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ABSTRACT. An area minimizing double bubble in R n is given by two (not necessarily connected) regions 

which have two prescribed n -dimensional volumes whose combined boundary has least ( n - l )  -dimensional 

area. The double bubble theorem states that such an area minimizer is necessarily given by a standard 

double bubble, composed of  three spherical caps. This has now been proven for  n = 2, 3, 4, but is, for  

general volumes, unknown for  n > 5. Here, for  arbitrary n, we prove a conjectured lower bound on the 

mean curvature of  a standard double bubble. This provides an alternative line of  reasoning for  part o f  the 

proof o f  the double bubble theorem in N 3, as well as some new component bounds in R n. 

1. Introduction 

In ~3, a standard double bubble describes the familiar surface which is formed when two 
spherical soap bubbles join to enclose two volumes. As Plateau empirically observed [9], such 
a surface consists of three spherical caps which meet at 120 ~ angles. Analogously, a standard 
double bubble in N n is defined as a collection of three ( n -  1)-dimensional spherical caps which 
intersect at 120 ~ angles along a common (n-2)-dimensional sphere. 

The double bubble conjecture states that in N n, a standard double bubble is the unique surface 
of minimal area which encloses two given volumes. This conjecture has been proven in N 2 [3], 
N 3 [7], and N 4 [10], but remains an open problem in higher dimensions. A major difficulty is 
the possibility that one of the enclosed regions of an area minimizing double bubble may not 
be connected. Although a least-area surface which encloses and separates two regions of given 
volumes must exist [1, Theorem VI.2], the existence proof allows each enclosed region to have 
more than one component. 

The Hutchings Basic Estimate and its corollaries provide a way to bound the number of 
components in each region of an area-minimizing double bubble. In particular, in a double 
bubble which encloses regions of volumes v and 1 - v, they give us a function K(v) which 
provides an upper bound on the number of components in the region of volume v. 

Although computer-generated graphs of K(v) have long suggested that K(v) is decreas- 
ing, until now there has been no rigorous mathematical proof of this. The Curvature Conjecture 
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([10, Conjecture 4.10], [8, Conjecture 14.14]) provides a way to finally prove that K(v)  is de- 
creasing, which will allow us to determine component bounds accordingly. 

Theorem 1.1 (Curvature Conjecture). In R n, let Ho, HI, H2, respectively, denote the mean 
curvature o f  a sphere o f  volume w, a sphere o f  volume w + 1, and the exterior o f  the second 
region o f  a standard double bubble o f  volumes 1, w. Then 

2/-/2 > Hod-H1 . 

The curvature conjecture was proven in R 2 and in all dimensions for the case w > 1 by 
David Futer [4]. 

2. The curvature conjecture in the double bubble problem 

First, we will place the curvature conjecture into context, by citing some results which have 
been proven elsewhere. A much fuller account of this history can be found in Chapter 14 of [8]. 
Let A(v, w) denote the minimal area required to enclose and separate volumes v, w in l~ n, let 
A(v)  = A(v,  0) denote the surface area of a sphere of volume v, and let .4(v, w) denote the 
surface area of the standard double bubble enclosing regions of volumes v and w. 

Theorem 2.1 (Hutchings Basic Estimate [6, Theorem 4.2]). Consider a minimizing double 
bubble o f  volumes v, w in ~n. I f  the first region has a component o f  volume x > O, then 
A(v)[v/x]  1/n < 2A(v, w) - A(v + w) - A(w).  

Corollary 2.2. In a minimizing double bubble o f  volumes v, w, i f  the region with volume v 
consists o f k  components, then A(v)k  1/n < 2A(v, w) - A(v  + w) - A(w).  

Although the Curvature Conjecture has remained unproven until now, it has had the following 
two corollaries for a while. Corollary 2.3 asserts that when v = 1, the preceding bound is an 
increasing function of w. 

2A(1 ,w) -A( l+w) -A(w)  is increasing. Corollary 2.3 ([5, Conjecture 4.9]). f ( w )  := A(1) 

Similarly, by considering the Hutchings Basic Estimate when w = 1 - v, we get an upper 
bound K(v)  on the number of components in the first region of a (v, 1 - v) double bubble. 

2 A ( v , l - v ) - A ( 1 ) - A ( 1 - v )  > k l / n  
K (u) : =  a(v) -- �9 

Corollary 2.4, which is implicitly present in [8, pp. 150-151], states that this function decreases 
as v increases. 

2.4(v, 1 - v ) - A ( 1 ) - A ( 1 - v )  C o r o l l a r y  2.4. K (v) = a(o) is decreasing. 

Since k 1/n < K(v)  and K(v)  is decreasing, an absolute upper bound for the number of 
components in the region with volume v is given by 

lim ( 2A(v'l-V'A:()a)-a(1-v' ) n 
o----~0 

Unfortunately, the upper bound which results from this limit is too large to be usable for most n. 
In I~ 3, however, we can calculate the following useful result. 
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T h e o r e m  2.5. The smaller region of a double bubble in ]~3 has at most two components. 

Proof. l i m w 0  K(v) = (5)1/3, which implies that K(v) 3 _ 2.5. [ ]  

T h e o r e m  2.6, /n R 3 and R4, the larger region of a double bubble is connected. In ~n, the 
larger region of a double bubble can have at most three components. 

Proof. Since K is decreasing, K(1) n provides an upper bound for the number of components 

in the larger region. Since a ( 1 )  = n~Otn(1)n-X, 

K ( 1 ) = 2 n ~ 2 o t n - l f 2 r r / 3 s i n n O d O - a ( 1 ) - a ( 1 )  f f2zr /3s innOd0 2 

a ( 1 )  = 4  f ~ s i n n o d  0 ~ 1. 

When n = 3 or n = 4, one can verify that g(1)n < 2, and it is also not difficult to show that 

K(1) n < 4 for all n E N. [ ]  

R e m a r k .  In ]~3 and ~4, one can also use Schoenfeld balancing [2] in order to show that the 
larger region is connected. 

When n is large, we must note that there is a much simpler way to bound the number of 
components in each region of a double bubble in ~n. If  we define 

G(V):_~_2[A(v)+A(1-v)]-A(1)-A(1-v) (~_.E) (n-1)/n (1) (n-1)/n 
a(v) = 2 + -- , 

then G is decreasing, and the Hutchings Basic Estimate implies that k < (G(v)) n. According 
to the Balancing Theorem [6], if the larger region in a double bubble consists of more than 2 of 
the total volume, then the larger region is connected. The following theorem then reveals that if 
the larger region of a double bubble is not connected, then the smaller region can have at most 
six components. 

T h e o r e m  2.7. In a double bubble consisting of regions of volumes v and 1 - v, where the 
larger region is of  volume v < 2, the smaller region consists of  at most six components. 

Proof. Since G is decreasing and the larger region has volume v _ 2, the smaller region 

has at most G(1) n components. Since G(1) = 2 + 2 ~n-1)/n - 3 (n-1)/n, we need to prove that 

(2 + 2 (n-1)/n - 3(n-1)/n) n < 7. Equivalently, we will show that 71/n + 3.3 -1/n - 2.2 -1/n > 2. 

(7 x) c§ a__,tx 1/x+ 3 �9 3 -1 /x -  2 . 2  -1/ = (ln7)211/x+ ( In27) -  (ln4) < 0 . 

Since l i m  (71/n -k- 3 �9 3 -l /n - 2 . 2  - l /n )  = 1 + 3 - 2 = 2, we are done. [ ]  
n'---~ o o -  

The next theorem shows that if the larger region has three components, then the smaller region 
has at most five components. When this result is combined with the preceding theorem, we see 
that when the larger region is disconnected, there can be at most eight distinct components (total). 

T h e o r e m  2.8. / f  the larger region of a double bubble has three components, then the smaller 
region has at most five components. 
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Proof. When n = 3, we know that the larger region of  a double bubble has fewer than three 
components. When n > 4, one can show that G(-~)  < 31/n < G(1). 

Since G is continuous, there exists v 0 6  (�89 ~ )  such that G(vo) = 3 l/n. Now suppose that 
the larger region v o f a  (v, 1 - v) double bubble in ]~n has three components. Then G(1 - v) < 
G(1 - v0) = 2 + (lV--~~ - 1 + G ( v o ) -  (lv-~-)(n-l)/n ] = 1 + (lV--~~ 1 -t- 3 l /n] < 

[39](n-1)/n [ - 1  + 31/n] .  1 + ~SJ 

To finish the proof, show that (1 + (~---595)(n-1)/n[-1 + 31/n]) n < 6 by proving that 61/n + 
(39-~r [39~(75~1/n 

~-~j~-~j -- ,25J~39J > 1. [ ]  

3. Prel iminaries  

In ]I~ n, a standard double bubble consists of  three spherical caps which intersect at 120 ~ 
angles. It has an axis of  symmetry, which will serve as the x-axis. If  we place the origin at the 
center of  the larger bubble, then in any plane through the x-axis, the line from the origin to a point 
of  common intersection forms a well-defined "cap angle" with the x-axis, which we will call 4~. 
Let R be the distance from the origin to a point of  common intersection (i.e., the radius of  the 
larger bubble). 

FIGURE 1 

Axis of Symmetry 

ble 2 

3 

Using high school geometry, we can find that: 

�9 The "cap angle" of  the second bubble is ~b2 :=  zr/3 + ~b. 
sin(~) R. �9 The radius of  the second bubble is R2 .-- sin0r/3+q~) 

�9 The "cap angle" of  the third bubble is q~3 :=  rr/3 - ~b. 

�9 The radius of  the third bubble is g 3 .-- sin~40t~r/a- R. 

We will also need to calculate a few volumes: 

The volume of  the part of  the first bubble for which x < R cos(~b) is 

fRcosqb (~)n-1 f0;r-~ V1 : =  Otn-1 d x  = ~n_l  Rn sin n 0 dO . 
d - R  
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�9 The volume of the part of  the second bubble for which x >_ R cos(40 is 

/'R2 cos ~b2 / r " ~ \ n  -1 , n p.,'rl3+dp 
V2 : = J - R 2  a n - l ~  ~ / R 2 - x 2 )  d x  = a n - l ( s i n ~ b )  ) gnJo sinnOdO . 

�9 The volume of the part of  the third bubble for which x _< R cos(~b) is 

V3 ;= f an-1  n-1 . n fTr/3-dp 
dx = an 1{ ~m(~) "~ R n JO sin n 0 d 0  

J R3 cos ~b 3 - \sin(~r/3-r ] " 

At various points in the proof, it will be convenient to introduce another function, 

F(n, 4)) : =  f~ sinnodo 
sin n 4~ 

We will also need to know a few properties of  F. 

f0~ sin n 0 dO 
L e m m a 3 . 1 .  Given F(n, gp) .-- sinn4~ andn ~ N, 

(1) ~--~F(n,4)) = 1 - n  cot(q~)F(n, ~b) > O V ~  ~ (0, zr). 

0 2 (2) ~ F ( n ,  dp) > 0  Vdp ~ (O, zr). 

(3) F(n,~b) > ~ Vq~ 6 (0, zr). 
- -  n + l  

tan(~) V q~ ~ (0, :r/2).  (4) F(n, d?) <_ -h-:V 
(5) lim F(n, 4)) = O. 

r 

Proof.  To prove statement (3), show that f00 sin n 0 dO - 1 sinn+l (40 is positive by taking 
its derivative. Statement (4) can be proven with a similar trick. [ ]  

Remark. It is interesting to note that after rescaling, F(n, 4)) has a nice geometric interpretation 
(although this fact will not be used in this article). In particular, 

F(n, 4)) an-1 fo ~ sin n 0 dO 

f o  sinn 0 dO an sin n q~ 

which is the ratio of  the volume of  an n-spherical cap to the volume of  an entire n-sphere whose 
radius is that of  the cap's  boundary. This is a nice (and amusing) way to visualize the behavior of  
F(n, 4)) in low dimensions. 

4. Proof of the curvature conjecture when to > I 

To prove the curvature conjecture when w > 1, we need to show that the curvature of  a 
sphere with volume V1 - V3, added to the curvature of  a sphere with volume V1 -t- V2, is less than 
twice the curvature of  a sphere of  radius R. Thus our goal in this section is to prove that 

a-------~-- ~ an 2 
~ + ~ +  ~_-----S~3<~ �9 
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After substituting, canceling the R's,  and using the identity f o  sinn 0 dO = ~ ~n-1 ~ 
suffices to prove that 

t f0 ~ sin n 0 dO 
{ sin(r ~n  f z r / 3 + ~  

f0 ~ -~  sin n 0 dO + \ sin(zr/3+r ] J0 sin n 0 dO 

f0 ~ sin n 0 dO 

+ f~-4 ,  sin n OdO - { s i n ( C ) ' ~ n  < 2 .  \sin(rr/3-~)] fo/3-4J sinn 0 dO 

This still looks pretty complicated, but a lemma will help to simplify things. 

we see that it 

L e m m a  4.1. I fO < 8 < E < l, then g/-f - E + ~/l  + 8 < 2 V n e N. 

Proof .  Show that ( /1 - x + 4/1 + x is decreasing on (0, 1). [] 

Here, we need to prove a particular instance of  ~/1 - E + ~/1 + 8 < 2 where 8 and E are 
between 0 and 1. Therefore, it is sufficient to prove that 8 < e. This justifies some sleight of  
hand to remove the root signs! It now suffices to prove that 

f o  sinn 0 dO f ~  sin n 0 dO 
Jr < 2 .  

f ~ - C s i n n O d O + ( s ~ ) n f o / 3 + 4 ~ s i n n O d O  f ~  -Osinnodo-[~sinOr,/3-~b)/JOsin('' "~nfn/'3--q~elnn . . . .  0 dO  

This is a tighter inequality, but an easier one to prove, since we can now manipulate the terms 
and turn the inequality around. The following rearrangement will seem clearer if we think of the 
terms in the preceding equation geometrically, as the ratios of  volumes in a double bubble. For 
convenience, we' l l  define one more volume, Vlb :=  Otn -- V1, and then run through the calculation. 

Ct~ Ot n VI-I-V~--(V2--V1B) (VI-V3)q-(V3q-VIB) 
Vlq_V2 -~ ~ • 2 < ,~ Vlq_V2 -~- V l _ V  3 < 2 

, , V3~VIB VE--V1B 
,, ,, Vl _ V3 "~ VI_}_ V2 

, , ,  ~ VI-I-V2 
,, , V3q-Vl B > V2_Vl  B 

(VI-bV1B)--(Vs"bVIB) (VI+VIB)'b(V2-VIB) 
.{ ), V3-l-Vl B > V2--V1B 

Ol n O[ n . 

" ~ v3+vla V2--V~B > 2 

We have just shown that it is sufficient to prove that 

f o  sinn 0 dO f o  sinn 0 dO 
- > 2 .  

fq~ , , _ [  sin(q~) "~nrJr/3-(a . n ^ - ^  ~ )  sin(~) "~nrrr/3+4~ . n ^  d O _  fo~ sinn ao sinn O dO-v \ ~ ]  jo sin r a y  sin v O dO 

After re-expressing this in terms of the function F(n,  cp) which was defined in Section 3, we just 
need to prove the following equivalent assertion. 

1 [ 1 1 ] 1 
sin n ~b F(n,dp)+F(njr /3-~b)  - -  F(n,zr/3+dp)--F(n,d~) > F(n,rr/2) " 

This is still pretty complicated, but we can bound the terms in a way that will make the expression 
reduce into something much simpler. 

L e m m a  4.2. F(n,  dp) + F(n,  zr/3 - dp) <_ F(n,  zr/3) u ~b ~ (0, zr/3) u n ~ N. 
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Proof. ~[F(n,r  ~ ( n , r  zr/3-4))<OV4)�9 zr/6)be- 
cause F is concave-up. Thus on (0, zr/6], the function has an upper bound at limo~zr/3 [F(n, 4)) + 
F(n, zr/3 - 4))] = F(n, ~r/3). By symmetry, this is also true when 4) �9 [zr/6, zr/3). [ ]  

L e m m a  4.3. cos(O) [F(n, zr/3 + r  - F(n, r  > F(n, zr/3) V r �9 (0, zr/3) V n >_ 3. 

Proof. This technical proof is deferred until Section 6, at the end of the article. [] 

When we apply these two lemmas, the problem gets very manageable. It is now sufficient 
1-cos(b) 1-cos(r [ 1 ] 1 One can easily verify that when n > 3, sinnO to prove that sinn0 I . ~ J  > F(n,zr/2)" 

1--cos(zr/3) [ 1 ] 1 
is decreasing on (0, zr/3). Therefore, it suffices to prove that sin n zr/3 I ~ J  > F(n,z/2)" 

1-cos(b) 1 sinn (zr/3) I.F(nJr/3)J > However, it is also easy to show that ~ [ F(---h-~,~) ] is decreasing. Thus 1-cos(zr/3) [ 1 ] 

1-cos(zt/2) [" 1 ] t ~ J ,  which finishes the problem on (0, zr/3) for all n > 3. This completes the 

proof of  the Curvature Conjecture when w > i. 

To prove the Curvature Conjecture when the two enclosed volumes are equal (w = 1), we 
just need to prove that 

t fo sinn 0 dO ,I f~ sinn 0 dO 
+ < 2 .  

2 f2rr/3 sin" 0 dO ~ f:Jr/3 sin n 0 dO 

( fo/2 sin~ O dO ~ 
Note that Lemma 4.1 applies, so it suffices to prove 3 \ f02~r/3 sin n 0 dO ] < 2 .  

and prove that f:/3 sin n 0 dO < f~/2 3 sin" 0 dO. Since Equivalently, simplify we can 
zr/2. n fo/3sinn O dO < sinn-l~) fo/3sinO dO = sinn-l~) fzr~//2sinO dO < /~/3sln O dO Vn > 2, the 

proof is complete. 

5. Proof of  the curvature conjecture when to < 1 

To prove the curvature conjecture in the case when w < 1, we need to show that the curvature 
of  a sphere with volume V2 + V3, added to the curvature of  a sphere with volume V1 + V2, is less 

than twice the curvature of  a sphere of  radius R2 (where R2 -- s i n ~ ' "  R). Thus our  goal is to / q~) 
prove that 

~/  t~n ~ Otn 2 

VI -{- V2 q'- "g2-'~- g3 < R-"2 

I f  we substitute and cancel the R2's, and denote 

f l  (n, r  :=  
f o  sinn 0 dO 

(sin(zr/3+0)) n 
sin(b) f : - r  sin" 0 dO + fo/3+0 sin n 0 dO 

and 
f2(n, 4)) :=  

f o  sinn 0 dO 
(sin0r/3+0) ~ n fJr/3-O f:/3+O sin n 0 dO + \sin(zr/3-0)] Jo sin n 0 dO 

this is equivalent to proving that ~ + ~ < 2. 
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L e m m a S . 1 .  (1) ~/f l  (n, 40 < l V 4 ,  ~ (0, Jr/6] Yn e N .  

(2) ~/f l  (n, q~) < 3 u ~b 6 [zr/6, ~r/4]u n E N. 

Proof  Since 0-~g/fl(n, q~) > 0, it suffices to check the right endpoint of  each interval. 

(1) We can prove that f l  (n, ~) < (�89 by noting that 

f 5rr /6 f zt l2 foZr 2 n sin n 0 dO + sin n 0 dO = 2 n sin n 0 dO - F(n, Jr/6) + F(n, zr /2) ,  
dO dO 

which is greater than 2 n f ~  sin n 0 dO because F is increasing. Therefore, 

fosinnOdO fosinnOdO ( ~ ) n  

f l (n'  ~) = 2n rS~/6sinnOdO + fo/2sinnOd 0 < 2n f~  sinnOdO = �9 JO 

To prove (2), note that f l  (n, �88 is equal to 

f~  sin n 0 dO 
(Vr3+l'in ffrsin n . .  Jr zr 7rr 2 ' 0 OdO+sxn(~22)[-F(n,-4)+F(n,-i-2)] 

< f~  sin n 0 dO 
(~ff~sinnOdO < (3 ) n" 

L e m m a 5 . 2 .  (1)~/f2(n,q~) < 3 u 6 (0, rr/6] u  >_ 3. 

(2)~/f2(n,  40 < 45.- u 6 [Jr/6,~r/4lVn > 3. 

Proof  By taking a derivative, one can verify that the left-hand side is a decreasing function. 
Therefore, it suffices to check the left endpoint of  each subinterval. 

 os nn0 0 
To prove (1), it is sufficient to prove that f2(n, O) 2 f~/3 sin n 0 dO 

When n ~ {3, 4, 5}, one can just verify this by direct calculation. Here is the proof for n _> 6. By 
property (3) from Lemma 3.1, it suffices to prove that 

r 
2 sinn+l (7r/3) < 
n+l  

Equivalently, we need to prove that f o  sinnOdO < (h-~l)(L~-)  n" F o r n  > 6, this is easy to 
verify, since the left-hand side is less than one and the right-hand side is greater than one. 

To prove (2), it suffices to show that 

f~  sinnOdO OdO ( ~ ) n  
1 n 7r/6 �9 n < " fo/ZsinnOdO+(~) fo sin 

When n = 3, one can just verify this by direct calculation. More generally, the left-hand side is 
clearly less than 2, which is less than (45-)n for all n > 4. [ ]  

When Lemmas 5.1 and 5.2 are combined, we have a proof of the Curvature Conjecture for 
4~ 6 (0, Jr/4]. When q~ 6 (~r/4, re/3), the conditions for Lemma 4.1 hold, so we can remove the 
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root signs. Thus it is now sufficient to prove that 

f o  sinn 0 dO fo  sinn 0 dO 

83 

< 2 .  /~in (~r/3-'~)~n~r--~ �9 n ~ ]  J0 sm 0 dO +fo/3+4~sin n 0 dO aoFrr/3+q~sinn . . . . . .  r At9 ~- \sin(rr/3-~b)J j0{sha(rr/3fr . . . . .  O dO 

The next two lemmas will prove this for all 4) ~ (zr/4, rr/3) and n > 3. 

14 L e m m a  5.3. f2(n, 4') < ~ V 4' ~ (rr/4, rr/3) V n _ 3. 

Proof. Since the left-hand side is decreasing, it suffices to prove that 

f2(n, ~-) f o  sinn 0 dO 14 
(sin(77r/12,)n f~/12 10 fJ~r/12 sin n 0 dO + \ sin(Tr/12) sin n 0 dO 

When n = 3 or n = 4, one can verify this by direct calculation. To finish the proof, we can 
use trigonometric reduction to show that f2(n + 2, 7r/4) _< f2(n, ~r/4). Since f2(n + 2, zr/4) is 
equal to 

fo sinn 0 dO 
�9 n+l 77r sinn+2(7~r/12)cot ~22 7zr 2 rr _ {sin(7rr/12)~ n-E/-"i2 sin n sin (7rr/12)coS~-n+l n+l  +fo -ffsinnOdO+ ~ , ~ }  Jo OdO 

it suffices to prove that 

siffr+l('/zr/12) cos ~2 
n+l  

Yg 71" 

sinn+Z('/rr/12) c~ ~22 .1_ {sin('/a'/12)'~ n+2 f ]~ > (sin('/zr/12)~ n f ] 2  
n+l " \  sin(~/12) ] Jo sin n 0 dO _ \ sinO~/12) ]Jo sin n o dO. 

Equivalently, we need to prove that 

7[ 

sin e (7:r/12) - sin 2 (Jr/12) ~ f0 ~ sin n 0 dO 
/ sin"( /12) 

> (sin(7rr/_12)~ sin(zr/3) 

- \ n + 1 / sin(re/12) 

(sin(rr/3) "~ Fin  sin(7zr/12) sin(zr/3) However, Simplifying again, we need to prove that \ ~ }  , , :r /12) > n+l " 

since F(n, zr/12) > sin(zr/12) by part (3) of  Lemma 3.1, the proof is done. 
- -  n+l  

L e m m a  5.4. f l (n ,  4') < 6 V 4' ~ 0r /4 ,  ir/3) V n > 3. 

Proof  Since the left-hand side is increasing, it is sufficient to check when 4' = ~r/3. When 
n = 3 or n = 4, one can verify this by direct calculation. For higher n, one can use trigonometric 
reduction to show that the function decreases as n increases. [ ]  

This completes the proof of  the curvature conjecture when w < 1. 

6. P r o o f  o f  L e m m a  4 .3  

Before getting to the actual proof, we will need two technical lemmas, whose value will be 
apparent later. It is probably best to just skip them for now, and refer back to them as necessary. 

n V 4 ' E ( O ,  zr/2) V n ~ N .  L e m m a  6.1. [tan(4') -I- n cot(4')] F(n, 4') > 
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n s i n n + l q ' c o s r  ' Then h(0) = 0, and ~ is equal to Proof  Let h(g)) := fo~sin"OdO - (,,-~) 1+(~1)cos2~" 
sin n+2 q~ 

[l+(n_1)cos2O] 2 {[1 + (n - 1) cos2 g)][1 - cos2 g) + ~ sin2 g)] - 2n(n-1)n+l sin2 g)c~ g)} ' which 

sinn+2(~b) / 2 n + l  n - 1  2 Jr 
simplifies to [1+~_~)cos2r Cn-~- + h--g-T cos g)) > 0. Thus h(g)) > 0 u r ~ (0, ~). The result 

tan(tb)+n cot(S) [ ]  follows when we multiply h(g)) by sinn(q~) 

L e m m a  6.2. When n >_ 3 and g) c [0, rr / 3 ], 

2 n + l  ~a2_2n_2) cosg)cos(zr/3+g))+2n(n_l)cos2g)+2(n_l)cos2g)cos2(zr/3+g))>O 
2 --  " 

Proof  Since cos(x) = cos(Jr/3 + x) + cos(zr/3 - x), we can equivalently prove that 

_ ~ ..~_2n+l ~2 - 2 n +  4) cos(g)) cos(Jr/3 +g)) + 2n(n - 1) cos(g)) cos0r/3 - g)) 

+ 2(n - 1) cos(g)) cos(zr/3 + g))[1 + cos(g)) cos(:r/3 + g))] > 0 .  

By taking derivatives, we can verify that 

(1) cos(g)) cos(zr/3 + g)) is decreasing on (0, :r/3). 

(2) cos(g)) cos(zr/3 - g)) increases on (0, zr/6) and decreases on (~r/6, zr/3). 

(3) cos(g)) cos(zr/3 + g))[1 + cos(~b) cos(zt/3 + g))] is decreasing on (0, ~r/3). 

Thus when g) ~ [0, zr/6], it suffices to show that - L ~  + 0 + 2n (n-l) cos(0) cos~) > 0. But this 

is equal to n 2 - 2n - �89 which is positive for all n > 3. Similarly, since the function is decreasing 
on the entire interval [zr/6, zr/3], we can finish the proof by verifying the proposition at the right 
endpoint. Fortunately, the value at ~r/3 is _ L ~  + (n 2 _ 2n + 4 ) ( 1 ) ( -  �89 + 2n(n - 1)(�89 + 
2(n - 1)(1)( - �89 + ( � 8 9  �89 which is equal to (3)[2n 2 _ 5n - 3], which is nonnegative 
for all n > 3. [ ]  

Proof of Lemma 4.3 

Now we can prove Lemma 4.3, which states that 

cos(g)) [F(n, Jr/3 + r - F(n, g))] _> F(n, Jr/3) V ~ ~ (0, Jr/3) u n >_ 3 .  

The strategy is to show that cos(g)) [F(n, ~/3 + g)) - F(n, g))] is increasing on (0, ~r/3). Since 
the function is continuous, and l i m ~ 0 [ F ( n ,  Jr/3 + g)) - F(n, g))] = F(n, ~r/3), this will prove 
that F(n, ~r/3) is a lower bound, d~(cos(g))[F(n, Jr/3 + g)) -- V(n, g))]) is equal to 

- s i n  g)[F(n,-~ +g)) - V(n, g))] + cos g) [ -n  cot (-~+g))F(n,-~ +g)) + n cot g)F(n, g))]. 

Thus we can show that cos(g))[F(n, 7r/3 + g)) - F(n, g))] is increasing by proving that 

[tan(g)) + n cot(Jr/3 + g))] F(n, :r + g)) < [tan(g)) + n cot(g))] F(n, g)). 

n By Lemma 6.1, it suffices to show [tan(g)) + n cot(~r/3 + g))] F(n, Jr~3 + g)) < n~l" 

When n = 3, tan(g)) + n cot(n/3  + g)) is clearly positive on (0, 7r/3). When n >_ 4, 
the decreasing function tan(g)) + n cot(Jr/3 + g)) becomes negative for g) near ~r/3. Since our 
inequality is automatically satisfied when tan(g)) + n cot0r/3 + g)) _< 0, negative values are not 
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a problem! On the interval where tan(q~) + n cot(zr/3 + ~b) > O, we can verify the inequality by 
rearranging it as follows: 

[tan(~b) + n cot(Tr/3 + q~)] F(n, zr/3 + dp) < n~l 

f x / 3 + ~  sin n (zr/3+r 
,,' ,,' -'n--don+l sin n 0 dO < tan(r cot(zt/3+q~) 

", ," f({#) : =  sinn+ 1 (n'/3 +~b) c~ / \ /~ ~ . ~ ) / 7 r / 3  q-~b 
' ' - s in  n 0 d 0 > _ 0 .  

+ (n -- 1) cos(~b) cos(rr/3 +~) d 0 

By property (4) of Lemma 3.1, f (0)  = ~) sinn(-~) [tan(~) - (n + 1)F(n, ff)] > 0. Therefore, 
it is sufficient to show that f(~b) is increasing on (0, zr/3). So we take its derivative! After some 
simplification, one can show that df is equal to 

[ - ~ - [ - ( n 2 - 2 n - 2 ) c o s d p c o s ( - ~ + d p ) + 2 n ( n - 1 ) c o s 2 d p + 2 ( n - 1 ) c o s 2 d p c o s  2 (-~-~)] sinn (-~+q~) 

2n [1 + (n -- 1) cosq~ cos (~ +q~)] 2 

But we know from Lemma 6.2 that this is nonnegative, so the proof is complete. 
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