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Motivated by our attempt to understand the question of angular momentum of a relativistic rotating
source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr
metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by
means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as
the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular
momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then
further developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown
to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr
metric are also briefly discussed.
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I. INTRODUCTION

In general relativity, the angular momentum measured at
future null infinity (denoted by I�) of a relativistic rotating
source is an enigmatic notion (see for instance [1], chap-
ter 9). For a generic weakly asymptotically simple space-
time, the infinite dimensional supertranslation symmetries
at I� means that the definition of angular momentum
carried over from Minkowski space is not canonically
defined. The tidal force generated by the Weyl curvature
distorts an outgoing null hypersurface near I� in such a
way that the spherical cut at which the null hypersurface
intersects I� acquires nontrivial shear structure in the null
direction tangential to the hypersurface. This entails that,
in general, it is not always possible to find a family of
shearfree cuts at I� like that in a stationary spacetime and
we are forced to treat, subject to certain smoothness as-
sumption, all cuts including those with complicated shear
structures on equal footing. Further, unlike the energy of
gravitational radiation, it does not seem to make sense to
define a news function describing the angular momentum
carried away by gravitational radiation.

This long standing problem emerges naturally also in a
more pragmatic context when we try to understand the
gravitational waveform generated by a relativistic rotating
source near I�, mainly motivated by numerical considera-
tion (see for instance [2]). However, rather than following
the standard route of attempting to impose extra structure
on I� to single out preferred cuts [3,4], the generation of
waveform calls for a better understanding of how a mea-
sure of rotation (angular momentum), in some sense ap-
propriately defined, is encoded into the Bondi-Sachs
metric or its variants [5,6]. Underlying these coordinates
is the construction of a family of null hypersurfaces whose
intersections with I� generate the Bondi time coordinate.

As a preliminary step to seek further geometric insight
into the problem, the present work purports to construct
asymptotically, in the important example of a Kerr black
hole in which angular momentum is well defined, null
hypersurfaces whose intersections with I� generate good
cuts and try to see how angular momentum is encoded in
the geometry of the null hypersurfaces. The null hyper-
surfaces to be constructed here are different from those
considered by a number of authors [7–9]. We will make
further remarks concerning this point in the next section.

The outline of the present article may be described as
follows. In Sec. II, we will solve the eikonal equation for
the Kerr metric asymptotically near null infinity and then
go on to construct a family of null hypersurfaces intersect-
ing I�. A Newman-Penrose (NP) tetrad adapted to the null
hypersurfaces is then defined and used to study the geome-
try of the hypersurfaces as well as the asymptotic structure
of the Kerr metric near null infinity. In Sec. III, the Bondi-
Sachs form of the Kerr metric is worked out. The Newman-
Unti formalism will then be developed and the NP con-
stants for the Kerr metric will be calculated to be zero.
Possible physical implications of the vanishing of the NP
constants will also be briefly discussed. Throughout the
present work, the ��;�;�;�� signature will be adopted
for the spacetime metric and we follow the NP notations in
[10].

II. CHARACTERISTC STRUCTURE NEAR NULL
INFINITY

A. Eikonal equation

Let us start by looking at the explicit construction of a
null hypersurface in the Kerr metric. To this end, locally, it
is sufficient to seek a smooth, real valued function u such
that the eikonal equation
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 gabu;au;b � 0 (1)

is satisfied where gab is the contravariant form of the
spacetime metric. The most obvious solutions to the above
eikonal equation are obtained by means of separation of
variables ([11], see also [12], chapter 7), as that used in
integrating the geodesic equations. The detailed geometry
of these null hypersurfaces parametrized by a Carter con-
stant, in particular, the suspected singular behavior along
the symmetry axis, is still under investigation and remains
to be understood better. See [7,8] in this context when the
Carter constant takes on the specific value a2, where a has
its standard meaning in the Kerr metric.

In another work [9], Bondi-Sachs coordinates for the
Kerr metric is constructed using solution to the eikonal
equation obtained by Pretorious and Isarel [13]. The de-
tailed asymptotic geometry of the Bondi-Sachs coordinates
is yet to be analyzed. Further, the metric coefficients of the
Bondi-Sachs metric are given in terms of implicit functions
and make them difficult to implement numerically.

In the present work, we shall put forward a new con-
struction of a family of null hypersurfaces near I�, based
upon which Bondi-Sachs type coordinates may be con-
structed. One distinct feature of our construction is that the
intersections of these null hypersurfaces with I� generate
good cuts, the existence of which is characteristic of the
asymptotic structure of a stationary spacetime admitting
I�.

To begin with, let �t; r; �; ’� be the standard Boyer-
Lindquist coordinates of the Kerr metric. Consider first in
the flat space limit a light cone in Minkowski space de-
scribed in terms of the oblate spheroid coordinates. The
solution to the eikonal equation in this case is given by

 u � t�
���������������������������
r2 � a2sin2�

p
: (2)

Apparently this solution cannot be obtained by means of
the conventional method of separable of variables. In the
case of the Kerr metric, to seek a solution of (1) without
separation of variables and in the Minkowski space limit
degenerates into (2) turns out to be quite difficult.
However, for our purpose, it is sufficient to seek an asymp-
totic solution of (1) when r is sufficiently large.

To see the way ahead, we first look at a light cone in the
Schwarzschild metric described by

 u � t�
�
r� 2M ln

r� 2M
2M

�
: (3)

Asymptotically when r is sufficiently large, (3) becomes

 u � t�
�
r� 2M ln

r
2M
�

4M2

r
� � � � � � �

�
: (4)

The term t� r� 2M ln r
2M survives in the asymptotic limit

and this guides us to adopt the following ansatz for the
solution of u in (1) in the Kerr metric when r is sufficiently
large,

 u � t� r� 2M ln
r

2M
�
X1
k�1

fk
rk
: (5)

As we envisage the Bondi-Sachs type coordinates to be
constructed from the level sets of u are axisymmetric, the
functions fk, k � 1; 2 � � � in (5) are then necessarily func-
tions of � only and independent of ’.

The eikonal equation to be solved is given as

 r2

�
1�

2M
r
�
a2

r2

��
@u
@r

�
2
�

�
@u
@�

�
2

�
�r2 � a2�2

r2 � 2Mr� a2 � a
2sin2�: (6)

Substitute (5) into the eikonal equation above and solve
the eikonal equation order by order, we obtain

 u � t�
�
r� 2M ln

r
2M
�

4M2 � 1
2a

2sin2�

r

�
4M3 �Ma2

r2 �O�1=r3�

�
: (7)

Inserting (5) into the eikonal equation in (6) enables us to
solve fk recursively. The ansatz in (5) serves to determine
uniquely the lowest order terms f1 and f2. With f1 and f2

as initial conditions for the algebraic process of repeated
iterations of fk, k � 2, it may be checked that fk�1 is
determined uniquely by fr, r � 1; 2 � � � k. No freedom
like, for instance, the existence of an arbitrary, nonzero
constant is allowed in each order. In principle repeated
iterations of fk generate terms of any desirable order in the
asymptotic expansion. However, as it occurs quite fre-
quently in asymptotic expansion, the higher order terms
inevitably become more complicated with the increase in
order and no regular pattern seems to be noticeable.

For a light cone in Minkowski spacetime described in
terms of oblate spheroid coordinates, we have from (2) that
in the asymptotic limit r! 1,

 u � t�
�
r�

a2sin2�
2r

� � � � � � �

�
: (8)

This may also be obtained from (7) by taking the flat space
limitM ! 0, and thereby provides a self consistency check
on the validity of (7). Further, the flat space and
Schwarzschild limits of (7) suggest that the constant u
hypersurfaces constructed here are asymptotic parts of
light cones emanating from a timelike world line.

B. NP Tetrad and asymptotic structure near I�

To study further the geometry of the null hypersurfaces
constructed as well as the asymptotic structure of the Kerr
metric near future null infinity, it will be helpful to define
an NP tetrad adapted to the constant u null hypersurfaces.
The null hypersurfaces described in (7) are outgoing. The
dual ingoing null hypersurfaces are given as
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 v � t�
�
r� 2M ln

r
2M
�

4M2 � 1
2a

2sin2�

r

�
4M3 �Ma2

r2 � � � � � � �

�
: (9)

Naturally, we choose two legs of the null tetrad to be
parallel to the gradient vectors of u and v. In terms of
the Boyer-Lindquist coordinates, the NP tetrad may then
be constructed as

 

la � �du�a � �1;�h1;�h2; 0� na �
1

g00 � g11h2
1 � g

22h2
2

�1; h1; h2; 0�

ma �

�
g03

i
sin�

���������
�2

2�2

s
;�g11

�����������������������������������
�h2

2

2g11h
2
2 � 2g22h

2
1

s
; g22

�����������������������������������
�h2

1

2g11h
2
2 � 2g22h

2
1

s
; g33

i
sin�

���������
�2

2�2

s �
(10)

where �2 � �r2 � a2�2 ��a2sin2� and �2 � r2 � a2cos2�. h1, h2 are functions to be determined by the solution (7) and
may be solved asymptotically order by order. With a view to compute the NP constants for the Kerr metric later, we
compute h1, h2 to sufficiently high order so that the eikonal equation in (1) is solved up to 1=r7. The results are

 h1 � 1�
2M
r
�

4M2 � 1
2 a

2sin2�

r2 �
8M3 � 2Ma2

r3 �
16M4 � 8M2a2 � 3

8a
4sin4�

r4

�
32M5 � 24M3a2 � 2Ma4 � 1

4Ma
4sin4�

r5
�

64M6 � 64M4a2 � 12M2a4 � 5
16a

6sin6�

r6

�
128M7 � 160M5a2 � 48M3a4 � 2Ma6 � 1

2Ma
6sin6�

r7 �O�1=r8�

h2 �
a2 sin� cos�

r
�

1
2a

4sin3� cos�

r3 �
1
4Ma

4sin3� cos�

r4 �
3
8a

6sin5� cos�

r5
�

1
2Ma

6sin5� cos�

r6
�O�1=r7�:

(11)

The NP tetrad defined in (10) is different from the standard Kinnersley tetrad as la is hypersurface forming. In the limit
a! 0, the tetrad degenerates to the standard NP tetrad in the Schwarzschild metric ([12], chapter 3).

The spin coefficients of the tetrad defined in (10) may further be given in the asymptotic limit r! 1 as

 

� � �0 � 0 � � �
1

r
�
a2sin2�

2r3 �
Ma2sin2�

2r4 �
3a4sin4�

8r5
�

7Ma4sin4�

8r6
�
a4sin4��5a2sin2�� 16M2�

16r7 �O�1=r8�

� � �
3Ma2sin2�

2r4 �
5iMa3 cos�sin2�

r5
�O�1=r6� � � �

3iMa sin����
2
p
r3

�O�1=r4� � � O�1=r5�

� �
cot�

2
���
2
p
r
�

1

4
���
2
p

sin�
��a2cos3�� 2a2 cos�� 6iMasin2��

1

r3 �O�1=r
4� �0 �

1

2r
�
M

r2 �
a2sin2�

4r3 �O�1=r4�

�0 �
3Ma2sin2�

4r4 �O�1=r5� �0 � �
3iMa���

2
p
r3

sin��O�1=r4� �0 � �
M

2r2 �O�1=r
4�

�0 �
cot�

2
���
2
p
r
�

1

4
���
2
p

sin�
��a2cos3�� 2a2 cos�� 6iMasin2��

1

r3 �O�1=r
4�: (12)

The Weyl curvature components may also be given asymptotically as

 �0 �
3Ma2sin2�

r5
�

15iMa3sin2� cos�

r6
�O�1=r7� �1 �

3iMa sin����
2
p
r4

�
6
���
2
p
Ma2 sin� cos�

r5
�O�1=r6�

�2 � �
M

r3 �
3iMa cos�

r4 �O�1=r5� �3 � �
3iMa sin�

2
���
2
p
r4
�O�=r5� �4 �

3Ma2sin2�

4r5
�O�1=r6�:

From

 gab � lanb � lbna �ma �mb � �mamb

together with (10) and (11), the asymptotic form of the Kerr metric near future null infinity may be worked out to be
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ds2 �

�
1�

2M
r
�

2Ma2cos2�

r3 �O�1=r4�

�
du2 �

�
1�

a2sin2�

2r2 �O�1=r3�

�
2dudr�

�
a2 sin� cos�

r
�O�1=r2�

�
2dud�

�

�
2Masin2�

r
�O�1=r2�

�
2dud’�O�1=r4�dr2 �

�
a2 sin� cos�

r
�O�1=r2�

�
2drd�

�

�
2Masin2�

r
�O�1=r2�

�
2drd’� r2

�
1�

a2cos2�

r2 �O�1=r3�

�
d�2 �

�
2Ma3sin3� cos�

r2 �O�1=r3�

�
2d�d’

� r2

�
sin2��

a2sin2�

r2 �O�1=r3�

�
d’2: (13)

By the standard choice of conformal factor � � 1=r, the
metric in (13) may be conformally compactified. It may be
checked that the gradient of � at I� is nonzero and the
second derivative of � vanishes at I�. The structure of I�

for the Kerr metric is Minkowskian in the sense that the
null generators are complete and the topology is that of a
light cone with its apex taken away (i.e. topologically S2 	
R) [14,15]. Further, a constant u hypersurface intersects
I� in a unit two sphere.

From (13), we observe that the zero and first order of the
metric coincide with that of Minkowski and
Schwarzschild, respectively. Angular momentum appears
in the terms of the orderO�1=r2�. This is reminiscent of the
asymptotic behavior of the Kerr metric near spatial infinity.

The non-null character of dr in (13) means that the
coordinates ��; ’� are not constant along a null generator
of a constant u hypersurface. The presence of angular

momentum generates rotation of a constant r spherical
section during its motion along a constant u null hypersur-
face, taking along with it also the symmetry axis. This
suggests that the coordinates inherited from that of Boyer-
Lindquist may not be the natural one to work with near null
infinity. This motivates us to further develop the Newman-
Unti (NU) formalism which describes a null generator of a
constant u hypersurface in terms of its natural affine pa-
rameter and the angular coordinates are those pulling back
from null infinity.

III. NU FORMALISM AND NP CONSTANTS

Suppose la � � @@��
a such that � is an affine parameter of

a null generator of a constant u hypersurface. In terms of
the Boyer-Lindquist coordinates, we have from (10) and
(11) that

 la �
�
1�

2M
r
�

4M2

r2 �
8M3 � 2Ma2cos2�

r3 �O�1=r4�; 1�
a2sin2�

2r2 �
Ma2sin2�

r3 �
a4�1� 6cos2�� 7cos4��

8r4

�
Ma4�1� cos4��

2r5
�
a6�1� 5cos2�� 3cos4�� 9cos6�� � 8M2a4sin4�

16r6
�O�1=r7�;

a2 sin� cos�

r3

�
a4 sin� cos��1� 1

2 sin2��

r5
�
Ma4sin3� cos�

4r6
�O�1=r7�;

2Ma

r3 �
4M2a

r4 �
8M3a� 2Ma3�1� cos2��

r5
�O�1=r6�

�
:

(14)

From the definition of la and (14), we may obtain the following coordinate transformations:

 r � ��
a2sin2 ~�

2�
�
Ma2sin2 ~�

2�2 �
a4�1� 6cos2 ~�� 5cos4 ~��

8�3 �
Ma4�3� 10cos2 ~�� 7cos4 ~��

8�4

�
a4sin2 ~�
16M2sin2 ~�� 5a2�1� 14cos2 ~�� 21cos4 ~���

80�5
�O�1=�6�

� � ~��
a2 sin~� cos~�

2�2 �
3a4 sin~� cos~� cos2~�

8�4 �
Ma4sin3 ~� cos�~��

4�5
�O�1=�6� ’ � ~’�

Ma

�2 �
4M2a

3�3 �O�1=�
4�;

(15)

where �~�; ~’� are the angular coordinates pulled back from
that of a cut at I�.

Before we move on, we digress at this point to work out
the Bondi-Sachs form of the Kerr metric, which is impor-
tant for the understanding of the characteristic structure of
the Kerr metric. Define the luminosity parameter �r in the
standard way (see for instance [16]) by

 @� �r � ���r: (16)

In view of (15) and the explicit expression of � given in
terms of the Boyer-Lindquist coordinates in (12), it may be
inferred that

 � � �
1

�
�

9M2a4sin4 ~�

20�7 �O�1=�8�: (17)
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Integrating (16) with the help of (17), we then find

 �r � ��
3M2a4sin4 ~�

40�5
�O�1=�6�: (18)

Substituting (15) and (18) into the metric in (13) or alter-
natively expressing the NP tetrad in ((10)) in terms of the
coordinates �u; �r; ~�; ~’�, we may derive the Bondi-Sachs
form of the Kerr metric given as

 ds2 �

�
1�

2M
�r
�
Ma2�2cos2 ~�� sin2 ~��

�r3 �O�1=�r4�

�
du2 �

�
1�

15a4sin2 ~��5� 8 cos2~�� cos2 ~��

8�r4 �O�1=�r5�

�
2dud �r

�

�
3Ma2 sin~� cos~�

�r2 �O�1=�r3�

�
2dud~��

�
2Masin2 ~�

�r
�O�1=�r2�

�
2dud ~’�

�
�r2 �

Ma2sin2 ~�
�r

�O�1=�r2��d~�2

� �
6M2a3sin3 ~� cos~�

�r3 �O�1=�r4�

�
2d~�d ~’�

�
�r2sin2 ~��

Ma2sin4 ~�
�r

�O�1=�r2�

�
d ~’2:

In principle, with more involved calculations, higher order
terms of the Bondi-Sachs form of the metric may be
generated using the same algorithm.

Now we return to our discussion of the NU formalism
for the Kerr metric, and we shall adopt the coordinates
fu; �; ~�; ~	g again in our subsequent discussions. The NP
tetrad given in (10) and (11) are not parallelly transported
along a generator of a constant u hypersurface. This mani-
fests in the nonzeroness of �0 and the imaginary part of � in
(12). In the next step, with la kept fixed, we shall rotate the
NP tetrad defined in (10) into one which is parallelly
transported along a null generator of a constant u hyper-
surface, again in an order by order fashion. To this end, we
first rotate ma by a phase angle, i.e. ma ! ei
ma where 

is a real valued function of �, ~�, ~	. The spin coefficient �
transforms accordingly as

 �! ��
1

2
ilara
:

For ma to be parallelly transported along a null generator
with tangent vector la, the vanishing of � requires

 
 � 
0�~�; ~’� �O�1=�5�; (19)

where 
0 is an arbitrary, real valued function defined on a
unit two sphere and it signifies the SO�2� degrees of free-
dom in the definition of ma and �ma with la, na fixed. By
further stipulating that asymptotically the angular part of
ma should take the form 1��

2
p
r
�@~� � i csc~�@ ~’�, we may

choose 
0 to be zero and conclude from (19) that

 
 � O���5�: (20)

This will be sufficient for the calculation of the NP con-
stants to be considered in a moment.

For na to be parallelly transported, we need to perform
the null rotation

 la ! la; ma ! ma � bla;

na ! na � �bma � b �ma � b �bla
(21)

where b is a complex valued function of �, ~�, ~’ and �b
denotes its complex conjugation. Subject to (21), � remains
unchanged due to � � 0, while �0 transforms as

 �0 ! �0 � 2 �b�� lara �b: (22)

With the help of (12) and (20), from (22) we may infer that,
for �0 to vanish, we require

 b �
3iMa sin~�

2
���
2
p
�2

�
Ma2 sin~� cos~����

2
p
�3

�O�1=�4�: (23)

The constant of integration is set to zero in (23) so that
asymptotically the component of ma in the @

@� direction
starts from the order of O�1=��.

For the parallelly transported NP tetrad on a constant u
hypersurface, the corresponding spin coefficients and the
peeling off behavior of the Weyl curvature components
may then be worked out to be

 �� �� �0 � �0 � 0 ���
1

�
�

9M2a4sin4 ~�

20�7 �O�1=�8� ���
3Ma2sin2 ~�

2�4 �
5iMa3sin2 ~� cos~�

r5
�O�1=�6�

���
3iMa sin~�

2
���
2
p
�3
�

2
���
2
p
Ma2 sin~�cos~�

�4 �O�1=�5� ��
cot ~�

2
���
2
p
�
�

3iMa sin~�

2
���
2
p
�3
�O�1=�4�

�0 �
1

2�
�
M

�2�
3iMa cos~�

2�3 �O�1=�4� �0 �
Ma2sin2 ~�

4�4 �O�1=�5� �0 � �
M

2�2�
3iMacos~�

4�3 �O�1=�4�

�0 �
cot ~�

2
���
2
p
�
�O�1=�4�

(24)

LIGHT CONE STRUCTURE NEAR NULL INFINITY OF . . . PHYSICAL REVIEW D 75, 044003 (2007)

044003-5



and

 �0 �
3Ma2sin2 ~�

�5
�

15iMa3sin2 ~� cos~�

�6
�O�1=�7� �1 �

3iMa sin~����
2
p
�4

�
6
���
2
p
Ma2 sin~� cos~�

�5
�O�1=�6�

�2 � �
M

�3 �
3iMa cos~�

�4 �O�1=�5� �3 � �
3iMa sin~�

2
���
2
p
�4

�O�1=�5� �4 �
3Ma2sin2 ~�

4�5
�O�1=�6�:

(25)

We may see from the spin coefficient � in (24) that, once
the Boyer-Lindquist coordinates is chosen, the scaling
freedom for the affine parameter is also determined.
From the asymptotic behavior of the spin coefficient �, it
may also be seen that the asymptotic shear defined by
��2� responsible for the news vanishes on the unit sphere
at which a constant u hypersurface intersects I�. This
existence of this kind of good cuts is characteristic of the
asymptotic structure of a stationary, weakly asymptotically
simple spacetime in which the gravitational radiation field
defined by ��1�4 vanishes [17].

Define �̂ � ��3� and �̂1 � ��4�1. The angular mo-
mentum of the Kerr metric may be expressed as

 Ma � �

���
2
p

3i�2

Z
�̂dŜ �

���
2
p

3i�2

Z
�̂1dŜ; (26)

where the integration is over a unit two sphere at I�. Using
the NP equations and the explicit expressions of the spin
coefficients given in (24), it may be deduced that the above
angular momentum expressions are all special cases of the
the linkage expression [18] (or equivalently the Komar
integral) written in terms of the NP tetrad chosen here.
From (26), we also see that the angular momentum is a
measure of nonintegrability of the timelike two plane
spanned by the null vectors la, na (see also [19] in this
connection).

A. NP constants of the Kerr metric

With the NU framework we have developed and the
calculations we have done on various quantities, we are
now in a position to further compute the NP constants for
the Kerr metric.

Consider the NP constants [17] defined as

 Gm�
Z 2�

0

Z �

0
2

�Y2m�1
0 sin~�d~�d ~	; m�0;�1;�2 (27)

where 2Y2m are the spin weight 2 spherical harmonics. �1
0

is defined by the asymptotic expansion of �0 as

 �0 �
�0

0

�5
�

�1
0

�6
�O�1=�7�:

Axisymmetry of the Kerr metric means that G�1 and G�2

vanish trivially. With

 �1
0 � 15iMa3sin2 ~� cos~�

according to (25), it may be calculated easily from (27) that

G0 � 0 and therefore all NP constants vanish in a Kerr
metric.

Alternatively, with the definitions of multipole moments
defined in [20], we may also work out from (25) the
explicit expressions for the monopole (M), dipole (D)
and quadruple (Q) moments and may be given, respec-
tively, as

 M � �
1

4

Z �

0
��0

2 �
��0

2� sin~�d~� � M

D � �
1

2
���
2
p

Z �

0
�0

1P
1
1�cos~�� sin~�d~� � iMa

Q � �
5

24

Z �

0
�0

0P
2
2�cos~�� sin~�d~� � �2Ma2;

where Pml are the standard Legendre polynomials. The NP
constant G0 may also be calculated from the formula [17]

 G0 � 2
���������
30�
p

�2D2 �MQ� (28)

and again we obtain zero. This gives a consistency check
on the calculations of the NP constants using the definition
in (27). In principle, higher multipole moments of the Kerr
metric may also be obtained similarly at the cost of more
complex calculations of the higher order terms of �0.

B. Physical implications.

The vanishing of the NP constants of the Kerr metric is
puzzling in connection with the no hair theorem for a black
hole [21]. The no hair theorem asserts that a Kerr black
hole is the unique final state for gravitational collapse, like
for instance in the merger of binary black holes with non-
zero residual angular momentum. Certainly we do not
expect a generic initial data set which lead to eventual
gravitational collapse will have vanishing NP constants
(see for instance [22]). But then how do we reconcile this
with the vanishing of the NP constants for the Kerr metric?

One way out, without compromising the no hair theo-
rem, is that at the initial stage of a black hole evolution, the
structure of null infinity is not smooth enough, i.e. the
conformal completion of the physical spacetime is Ck, k <
5. The NP constants are then not well defined at this early
time of the evolution. When the evolution enters a stage in
which the Weyl curvature falls off sufficiently rapid so that
I� becomes smooth enough, the NP constants begin to set
in. Another possibility we should not overlook is that
perhaps some hypotheses of the no hair theorem may not
be applicable for a generic collapse situation. Certainly
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there are other possibilities we may think of. The vanishing
of the NP constants for the Kerr metric together with the no
hair theorem set a very stringent constraint for black hole
evolution. It is also worth understanding better to what
extent the NP constants constrain the dynamics of gravi-
tational collapse.

IV. CONCLUDING REMARKS

One obvious shortcoming of the present work is that the
construction is valid only in a neighborhood of null infinity.
Unless we have an analytic solution to the eikonal equation
which matches to that given here near null infinity, it is
difficult to extend the asymptotic coordinates to cover
entirely the Kerr metric exterior to the event horizon.
Still we hope the present work will provide a small step
towards our understanding of the gravitational waveform

of a relativistic rotating source. Further, the vanishing of
the NP constants of the Kerr metric also requires better
understanding from the perspective of black hole evolution
and gravitational wave physics of a spacetime. This will
hopefully enables us to gain deeper insight into the physi-
cal meaning of these mysterious constants.
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