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Abstract
Till date, the search for burst signals with resonant gravitational wave (GW)
detectors has been done using the δ-function approximation for the signal,
which was reasonable due to the very small bandwidth of these detectors.
However, now with increased bandwidth (of the order of 10 or more Hz) and
with the possibility of comparing results with interferometric GW detectors
(broad-band), it is very important to exploit the resonant detectors’ capability
to detect also signals with specific wave shapes. As a first step, we present a
study of the response of resonant GW detectors to damped sinusoids with given
frequency and decay time and report on the development of a filter matched to
these signals. This study is a preliminary step towards the comprehension of
the detector response and of the filtering for signals such as the excitation of
stellar quasi-normal modes.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A GW resonant detector consists of a large, solid heavy (a few tons) bar, made of low loss
material (usually aluminium). The incoming GW can excite the first longitudinal mode of the
bar. These mechanical oscillations produce displacement of the bar end face, where a low
mass electrical transducer is attached with resonance frequency close to that of the bar. This
transducer converts the mechanical vibration into an electrical signal which then is amplified
by a low noise electronic chain. At present, the ROG gravitational wave (GW) resonant bars,
Explorer and Nautilus, are operating at the sensitivity level of h ∼ 3 × 10−21 Hz−1/2. The
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improvement in the read-out of these detectors has broadened the bandwidth (BW) [1] from
a fraction of a Hz to ∼ 20 Hz at the level of h ∼ 10−20 Hz−1/2. The resonant bar AURIGA,
with a three-mode detection scheme, is operating at h ∼ 1.5 × 10−21 Hz−1/2 with a bandwidth
of more than 100 Hz at h ∼ 10−20 Hz−1/2 [2].

Broader BW opens up the possibility of looking for short burst signals with different
shapes in resonant detectors in contrast to looking for ‘simple’ impulses as is done till date.
The filtering techniques for detecting impulse-like signals are based on the assumption that
the spectrum of these signals is approximately flat in the detector’s narrow band [4]. The
response of a resonant detector to such impulse-like GW was studied and understood in detail.
However, with the new development mentioned above, it is worth studying how resonant bars
will respond to GW of different shapes and how their increased BW will affect the detector
response, in view of opening a new range of detectable signals.

A large number of astrophysical scenarios, such as merger of two neutron stars (NS) or
black-holes (BH), core collapse of massive stars during the end stages of stellar evolution,
accretion of matter, rotational instabilities in newly born rapidly rotating stars, can excite
stellar quasi-normal modes (QNM). The resultant QNM ringing radiates energy in the form of
damped sinusoid GW, with damping time and frequency depending on the underlying physical
dissipation processes. In a recent review [5], various astrophysical scenarios are listed which
might emit such GW.

One such plausible scenario is the QNM ringing during the end stage of stellar evolution.
After the core collapse, when the proto-neutron star is going through the cooling phase, various
QNM are excited. In particular, the fundamental mode emits GW in the frequency range of
(850–1000) Hz with frequency as well as damping time evolving as a function of time [6] and
thus can fall and may chirp in the BW of the current resonant bars.

In this paper, as a preliminary step, we study a simple case of an impinging GW radiated
from stellar QNM, which we model here as a damped sinusoid with fixed frequency and
damping time:

h(t) = h0 sin[ω0(t − t0)] e−(t−t0)/τ θ(t − t0). (1)

Here θ(t − t0) implies h(t) �= 0 for t � t0, f0 = ω0/(2π) is the signal frequency and τ is the
damping time. The root-sum-square (rss) amplitude spectral density [7] in units of strain per
root Hz for the above signal is

hrss = h0
√

τ/2. (2)

The study of more complex QNM evolution—damped sinusoid GW with varying
frequency and damping time—is left for the future work. As for the damping time,
astrophysical inputs [5] suggest that the GW signal from stellar QNM lasts from a fraction
of a second to a few seconds. Thus, our study is restricted to a maximum value of τ of a
second. This study is performed to understand how a detector’s response is different from that
to impulse-like signals, which will help in constructing the filters.

The paper is divided as follows. In section 2, we discuss the bar–transducer system
transfer function. In section 3, we derive the system response to a damped sinusoid GW
signal, identifying the terms of the response which are associated with the ‘detector modes’
and with the signal itself. The system response due to impinging GW gets amplitude as well
as phase modulated. We study in section 4, the features of this modulation for different cases
and for various values of the signal parameters. Finally, in section 5, we derive and discuss the
matched filter transfer function and the expression for the SNR. In the conclusion, we address
also some points for future work.
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2. The system transfer function

The bar–transducer system of some resonant bar detectors can be modelled as a coupled
harmonic oscillator system with two resonant modes f± [4]. Our analysis is based on this
simple model, which represents fairly well the actual behaviour of detectors such as Explorer
and Nautilus. Future extensions of this work may consider three-mode detectors, as AURIGA
[2], or multi-mode detectors, as MINIGRAIL [3]. The incoming GW, denoted by h(t),
provides an equivalent external force

fx(t) = mxLḧ(t)/2 (3)

to the bar, with corresponding displacements x(t) for the bar and y(t) for the transducer. Here,
mx = Mbar/2 is the reduced mass of the bar and L = 4Lbar/π

2 is its effective length. The
electrical output of the transducer is proportional to the relative displacement of the transducer
and the bar, u(t) = y(t) − x(t) from their equilibrium positions. In Fourier domain5 this
displacement due to the external force fx(t) is obtained from

U(jω) = Wux(jω)Fx(jω), (4)

where Fx(jω) is the Fourier transform (FT) of fx(t) and Wux(jω) is the system transfer function
from the input force fx(t) to the output displacement u(t) obtained from the equations of
motion of the forced coupled harmonic oscillator [4]:

Wux(jω) = ω2

mx

∏4
i=1(ω − ωi)

. (5)

The system poles ωi are

ω1 = −ω+ + j/τ ′
+ ω2 = −ω∗

1, (6)

ω3 = −ω− + j/τ ′
− ω4 = −ω∗

3, (7)

where ω± = 2πf±. The τ ′
± are the decay times of the two resonant modes and are related to

the dissipation factors of the coupled oscillators β± by τ ′
± = 1/β± [4], with corresponding

merit factors Q± = β±/2ω±. The mechanical oscillators of resonant detectors are designed
with large Q-factors (usually in the range 105–107) in order to increase their sensitivity, which
means β± � 1. The displacement u(t), measured in units of length, is obtained by the inverse
FT of U(jω).

3. System response to a damped sinusoidal GW signal

In order to study the response of the system to a specific input GW h(t)—in our case a damped
sine-wave—one requires to calculate the force and then obtain the displacement u(t) from
equations (4), (5). In this section, we derive the system response and study its features.

Using equation (3), we calculate the external force on the bar due to the incoming h(t)

given by equation (1):

fx(t) = h0mxL

2

( [(
1

τ 2
− ω2

0

)
sin[ω0(t − t0)] − 2ω0

τ
cos[ω0(t − t0)]

]

× e−(t−t0)/τ θ(t − t0) + ω0δ(t − t0)

)
. (8)

5 We follow the convention of representing with lower cases the signals in time domain and with capitals their Fourier
transforms.
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Figure 1. Spectra of |Fx(jω)| for h0 = 10−20, f0 = 850 and 904.7 Hz, τ = 50, 100, 150, 200 ms,
with Mbar = 2230 kg and Lbar = 3 m (Explorer parameters). The higher the value of τ , the higher
the peak of |Fx(jω)|.

Its FT in terms of H(jω) is

Fx(jω) = −mxLω2

2
H(jω), (9)

with H(jω) = h0
ω0τ

2

(1 + jωτ)2 + τ 2ω2
0

exp(−jωt0). (10)

For convenience, we choose the time of arrival t0 = 0. Thus we obtain

|Fx(jω)|2 = h2
0L

2ω2
0m

2
x

4

ω4(
ω2 − ω2

5

)(
ω2 − ω2

6

) (11)

with ω5 = −ω0 + j/τ ω6 = −ω∗
5 (12)

that describes a Lorentzian centred and peaked at f = f0 (see figure 1). Its peak value is

|Fx(jω0)| ≈ mxLh0ω
2
0τ

/
4 for ω0τ � 1. (13)

As τ increases, h(t) tends to a periodic signal and hence |Fx(jω)| becomes narrower and
narrower. The larger the damping time, the longer is the duration of h(t) and the larger is the
energy imparted to the detector when in resonance. This is indicated by the linear dependence
of |Fx(jω0)| on τ (hence on the number of cycles).

We recall that the impulse response of the bar–transducer system is a sum of two damped
harmonic oscillations with decay times τ ′

± (∼ a few hundred seconds) [4]. As the signal itself
that we are considering has a damped sinusoidal profile, we expect the signal poles (ω5,6) to
have a similar appearance to the system poles, namely ω1,2 (plus resonance) and ω3,4 (minus
resonance), see equations (6), (7), (12).
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In the limit τ → 0, that is when h(t) is delta-like (impulse limit) we have in particular
ω+τ � 1. This implies that the signal |H(jω)|2 has a flat spectrum in the BW (at least up to
f+) and therefore |Fx(jω)| ∼ mxLh0ω0ω

2τ 2/2.6

In the general case, from equations (4)–(12), we get

u(t) = −h0Lω0τ
2

4π

∫ ∞

−∞

ω4 exp(jωt)

[(1 + jωτ)2 + τ 2ω2
0]

∏4
i=1(ω − ωi)

dω, (14)

where the integrand has six poles, ωk, k = 1, . . . , 6, as given in equations (6), (7), (12).
We perform the integration in equation (14) using the residue theorem [8]. Following

this, the evaluation of the right-hand side of equation (14) amounts to summing the residues
of the integral within the region of convergence (positive half complex plane), i.e.

u(t) = −h0Lω0τ
2

4π
2π j

∑
k

Rk. (15)

The residue of the integral at the kth pole is

Rk = −ω4
k exp(jωkt)

τ 2�i,i �=k(ωi − ωk)
, i = 1, . . . , 6. (16)

The result of the integration can be written as a sum of three contributions, corresponding to
the poles, respectively, of the plus mode, the minus mode and the ‘signal mode’, i.e.

u(t) = u+(t) + u−(t) + us(t). (17)

3.1. Response associated with the modes

The term, u±(t), associated with the mechanical resonances can be obtained from
equations (6), ( 15), (16) as

u±(t) = ±h0Lω0τ
2

2

ω3
± exp(−β±t)(

ω2
+ − ω2−

)|T±| sin(ω±t − arg(T±))

≡ ±E±(t) sin(�±(t)), (18)

where T± = −τ 2[(ω1/3 − ω5)(ω1/3 − ω6)]. The notation 1/3 implies that for T+ we use ω1;
for T−, ω3.

Assuming β± � 1, we get

T± ∼ [
1 − τ 2(ω2

± − ω2
0

)]
+ 2jω±τ. (19)

We note that the external force fx affects the phase as well as the amplitude of the modes
via T± as shown in equation (18). When the signal frequency gets close to the resonances, i.e.
f0 → f±, |T±| decreases and u±(t) oscillates with increasing amplitude because the mode
extracts more energy from the signal since the mode is in resonance with it. This can be also
inferred from equation (14).

In the impulse limit, τ → 0, in particular τ � 1/ω+, we have T± → 1 and

u±(t) ∼ ±h0Lω0τ
2

2

ω3
± exp(−β±t)(
ω2

+ − ω2−
) sin(ω±t). (20)

We note that in this limit, as expected, equation (20) agrees with the impulse response of the
bar–transducer system given by equation (1.21) of [4].

6 This expression differs from f0 as given in footnote (3) of [4] because here we assume h(t) to be delta-like as
opposed to the assumption of fx(t) to be delta-like.
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3.2. Response associated to the signal mode

The term us(t) associated with the signal can be obtained from equations (12), (15), (16) as

us(t) = −h0L

2

(
1 + ω2

0τ
2
)4

exp(−t/τ )

|Ts | sin(ω0t − arg(Ts)),

≡ Es(t) sin(�s(t)), (21)

where Ts = τ 8ω4
5�i=1,2,3,4(ω5 − ωi)

∗.
Using β± � 1, one can simplify |Ts | as

|Ts | ∼ (
1 + ω2

0τ
2
)2|T+||T−|. (22)

Thus, the system parameters alter the phase as well as the amplitude of the signal mode
via Ts as shown in equations (21), (22). In the impulse limit, Ts → 1 and Es(t) → 0. Thus,
u(t) = u+(t) + u−(t) as expected.

3.3. Maximum of u(t) as a function of parameters

Before we proceed into the analytical details of the behaviour of the displacement as a function
of the signal and system parameters, we show the result of a simulation where we have studied
the maximum of the system response u(t) as a function of the signal parameters, since this
quantity determines the signal-to-noise ratio (SNR). Throughout this study, we use the values
of the system parameters pertaining to the Explorer detector in the year 2005 (see section 4
for details).

In figure 2(a), we plot the maximum Mu of the displacement u(t) as a function of f0

for fixed values of τ . It can be seen that, for a given τ , as f0 approaches the resonances
(f− = 904.7 Hz, f+ = 927.452 Hz), the value of the maximum increases sharply as energy is
transferred to the ± modes more efficiently due to the resonant condition. For small τ (less
than ≈20 ms), the behaviour is almost flat, as expected, while, as τ increases the difference
between the resonant situation (signal frequency near the resonances) and the non-resonant
one becomes more and more prominent, e.g., for τ = 0.2 s, the difference between Mu at
f0 = f± and f0 = 915 Hz (worst case between the resonances) is a factor of ≈8, which will
be translated in SNR.

In figure 2(b) we plot the maximum Mu as a function of τ for fixed values of the signal
frequency f0. We note that for f0 close to the resonances, this maximum increases quite
rapidly with τ , in contrast to when f0 is away from the resonances. In fact, in the latter case,
increasing τ does not increase the amplitude substantially: when the signal frequency is away
from resonance, the energy transferred in the resonant modes is almost constant after the initial
increase.

3.4. Envelope and phase of the response u(t)

As discussed earlier, the system response u(t) is amplitude and phase modulated. In fact,
using equations (18), (21), we can write u(t) as

u(t) = E(t) sin[�(t)], (23)

where the envelope and the phase are

E(t) = A2 + E2
s + 2EsA cos(	�2), (24)

�(t) = �s(t) + tan−1

[
A sin(	�2)

A cos(	�2) + Es

]
, (25)
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Figure 2. Maximum displacement Mu versus f0 for various τ (a) and versus τ for various f0 (b).
The amplitude of the input signal is fixed to h0 = 10−20. See the text for explanation.

with

	�1 = �−(t) − �+(t), (26)

	�2 = �−(t) − �s(t) − tan−1

[
E− sin(	�1)

E+ − E− cos(	�1)

]
, (27)

A2 = E2
+ + E2

− − 2E+E− cos(	�1). (28)

• Envelope of u(t):
The modulation of the envelope E(t) depends on the frequency of each term in
equation (24). The term A depends only on the beating of the two resonance frequencies
of the system, whereas the term cos(	�2) depends on both the beating of two resonant
frequencies as well as the beating of the signal frequency with the system resonances,
see equation (27). This makes the modulation more complex to understand as compared
to that in the impulse limit where E(t) = A(t). We demonstrate this complexity in the
simple case shown in figure 3, where we assume f− = 900 Hz, f+ = 950 Hz and the
signal frequency f0 = 910 Hz with τ = 0.5 s. Here, f+ − f− = 5(f0 − f−). Thus,
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Figure 3. Normalized displacement u0(t) and normalized envelope E0(t) for a toy case with
f+ = 950 Hz, f− = 900 Hz, f0 = 910 Hz. See the text for explanations.

A cos(	�2) oscillates with (f0 − f−) = 10 Hz. Since A2 oscillates with (f+ − f−) =
50 Hz, the envelope modulates with the frequency (950 − 900)/5 = 10 Hz, as it appears
in figure 3. The five bumps with period of 0.1 s correspond to phase modulation of the
envelope with the frequency of 50 Hz. The phase of the envelope oscillates with frequency
910 − 900 = 10 Hz.

• Phase of u(t):

As shown in equation (24), the signal introduces additional phase �s(t). Further, the
coupling of the signal to the system introduces an extra phase due to Es . As a result,
the phase modulation of the displacement depends on both system as well as signal
parameters.

4. Study of the system response for specific cases

In what follows we shall illustrate the above results using the parameters of Explorer, with
Mbar = 2230 kg and Lbar = 3 m. Similar results can be obtained for Nautilus or any other
two mode resonant bar. We assume the Feb. 2005 Explorer configuration, with resonance
frequencies f− = 904.7 Hz, f+ = 927.452 Hz and decay times τ ′

+ = 1/β+ = 521.24 s and
τ ′
− = 1/β− = 961.26 s.

In figure 4 we plot the noise spectral density of Explorer, with BW of ∼ 20 Hz at the
level of

√
Sn ∼ 10−20 Hz−1/2. We define the sensitive frequency band of the detector as

FB ∼ {900, 932} Hz. This choice is done noticing that at 900 Hz and at 932 Hz the noise
spectrum has roughly the same value, i.e.

√
Sn ∼ 10−20 Hz−1/2, as the worst value between

the resonances (at the frequency f = (f+ + f−)/2 ∼ 915 Hz).
Such a choice is made in order to study the detector response in two distinct cases; namely,

(1) f0 within the FB, the sensitive band of the detector, (2) f0 outside the FB, that is away
from the sensitive band, which will help us to illustrate various features of the response.
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4.1. Case 1: f0 within the FB

Here we study the detector response when f0 ∈ FB and τ ∈ {0.01, 0.2} s. To begin with, we
consider two special cases: (a) most sensitive case for f0 = f±; (b) worst sensitive case, for
f0 ∼ 915 Hz.

4.1.1. Case 1(A) f0 = f±. Let f0 = f+ and τ ∈ {0.01, 0.2} s. Figure 5 shows the normalized
displacement u0(t), as a function of time, for increasing values of τ . The response for small
values of τ (� 10 ms, with these parameters) is, as expected, similar to the impulse response.
In fact, in the frequency domain, this corresponds to a flat behaviour of the Lorentzian |Fx(jω)|.
A flat Lorentzian over the considered FB leads to a response which does not depend on the
signal frequency but just on the beating of the two resonances.

As τ increases, the incoming signal tends to a periodic signal with frequency f+ and
duration ∼τ and hence the displacement u0(t) gradually changes from the impulse response
to the forced sinusoidal response in the resonance condition. In particular, the position of
the maximum tm depends on τ . We recall here that, as was shown in figure 2, the value
of the maximum increases with τ . Here, we obtain this expression analytically. Using
equations (19), (22) and ω0 = ω+, we get

|T+| ∼ 2ω+τ, |T−| ∼ τ 2
(
ω2

− − ω2
+

)
, (29)

|Ts | ∼ 2ω5
+τ

7
(
ω2

− − ω2
+

)
, (30)

and then

E+(tm) ∼ h0Lω3
+τ

4
(
ω2

+ − ω2−
) , E−(tm) ∼ h0Lω+ω

3
−

2
(
ω2

+ − ω2−
)2 ,

Es(tm) ∼ −h0Lω3
+τ

4
(
ω2

+ − ω2−
) exp(−tm/τ).

In the above the behaviour of E+(tm) is different from that of E−(tm) because here we are
considering the case of ω0 = ω+. We also note, from equations (18), (21), that most of the
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Figure 5. Case 1(A). Normalized displacement u0(t) for f0 = f+ = 927.4 Hz and (a) τ =
10 ms, (b) 20 ms, (c) 50 ms, (d) 100 ms, (e) 200 ms. For small τ the displacement is, as expected,
similar to the impulse response. As τ increases it tends gradually to be different from the impulse
response, and the position tm of the maximum depends on τ .

signal energy gets transferred to the system in the timescale of t  2τm, followed by the decay
of the modes (ringing of the bar) which in its turn depends on the τ ′

±. We further note that in
this case the phase of the envelope oscillates with the beat frequency (f+ − f−).

It is easy to understand that the case f0 = f− leads to results similar to the above, because
the behaviour of the detector at the two resonances is in general the same. In addition, in
this particular situation, the two resonances also have roughly the same parameters (width,
sensitivity).

4.1.2. Case 1(B) f0 = 915 Hz. Let f0 = 915 Hz ((f++f−)/2 in this case) and τ ∈ {0.01, 0.2} s.
Figure 6 shows the normalized displacement u0(t), as a function of time, for various values
of τ . Now the signal frequency is not one of the resonances and thus we expect different
behaviour of the response, compared to the previous case.
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Figure 6. Case 1(B). Normalized displacement u0(t) for f0 = 915 Hz and (a) τ = 10 ms,
(b) 20 ms, (c) 50 ms, (d) 100 ms, (e) 200 ms.

First, we note that, for small values of τ , the response is still similar to the impulse
response, as expected from the earlier discussion.

We expect differences as τ increases. In fact, as τ increases, both the resonances fall
on a tail of the input Lorentzian and equal energy is imparted to both the resonances. This
makes the time tm of the maximum displacement constant with respect to τ : a feature quite
different from the previous case. Further, we note that the energy given to the system is
much smaller compared to when f0 ∼ f±, as shown by the behaviour of Mu in figure 2.
Hence, in this situation, for large values of τ , as shown below, the maximum does not depend
on τ (the figures are normalized, so this cannot be seen from them). In fact, if we let
τ > max{10/|ω+ − ω0|, 10/|ω− − ω0|}, then we get, from equation (19),

|T+| ∼ τ 2|ω2
+ − ω2

0|, |T−| ∼ τ 2
∣∣ω2

− − ω2
0

∣∣ (31)

|Ts | ∼ ω4
0τ

4|T+||T−|, (32)
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Figure 7. Case 1(C). Normalized displacement u0(t) for f0 = 920 Hz and (a) τ = 10 ms,
(b) 20 ms, (c) 50 ms, (d) 100 ms, (e) 200 ms. This figure is indicative when compared with those
of cases 1(A) and (B): the comparison of the three cases A, B, C, for a fixed τ , shows how u0(t)

gets modulated for different frequencies.

from which we estimate

Mu ∼ h0Lω0

2

[
ω3

+

(
ω2

0 − ω2
−
)

+ ω3
−
(
ω2

+ − ω2
0

)
+ ω3

0

(
ω2

+ − ω2
−
)

(
ω2

+ − ω2−
)(

ω2
+ − ω2

0

)(
ω2

0 − ω2−
)

]
. (33)

Thus, for a given signal frequency, the quantity max{10/|ω+ − ω0|, 10/|ω− − ω0|} gives that
τ after which Mu becomes constant (see figure 2(b)). For example, if f0 ∼ 915 Hz, we get,
with the above condition on the maximum, a value of τ ∼ 130 ms, which agrees with the
value plotted in figure 2(b).

In general, for other excitation frequencies within the FB range, the modulation of the
response will depend upon the relative beating of the frequencies f+, f−, f0. As an example,
we plot u0(t) for f0 = 920 Hz for different τ in figure 7 (case 1(C). Further, for a fixed τ , how
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Figure 8. Case 2. Normalized displacement u0(t) for f0 = 850 Hz and (a) τ = 10 ms,
(b) 20 ms, (c) 50 ms, (d) 100 ms, (e) 200 ms. In this situation, for all the considered τ , the response
is similar to the impulse response, and the energy which the signal releases to the system is always
very small. See the text for comments.

u0(t) gets modulated for different frequencies can be seen by comparing the corresponding
case in figures 5, 7, 6.

4.2. Case (2): f0 outside the FB

We consider here an excitation frequency f0 far from the FB with τ ∈ {0.01, 0.2} s. As shown
in figure 8, the system response is similar to that of an impulse-like signal both for small and
large values of τ . In fact, as τ increases, the FB range still falls on the tail of the Lorentzian,
with roughly the same value of |Fx(jω)| at the two resonances, such that the response stays
close to the impulse response. Further, as discussed earlier, for a given excitation frequency
max{10/|ω+ − ω0|, 10/|ω− − ω0|} decides the flatness of Mu. For this case, since f0 is far
from f±, |ω± − ω0| is larger and hence max{10/|ω+ − ω0|, 10/|ω− − ω0|} is smaller. This
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shows that as f0 goes away from the FB, the input signal mimics an impulse-like signal. Note
that the energy released to the modes is very small and so will the SNR be.

5. Optimal detection: matched filtering

For a signal of known shape in a Gaussian stationary noise, matched filtering is an optimal
detection strategy. Usually, we consider the filtering of the signal at the output of the electronic
chain. Below, we discuss the signal, the noise spectrum and the matched filtering approach.

5.1. Signal

The displacement of the transducer u(t), in units of length, is processed first by the transducer,
which provides the voltage vt (t) = αu(t), and then by the following electronic chain, which
has an amplification factor of A. The electrical signal (in volts) at the output of the electronic
chain is therefore

v(t) = (αA)u(t) in units of volts (34)

≡ Mvu0(t) (35)

where u0(t) is the normalized displacement and Mv ≡ (αA)Mu.

5.2. Noise

The noise n(t) at the output of the electronic chain is assumed to be coloured Gaussian. The
expected noise power spectral density St (ω) consists in fact of [4]:

• a narrow-band noise contribution Snb from the thermal noise of the two mechanical
oscillators and the back-action contribution from the transducer, given by

Snb(ω) = α2Sf x |Wux(jω)|2 + α2Sfy |Wuy(jω)|2 (36)

where Sf x and Sfy are the total noise force spectra on the two oscillators due to the Nyquist
(thermal) and the back-action force; Wux and Wuy are the system transfer functions from
a force applied respectively to the bar and the transducer, and the output displacement;

• a broad-band noise contribution Se from the electronics, which is assumed to have a flat
spectrum in the bandwidth of the detector.

Thus, the expected noise power spectrum related to the transducer output is given by

St (ω) = Se + α2Sf x |Wux(jω)|2 + α2Sfy |Wuy(jω)|2. (37)

Besides, there might be other spurious noise sources which can give rise to non-stationarity in
the data. However, here we assume that the data under process are stationary.

5.3. Matched filter

In GW detection the signal detection problem involves computing a statistic, a functional of
the observed data z(t) which when passed through a threshold allows one to opt for one of the
two hypotheses:

H1 : z(t) = n(t) + v(t) signal present

= n(t) + Mvu0(t) (38)

H0 : z(t) = n(t) signal absent. (39)
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For a signal with known shape in Gaussian and stationary noise the matched filter is an
optimal filter. The transfer function of the filter matched to v(t) in the presence of noise with
spectrum St (ω) is

Q(jω) = Nu

U ∗
0 (jω)

St (ω)
, (40)

where Nu is a normalization factor in units of volts2 such that

1

2π

∫ ∞

−∞

Nu|U ∗
0 (jω)|2

St (ω)
dω = 1, (41)

and U0(jω) is the FT of u0(t). The matched filter output is given by

o(t) = 〈z, q〉 (42)

≡ 1

2π

∫ ∞

−∞
Z(jω)Q(jω) exp(jωt) dω. (43)

In the absence of noise, z(t) = v(t) and the output is

o(t) = 〈v, q〉, (44)

= Mv

2π

∫ ∞

−∞

Nu|U0(jω)|2
St (ω)

exp(jωt) dω, (45)

= Mv

Nug(t)

M2
u

. (46)

Using the above normalization we get max(o(t)) = Mv . The corresponding time instant is
the estimated arrival time of the GW (t0 in equation (1)). The amplitude of the input signal
can be estimated from the maximum of the filtered data Mv . The time-dependent part of o(t),
which we call g(t), is in units of V2 m−2 and is given by

g(t) = 1

2π

∫ ∞

−∞

|U(jω)|2
St (ω)

exp(jωt) dω. (47)

We note that the FT of g(t),G(jω), has six poles, namely pi, i = 1, . . . , 6, with p5 = ω5

and p6 = ω6. The function G(jω) can be expressed in terms of the output Gδ(jω) of a filter
matched to a delta-force input as G(jω) ≡ Gδ(jω)|Fx(jω)|2. Thus from equation (47) we have

g(t) = 1

2π

∫ ∞

−∞
Gδ(jω)|Fx(jω)|2 exp(jωt) dω (48)

where

Gδ(jω) = ω4

Snm2
x

(
ω2 − p2

1

)(
ω2 − p2

2

)(
ω2 − p2

3

)(
ω2 − p2

4

) , (49)

with poles7

p1 = −ω+ + j/τ+ p2 = −p∗
1, (50)

p3 = −ω− + j/τ− p4 = −p∗
3 . (51)

Here τ+ = 1/|b′|, τ− = 1/|d ′|, where b′, d ′ < 0 and τ± represent the decay times of the filter
impulse response at the two modes. Their values are always much smaller than the decay

7 The poles of [4] ωi ( as defined in [4]) are related to pi by p1 = −ω1, p2 = ω2, p3 = −ω3 and p4 = ω4.



1472 A Pai et al

times τ ′
+,− of the bar–transducer system, as they scale with the (square root of the) ratio of the

broad-band noise to the narrow-band noise, generally of the order of 10−3.
We compute g(t) from G(jω) by applying the residue theorem as

g(t) = h2
0L

2ω2

4Sn

j
∑

k

ρk, (52)

where the kth residue is given by

ρk = p7
k exp(ipkt)

2�i,k �=i

(
p2

k − p2
i

) . (53)

Substituting equation (53) into equation (52) and simplifying we get

g(t) = −h2
0L

2ω2
0

16Sn

�
[
τ+ exp(−t/τ+)

ω+

p7
1 exp(−jω+t)

�k,k �=1,2
(
p2

1 − p2
k

) +
τ− exp(−t/τ−)

ω−

p7
3 exp(−jω−t)

�k,k �=3,4
(
p2

3 − p2
k

)
+

τ exp(−t/τ )

ω0

p7
5 exp(−jω0t)

�k,k �=6,8
(
p2

5 − p2
k

)]
. (54)

In figure 9, we plot the normalized output of the matched filter for f0 = f− (for the
second resonance we expect similar results) and τ = 0.01, 0.2, 1 s. We show in 9(a) that,
when τ < τ±, the decay time of the matched filtered output is dominated by τ±(∼ 140 ms).
As τ increases and becomes larger than τ± (see figures 9(b), (c)), the decay time of the filtered
output waveform increases due to the contribution of the signal term. As a result, the absolute
maximum would decay slowly (closeby time bins would give values similar to the maximum
value). In a real situation, with noise, this would increase the arrival timing error, in spite of
the increase of SNR with τ , as indicated in figures 10(a), (b).

5.4. Matched filter SNR

The (amplitude) signal-to-noise ratio (SNR) of the matched filter is given by the ratio between
the maximum of the filtered output signal and the root mean square value of the output noise:

SNR2 = max(o(t))2

Var(〈n, q〉) . (55)

The maximum of the filtered output o(t) is related to g(t = 0) where

g(0) = −h2
0L

2ω2
0

16Sn

�
[

τ+p
7
1

ω+�k,k �=1,2
(
p2

1 − p2
k

) +
τ−p7

3

ω−�k,k �=3,4
(
p2

3 − p2
k

)
+

τp7
5

ω0�k,k �=6,8
(
p2

5 − p2
k

)]
. (56)

Appendix A provides an alternative/independent time domain calculation of g(0).
The maximum of the signal is max(o(t)) = Mv and the variance of the filtered noise is

Nu, as shown in appendix B. Thus we have

SNR2 = M2
v

Nu

= (αA)2g(0) (57)



Response of resonant gravitational wave detectors to damped sinusoid signals 1473

-1

-0.5

 0

 0. 5

 1

-0.6 -0.4 -0.2  0  0. 2  0. 4  0. 6

time [s]

(a) tau = 10 ms f0 =904.7 Hz

-1

-0.5

 0

 0.5

 1

-0.6 -0.4 -0.2  0  0. 2  0. 4  0. 6

time [s]

(b) tau = 200 ms f0=904.7 Hz

-1

-0.5

 0

 0.5

 1

-0.6 -0.4 -0.2  0  0. 2  0. 4  0. 6

time [s]

(c) tau = 1 s f0 =904.7 Hz

Figure 9. Normalized g(t) for τ = 10 ms (a), 0.2 s (b), 1 s (c) and signal frequency f0 = f−, with
τ ′± ≈ 140 ms.

which can be written as:

SNR2 = M2
v

Nu

= 1

2π

∫ ∞

−∞

|V (jω)|2
St (ω)

dω, (58)

where V (jω) is the FT of v(t).
The essential features of the filtered response become evident in the SNR plots given in

figures 10(a), (b), (c): (1) The SNR increases with τ for any excitation frequency as the signal
spends a large number of cycles in the detector band. (2) This increase in SNR is quite large
in the resonant condition when f0 = f±. (3) For large τ the uncertainty in the arrival time
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Figure 10. h0 = 10−20: (a) SNR versus τ for f0 = f±, 915 Hz, (b) SNR versus τ for f0 ∈ FB,
(c) SNR versus f0 for τ ∈ {0.01, 0.5} s.

due to the noise increases, while at the same time the SNR increases. We plan to perform
simulations in the presence of noise, to obtain quantitative information on this point.

6. Conclusion

In this work we studied the response of a resonant GW detector to damped sine-wave signals
in detail as well as the characteristics of the signal after a filter matched to these signals. This
study was motivated by the results from an earlier study [9], where we computed the SNR loss
when a damped sinusoidal signal was processed with a filter matched to a delta function input
rather than to a damped sinusoid. We found that for large decay times of the input (τ > 50
ms) and when the signal frequency is in the sensitive frequency band, it is crucial to use a
properly matched filter rather than the δ filter. This led us to study the features of the system
response to such signals. In this paper, we systematically categorized and studied how the
response as well as the SNR depends on the signal parameters.



Response of resonant gravitational wave detectors to damped sinusoid signals 1475

However, as mentioned earlier, this study represents only a preliminary step in the search
for signals which are due to the excitation of stellar quasi-normal modes. In fact here we used
a ‘toy’ model for these signals, which in ‘reality’ should be characterized by varying frequency
and decay time. The next natural step of this study is to obtain the system response for varying
frequency and τ input signals and construct a bank of filters or develop a detection strategy
for such signals. Further, we wish to extend the detection scheme to a network of detectors
comprising both resonant bars and interferometers, which are sensitive over a different, and
larger, frequency range, in the view of performing coincidence experiments.
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Appendix A. g(0) obtained from time domain calculation

The output of the matched filter is proportional to

g(t) =
∫ ∞

−∞
Gδ(ω)|F(ω)|2 ejωt dω =

∫ ∞

−∞
gδ(t

′)F+−(t ′ − t) dt ′ (A.1)

where gδ(t) (inverse FT of Gδ(ω)) is the matched filter response to a delta input force applied
to the bar as given in [4]

gδ(t) = − 1

4Snm2
x

[
exp(b′|t |)[ζ1 cos(ω+t) − ζ2 sin(ω+t)]

ω+b′|(p2
1 − p2

3

)(
p2

1 − p2
4

)|2
+

exp(d ′|t |)[η1 cos(ω−t) − η2 sin(ω−t)]

ω−d ′|(p2
3 − p2

1

)(
p2

3 − p2
2

)|2
]

(A.2)

= gδ
+(t) + gδ

−(t) (A.3)

where

ζ1 − jζ2 = p3
1

(
p2

1 − p2
3

)∗(
p2

1 − p2
4

)∗ ≡
√

ζ 2
1 + ζ 2

2 exp(−jθ) (A.4)

η1 − jη2 = p3
3

(
p2

3 − p2
1

)∗(
p2

3 − p2
2

)∗ ≡
√

η2
1 + η2

2 exp(−jξ) (A.5)

and F±(t) is the inverse FT of |F(ω)|2 and can be obtained in time domain by convolving the
external force fx(t) with fx(−t) as given below,

F±(t) =
∫ ∞

−∞
fx(t

′)fx(t
′ + t) dt. (A.6)

By performing an explicit time domain integration, we get

F±(t �= 0)= h2
0l

2m2
x

16

ω0

τ 2
exp

(
−|t |

τ

) [
ω0τ

( − 3 + τ 2ω2
0

)
cos(ω0|t |) +

(
1 − 3τ 2ω2

0

)
sin(ω0|t |)

]
≡ h2

0l
2m2

x

16

ω0

τ
exp

(
−|t |

τ

)
[A cos(ω0|t |) + B sin(ω0|t |)] (A.7)

F±(0) = h2
0l

2m2
xω

2
0

4

[∫ +∞

−∞
δ2(t) dt − 2

τ

]
. (A.8)
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Using the definition of delta function and for ωc → ∞ [10], we get

2πδ(t) =
∫ ∞

−∞
ejωt dω

∫ +∞

−∞
δ2(t) dt =

∫ +∞

−∞

sin2(ωct/2)

(πt)2
dt = ωc

2π
≡ 1

ε
. (A.9)

Now, let ε → 0

g(0) =
∫ +∞

−∞
gδ(t ′)F±(t ′) dt ′ =

∫ ε

0,ε→0
gδ(t ′)F±(t ′) dt ′ + 2

∫ +∞

ε→0
gδ(t ′)F±(t ′) dt ′

= g0(0) + g±(0). (A.10)

We compute the two terms separately as shown below:

g0(0) = h2
0l

2m2
xω

2
0

4

∫ ε

0,ε→0
gδ(t ′)

[
1

ε
− 2

τ

]
dt ′ = −h2

0ω
2
0l

2

8Sn

[
ω2

+

b′ +
ω2

−
d ′

]
(A.11)

g±(0) = 2
∫ +∞

0
gδ

+(t
′)F±(t ′) dt ′ + 2

∫ +∞

0
gδ

−(t ′)F±(t ′) dt ′ ≡ g+(0) + g−(0). (A.12)

Solving the integrals with tan(γ ) = B/A, we rewrite g±(0) as follows:

g+(0) = − h2
0l

2ω0

32Snω+b′

[
(1 − b′τ) cos[γ + θ ] + τ(ω0 − ω+) sin[γ + θ ]

(1 − b′τ)2 + τ 2(ω+ − ω0)2

+
(1 − b′τ) cos[γ − θ ] + τ(ω0 + ω+) sin[γ − θ ]

(1 − b′τ)2 + τ 2(ω+ + ω0)2

]

g−(0) = − h2
0l

2ω0

32Snω−d ′

[
(1 − d ′τ) cos[γ + ξ ] + τ(ω0 − ω−) sin[γ + ξ ]

(1 − d ′τ)2 + τ 2(ω− − ω0)2

+
(1 − d ′τ) cos[γ − ξ ] + τ(ω0 + ω−) sin[γ − ξ ]

(1 − d ′τ)2 + τ 2(ω− + ω0)2

]
. (A.13)

We express equations (A.11), (A.13) in terms of the poles pi as follows:

g0(0) = −h2
0ω

2
0l

2

2Sn

�
[

p3
1

ω+
(
p2

1 − p2
3

)(
p2

1 − p2
4

) +
p3

3

ω−
(
p2

3 − p2
1

)(
p2

3 − p2
2

)
]

(A.14)

g+(0) = − h2
0l

2ω0τ

32Snω+b′ �
[

p3
1(

p2
1 − p2

3

)(
p2

1 − p2
4

) (
p3

6

p∗
2 + p∗

8

− p3
8

p∗
2 + p∗

6

)]
(A.15)

g−(0) = − h2
0l

2ω0τ

32Snω−d ′ �
[

p3
3(

p2
3 − p2

1

)(
p2

3 − p2
2

) (
p3

6

p∗
4 + p∗

8

− p3
8

p∗
4 + p∗

6

)]
. (A.16)

Adding equations (A.14), (A.15), (A.16), after some algebraic manipulations, one obtains
g(0) as given in equation (56) in section 5.4.

Appendix B. Noise variance of the filtered data

The noise at the input of the matched filter is zero mean, Gaussian process with spectrum
St (ω) defined as

E(N(jω)N∗(jω′)) ≡ δ(ω − ω′)St (ω). (B.1)
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The variance of the corresponding noise at the output of the filter is

Var(〈n, q〉) = E{〈n, q〉2} − (E{〈n, q〉})2 (B.2)

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
E{N(jω)N∗(jω′)}Q∗(jω)Q(jω′) exp(j(ω′ − ω)t) dω dω′

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
δ(ω − ω′)St (ω)Q∗(jω)Q(jω′) exp(jωt) exp(jω′t) dω dω′

= 1

2π

∫ ∞

−∞
St (ω)|Q(jω)|2dω

= Nu. (B.3)
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