
AstroGrid-D

Deliverable D6.4

Prototype Implementation of grid-enabled
Monitoring Methods – Documentation and

Test Report1

Deliverable D6.4

Authors Thomas Radke (AEI)

Editors Thomas Radke (AEI)

Date 5 March 2007

Document Version 1.0.0

Current Version 1.0.0

Previous Versions

A: Status of this Document

Officially approved document for project deliverable D6.4.

B: Reference to project plan

This deliverable document refers to the task TA VI-III ”Implementierung gridfähiger Zugriffsmeth-
oden für Monitoring” and milestone M18 of work package WP-6 in the project plan.

1This work is part of the D-Grid initiative and is funded by the German Federal Ministry of Education and Research
(BMBF).

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

C: Abstract

This document describes the prototype implementation of grid-enabled monitoring methods in
selected AstroGrid-D applications, available as of month 18 into the project (February 2007).

D: Changes History

Version Date Name Brief summary
0.0.1 2 February 2007 Thomas Radke Working Draft Creation

0.0.2 14 February 2007 Thomas Radke Description of Cactus Monitoring/Steering Thorns

0.0.3 15 February 2007 Thomas Radke Description of Cactus Metadata Management in the Portal

0.0.4 20 February 2007 Thomas Radke Introduction and Summary
Finalised Version of Internal Working Draft

0.1.0 23 February 2007 Thomas Radke Announcement as Official Working Draft

1.0.0 5 March 2007 Thomas Radke Published as official AstroGrid Deliverable Document

AstroGrid-D - 2 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

E:

Contents

1 Introduction 4

2 Implementation of integrated grid-enabled Monitoring Methods as Cactus Thorns 5

2.1 Cactus Thorn Formaline . 5

2.1.1 Implemented Functionality . 5

2.1.2 Parameters of Thorn Formaline . 6

2.2 Cactus Thorn Publish . 7

2.2.1 Implemented Functionality . 7

2.2.2 Parameters of Thorn Publish . 8

2.3 Cactus Thorn HTTPS . 8

3 Cactus Metadata Management in the Portal 10

3.1 Cactus Integration Tests Module . 10

3.2 CactusRDF Portlet . 11

4 Code Dissemination 13

4.1 Cactus Thorn Formaline . 13

4.2 Cactus Thorns Publish and HTTPS . 13

4.3 Cactus Integration Tests . 13

4.4 Cactus RDF Portlet . 14

5 Test Report Summary 15

References 16

Appendix 17

Appendix A: Thorn Publish API Function Descriptions 17

AstroGrid-D - 3 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

1 Introduction

Following the design of the basic structure of grid-enabled monitoring & steering methods for
AstroGrid applications, the next task in the project workplan for working group WG-VI ”Grid
Job Monitoring & Steering” was to implement a first prototype for selected AstroGrid use cases.
Although the initial version of such methods so far provides only limited functionality, they can
already be used to monitor simple Grid jobs running on a small subset of resources available in the
AstroGrid testbed.

This deliverable document describes the grid-enabled monitoring and steering methods implemented
for the AstroGrid use case Cactus [1], a simulation framework used in gravitational wave analysis at
AEI to numerically solve Einstein’s equations of general relativity. Their basic design was defined
in working group WG-VI’s architecture design document [2] and has also been presented at various
AstroGrid project meetings [3, 4, 5].

The methods described in this document have been specifically developed for and are closely
integrated into the Cactus framework to monitor and steer Cactus simulations, however their design
should be generic and flexible enough to be incorporated in other AstroGrid use cases as well.
Two important preconditions for this are the availability of sufficient user documentation for the
software modules and the interfaces implemented, together with free public access to the code for
other software developers. The issue of code documentation is addressed in sections 2 and 3 in
this deliverable document. Section 4 describes how the implemented prototypes are disseminated
within AstroGrid, and how other software developers can access them. Finally, section 5 gives
a short summary on practical experiences gathered in the process of developing and testing the
software prototypes of working group WG-VI and related services.

AstroGrid-D - 4 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

2 Implementation of integrated grid-enabled Monitoring Methods
as Cactus Thorns

For the Cactus use case (described in full detail in the AstroGrid use case survey[1]), the work within
AstroGrid’s working group VI focused both on the improvement and grid-enabling of existing Cactus
monitoring/steering methods as well as on the concrete design and prototype implementation of new
code modules providing new features for Cactus users. All modules follow the Cactus philosophy
of encapsulating the implemented functionality in the form of Cactus thorns and can therefore be
integrated seemlessly into the Cactus Computational Toolkit.

A considerable amount of work was also spent in implementing a specific Cactus application use
case scenario for monitoring the results of Cactus Integration Tests in a Cactus User Portal, based
on other AstroGrid technology developed in work package WP-II (an AstroGrid metadata infor-
mation service) and work package WP-VII (a web portal based on the standard GridSphere portal
framework).

2.1 Cactus Thorn Formaline

Formaline was originally written by Erik Schnetter as a Cactus thorn to send meta information
about a Cactus simulation run to a server, so that it is kept there forever (excerpt from the original
documentation). Within AstroGrid, thorn Formaline was specifically adopted to make use of
the services developed in work package WP-II ”Provision and Management of Metadata” and work
package VII ”User Interfaces and APIs”.

Formaline is now able to collect Cactus metadata, generate an RDF representation for it, and
send it to one or more AstroGrid information services. While this information is then immediately
available to users and can be accessed in order to monitor the status of their running simulations,
the idea beyond this approach is to store metadata about all Cactus simulations of all users, no
matter whether their simulations are running on a local machine or within a Grid context; the
metadata will be stored and archived in the external information service and can be accessed and
further processed at any later time, independent of the actual simulation and the environment it
ran in.

Access to the metadata in various ways, eg. as an overall summary status list of all simulations or
as user-defined queries for specific metadata information, is possible through a Cactus-specific user
portal as developed together with work package VII (see section 3.2 on page 11 for details).

2.1.1 Implemented Functionality

Formaline’s existing implementation was extended by several C functions to (1) query and collect
specific metadata about the running simulation (using the Cactus thorn programming API[8]), to
(2) translate this metadata into a dynamically generated temporary RDF/XML document, and to
(3) establish a TCP/IP connection to an external information service and upload the RDF/XML
document (using the AstroGrid information service programming interface).

Metadata information collected by thorn Formaline includes:

AstroGrid-D - 5 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

• the exact start date/time of the simulation

• the number of processors used by this simulation, and the host where the run was started on
(processor 0 for a parallel run)

• the user name of the job’s owner

• the name, location, and code release of the Cactus executable

• the name and location of the parameter file

• the current working directory and the location where Cactus output data will be written to

• a full listing of all parameters (names and typed values) set in the parameter file for this
simulation

This information is regarded as static metadata and therefore sent once at simulation startup to
an external AstroGrid information service.

At periodic intervals during the simulation’s runtime, thorn Formaline can also send dynamic
metadata such as the current iteration number, the current physical simulation time or the termi-
nation condition and time in case the run is about to finish.

In addition to gathering and uploading the above-mentioned predefined simulation metadata, thorn
Formaline also supports the Publish API (as described in section 2.2). Formaline can register
callback functions to process metadata defined and published by other code modules activated in
the same Cactus simulation.

2.1.2 Parameters of Thorn Formaline

The functionality of thorn Formaline can be controlled via parameter settings in a simulation’s
parameter file. Some of these parameters have additional logic built-in so that they can also be
steered at runtime.

boolean Formaline::send as rdf
whether to send Cactus metadata from this simulation to an external information service in
RDF format

string Formaline::rdf hostname[5]
array parameter to specify the hostname for one or more (up to 5 different) external infor-
mation services

integer Formaline::rdf port[5]
array parameter to specify the port number to connect to for one or more (up to 5 different)
external information services identified via their hostname(s)

boolean Formaline::use relay host
whether to use relaying to establish a TCP network connection between the simulation and
an external information service (necessary when running on an internal compute node with
no direct access to the outside)

AstroGrid-D - 6 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

string Formaline::relay host
the name of the relay host if relaying is used

integer Formaline::timeout
timeout (in seconds) for sending meta information to an external information server

integer Formaline::update interval
the update interval (in seconds) for publishing dynamic simulation metadata

integer Formaline::publish level
the importance level for metadata to be published via the Publish API

While the connection to an external information service is by default established directly, it can
be relayed through a proxy host. This is usually necessary for the case when the simulation is
running on a cluster or supercomputer where the compute nodes are hidden in an internal/VPN
network and therefore cannot talk to outside services directly (as described in [7, 2]). Relaying is
implemented in thorn Formaline as a function which – if activated by the user via a parameter
file setting (see above) – starts a remote shell on the cluster’s headnode and relays the TCP/IP
communication through a proxy process there.

2.2 Cactus Thorn Publish

Thorn Publish was developed in AstroGrid’s work package WP-VI, and in close collaboration with
work package WP-II, as a new thorn for the Cactus computational framework. It provides generic
functionality to announce and publish user-defined information about running Cactus simulations.
User functions are defined for publishing arbitrary metadata in a structured format. Callback
functions can be registered to publish the announced metadata in such a way that it is easily
retrievable at a later time through external information services.

2.2.1 Implemented Functionality

Thorn Publish uses the general concept of metadata – information about data – in order to define a
flexible way for describing arbitrary user-defined runtime information about a simulation. The most
basic entity of metadata is described as a key/value pair; a scalar value of defined datatype holding
the actual information contents, and an associated key as a character string uniquely identifying
that value. Based on this basic scalar value entity, it is also possible to construct a structured
metadata entity by supplying a Cactus table of key/value pairs as its value. Optionally, the Cactus
Publish infrastructure allows each metadata entry to be tagged with additional information, eg. a
name identifying the source of the published metadata, the current iteration number and physical
time or a date/time stamp to place the metadata publication in a runtime context.

It should be noted here that metadata entities are – in contrast to actual data (such as output
files) generated during the simulation – assumed to be small in their overall size, making it possible
to transparently process and publish them without (much) user-visible impact on the runtime
performance of the ongoing simulation.

Thorn Publish provides two APIs, each one consisting of a set of aliased functions:

AstroGrid-D - 7 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

1. a user API to publish user-defined metadata

Application thorns can use this set of aliased functions to publish user-defined metadata
describing specific runtime information about the ongoing simulation.

Metadata can be published as an entity of a single scalar value with a generic CCTK2 datatype,
or as compound entity of multiple such scalar values, defined in a key/value table.

2. a registry API to register/unregister Publish callback functions

Infrastructure thorns can provide callback functions for the Publish user API and register
them with thorn Publish at simulation startup. This thorn will then invoke all registered
callbacks each time an application thorn calls any of the Publish user API functions.

Publish callback functions are the actual worker routines behind the Publish API: they con-
sume the published user-defined metadata and process/publish them in various ways.

All functions of both the Publish user and registry API are described in detail in appendix A.

2.2.2 Parameters of Thorn Publish

The functionality of thorn Publish can be controlled via parameter settings in a simulation’s
parameter file.

So far there is only a single integer parameter:

integer Publish::publish every
How often to publish some example data using the Publish API

Setting this integer parameter to a positive value will activate the self-test of thorn Publish where
the iteration number and the current physical time of the ongoing simulation are published to all
registered callback listeners.

2.3 Cactus Thorn HTTPS

The Cactus Computational Toolkit includes a Cactus thorn named HTTPD, written by Gabrielle
Allen, Tom Goodale and Thomas Radke, which implements a web server integrated into a Cactus
simulation. This web server provides full-fledged functionality for application-specific monitoring
and steering capabilities. It uses the HTTP protocol for communication and can therefore be
contacted from any standard web browser[6].

Within AstroGrid, a new thorn HTTPS was developed on top of the existing thorn HTTPD.
In its first prototype it provides the same Cactus-specific monitoring and steering functionality as
HTTPD, but was enhanced to using HTTPS (HTTP over OpenSSL TCP/IP socket connections)
as the standard network protocol for client-server communication. This gives Cactus users a secure
method to monitor and steer their Cactus simulations online, which was one of the requirements
described in [7]. On the simulation startup page they can now log into the running simulation using
a self-defined password which will be prompted for by the web browser and automatically transfered

2Cactus Computation ToolKit

AstroGrid-D - 8 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

to the web server for user authentication. After successful authentication, all further communication
between the user (through the web browser) and the simulation – with thorn HTTPS acting as
its web server frontend – will be encrypted using standard OpenSSL functionality, just like in other
web and Grid services.

AstroGrid-D - 9 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

3 Cactus Metadata Management in the Portal

The Cactus Computational Toolkit comes with a built-in mechanism to test individual parts of the
code and verify whether they are still functional; this mechanism – running a Cactus simulation
with a known input (the testsuite parameter file) and known output (the expected data files and
their contents) – is called a Cactus testsuite.

Within AstroGrid a specific Cactus use case scenario was developed to automate the procedure of
regular Cactus tests and allow users to conveniently monitor the status and history of such test
simulations. This scenario was realised using AstroGrid technology: (1) the information service
developed in work package WP-II for storing and managing application-specific metadata, and (2)
the GridSphere portal framework provided by work package WP-VII to build a Cactus User Portal
as a standardised web-based user interface to access and query application-specific metadata. In
work package WP-VI a Cactus Integration Tests module for generating the metadata and a
CactusRDF portlet for presenting the metadata were deveoped. These two software components
are described in the following.

3.1 Cactus Integration Tests Module

In order to automate the process of testing individual Cactus code modules, a software module
wrapping the Cactus testsuite mechanism was developed. This Cactus Integration Tests
module includes the following interdependent unit tests which are executed in the given order:

1. check out the Cactus flesh and all thorns listed in the given thornlist

2. create a Cactus configuration with the given configuration options

3. build the Cactus executable

4. build all utility programs associated with thorns

5. run all available Cactus testsuites

After running all unit tests, the module processes the corresponding logfiles, extracts a summary
of test results, and generates an RDF/XML document which represents them equivalently in a
machine-readable form. For the translation of human-readable textual metadata into RDF/XML,
an RDF schema was developed describing the following items of information:

• a descriptive name identifying this test

• the exact date/time of the test

• the hostname of the machine the test was run, plus the total number of processors used

• the login name of the user who ran the test

• the configuration options and thornlist used to build a Cactus executable

• the status results (succeeded/failed) and logfiles for each individual unit test:

AstroGrid-D - 10 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

• for the testsuites, also the names and a summary of passed/failed tests

Finally, the RDF/XML document is uploaded by the Cactus Integration Tests module to an
external AstroGrid information service to store the integration test results.

3.2 CactusRDF Portlet

Closely related to the generation of Cactus metadata on the application side is its presentation
through a human-machine interface in the form of a web-based Cactus user portal. Such a portal,
based on the GridSphere portal framework, has been deployed by work package WP-VII. In work
group WP-VI the necessary Cactus metadata management portlet was developed which provides
functionality to query Cactus integration test results from an external AstroGrid information service
and present them in a flexible and user-friendly format. Its implementation follows the requirements
specification on a Cactus user portal which have been described in [11]. Since it uses AstroGrid
technology (the Cactus integration test metadata RDF scheme and the RDF/SPARQL API to
interact with an external information service), the portlet was named CactusRDF.

Figure 1: Login Page of the Cactus User Portal

When logged in, the user can then switch to the Cactus metadata page provided by the Cactus-
RDF portlet and display Cactus integration test results in three different ways:

AstroGrid-D - 11 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

Version 1.0 of the Cactus User Portal, which was released as part of the D6.4 deliverable of work
package VI, includes a predefined guest user account by which Cactus users can simply login with
guest as user name and password. A snapshot of the Cactus User Portal login page can be seen
in figure 1.

1. a summary view of all most recent integration tests from all test machines, showing the status
of all unit tests

2. a detailed view of Cactus testsuites for an individual integration test, showing the status of
all testsuites

3. a history view for an individual Cactus testsuite, queried over all available integration tests
results on all test machines

For the queries, the user can also specify parameters to restrict size of the resulting metadata shown
in the portal by binding the result set eg. to an individual Cactus integration test (identified by
its name), to the user who ran the test (identified by the user’s login name), or to a specific test
machine where the test was run (identified by the hostname).

The Cactus User Portal is available on https://portal.cactuscode.org. Also available is a
Numerical Relativity Portal with personalised user access for physicists of the Numerical Relativity
community; this portal, online under https://portal.aei.mpg.de, provides Cactus Integration
Test results for the majority of non-public Cactus thorns which are used by the numerical relativists
for their daily Cactus production runs.

AstroGrid-D - 12 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

4 Code Dissemination

4.1 Cactus Thorn Formaline

The Cactus thorn Formaline is publicly downloadable via anonymous CVS from

export CVSROOT=:pserver:cvs_anon@cvs.aei.mpg.de:/numrelcvs # for bash
setenv CVSROOT :pserver:cvs_anon@cvs.aei.mpg.de:/numrelcvs # for (t)csh

cvs login # password is ’anon’
cvs checkout AEIThorns/Formaline

Documentation for this thorn is contained in the CVS source module in the toplevel directory as a
REAME file.

4.2 Cactus Thorns Publish and HTTPS

The Cactus thorns Publish and HTTPS are publicly downloadable via anonymous CVS from

export CVSROOT=:pserver:cvs_anon@cvs.aei.mpg.de:/eScienceCVS # for bash
setenv CVSROOT :pserver:cvs_anon@cvs.aei.mpg.de:/eScienceCVS # for (t)csh

cvs login # password is ’anon’
cvs checkout AstroGrid/Cactus/Thorns/HTTPS
cvs checkout AstroGrid/Cactus/Thorns/Publish

The Publish thorn also contains the RDF schema describing Cactus metadata defined by this
thorn and the user-defined metadata generated throughtthe Publish API.

Documentation for both thorns is contained in the CVS source modules in a subdirectory doc/;
it comes in LATEXformat so that it can be easily integrated in the standard Cactus thornguide
documentation.

4.3 Cactus Integration Tests

The source code for the Cactus Integration Tests is publicly downloadable via anonymous CVS
from

export CVSROOT=:pserver:cvs_anon@cvs.aei.mpg.de:/eScienceCVS # for bash
setenv CVSROOT :pserver:cvs_anon@cvs.aei.mpg.de:/eScienceCVS # for (t)csh

cvs login # password is ’anon’
cvs checkout AstroGrid/Cactus/IntegrationTests

AstroGrid-D - 13 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

This CVS module contains both the RDF metadata schema used for Cactus integration tests, as
well as the perl script to run the tests on a given machine, generate the RDF metadata, and send
them off to the AstroGrid metadata information service.

4.4 Cactus RDF Portlet

The Cactus RDF portlet for GridSphere is available for AstroGrid users via the AstroGrid SVN:

svn checkout svn://svn.gac-grid.org/software/gridsphere/cactusrdf

AstroGrid-D - 14 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

5 Test Report Summary

The Cactus simulation monitoring thorns described in section 2 have been thoroughly tested so far
on cluster production machines of the Numerical Relativity group at AEI and their collaborators at
the Center for Computation and Technology (CCT) at Louisiana State University, Baton Rouge,
USA. The extensions to the existing webserver thorn HTTPD were made available to the Cactus
developers community in October 2006, and have been used since then by several Cactus users
in test simulation runs. The code was also tested by the AEI eScience group on the SGI Altix
machine at Leibniz Rechenzentrum (LRZ) München and on an IBM SP5 supercomputing facility
at the MPG Rechenzentrum Garching (RZG) both of which are part of the AstroGrid computing
resource testbed.

Since month 17 into the AstroGrid project, the Cactus Integration Tests module and the
CactusRDF portlet are being used as production services in two user portals based on GridSphere:
the publicly available Cactus User Portal [9] and the Numerical Relativity Portal [10] which is
restricted to physicists in the NumRel community at AEI and CCT. Both portals are running on
a production server machine at AEI (portal.aei.mpg.de) and are managed by AEI’s eScience
group. Integration tests have been running since November 2006 as nightly cron jobs on 4 different
supercomputers and HPC clusters at AEI and CCT. The results are uploaded to an AstoGrid
information service instance and accumulated there. The information service instance was deployed
on a Grid server machine at AEI (buran.aei.mpg.de), along with proper firewall setup and periodic
database backups.

For the Cactus Metadata Management services listed above, a prototype implementation of the
AstroGrid information service in its versions 0.0.1 and 0.0.3 were used and heavily tested in the
process of making them production-ready. While most of the required functionality to manage
Cactus metadata has already been implemented in these early versions, practical experiences using
the AstroGrid information service revealed certain performance problems when querying increasing
amounts of metadata (as being produced regularly during nightly Cactus integration tests). Poten-
tial reasons for these inefficiency problems are to be found in the implementation of the internal
query engine of the information service and in the formulation of SPARQL queries to query meta-
data from individual contexts. Together with working group WG-II, members of working group
WG-VI will continue to work on these issues and provide improved an version in their next code
releases.

AstroGrid-D - 15 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

F: References / Bibliography

References

[1] AstroGrid-D Use Case inquiry. AstroGrid public webpage;
http://www.gac-grid.org/project-documents/UseCases.html

[2] Thomas Radke: Architecture of generic grid-enabled Monitoring & Steering Methods in
AstroGrid-D Applications. Architecture Specification, Work Group VI deliverable document
D6.3, AstroGrid project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_3.pdf

[3] Thomas Radke: Status WG6 and Informationservice for Cactus. Presentation at the 4th
AstroGrid Project Meeting, 24./25. July 2006, ZAH Heidelberg;
http://www.gac-grid.org/project-overview/events-meetings/meetings/
meetingzib-1/wg6-status-report.pdf

[4] Thomas Radke: Cactus Metadata Management. Presentation at the 5th AstroGrid Project
Meeting, 14./15. November 2006, MPE Garching;
http://www.gac-grid.org/project-overview/events-meetings/meetings/
meeting-MPE/cactus-metadata-management.pdf

[5] Thomas Radke: Status Report WP-VI: Grid Monitoring and Steering. Presentation at the 6th
AstroGrid Project Meeting, 30. January 2007, AEI Golm;
http://www.gac-grid.org/project-overview/events-meetings/meetings/
AEIMeeting/Presentations/wg6-status-report.pdf

[6] Thomas Radke: Existing Monitoring & Steering Functionality in AstroGrid-D Applications.
Comparison Study, Work Group VI deliverable document D6.1, AstroGrid project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_1.pdf

[7] Thomas Radke: Requirements on grid-enabled Monitoring & Steering Methods in AstroGrid-D
Applications. Requirements Specification, Work Group VI deliverable document D6.2, Astro-
Grid project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_2.pdf

[8] Cactus Reference Guide Manual describing the Cactus flesh and thorn programming interfaces.
http://www.cactuscode.org/old/Guides/Stable/ReferenceManual/
ReferenceManualStable.pdf

[9] Cactus User Portal A public user portal for the Cactus community.
https://portal.cactuscode.org

[10] Numerical Relativity Portal A portal for members of the Numerical Relativity community.
https://portal.aei.mpg.de

[11] Oliver Wehrens: Requirement analysis for specific components and services of the Astro com-
munity for the GACG portal. Work Group VII deliverable document D7.2, AstroGrid project;
http://www.gac-grid.org/project-documents/deliverables/wp7/M2.pdf

AstroGrid-D - 16 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

G: Appendix

Appendix A: Thorn Publish API Function Descriptions

AstroGrid-D - 17 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

Publish{Boolean,Int,Real,String,Table}

Publish user API functions to publish user-defined information as an entity of either a single scalar
value of a given datatype, or a table of such scalar values

Synopsis

#include "Publish.h"

CCTK_INT istatus = PublishBoolean (CCTK_POINTER_TO_CONST cctkGH,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name)

CCTK_INT istatus = PublishInt (CCTK_POINTER_TO_CONST cctkGH,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name)

CCTK_INT istatus = PublishReal (CCTK_POINTER_TO_CONST cctkGH,
CCTK_INT level,
CCTK_REAL value,
CCTK_STRING key,
CCTK_STRING name)

CCTK_INT istatus = PublishString (CCTK_POINTER_TO_CONST cctkGH,
CCTK_INT level,
CCTK_STRING value,
CCTK_STRING key,
CCTK_STRING name)

CCTK_INT istatus = PublishTable (CCTK_POINTER_TO_CONST cctkGH,
CCTK_INT level,
CCTK_INT table,
CCTK_STRING key,
CCTK_STRING name)

Parameters

cctkGH optional pointer to a cGH structure, or NULL if not available

level the importance level for the entity to be published; this integer parameter should take as
its value one of the following preprocessor constants defined in the Publish.h header file:
PUBLISH LEVEL ERROR, PUBLISH LEVEL WARNING, PUBLISH LEVEL NOTICE, PUBLISH LEVEL INFO,
PUBLISH LEVEL DEBUG

value the value of the entity to be published; this is either a scalar value of type CCTK INT,
CCTK REAL, or CCTK STRING, or a key/value table of one or more scalar values of that
type (note that PublishBoolean() expects a CCTK INT typed value which is then

AstroGrid-D - 18 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

interpreted internally as a boolean (true or false)

key the case-sensitive key to associate with the entity to be published (must be passsed as
a pointer to a non-empty string)

name an optional case-sensitive identifier to be attached to the entity to be published (if passed
as a pointer to a non-empty string)

Result

istatus (≥ 0)
how often this entity was published by registered Publish callbacks

Errors

PUBLISH ERROR INVALID KEY the key argument is a NULL pointer or points to an empty
string

PUBLISH ERROR INVALID LEVEL the level argument is negative

Discussion

This set of Publish API functions can be used by application thorns to publish user-
defined metadata: either as a single entity of a scalar value of one of Cactus’s generic
datatypes CCTK INT, CCKT REAL, or CCTK STRING; or as a compound entity of multiple
such scalar values, defined in a key/value table. For scalar entities it is also possible to
publish a boolean value (true or false); since there doesn’t exist a corresponding CCTK
datatype for that in Cactus, such a value must be passed as a CCTK INT (non-zero or
zero).

Each published entity’s value gets associated with it a case-sensitive string key which
can be used as a unique identifier when querying for specific metadata. Additionally,
an optional case-sensitive string name can be given which is then also attached to the
published entity.

The cctkGH pointer argument is optional; when available in the calling routine it should
be passed through the Publish API as a hint to the registered publish callback functions.
If not available, a NULL pointer value should be passed instead.

The level positive integer argument may be used by registered Publish callback func-
tions to decide whether this entity should be published or not. Its value may be set
to one of the following preprocessor integer constants defined in the Publish.h header
file:

PUBLISH LEVEL ERROR (= 0) for error conditions
PUBLISH LEVEL WARNING (= 1) for warning conditions
PUBLISH LEVEL NOTICE (= 2) for normal, but important, conditions
PUBLISH LEVEL INFO (= 3) for normal, but less important, conditions
PUBLISH LEVEL DEBUG (= 4) for debugging purposes

Note that these predefined constants are similar, but not identical to, the CCTK VWarn()
warning levels. The total number of registered callbacks which did publish the given
entity is returned as result of the Publish API functions. It can be zero if all registered
callbacks decided (based on the level argument) not to publish the entity, or if no
callbacks had been registered in the first place, eg. if no thorn providing Publish callbacks
was activated, or – as is often the case in multiprocessor runs – callbacks were registered
only on a single processor (eg. on processor 0).

AstroGrid-D - 19 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

See Also

Publish{Boolean,Int,Real,String,Table} Register()
Register Publish API callback functions.

Publish{Boolean,Int,Real,String,Table} Unregister()
Unregister Publish API callback functions.

Examples

C++ #include <iostream>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "util_Table.h"

#include "Publish.h"

// we assume that the current routine uses the DECLARE_CCTK_ARGUMENTS macro
// to get access to cGH information
if (CCTK_IsFunctionAliased ("PublishTable"))
{
std::ostringsteam buffer;
buffer << "cctk_iteration = " << cctk_iteration << std::endl

<< "cctk_time = " << cctk_time << std::endl;
const int table = Util_TableCreateFromString (buffer.str().c_str());
PublishTable (NULL, PUBLISH_LEVEL_DEBUG, table,

"Runtime Info", CCTK_THORNSTRING);
Util_TableDestroy (table);

}

Fortran #include "cctk.h"

#include "Publish.h"

integer istatus
CCTK_POINTER cctkGH

call CCTK_IsFunctionAliased (istatus, "PublishString")
if (istatus .ne. 0) then
cctkGH = CCTK_NullPointer ()
call PublishString (cctkGH, PUBLISH_LEVEL_NOTICE, &

"Horizon found", "event", CCTK_THORNSTRING)
end if

AstroGrid-D - 20 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

Publish{Boolean,Int,Real,String,Table} Register

Publish registry API: Register callback functions for the Publish API

Synopsis

CCTK_INT istatus =
PublishBoolean_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name),

CCTK_POINTER cb_data,
CCTK_STRING name)

CCTK_INT istatus =
PublishInt_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name),

CCTK_POINTER cb_data,
CCTK_STRING name)

CCTK_INT istatus =
PublishReal_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_REAL value,
CCTK_STRING key,
CCTK_STRING name),

CCTK_POINTER cb_data,
CCTK_STRING name)

CCTK_INT istatus =
PublishString_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_STRING value,
CCTK_STRING key,
CCTK_STRING name),

CCTK_POINTER cb_data,
CCTK_STRING name)

CCTK_INT istatus =
PublishTable_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

AstroGrid-D - 21 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name),

CCTK_POINTER cb_data,
CCTK_STRING name)

Parameters

cb the function pointer of the callback function be registered

cb data an optional user-defined data pointer to associate with the callback function to be
registered (may be given as NULL pointer)

name a case-sensitive non-empty string uniquely identifying the callback function to be regis-
tered

Result

istatus All register functions return 0 (zero) for success, or a negative integer value in case of
an error.

Errors

PUBLISH ERROR INVALID CALLBACK the cb argument is a NULL pointer

PUBLISH ERROR INVALID CALLBACK NAME
the name argument is a NULL pointer or points to an empty
string

PUBLISH ERROR CALLBACK ALREADY REGISTERED
a callback under the same name has already been registered

Discussion

Before application thorns can make practical use of the Publish API (as described on
pages 5ff), publish callback functions must be registered; such functions will receive the
information to be published and then do the actual work.

The Publish registry API provides a separate function for registering a callback to han-
dle each of the supported scalar datatypes and for key/value tables. Each callback is
registered under a unique name which distinguishes it from other callbacks of the same
type. In order to unregister a callback, that name must be given as unique identifier.

Publish callbacks get passed as function arguments the information from the application
routine invoking the Publish API: the value to be published, either as single scalar value
entity or as a compound entity defined by a key/value table; a case-sensitive key to
associate with that entity; an optional case-sensitive name to be attached to the entity;
and an integer value to specify the importance level for the entity to be published).
When available in the calling routine, a pointer to the current grid hierarchy structure
should be passed by the user in the first argument (of type CCTK POINTER TO CONST as
a hint to the Publish callback function. Registered callback functions must not rely on
the presence of such a hint provided by the user – if a NULL pointer value is passed
instead, the callback should gracefully deal with this case (ie. not treat it as an error).
Additionally, a CCTK POINTER argument will be passed to each registered callback. This

AstroGrid-D - 22 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

argument is defined at registration time by the callback provider who can pass here
a pointer to some user-defined data structure, to be used within the Publish callback
function.

Preferably a register operation should be scheduled early in the process of simulation
startup (eg. at STARTUP after Driver Startup).

See Also

Publish{Boolean,Int,Real,String,Table}()
Publish API functions.

Publish{Boolean,Int,Real,String,Table} Unregister()
Unregister Publish API callback functions.

Examples

C #include <stdio.h>
#include <stdlib.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

/* the Publish logfile is open when registering callbacks */
static FILE* logfile = NULL;

/* define the Publish callback somewhere in your code */
static CCTK_INT PublishInt_ToStdout (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,
CCTK_INT level,
CCTK_INT value,
CCTK_STRING key,
CCTK_STRING name)

char* datatime = Util_CurrentDateTime ();
fprintf (logfile, "%s", datetime);
free (datetime);
if (cctkGH)
{

fprintf (logfile, "[it=%d, time=%g]", cctkGH->cctk_iteration, cctkGH->cctk_time);
}
fprintf (logfile, ": Publishing integer value %d with key ’%s’\n", value, key);
return (1);

}

/* this routine should be scheduled at simulation startup, eg. at CCTK_WRAGH */
void PublishToStdout_RegisterCallback (CCTK_ARGUMENTS)
{

DECLARE_CCTK_PARAMETERS;

if (CCTK_IsFunctionAliased ("PublishInt_Register"))

AstroGrid-D - 23 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

{
/* register only on processor 0 */
if (CCTK_MyProc (cctkGH) == 0)
{
/* the logfilename parameter specifies the name for the Publish logfile */
logfile = fopen (logfilename, "w");
if (logfile)
{

PublishInt_Register (PublishInt_ToStdout, NULL, "Publish To Stdout");
}

}
}

}

Fortran Since Publish callback functions have to process CCTK POINTER, CCTK POINTER TO CONST
and CCTK STRING arguments, it is unlikely that someone will code them in the Fortran
language. Therefore no Fortran code example is given here.

AstroGrid-D - 24 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

Publish{Boolean,Int,Real,String,Table} Unregister

Publish registry API: Unregister callback functions for the Publish API

Synopsis

CCTK_INT istatus = PublishBoolean_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishInt_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishReal_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishString_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishTable_Unregister (CCTK_STRING name)

Parameters

name a case-sensitive non-empty string uniquely identifying the callback to be unregistered

Result

istatus All unregister functions return 0 (zero) for success, or a negative value in case of an
error.

Errors

PUBLISH ERROR INVALID CALLBACK NAME
the name argument is a NULL pointer or points to an empty
string

PUBLISH ERROR CALLBACK NOT REGISTERED
no callback was registered under the given name

Discussion

Registered callback functions may need to be unregistered in order to safely shut down
any underlying Publish services (eg. flush/close an open logfile or database, close the
connection to external metadata information storage or publishing services such as a
portal).

Preferably an unregister operation should be scheduled late in the process of simulation
termination (eg. at TERMINATE before Driver Terminate).

See Also

Publish{Boolean,Int,Real,String,Table}()
Publish API functions.

Publish{Boolean,Int,Real,String,Table} Register()
Register Publish API callback functions.

Examples

C #include "cctk.h"

if (CCTK_IsFunctionAliased ("PublishTable_Unregister"))

AstroGrid-D - 25 - Deliverable D6.4

Prototype Implementation of Monitoring Methods – Documentation & Test Report Version 1.0.0

{
PublishTable_Unregister ("Publish To Stdout");

}

Fortran #include "cctk.h"

integer istatus

call CCTK_IsFunctionAliased (istatus, "PublishReal_Unregister")
if (istatus .ne. 0) then
call PublishReal_Unregister ("Publish To Stdout")

end if

AstroGrid-D - 26 - Deliverable D6.4

