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Helically symmetric N -particle solutions in scalar gravity
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Within a scalar model theory of gravity, where the interaction between particles is given by the
half-retarded + half-advanced solution of the scalar wave equation, we consider an N-body problem:
we investigate configurations of N particles which form an equilateral N-angle and are in helical
motion about their common center. We prove that there exists a unique equilibrium configuration
and compute the equilibrium radius explicitly in a post-Newtonian expansion.
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Self-gravitating systems with helical symmetry have
recently attracted considerable interest in the context of
the numerical evolution of coalescing neutron star and
black hole binaries [1, 2]. Since numerical codes simulat-
ing relativistic collapse cannot evolve for large times, ini-
tial data should be close to the final plunge. A reasonable
approximation to such initial data might be to consider
data given by spacetimes with a helical Killing vector, the
reason being that gravitational radiation tends to reduce
the eccentricity of orbits. However, not only for numer-
ical purposes, but also from a more systematic point of
view, spacetimes with a helical Killing vector form a class
of time independent solutions of the Einstein equations
which are interesting in themselves and about which lit-
tle — including their existence — is known. The simplest
class of examples are N point particles of equal mass m
in Newtonian theory forming an equilateral N -angle and
uniformly rotating about their common center. We con-
struct the analog of these solutions in a special relativistic
scalar theory of gravity, with particles interacting via the
half-retarded + half-advanced (”symmetric”) solution of
the wave equation. The case N = 2 (and allowing for
different masses) has been considered by [3, 4]; the elec-
tromagnetic N = 2 case has been treated in the seminal
paper [5]. In this paper we perform a careful study of
the symmetric interaction of particles in helical motion
which is absent in the literature even in the antipodal
(N = 2) case. This serves the purpose of proving the fol-
lowing result: given m and the angular velocity Ω of the
helical motion, there exists, like in Newtonian theory, ex-
actly one radius r̄e, for which the symmetric interaction
is balanced by the centrifugal force.

Although scalar theories of gravity are known to dis-
agree with experiment, they provide simple test models
for relativistic gravity, mainly because they have just one
degree of freedom, see [6]. Scalar theories derive from an
action

S =
1

2

∫

M

gαβΦ,αΦ,βd
4x+ 4π

∫

M

ρF (Φ)d4x,

where (M, gαβ) is Minkowski space and ρ the energy den-
sity of matter; we have set G = 1, c = 1. The resulting
equation for Φ is �Φ = 4πρF ′(Φ). When F (0) is chosen

to be one, the associated theory has the correct Newto-
nian limit. The choice F (Φ) = exp Φ corresponds to the
model theory recently proposed in [6]. To further simplify
matters, we make the choice F (Φ) = 1 + Φ, which corre-
sponds to a first-order expansion, see [7, 8]; this leads to
the linear wave equation for Φ,

�Φ = 4πρ . (1)

We consider a family of N structureless point particles
of equal mass m; let x̄n(sn) be the world line of the nth

particle, where sn denotes proper time; then

ρ(x) = m

N−1
∑

n=0

∫

δ(4)
(

x− x̄n(sn)
)

dsn ,

so that the particle equations of motion are

m
d

dsn

[(

1 + Φ|x̄n

)

˙̄xα
n

]

+ (∂αΦ)
∣

∣

x̄n

= 0 (2)

for n = 0, 1, . . . (N−1), where the field Φ|x̄n
acting on the

nth particle is the symmetric solution of (1) generated by
the remaining particles [9].

In helical symmetry, fields are invariant under the ac-
tion of a helical Killing vector ξ, whose components are
ξt = 1, ξφ = Ω = const, ξr = 0 = ξz, and whose Lorentz
norm is ξ2 = −1 + Ω2r2; here, (r, φ, z) are cylindrical
coordinates associated with ~x = (x, y, z). Helical mo-
tion is motion tangent to the Killing orbits, i.e., circu-
lar motion with constant angular velocity Ω in planes
z = const. When we define µ = φ − Ωt, we find that a
field ψ on (M, gαβ) is helically symmetric, if it is of the
form ψ(µ, r, z), where ψ is periodic in µ with period 2π;
helical motion is any motion with (µ, r, z)(s) ≡ const.

Helical solutions of the wave equation. We consider
the wave equation (1) for a helically symmetric source
ρ(t, ~x) = ρh(µ, r, z), where ρh is 2π-periodic in µ; we
assume ρh = 0 for r ≥ Ω−1 so that the source is con-
fined within the light cylinder r = Ω−1, where velocities
are less than the speed of light. The retarded solution
Φret(t, ~x) and the advanced solution Φadv(t, ~x) of (1) are
given by

Φret/adv = −
∫

R3

ρ(t∓ |~x− ~x′|, ~x′)
|~x− ~x′| d3x′ . (3)
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The solutions Φret and Φadv share the symmetries of the
source, i.e., Φret = Φret(µ, r, z). To make this explicit,
we first introduce cylindrical coordinates (t, r, φ, z) and
(r′, φ′, z′) associated with (t, ~x) and ~x′ in (3); we then
find that the integrand can be regarded as a 2π-periodic
function of σ = φ− φ′, which further entails that

Φret = −
2π
∫

0

dσ

Ω−1

∫

0

r′dr′
∞
∫

−∞

dz′
ρh(µ− σ + Ω|~x− ~x′|, r′, z′)

|~x− ~x′| ,

where |~x − ~x′|2 = r2 + r′ 2 − 2rr′ cosσ + (z − z′)2. Con-
sequently, Φret = Φret(µ, r, z) with 2π-periodicity in µ.
Note that the advanced solution Φadv(µ, r, z) arises from
Φret(µ, r, z) by making the replacement Ω → (−Ω).

We proceed by defining a variable µ′ via

µ′ = µ− σ + Ω
[

r2 + r′ 2 − 2rr′ cosσ + (z − z′)2
]

1

2 . (4)

For fixed µ, r, r′ < Ω−1, z, z′, the map σ 7→ µ′ is mono-
tonically decreasing and thus a diffeomorphism. This
follows from a straightforward computation, where we
invoke de l’Hospital’s rule (for r = r′, z = z′, σ = 2kπ,
k ∈ Z). Performing a change of integration variables
from σ to µ′, where we use that a shift by 2π in σ causes
a shift by −2π in µ′, we eventually arrive at

Φret = Ω

2π
∫

0

dµ′
Ω−1

∫

0

r′dr′
∞
∫

−∞

dz′
ρh(µ′, r′, z′)

µ− µ′ − σ + Ω2rr′ sinσ
.

In this integral, σ is to be regarded as a function of the
other variables, implicitly given by (4). In fact, σ =
σ(µ− µ′, r, r′, z − z′), where σ(µ, r, r′, z) satisfies

µ− σ + Ω
[

(r − r′)2 + 4rr′ sin2 σ

2
+ z2

]
1

2

= 0 . (5)

We call σ(µ, r, r′, z) the retarded angle associated with
µ (and the particular choice of r, r′, z). The following
properties of σ are immediate from the above discussion:

dσ

dµ
> 0 , σ(µ+ 2π, r, r′, z) = σ(µ, r, r′, z) + 2π . (6)

Finally, regarding the retarded solution Φret(µ, r, z) as
the convolution of an integration kernel with the source
ρh(µ′, r′, z′) yields the so-called retarded kernel

Kret(µ, r, r
′, z) = Ω

1

µ− σ + Ω2rr′ sinσ
, (7)

where σ = σ(µ, r, r′, z). As a consequence of (6),
Kret(µ, r, r

′, z) is 2π-periodic in µ.

As noted above, the advanced kernel Kadv(µ, r, r
′, z) is

given in analogy to (7), where Ω → (−Ω) and σ → σadv;

µ− σadv − Ω
[

(r − r′)2 + 4rr′ sin2 σadv

2
+ z2

]
1

2

= 0 .

From (5) we conclude that [−σ(−µ, r, r′, z)] satisfies this
equation, hence σadv(µ, r, r

′, z) = −σ(−µ, r, r′, z). By
periodicity of Kret we thus infer the important relation

Kadv(µ, r, r
′, z) = Kret(2π − µ, r, r′, z) . (8)

Symmetric solution for a point source. The simplest
source that is compatible with helical symmetry is a point
mass m in circular motion. Let (µ̄, r̄ < Ω−1, z̄ = 0) be
the position of the point particle; then the density is

ρh(µ, r, z) = m
(

1 − Ω2r̄2
)

1

2 δ(µ− µ̄)
δ(r − r̄)

r̄
δ(z) ,

and the associated retarded potential reads

Φret(µ, r, z) = m
(

1 − Ω2r̄2
)

1

2 Kret(µ− µ̄, r, r̄, z) .

The radial component of the force at (µ, r, z) 6= (µ̄, r̄, z̄)
is given by ∂rΦret; when r = r̄, z = 0 it simplifies to

[

∂rΦret

]∣

∣

r=r̄
=
m

2

(

1 − Ω2r̄2
)

1

2 ∂r̄ Kret(µ− µ̄, r̄, r̄, 0) ,

where we have used the symmetry of the retarded kernel
in r and r̄, i.e., Kret(µ, r, r̄, z) = Kret(µ, r̄, r, z). Con-
sequently, the fields Φret and [∂rΦret]|r=r̄ at positions
µ 6= µ̄, r = r̄, z = 0 are completely described by
Kret(µ, r̄, r̄, 0) and its derivatives.

To obtain the kernel Kret(µ, r̄, r̄, 0) we first investigate
the retarded angle σ(µ, r̄, r̄, 0). It ensues from (5) that
µ = 0 corresponds to σ = 0 and thus µ = 2π to σ = 2π
by (6). Hence, for µ ∈ [0, 2π), sin σ

2 is non-negative and
the defining equation for σ(µ, r̄, r̄, 0) thus becomes

µ− σ + 2Ωr̄ sin
σ

2
= 0 . (9)

We find σ = µ in the limit r̄ → 0; for r̄ > 0, however,
σ > µ, unless σ = 0 = µ or σ = 2π = µ; the difference
between the angle µ and the retarded angle σ is largest
when σ = π. Keeping µ ∈ (0, 2π) fixed (so that σ is in
the same interval) we obtain

∂r̄σ =
2Ω sin σ

2

1 − Ωr̄ cos σ
2

> 0 ; (10)

hence, in addition to being increasing in µ, σ(µ, r̄, r̄, 0) is
increasing, with range (µ, σ1(µ) < 2π), also when viewed
as a function of r̄.

Finally, the results (9) and (10) lead to

Kret(µ, r̄, r̄, 0) = − 1

2r̄ sin σ
2

1

1 − Ωr̄ cos σ
2

(11)

∂r̄ Kret =
(1 − Ωr̄)2 + 4Ωr̄ sin2 σ

4

2r̄2 sin σ
2

( 1

1 − Ωr̄ cos σ
2

)3

.
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r̄e

µ̄0 = 0

µ̄1 = 2π/N

µ̄N−1

FIG. 1: N point particles of equal mass m in uniform circular
motion — the mutual interaction is given by the symmetric
potential (half-retarded + half-advanced potential). We prove
that there exists a unique radius r̄e such that the configuration
is in equilibrium.

The kernel Kret is manifestly negative and monotonically
increasing in r̄, since ∂r̄Kret is positive; for r̄ → 0 both
expressions diverge, while the limit is finite for r̄ → Ω−1.

Since Kret(π, r̄, r̄, 0) = Kadv(π, r̄, r̄, 0) by (8), the re-
tarded and advanced potential at the antipodal point
(µ = µ̄ + π, r = r̄, z = 0) are equal; the same is true
for the radial components of the forces. The tangential
components, however, are not equal, but opposite, since
∂µKret|µ=π = −∂µKadv|µ=π by (8). Therefore, if we con-
sider the symmetric solution Φ(µ, r, z) of (1), i.e.,

Φ(µ, r, z) =
1

2

[

Φret(µ, r, z) + Φadv(µ, r, z)
]

, (12)

then the µ-derivatives of the two terms cancel, so that
∂µΦ = 0 at the antipodal point of a point mass. This
fact is a necessary prerequisite for a system of two (or
more) particles in circular motion to be in equilibrium.
Henceforth we only consider symmetric potentials (12).

Equilibrium configuration for N point masses. We
now consider the helical configuration depicted in Fig. 1:
let n = 0, 1, . . . , (N−1) be N point masses of equal mass
m, equidistantly distributed along a circle of radius r̄ at
z = 0 and uniformly rotating about their common center
— the nth particle’s position is thus given by (µ̄n, r̄, 0)
with µ̄n = 2πn/N . Let Φn(µ, r, z) denote the symmetric
potential generated by the nth particle. At the position
(µ, r, z) = (0, r̄, 0) of the first point mass the total poten-
tial Φ is then given as

∑

n≥1 Φn(0, r̄, 0), hence

Φ(0, r̄, 0) =
m

2

(

1 − Ω2r̄2
)

1

2

N−1
∑

n=1

(Kret +Kadv)(µ̄n, r̄, r̄, 0).

Making use of (8) results in

Φ(0, r̄, 0) = m
(

1 − Ω2r̄2
)

1

2

N−1
∑

n=1

Kret(µ̄n, r̄, r̄, 0)

[

∂rΦ
]
∣

∣

r̄
=
m

2

(

1 − Ω2r̄2
)

1

2

N−1
∑

n=1

∂r̄Kret(µ̄n, r̄, r̄, 0) (13)

for the potential and the radial component of the
force at (0, r̄, 0). The tangential component of the
force, i.e., ∂µΦ(µ, r̄, 0)|µ=0, vanishes, since ∂µKadv|µ =
−∂µKret|2π−µ and thus ∂µKadv|µn

= −∂µKret|µN−n
;

likewise, ∂zΦ(0, r̄, z)|z=0 = 0, which is a simple conse-
quence of the mirror symmetry in z. The equation of
motion (2) for the first particle thus reduces to

[

∂rΦ(0, r, 0)
]∣

∣

r=r̄
−

(

1 + Φ(0, r̄, 0)
) Ω2r̄

1 − Ω2r̄2
= 0 , (14)

where we have used the independence of (proper) time
of Φ at the particle’s position and m¨̄xα

0 = (∂αξ2)/(2ξ2),
where ξ2 = −1 + Ω2r2, for the centrifugal term. The
equations for the remaining (N−1) particles are identical,
since the symmetry of the configuration entails that none
of the particles is distinguished. Hereby, the system of
3N equations (2) reduces to one single equation (14).

We conclude that the configuration of Fig. 1 is in equi-
librium, if condition (14) holds, i.e., if the radial force
acting on each particle is balanced by the centrifugal
force. As follows from (11), the potential Φ(0, r̄, 0) is
negative and monotonically increasing for all Ωr̄ < 1; it
diverges for r̄ → 0 and converges to zero when Ωr̄ → 1.
Consequently, there exists a unique radius r̄0 such that
(1 + Φ(0, r̄, 0)) is negative for all r̄ < r̄0, and positive
for r̄ > r̄0. The term

[

∂rΦ(0, r, 0)
]

|r=r̄ is positive for all
Ωr̄ < 1; it diverges as r̄ → 0 and it goes to zero when
Ωr̄ → 1. Combining the results it follows that the func-
tion on the l.h.s. of (14) is positive for all r̄ ≤ r̄0 and
goes to −∞ as Ωr̄ → 1. We thus conclude that this func-
tion assumes the value zero at least once in the interval
r̄ ∈ (r̄0,Ω

−1), so that there exists at least one radius r̄e
for which condition (14) is satisfied and the configuration
is in equilibrium. In the following we prove that radius r̄e
is unique by showing that the l.h.s. of (14) is decreasing
for r̄ ∈ (r̄0,Ω

−1).

The proof would be trivial if the radial force
[

∂rΦ(0, r, 0)
]

|r=r̄ were decreasing in r̄ (since the sec-
ond term on the l.h.s. of (14) is manifestly decreas-
ing for r̄ > r̄0). However, whether monotonicity of
[

∂rΦ(0, r, 0)
]

|r=r̄ actually holds, is unclear in general.
Namely, it can be shown numerically that ψ(µ, r̄) =
∂r̄[(1 − Ω2r̄2)1/2∂r̄Kret(µ, r̄, r̄, 0)] does not have a sign:
there exists a connected domain D in the set (0, 2π) ×
(0,Ω−1) such that ψ is positive when (µ, r̄) ∈ D and
negative when (µ, r̄) 6∈ D̄ — this is in stark con-
trast to the Newtonian case, where ψ is negative for
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all (µ, r̄). The main properties of D are the following:
minD r̄ ≈ 3/4 Ω−1, hence negativity holds for small r̄,
where velocities are small compared to c so that Newto-
nian gravity is a good approximation to scalar gravity;
maxD µ ≈ 1/4, hence the radial force is decreasing at
least when the number of particles is sufficiently small,
i.e., when µ̄n > 1/4 ∀n ; typical values of ψ on D are
by several orders of magnitude larger than typical values
of |ψ| on

[

(0, 2π)× (0,Ω−1)
]

\D̄ — this complicates mat-
ters when one seeks to prove that the sum over all µ̄n

is negative. Despite this last remark, numerical evidence
suggests that

[

∂rΦ(0, r, 0)
]

|r=r̄ is in fact decreasing ir-
respective of the number of particles; a rigorous proof,
however, seems difficult to obtain.

In our proof we therefore proceed along different lines.
The derivative of the function on the l.h.s. of (14) reads

m
N−1
∑

n=1

{

∂r̄

[1

2

(

1 − Ω2r̄2
)

1

2 ∂r̄ Kret(µ̄n, r̄, r̄, 0)
]

− ∂r̄

[

(

1 − Ω2r̄2
)

1

2 Kret(µ̄n, r̄, r̄, 0)
] Ω2r̄

1 − Ω2r̄2

}

−
(

1 + Φ(0, r̄, 0)
)

∂r̄

(

Ω2r̄

1 − Ω2r̄2

)

. (15)

Since the last line is clearly negative when r̄ > r̄0, in
order to show that the whole function is negative, it suf-
fices to prove that each of the terms in braces is negative
individually. To this end let σ = σ(µ̄n, r̄, r̄, 0) for some
n; then each individual term in braces has the form

(

1 − Ω2r̄2
)− 1

2

4r̄3
(

1 − Ω2r̄2 cos σ
2

)5
sin σ

2

P (Ωr̄, cos
σ

2
) , (16)

where P (v̄, cos σ
2 ) is a complicated polynomial of degree

eight in v̄ = Ωr̄ < 1 and of degree four in cos σ
2 . In

a second step we replace cos σ
2 by a variable δ defined

through cos σ
2 = v̄−1[1−(1−v̄2)δ]. Since −1 ≤ cos σ

2 ≤ 1,
the permitted range of δ is

1

2
<

1

1 + v̄
≤ δ ≤ 1

1 − v̄
. (17)

Using δ leads to a simple representation of P (v̄, cos σ
2 ):

P = −3 − 8δ + δ2(5 − 4v̄2) + δ3(2 + 4v̄2) + 2δ4v̄4

(1 − v̄2)−4
.

The roots of the polynomial P are explicitly given by
v̄2 = δ−2(1 − δ ±

√
∆), where the discriminant ∆ reads

∆ = −2

(

δ − 1

2

)

(

δ − [
√

2 − 1]
)(

δ + [
√

2 + 1]
)

. (18)

Evidently, ∆ is non-negative if and only if δ ≤ −1 −
√

2
or δ ∈ [

√
2 − 1, 1

2 ]. As a consequence, the roots of P

lie outside of the admissible domain (17) of the variables
(v̄, δ). Since in addition P < 0 for v̄ → 0 and δ = 1, it
follows that P is negative everywhere on the admissible
(v̄, δ)-domain, or, equivalently,

P (Ωr̄, cos
σ

2
) < 0 ∀(r̄, σ) ∈ (0,Ω−1) × [0, 2π) . (19)

With P < 0 the expression (16) is negative, which com-
pletes the proof of the claim.

Post-Newtonian expansion. For a given number of
particles, the equilibrium radius r̄e of the configuration
in Fig. 1 is a function of the angular velocity Ω and the
mass. This functional dependence cannot be made ex-
plicit, since this would involve, among other things, an
explicit knowledge of the retarded angle (9). (For a two-
particle system, r̄e can be given as a (non-explicit) func-
tion of the orbital velocity Ωr̄e, see [3], which, of course,
does not lead to an explicit solution for r̄e.)

It is feasible, however, to analyze the equilibrium con-
dition (14) by means of a post-Newtonian approximation
scheme. With the support of a computer algebra pro-
gram necessary manipulations can be done in a straight-
forward way and we eventually obtain a post-Newtonian
expansion of r̄e; here, we merely state some results.

Let ω be the angular velocity as measured in standard
units, i.e., [ω] = s−1; clearly, ω = Ωc, where c is the
speed of light; furthermore, let G be the gravitational
constant and M = Nm the total mass of the N -particle
configuration of Fig. 1. We define a quanitity R (with
unit length) and a dimensionless quantity x according to

R =
(

GMω−2
)

1

3 , x =
(

GMωc−3
)

1

3 .

In terms of R, x the post-Newtonian expansion of r̄e is:

N r̄e

2 1
2R

[

1 + x2/12 − 7x4/72 +O(x6)
]

3 1√
3
R

[

1 + 7x2/72 − 0.065x4 +O(x6)
]

...
...

105 1.228R
[

1 + 0.273x2 − 0.465x4 +O(x6)
]

For highly relativistic configurations numerical investi-
gations indicate that r̄e ∝ Ω−1 as Ω → ∞, so there does
not exist an innermost circular orbit.
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