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Next let us evaluate Gij(0) explicitly, using the ρ-deformed near-horizon limit in section 3.

In the notation of that section, at Xi = (xm, ym̄) = 0 we have u = 1, Z0
ab̄

= Z±
ab̄

= δab̄,

while the other harmonics Xa, Yā, etc. vanish. The 6-dimensional part of the target space

metric then simply reduces to

Gij(0) =

(

(a2(1) + d2(1))δmn b(1)d(1)δmn̄

b(1)d(1)δm̄n b2(1)δm̄n̄

)

. (6.13)

Thus, using the explicit expressions for a, b and d at u = 1 to the given order in ρ, the

quadratic fluctuation action is

SD1,O(X2) =
g2

4π

∫

d2σ
[

(1 + 2(ρ + ρ2 + ρ3))∂axm∂ax
m (6.14)

+(1 − 2(ρ − ρ2 + ρ3))∂aym̄∂ay
m̄ − 4ρ2∂axm∂ay

m̄
]

.

Here everything is contracted with the flat 2d metric, i.e. we have used the fact that the

conformal factor differing between η̄ and η cancels in two dimensions.

We find that these fluctuations are massless. To see a mass term we would have to

start from a non-constant background such that the derivative term can give a quadratic

background term, which after expanding the scalar metric Gij(X) up to second order in

Xi supports a mass term. One would like to expand in normal coordinates, i.e. choose

normal coordinates on our deformed S3 × S3 (with Gij(X0) = δij) and then write

Gij(X) = δij −
1

3
Rikjl(X0)δX

kδX l + O(δX3) . (6.15)

To compute this explicitly in ρ we would therefore need an explicit non-trivial (non-

constant) background solution and the Riemann tensor in the corresponding normal co-

ordinates, which are different from ours. For massless fluctuations, the “effective string

wavefunction” argument is not applicable. There is clearly much left to do here, but we

leave this for future work.

7. Conclusion

In this paper, we initiated a detailed study of the ρ-deformed D1-D5-D5′ system. We

computed the near-horizon limit of the deformed brane configuration perturbatively in the

deformation parameter ρ. Within the three-dimensional effective gauged supergravity, we

verified the existence of a flat direction (valley) in the potential (figure 4) that corresponds

to the deformation, and computed the deformed mass spectrum along the valley.

There appeared many new questions along the way. The most glaring omission seems

to be the construction of the complete ρ-deformed brane solution, of which we have only

constructed the near-horizon limit. Given the technology that already exists for related

cases (e.g. [11 – 13]), one could hope that this would be accomplished relatively soon. From

that vantage point one could easily answer geometrical questions left unanswered by our

solution in section 3, such as the details of the variable transformation generalizing (2.9)

to ρ > 0.
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With some more work along the lines of what we presented here, one should be able

to nail down the precise couplings between the ρ deformation and the supergravity fluctu-

ations in ten dimensions. This would pave the way for computing the deformed correlator

in (6.2) in the CFT, leading to a highly nontrivial comparison with the deformed ∆(ρ)

in (5.16). If successful — and there are some pitfalls, when using the boundary CFT at the

orbifold point — this would constitute one of the most detailed tests that have ever been

performed of the AdS/CFT correspondence. It is made more feasible than most deformed

correspondences by the great simplification of the deformation being marginal, ensuring

that the boundary theory is conformal at all scales. (Indeed, for RG flows, general ∆

functions can only at best make approximate, scheme-dependent (cf. [7]) sense away from

conformal fixed points). Using the techniques developed in [38 – 41] for generic RG flows

one might be able to extend the analysis to compute deformed (but conformal) higher-point

correlation functions.

The N = 3 theory is interesting in its own right, not the least because of the simpler

BPS bound (4.4). The super-Higgs dynamics seems quite rich in this case (cf. eq. (5.18)),

and we would expect a closer study of this dynamics could shed light on the N = 3 single

D1-D5 system, as outlined in section 2.1.

By analogy with the breaking N = 4 → N = 3 in 4 dimensions [42 – 45], one should

be able to think of this as adding judiciously chosen flux. A related topic of interest would

be a study of deformations of the Chern-Simons theory with flux discussed in [8, Section

3], and [34, 46].

It would also be interesting to understand how our results fit into the bigger picture,

if any, of marginal deformations in AdS/CFT along the lines of [47 – 49].
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A. Kaluza-Klein spectrum on AdS3 × S3 × S3

In this appendix we give a brief review of the group-theoretical analysis of the Kaluza-Klein

spectrum on the AdS3×S3×S3 background, following [50] (see also [51, 3, 52, 53]). Starting

from maximal nine-dimensional supergravity, the physical fields can be classified under the

SO(1, 2) × SO(3)× SO(3)′ subgroup of the nine-dimensional Lorentz group SO(1, 8) with

the different factors corresponding to the AdS3 and the two sets of S3 coordinates, which we
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R
∆ 1

2 1 3
2 2 5

2 3 7
2 4 9

2 5 11
2 6

[0, 0; 0, 0] 2 2 2

[12 , 0; 1
2 , 0] 1 1 2 3 2

[1, 0; 1, 0] 1 2 2 3 2

[12 , 1
2 ; 1

2 , 1
2 ] 2 2 6 4 2

[1, 1
2 ; 1, 1

2 ] 2 3 6 4 2

[1, 1; 1, 1] 2 4 6 4 2

Table 7: The lowest scalars and their masses.

denote collectively by z, x, and y, respectively. Labeling the corresponding representations

by K, J , and J ′, respectively, the fields can be expanded in terms of S3 sphere functions

according to

Φ[K;J,J ′](z, x, y) =
∑

L,L′

φ[K;L,L′](z)X
(L)
J (x)Y

(L′)
J ′ (y) . (A.1)

The sphere functions X
(L)
J (x), Y

(L′)
J ′ (y) are labeled by representations L, L′ of the isometry

group SO(4)×SO(4). The coefficients φ[K;L,L′](z) describe the complete three-dimensional

Kaluza-Klein spectrum. The structure of the spectrum is thus encoded in the range of

representations L, L′ over which the sum (A.1) is taken. This has been determined in [50]:

the sum in (A.1) is running precisely over those representations L, which contain the

representations J upon breaking of the isometry groups SO(4) down to the Lorentz groups

SO(3), and similarly for SO(4)′.

For illustration let us consider a scalar field, i.e. a singlet under the Lorentz group.

The above algorithm gives rise to a Kaluza-Klein tower

(J, J ′) = (0, 0) −→
∑

j,j′

[j, j′; j, j′] , (A.2)

built from SO(4) representations which we label by their spins [jL, j′L; jR, j′R] according

to (3.4). Explicitly, this corresponds to an expansion

Φ(z, x, y) =
∑

j,j′

φ[j,j′;j,j′](z)X [j,j](x)Y [j′,j′](y) , (A.3)

where the sphere functions X [j,j](x), Y [j′,j′](y) are explicitly given as symmetric traceless

products of (3.6).

Similarly, a vector say on the first S3 gives rise to the Kaluza-Klein towers

(J, J ′) = (1, 0) −→
∑

j>0, j′

[j, j′; j, j′] +
∑

j,j′

[j+1, j′; j, j′] +
∑

j,j′

[j, j′; j+1, j′] ,

(A.4)
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(0,0; 0,0) ( 1

2
,0; 1

2
,0) (0, 1

2
; 0, 1

2
) ( 1

2
, 1
2
; 1

2
, 1
2
) (1,0; 1,0) (0,1; 0,1) ( 1

2
,1; 1

2
,1) (1, 1

2
; 1, 1

2
) (1,1; 1,1)

hµν + + + + + + + +

hmn + + +

hm
m + + + + + + + + +

hm̄n̄ + + +

hm̄
m̄ + + + + + + + + +

hµm + + + + + +

hµm̄ + + + + + +

hmn̄ + + + +

hµ9 + + + + + + + + +

hm9 + + + + + +

hm̄9 + + + + + +

h99 + + + + + + + + +

φ, c0 + + + + + + + + +

cµm + + + + + +

cµm̄ + + + + + +

cmn + + + + + +

cm̄n̄ + + + + + +

cmn̄ + + + +

cµ9 + + + + + + + + +

cm9 + + + + + +

cm̄9 + + + + + +

cµmnk + + + + + + + + +

cµm̄n̄k̄ + + + + + + + + +

cµmnk̄ + + + +

cµmn̄k̄ + + + +

cmnkl̄ + + + + + +

cmnk̄l̄ + + + +

cmn̄k̄l̄ + + + + + +

Table 8: The lowest states in the KK decomposition of the IIB fields.

and so on. Applying the algorithm to the full spectrum of maximal nine-dimensional

supergravity leads to the final result [3]
⊕

`≥0, `′≥1/2

(`, `′; `, `′)S ⊕
⊕

`≥1/2, `′≥0

(`, `′; `, `′)S

⊕
⊕

`, `′≥0

(

(`, `′; `+ 1
2 , `′+ 1

2 )S ⊕ (`+ 1
2 , `′+ 1

2 ; `, `′)S
)

, (A.5)

where the fields have already been assembled into supermultiplets of the supergroup

D1(2, 1;α)L × D1(2, 1;α)R as discussed in section 4.

As an illustration we collect in table 8 for all the ten-dimensional bosonic degrees of

freedom the lowest SO(4)×SO(4)′ KK states that appear in their KK decomposition (A.1).

Here h, (φ, c0), c(2), and c(4) denote the fluctuations of the metric, the scalars, the 2-forms

and the 4-form, respectively. Indices µ, ν, . . . label AdS3, m,n, . . . and m̄, n̄, . . . label the
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two spheres. We have omitted all components which do not give rise to propagating degrees

of freedom on AdS3, in particular half of the self-dual 4-form.

Another interesting piece of information is gathered in table 7. Comparing the field

content of table 8 with the supermultiplet structure from (A.5), we have identified the

multiplicites of the lowest scalar representations together with their AdS masses (expressed

in terms of the boundary conformal dimensions ∆ = 1 +
√

1 + m2).
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